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Abstract
Nowadays, with the massive amount of data available online,
there is a growing need to integrate different types of data
into unified systems, specifically in a geographical context.
Integrated tools that provide both geographical and entity
related data already exist, however, the information they
contain is often unreliable, not current or has restricted ac-
cess. Therefore, in this work, we propose a method to enrich
current location databases with information related to their
entities. Our work concerns two problems, web extraction
and classification, so we base our architecture on studies of
those fields. The system was built with the OpenStreetMap
project’s data and uses several web scraping and slot filling
methods, in order to extract an entity’s attributes from the
Web and gather them in a single information tool. To ensure
the data is current and trustworthy, the system extracts each
entity’s information from its official website. This data is then
processed by the system, which uses regular expressions, lan-
guage models and machine learning techniques to classify
each possible attribute value. The system’s evaluation is done
with metrics, such as Precision, Recall and F-measure. Our
results show that the proposed system performs better when
using regular expressions or a mixed approach of regular
expressions and machine learning algorithms, depending on
the attribute.

Keywords: Web Scraping, Slot Filling, Natural Language Pro-
cessing, Geographical Information System, OpenStreetMap

1 Introduction
With the explosive growth of the World Wide Web, each
day, more and more information is accessible online. This
increase of data at one’s disposal leads to a rising need of
processing and making it available quickly and freely so that
this information can be used by other user oriented platforms
and services. There is a considerable number of this type
of services, mainly data analysis applications, that benefit
greatly from it.
Specifically in a geographic context, there is a need for

integration and validation of information, which the Web
can bridge. Thus this work’s purpose, which is to evaluate
and improve the data contained in Geographic Information
Systems (GIS), such as OpenStreetMap (OSM). According
to Chang[3], GIS are computer systems that capture, store,
query, analyze and display geospatial data, which is data that

describes both the locations and characteristics of spatial
features.
Finding official information about an entity through ex-

isting geographical location sources is a somewhat limited
process. Limited in the sense that these sources mostly only
focus on an entity’s geographical knowledge, containing
only its name and geographic coordinates and no other type
of data (e.g. opening hours or phone number), which are
available on the Web through search queries. Even when
they do take these types of data into account, they often
provide display limitations and require the entity itself to
update such data on the platform. Those services which do
not include such restrictions might have other issues, like re-
liability or currency, which is OSM’s case as its information
is inserted by random users at random times.

Therefore, the challenge addressed in this work is the de-
velopment of an automated tool that complements geograph-
ical location sources, more specifically, the OSM project, with
reliable data taken from the Web. The solution to the prob-
lem in question will involve the application of Slot Filling
(SF) techniques to data extracted from the Web, throughWeb
Scraping (WS) techniques. The proposed system’s objective
is to finally obtain current detailed information from a subset
of geographical entities. However, since the SF task is highly
application and domain dependent[2], in this case, a set of
selected attributes for the SF task was chosen: addresses,
opening hours and phone numbers, so the system will only
concern the extraction and processing of these.

1.1 Organization of the Document
This article is organized in 5 chapters, as follows: Section
2 that briefly explores the state-of-the-art of the subject,
Section 4 concerns a detailed description of our solution to
the WS and SF problems, which is applied in a geographical
context, and Section 5 describes the system’s most relevant
results and experiments. Finally, Section 6 delves into the
focal points of this work.

2 Related Works

This work covers two main areas: Web Extraction (more
specifically Web Scraping) and Slot Filling. WS can be de-
scribed as the extraction of useful information from web
pages, while SF is defined as the extraction of the values of
certain types of attributes for a given entity.



Some of the most popular methods for Web Scraping in-
clude Textmining, Text grepping, HTTP programming, DOM
parsing and HTML parsing[10, 12]. To solve Natural Lan-
guage Processing (NLP) tasks, such as Slot Filling (SF), there
are also different types of techniques: rule based[4, 11], ma-
chine learning based[1] and deep learning based[6, 8] ap-
proaches.

A work very similar to our own is Leopard. In their work,
Speck and Ngonga Ngomo[11] introduce Leopard as a Reg-
ular Expressions (RE) based approach to SF. Leopard was
created in the context of the 2017 SWC KBP with the objec-
tive of predicting and validating attributes from a predefined
dataset. The theme of that year’s competition was organi-
zations’ attributes, such as the countries they work in, the
phone numbers of its’ offices, the date they were founded,
etc.
The system starts by collecting the given website URLs

from the task’s provided data for each organization. With
the collected websites, Leopard crawls them to store their
contents and then crawls its subpages (URL links found in
the web page with the same domain) by the order they were
found. The number of subpages explored was limited to a
fixed number of URLs. For the phone number attribute, Leop-
ard searched a web page’s contents for hyper-references
starting with the keyword “tel" for phone number and chose
the phone number that occurred with the highest frequency.
This system also made use of a library to parse, format and
validate international phone numbers. Finally, in case multi-
ple phone numbers had the same frequency in a web page,
the system chose the one that occurred at the first place on
a website.
Another attribute Leopard analyzed was the date an or-

ganization was founded. To discover the values for this
attribute, Leopard used regular expressions to choose the
smallest 4 digit number in the interval [1900, 2018]. Another
method they used was searching for the keyword “founded"
in the text of a website, by traversing its HTML markup, to
extract the year behind this keyword.

3 Datasets

Throughout this project six datasets were used, which
were crucial for this work’s development and simultaneously
one of this work’s biggest challenges, due to the lack of
annotated data in this context. Three datasets were used in
the training phase (OSM Dataset, Official Address Dataset
and Yellow Pages Dataset) while the other three datasets
were used in the testing phase (Annotations Dataset, Truth
Base Dataset and OSM Attribute Dataset). The Annotations
Dataset was manually built as there were no data sources
that complied with this work’s requirements, reason why
it is described below. The remaining datasets are described
thoroughly in the main document.

3.1 Annotations Dataset

This dataset needed to have a similar structure to a web
page, besides containing all 3 attributes, since the system’s
objective is to attribute labels to sentences in HTML web
pages. The search for a dataset with these requirements was
quite extensive, there were some options available, however,
many of them either did not comply with the base require-
ment (containing all attributes), their information was not
100% reliable or they were not freely available, reason why
this dataset was manually annotated.
Thus, the Annotations Dataset consisted in several man-

ually annotated documents containing text extracted from
HTML web pages (30 documents, one for each entity). Since
every classification task requires an annotated dataset, this
dataset was created, so that the system’s correctness could
be evaluated. With this objective in mind, 30 entities were
chosen from all available entities. The selection criteria for
an entity to be chosen was:

• The entity’s online website must contain values for
all three attributes (address, opening hours and phone
number);

• The entity’s website must be successfully extracted
through Scrapy (e.g. the website has to be a valid URL
for that entity);

• The entity’s website needs to have the attributes in-
formation in Portuguese.

Only 30 entities were chosen as not many fulfilled the
criteria and 30 was a reasonable enough number considering
all available entities. After collecting all 30 entities’ HTML
web pages with Scrapy, they were all manually annotated,
which is a time-consuming task. The annotation procedure
for the collected web pages consisted in the followingmanual
steps:

• Eliminate all content that is in a language other than
Portuguese;

• Assign a value of 0 for all sentences that are of no
interest (e.g. “Sinceramente, 0" and “Saboreie uma vida
diferente. 0");

• Assign a value of 1 for all sentences that are a valid
Portuguese address (e.g. “Praça da Figueira, 12A 1" and
“1100-241 Lisboa 1");

• Assign a value of 2 for all sentences that are a valid
Portuguese opening hour, more specifically all cases
where an hour indication was present, preceded or
followed by a week day or week interval reference.
(e.g. “SEG - QUI 2" and “09h30 - 20h00 2", but “Segunda
fechamos 0" was not annotated as a valid opening hour,
since it has a complex meaning and implies an opening
hour reference indirectly. On the other hand “Segunda-
feira: 14h-17h30 2" was positively annotated as it is a
concrete and obvious opening hours reference);
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• Assign a value of 3 for all sentences that are a valid
phone number, even if not Portuguese (e.g. “+351 218
862 859 3" and “924 775 913 3");

This dataset presents both categorical and numerical data,
it also contains 38222 records, where 542 are addresses, 933
opening hours, 558 phone numbers and 36189 instances
that are not attribute values, which makes it an imbalanced
dataset. Imbalanced since 70% of all entities are negative,
while only 30% of the instances are positive (contain any
type of attribute). This high percentage of negative instances
is to be expected since the average entity’s website contains
plenty of varied types of information regarding the entity
and attributes like address, opening hours and phone number
are often displayed in few lines, thus being a mere fraction
of it.
This dataset is used for the ML variation of the system,

reason why it should be balanced in order to avoid affect-
ing classifiers’ which are sensitive to imbalanced classes.
Thus, the dataset was analyzed regarding the existence of
positive instances (addresses) and negative instances (not ad-
dresses). Out of the 542 addresses, only 112 were found to be
unique. Since there were only 112 positive unique examples,
in order to have a balanced dataset, 112 negative records
were randomly selected out of the existing 37680 negative
instances (combination of phone number, opening hours and
non attribute sentences of the dataset). To randomly select
the negative instances, the random.sample numpy’s function
was used from the random module, which returns k (in this
case 112) number of random elements from the input array.
After shuffling and joining both the positive and negative
instances, the now balanced dataset was composed of 224
annotated records for the address attribute.

4 System Architecture

In order to develop this work, several WS and SF tech-
niques were used. Therefore, this work focuses in two types
of methods: methods that extract information from the Web
and convert it to a tree like structure, in order to traverse
each web page’s extracted nodes, and methods that recog-
nize relevant attributes of entities in continuous text, based
on RE rules, LM and ML techniques. As can be seen in Figure
1, the system’s architecture consists of a:

• Web Scraper, that extracts content from the Web (e.g.
for the entity “ShariSushi Bar", extracts its official
website from OSM, goes to its official website https://
www.sharisushibar.pt/, requests its HTML web page
and extracts it to a local machine)

• Slot Filling Component, that selects candidate attribute
strings based on several methods. These methods are:
– Regular Expression rules, that filter the extracted text
and try to match pre-defined strings with it (e.g. for
the entity “ShariSushi Bar", its HTML document is

traversed and each line is tested for a match with the
REs defined for each attribute. The line “3030-193
Coimbra" is an example of a positive match for this
entity since it matches the address’ REs);

– Language Model algorithms, that first learn a lan-
guage’s vocabulary and then try to recognize it in
the extracted text and attribute to each analyzed sen-
tence a probability score describing the likeliness of
belonging to the vocabulary the LM recognizes;

– Machine Learning algorithms, that analyze an at-
tribute annotated dataset with labels for each candi-
date and, based on the labels viewed, decide if they
are valid or not (e.g. for the entity “ShariSuhi Bar",
according to a Support Vector Machine classifier
trained with a balanced dataset, “3030-193 Coimbra"
is labeled as an address).

That being said, the proposed system will consider three
attributes to be analyzed for each entity: address, phone num-
ber and opening hours. These three attributes were deemed
relevant for any GIS, as they are the most useful details
regarding geographical entities from a user’s perspective.
One particularity of the system, regarding the mentioned
attributes, is that, in the SF component, not all techniques fo-
cus on all attributes. More specifically, the RE rules focus on
all attributes, while the LMs and ML algorithms focus solely
on the address attribute. The reason for this distinction will
be clarified later in this section.

Figure 1. Architecture Representation

In 1, it is possible to see a more concrete representation of
the developed system. Firstly, the system interacts with the
Web, by extracting from the OpenStreetMap1 project the offi-
cial web page links for all chosen entities. More concretely,
the chosen entities are all Portuguese entities registered in
OSM with the Amenity2 key. In order to be chosen, these
entities have to contain the selected attributes: address, open-
ing hours and phone number, and have the Amenity tag in
OSM. This extraction step results in a list of official websites
for all OSM entities with the 3 attributes in question.

1https://www.openstreetmap.org/
2https://wiki.openstreetmap.org/wiki/Key:amenity
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With the collection of official web page links of all entities,
our Web Scraper travels the Web in search of each link’s
HTML web page, as can be seen in 1. The crawler was devel-
oped using Scrapy3 and it extracts the available HTML web
pages for each website, while respecting all the websites’
robots.txt file restrictions.

From the collection of HTML pages, the Slot Filling com-
ponent of our system then extracts all possible candidates
for each attribute. This component possesses three types of
techniques it can use to analyze the extracted HTML files.
The first method is based on RE rules, called the Rule-Based
Extractor, which is a method that given a text, in this case
an HTML web page, uses regular expression rules to ex-
tract possible fillers for each attribute. The second method is
based on LMs, called the Language Model Analyzer, which is
a technique that learns a grammar from a large corpus and
then. given a string, outputs the probability of the sentence
belonging to its grammar. The third method is based on ML
algorithms, called the Machine Learning Classifier, which is
a technique that trains several classifiers with an annotated
corpus and then classifies the extracted text to distinguish
valid attribute instances from invalid ones. The Slot Filling
component’s methods are used depending on the attribute
to be evaluated, which will be explained further still in this
section.
After these two steps are executed, the system finally

returns the valid fillers of all attributes for each entity. There
can bemultiple valid results and, if that is the case, the system
returns them all.

4.1 OSM Extraction
The OpenStreetMap data is organized into countries, tags/
keys, entities and attributes. To extract the official informa-
tion from OSM, a free download server called Geofabrik
was used. Geofabrik4 is provided free of charge by Geofab-
rik GmbH and allows users to access data extracts from the
OpenStreetMap project in .osm.pbf and .osm.bz2 file for-
mats. The granularity of the data extracts can be selected via
country or city of interest and the extracts are updated on a
regular basis.
After downloading the .bzip file corresponding to Portu-

gal from the Geofabrik website, the file was unzipped and
processed. After a first manual analysis, it was clear that the
relevant entities for this work, contained in the data extract,
belonged to the Amenity tag (a key used in OSM to describe
useful and important facilities for visitors and residents like,
toilets, restaurants, cafes, telephones, banks, pharmacies,
prisons, schools, etc.). Therefore, the downloaded file was
processed with Osmosis5, which is a java command-line tool

3https://scrapy.org/
4https://download.geofabrik.de/
5https://wiki.openstreetmap.org/wiki/Osmosis

to interact with .osm files, to select only entities with the
Amenity tag and insert them into a XML file.

However, not all entities belonging to the Amenity tag had
all three attributes, so another filtering step had to employed.
Thus, the XML file was traversed and entities lacking at least
one of the required attributes were discarded. Finally, each
remaining entity had their official website, contained in OSM,
registered in a .txt file. This file was meant to be later used
by the web crawler to extract each entity’s web page. The
methods for filtering and extracting information from OSM
are further explained in the main document.

4.2 Web Extraction
After the extraction of all Amenity entities’ websites there
was a need to restrict its number due to the extremely ele-
vated running time. Thus, to test the system’s relevance and
accuracy only 30 were chosen, from the existing Amenity
entities that had a valid website and all 3 attributes present
in the OSM platform.
The Web Extraction phase consists in retrieving from

the Web the HTML web pages of the selected OSM enti-
ties. To this end, a web scraper was developed to extract
an HTML web page given a certain website’s URL. After
an extensive evaluation of currently available tools for Web
Scraping, mentioned briefly in 2 and more thoroughly in the
main document, Scrapy was chosen. Scrapy is a scraping
framework with the main advantages of respecting robots.txt
requirements and scheduling and processing requests asyn-
chronously, instead of sequentially executing all requests as
most tools do which is time-consuming.
Scrapy starts its crawling process by making requests to

the URLs defined in the start_urls attribute or through the
start_requests method. In this work’s crawler, the process
started with the start_requests function, which fetched the
OSM’s URLs obtained through Osmosis and processed them.
This processing step started by excluding any URL with bad
file terminations (.jpg, .pdf, .png, .gif ), as well as URLs that
include uninteresting keywords (tel:, mailto:, maps, youtube,
facebook, javascript), since URLs referring to images, PDFs,
Youtube videos or Facebook pages, and emails or telephone
hyperlinks are not HTML web pages and therefore irrelevant
in this work’s context. After this filtering step, the Scrapy’s
URL request method is invoked (meaning that the HTML
web page is requested to the website), after which the default
callback method of Scrapy, parse, is called to process the
HTML page obtained.
In the parse function, our scraper first fetches the HTML

content inside the received response object and saves it to
a text file. After storing the HTML web page, the system
checks at which depth level the current URL is. The depth
level of a URL represents the level of indirectness a URL
has (e.g. a URL1 extracted from OSM has a depth level of
1, while a URL2 extracted from the web page of URL1 will
have a depth of 2, and so on). If the current depth level is
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above the threshold, predefined as 5, then Scrapy stops the
exploration on the current link and goes to the next link
in the queue. On another hand, if the current depth level is
below the threshold, then the scraper will loop through the
web page’s sublinks.

Too look for a web page’s sublinks, this work took in-
spiration in Vargiu and Urru’s[12] work, which performs a
similar task when looking for all ads contained in a web page.
However, instead of looking for an ad in an image format
(an <img> associated with an <a>), our system looks for
subpages’ hyperlinks on the current website. Since Scrapy
already provides access to XPath selectors and Gunawan et
al.[5]’s experiments show that using XPath patterns is a good
option to extract information from web pages in terms of
running time andmemory usage, they were found to be a rea-
sonable approach. The authors’ results state that XPath are
the slowest approach (compared with REs and DOM parsing)
but not by much and that they do not use much memory, like
REs (compared to DOM parsing, which uses a lot of memory).
For these reasons, XPath expressions were selected as the
method to find and select elements of the HTML web pages.
One concern, however, with using XPath selectors is that the
majority of this work’ entities comprise cafes, restaurants,
etc. and these entities often do not have a database-backed
website, since these types of websites can insert unnecessary
complexity in their websites’ development. Knowing this, if
XPath queries were used the same way as in Sitescraper[9]
(with very specific queries), our results might quickly be-
come irrelevant if the website’s contents changed drastically.
For this reason, the XPath expressions selected were relative.
They only look for <a> generic tags, instead of looking for
specific tags in the elements’ tree, precisely to account for
this possibility. Kowalkiewicz et al.[7]’s results also support
this relative approach to XPath with their system, called
myPortal.

Instead of XPath, CSS selectors could also be used as they
are also available in Scrapy, but since they are equivalent
in this work’s context and XPath can additionally analyze
the contents of an element while CSS can not, we opted for
the first. Finally, since the way to define a hyperlink in an
HTML web page is to use the <a> tag, in order to discover a
page’s sublinks, the Scrapy’s XPath selectors looked only for
the href attribute of all existing <a> HTML tags. For these
newly obtained links to be later analyzed by the scraper, they
had to fulfill the following conditions:

• No bad file terminations (e.g. .png, .pdf, etc);
• No uninformative keywords (e.g. Youtube, Facebook,
etc);

• The domain must be the same as the origin web page
(e.g. https://www.tripadvisor.com.br/ is found in the
website of “ShariSushi Bar" but since they do not share
the same domain, the link is rejected);

• The new link can not have been visited before;

• The new link must include a set of selected keywords,
if it is not a first depth level sublink (e.g. contato, in-
formacao, etc). If it is a first depth level and fulfils the
remaining conditions, then it is visited.

The selected keywords considered are: contato, contate,
informacao, sobre, atendimento, home, horario, index, etc, as
well as other possible variations (e.g. contacto, about, infor-
macoes).
For the sublinks which fulfill all above conditions, the

scraper then schedules another request using the same parse
method as callback. In case, the new sublink is a relative
link (link that points to a location in the same website), the
scraper tries to append it to the <base> tag of the web page if
it exists, otherwise it appends it to the current web page URL,
and then schedules the new request. The <base> HTML tag
specifies a default URL for all links on a web page.
Throughout the start_requests and parse phases, there is

one very important internal structure that controls the di-
mension of this work’s scraping process. The structure is a
dictionary that tracks the depth of link exploration. More
specifically, this structure registers how many subpages
were visited already and their depth level (e.g. the entity
“Shari Sushi Bar", with the URL https://www.sharisushibar.pt/,
has sublink at depth 1 https://www.sharisushibar.pt/contato-e-
reservas and a sublink of depth level 2 https://www.sharisushib
ar.pt/menu, that can be reached through the link with depth
1, etc.). This structure was needed to contain the crawling
process to a reasonable level, since not all entities’ sub-pages
have to be visited in order to find all information regarding
the attributes. The idea behind the creation of this limit came
from Leopard’s[11] use of a crawling limit to the number
of a website’s sub-pages visited, which avoids unnecessary
page crawls and decreases the running time of its scraping
process.

One challenge of limiting the crawling depthwas URL redi-
rection, also called URL forwarding, which is a World Wide
Web technique for making a web page available under more
than one URL address.When a web browser attempts to open
a URL that has been redirected, a page with a different URL is
opened. Similarly, domain redirection or domain forwarding
is when all pages in a URL domain are redirected to a dif-
ferent domain (e.g. “wikipedia.com" and “wikipedia.net" are
automatically redirected to “wikipedia.org"). This becomes
problematic when the system needs to keep track of which
websites lead to other websites, especially when the redirec-
tion leads to a different domain, which happened to several
entities in this work. This was another advantage of choos-
ing Scrapy as it solves this issue by storing all the URLs
involved in the process (even if the URLs are redirected).
Therefore, at the end of each request, both the URL received
in the website’s response and all the URLs processed since
the original request was made are saved in the metadata of
the response object. This object is then passed to the parse
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function, which makes it possible to know which URLs lead
to the current one. Thus keeping track of the URL crawling
sequence, which was necessary in order to limit the crawling
depth of the system.
Another structure that was experimented with in this

phase was a dictionary that kept a record of all the URL
domains visited and how many times they were visited. Its
objective was the same as the previous structure. Although
the scraping with this structure provided faster results (about
2 minutes), it proved to be too strict of a limit. Too strict in
a sense that when used, it returned a maximum of 10 web
pages per domain, which, after a manual analysis, was con-
cluded to not be enough to collect all attributes’ information.
Since there were web pages in the dataset with more than
20 relevant inner links, a small limit by domain quickly be-
came a problem (e.g. 20 web pages of an entity could contain
selected keywords but if the Contacts web page with all
attributes’ data was not among the 20 first pages, then it
would be skipped). Due to the fact that the system’s running
time without this structure was still reasonable (around 90
minutes) and provided far better results, the structure was
discarded. The times provided here correspond to the crawl-
ing process of the 30 entities selected, as mentioned before.
For more entities, this time difference becomes quite relevant
and then this structure might need to be reconsidered.

Other issues when scraping web pages are the existence of
dynamic web pages, which may display different content de-
pending on certain conditions (e.g. the pagemay change with
the time of day, the user that accesses it, etc.). These pages are
often controlled by JavaScript or other scripting languages,
which determine the way the HTML in the received page is
parsed and loaded. Not all WS tools can handle this types of
scripts and web pages, which is the case of Scrapy. Therefore,
web pages of this type will be ignored in this work.

Finally, at the end of thisWeb Extraction phase, the system
had access to a set containing all the HTML information
successfully extracted with Scrapy from the Web for the 30
selected entities.

4.3 Slot Filling Component
In this work, the SF task consists of trying to extract informa-
tion regarding certain attributes, like address, opening hours
and phone number, from the official web pages of some se-
lected entities (e.g. restaurants, bars, etc). The opening hours
attribute mentioned throughout this work concerns both
the opening and closing hours of an entity. Also, the official
web page of an entity is considered, in this case, a collection
since it can contain multiple candidates for each of these
attributes.

4.3.1 Regular Expression Rules.
One method typically used in text classification is hand-

written rules. There are many areas where this technique is
considered to either be the state-of-the-art solution or part

of the state-of-the-art solution. Since handwritten rules are
used in several NLP tasks, like web search, word processing
to find and replace words, validation of fields in databases
(e.g. dates, email address, URLs) and information extraction
(e.g. people or object names), they appeared to be a reason-
able approach to experiment with, in this work. They were
applied mainly through the use of regular expressions, in
order to evaluate how well handwritten rules performed in
this specific context.

When the scraper finished collecting the HTMLweb pages
of all selected entities, the system then scanned each page
in order to extract possible candidates for each attribute (e.g.
address, opening hours, phone number). Possible candidates
in this context mean possible values the attribute can have
for a specific entity (e.g. possible candidates for the attribute
address of the entity Museu Calouste Gulbenkian are “Av. de
Berna 45A, 1067-001 Lisboa" and “Av. António Augusto de
Aguiar 31, 1069-413 Lisboa", despite only the first one being
the correct entity’s address). The rules were not concerned
with finding the correct unique slot values, but all possible
values for each entity’s attribute.

This first SF approach focused on the use of REs to select
possible attribute candidates. The reason why REs were cho-
sen as a possible approach to this problem were due to the
conclusions reached in Leopard[11] and DeFacto[4]. Both
system use REs to find temporal clues and achieve very high
results in the SF task of the 2017 SWC competition. Also,
in DeFacto, the use of REs specifically helps generalizing
search patterns of the fact the system needs to validate. In
our case, REs will help when looking for attributes’ values
(e.g. addresses), which can have many different formats.

The use of REs in this work is done with the re6 Python
library.While, in one hand, using REs simplifies the discovery
of the fillers, which are possible values of a slot in the SF
task, on another, it requires the execution of an extensive
lookup to find a good pattern. The desired pattern is a pattern
that must be general enough to uncover the correct type of
information and yet strict enough to find the exact relevant
data for that slot (e.g. a possible and correct candidate for the
address attribute of the entity Museu Calouste Gulbenkian is
“Themain entrance is at Avenida de Berna, 45A.", an incorrect
candidate would be “10:00 – 18:00" since it is not an address
but an opening hour).
To execute this phase, each entity’s web pages were tra-

versed and each HTML element or node’s text was extracted
through the use of the Python library BeautifulSoup7 (used
in both Penman et al.[9] and Vargiu and Urru[12]). The con-
struction of a DOM parsing tree from each visited website,
to allow for the traversal of that website’s markup was based
on the Leopard’s[11] and SiteScraper’s[9] approach, as well
as Vargiu and Urru’s[12] work. On the latter approach, the

6https://docs.python.org/3/library/re.html
7https://www.crummy.com/software/BeautifulSoup/bs4/doc/
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authors are concerned with extracting image ads so they
only focus on the HTML <a> tag, but since this work as-
sumes not an advertisement context but a geographical one,
tags such as <div>, <p> and <span> could include relevant
information so they are also processed. The selection of this
method was also supported by Gunawan et al.[5]’s exper-
iments, that evidenced HTML DOM parsing as the fastest
technique (compared to RE and XPath based techniques)
to traverse the various components of an HTML web page.
After the creation of the DOM tree, each node (each para-
graph) was analyzed by the regular expressions and in case
it matched it would be registered as a correct value for that
attribute. Below, all REs used for each attribute and extra
considerations regarding them are explained.

Address
For the address attribute, it is clear that regular expressions

are not able to completely identify all possible values as
expected since it is a complex attribute with lots of word
variations. However, the rules are still able to retrieve the
majority of them, which is an indicator of this technique’s
great performance when the selected rules are adequate.
The rules chosen for the address attribute search for a

specific address combination, which means that, the string
being evaluated must contain a common starting word for
a Portuguese address (e.g. “Rua", “Avenida", etc.), followed
by a zip code reference composed by digits (e.g. “2345-678").
The regular expressions to catch these cases are:

"\bRUA\b.*[0-9]+|\bR\. .*[0-9]+|\bR\b.*[0-9]+|\b
PRAÇA\b.*[0-9]+|\bP\. .*[0-9]+|\bP\b.*[0-9]+|\b
PRAÇETA\b.*[0-9]+|\bLARGO\b.*[0-9]+|\bLUGAR\b.*
[0-9]+|\bQUINTA\b.*[0-9]+|\bQ\. .*[0-9]+|\bQ\b
.*[0-9]+|\bS[ÍI]TIO\b.*[0-9]+|\bAVENIDA\b.*
[0-9]+|\bAV\. .*[0-9]+|\bAV\b.*[0-9]+"

"[0-9]{4}–[0-9]{3} "

These regular expression patterns were selected after a
careful evaluation of the available datasets and taking into
consideration general facts regarding Portuguese toponymy.
Since the possible composition of addresses in Portuguese is
so diverse, it is simpler to look at the start words of an address
since they present a smaller set of unique possible words,
like “Rua", “Praça", “Avenida", etc. The regular expressions
and the phrases being evaluated were all converted to upper
case to eliminate casing issues. The reason why these REs
were chosen was that despite the enormous variety of words
a street name can include in Portuguese, these are the most
common formats.
Although these expressions find most cases, they cannot

find all possible addresses. For example, Beco is also a possible
start word in an address, however it is incredibly uncommon
and resulted in more incorrect than correct results when first
tested, which is why BECO was not considered as a possible
RE in this system. This makes the system unable to catch

instances of these rarer address types, which is one of this
method’s shortcomings.

Opening Hours
For the opening hours attribute, regular expressions are

not able to completely identify them, similarly to the address
attribute, but they are quite useful for narrowing down the
number of possible opening hour’s values.
The selected regular expressions caught instances that

fulfilled 3 major restrictions:
• The instance contained a day of the week or a simi-
lar reference (e.g. “Segunda"), by matching one of the
following expressions:
"(2ª|3ª|4ª|5ª|6ª|\bSEG\b|\bTER\b|\bQUA\b|\b
QUI\b|\bSEX\b|\bSÁB\b|\bSAB\b|\bDOM\b|\bS\b
|\bT\b|\bQ\b|\bD\b|\bSEGUNDA([ -]{0,1}FEIRA
{0,1}|)\b|\bTERÇA([ -]{0,1}FEIRA{0,1}|)\b|
\bQUARTA([ -]{0,1}FEIRA{0,1}|)\b|\bQUINTA
([ -]{0,1}FEIRA{0,1}|)\b|\bSEXTA([ -]{0,1}
FEIRA{0,1}|)\b|\bSÁBADO\b|\bSABADO\b|\b
DOMINGO\b|\bDIAS [ÚU]TEIS\b)";

• The instance contained an hour interval (e.g. “12:00-
15:00", “14h", etc.), by matching the following expres-
sion:
"(\b[0-9]{1,2}H{0,1}[ :]{0,3}[0-9]{0,2}H
{0,1}[ ]*([–/>]|ÀS){1}[ ]*[0-9]{1,2}H{0,1}
[ :]{0,3}[0-9]{0,2}H{0,1}\b)";

• The instance could not be an address, according to the
REs for the address attribute (e.g. if the instance was
“Rua das Flores", it would be rejected as it is considered
by the RE to be an address).

Similarly to the address attribute, the opening hours had
important context stored in the neighboring lines of the
string being evaluated. Therefore, besides the current string,
the two previous lines and the next one were added to the
opening hour’s analysis step. After this change, 4 situations
can now lead to a valid opening hour according to the sys-
tem’s RE:

• The previous line contains a day of the week or similar
reference, the current line contains an hour interval
and neither are an address;

• The second previous line contains a day of the week
or similar reference, the current line contains an hour
interval and neither are an address;

• The next line contains an hour interval, the current
line contains a day of the week or similar reference
and neither are an address;

• The current line contains both an hour interval and a
day of the week or similar reference and it is not an
address.

The chosen regular expressions proved to be surprisingly
reasonable when they started to take into account the ad-
dresses’ REs as well, since the reason why they performed
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poorly at first was that several address instances matched
with the opening hours rules (e.g. “Quinta da Banda Alegre,
6" is an address but it also matches the opening hours’ REs).
So, the assumption that was made in the system was that if
an instance matched an address it most certainly was not
an opening hour and this improved greatly this attributes’
results.

Phone Number
For the phone number attribute, regular expressions are

more than sufficient since they are composed of a limited
combination of numbers and symbols. All Portuguese phone
numbers are composed of an optional identifier (+351) fol-
lowed by a combination of 9 digits and a varying number of
spaces. Therefore, a regular expression that catches these ex-
amples will be quite effective. As such the chosen RE catches
4 different cases:

• When a phone number has an optional identifier and
the 9 following digits are broken in groups of 3 (e.g
“+351 212 987 654"). The regular expression is:
"[+]{0,1}[(]{0,1}\b[0-9]{0,3}\b[)]{0,1}[ ]
{0,1}\b[0-9]{3}[ ]{0,1}[0-9]{3}[ ]{0,1}[0-9]
{3}\b"

• When a phone number has an optional identifier and
the 9 following digits are broken in groups of 2 and 3
(e.g “+351 21 298 76 54"). The regular expression is:
"[+]{0,1}[(]{0,1}\b[0-9]{0,3}\b[)]{0,1}[ ]
{0,1}\b[0-9]{2}[ ]{0,1}[0-9]{3}[ ]{0,1}[0-9]
{2}[ ]{0,1}[0-9]{2}\b"

• When a phone number has an optional identifier and
the 9 following digits are broken in groups of 1 and 2
(e.g “+351 21 29 87 65 4"). The regular expression is:
"[+]{0,1}[(]{0,1}\b[0-9]{0,3}\b[)]{0,1}[ ]
{0,1}\b[0-9]{2}[ ]{0,1}[0-9]{2}[ ]{0,1}[0-9]
{2}[ ]{0,1}[0-9]{2}[ ]{0,1}[0-9]{1}\b"

However, these expressions will still catch bad examples
like, for example, theywill catch any 9 digit sequencewithout
spaces, which matches phone numbers, but can also match
other types of information, like driver licenses, id numbers,
filenames, HTML elements’ content, etc. (e.g. “...o seu número
único de matrícula e pessoa coletiva 513 049 967...", where 513
049 967 is a driver license number and not a phone number).
In this context, these situations are scarce, which is why
the RE’s results for the phone number attribute are near
excellent.

Rules perform quite well in certain contexts, however, as
data can change over time and the effectiveness of the rules
depends greatly on the data they are applied to, REs can
be considered a fragile or temporary solution. The authors
also argue that due to this limitation, most cases of classifi-
cation in language processing are instead solved via other
techniques like language modelling and supervised machine
learning.

REs provided very good results for the phone number
attribute, but the results were not as good for the address
and opening hours, as can be seen in Section 5. Between
both attributes, since the opening hours attribute was quite
constant in format and no dataset was easily available for it,
the address attribute was chosen for further exploration. Be-
sides, having the correct address available in OSM was more
crucial as it is a GIS system. For these reasons, all the LM
and ML approaches described in this chapter, specifically in
the following chapters, focus solely on the address attribute.

4.3.2 Language Models.
The LM implementation used in this work was the NLTK

implementation, more specifically the Language Model sub-
module, called lm. First of all the system starts by converting
the original corpus to n-grams to be learned later by the
LM. Thus, the functions word_tokenize and sent_tokeni ze
from NLTK convert the continuous text collected from an
addresses only dataset (further explained in the main docu-
ment) to tokens that are later converted to n-grams. Then, the
function padded_everygram_pipeline from the NLTK’s pack-
age nltk.lm.preprocessing separates all tokenized sentences
into k-grams (in this case, bigrams or trigrams), depending
on the chosen LM. The lm module also makes available sev-
eral smoothing techniques, which allow the language model
to deal with unknown words, which is often a problem in
language modelling, like Laplace, WittenBellInterpolated and
KneserNeyInterpolated. The k-grams obtained are then fitted
into one of the smoothed LMs and are ready to test sentences.

For the testing phase, the dataset used is the Annotations
Dataset and for each sentence in it, the label is first removed
and the remaining sentence is converted to n-grams and then
analyzed by the score function of the selected LM and given
a score. To classify the sentence the score given by the LM
is compared to a predefined threshold (e.g. 10−30, 10−50, etc.).
If the obtained score is below it then it is classified as an
address value. The threshold values were manually tested in
order to obtain relevant results.

Unknown words become a problem when predicting lan-
guage model’s probabilities, since no information on them
was collected during the training phase. That is why the
use of a LM requires a vast training dataset in an effort to
decrease the chances of unseen words happening. Of course,
this is an extremely difficult factor to ensure when avail-
able training data it limited and the word variability for that
specific language is high. For the attribute address specifi-
cally, the chance of finding unknown words in the test set
is very high, since the geography context comprises a vast
vocabulary. The Portuguese Toponym Vocabulary has nearly
70000 standardized vocables and includes every toponym
(general term for a proper name of any geographical feature)
corresponding to an administrative division in the partici-
pating CPLP countries. Of course the VT includes several
different types of toponyms, while in this work we will only
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be interested in urbanonyms, which are the proper names of
urban elements like streets, squares etc. But, the sheer num-
ber of toponyms registered in this platform is already a good
indicator of the word variability this type of information has.
Knowing that the linguistic variability for the address at-

tribute is high, if the language models were derived solely
through the frequency count of the n-grams there will be
valid sentences with a zero probability when the model finds
unknown n-grams. This is why some form of smoothing is
necessary in order to assign some of the total probability
mass to unseen words, so that sentences with unknown n-
grams might have some probability score attributed to them
instead of an immediate 0 (e.g. “Rua das Flores" is a valid ad-
dress, however in the training set the bigram “Rua das" was
never seen while “das Flores" is a high probability bigram. If
there is no smoothing, then the LM would return a null score
for this sentence, while if there is some form of smoothing,
then P(“das"|“Rua") would receive some probability score
and the sentence would return a high enough score to be
considered an address). There are various LM smoothing
techniques, those used in this work are Laplace, Witten-Bell
and Kneser-Ney and will be further explained below.
The Smoothing implementations used were the NLTK’s

Laplace Smoothing8,Witten-Bell Interpolated Smoothing9, and
Kneser Ney Interpolated Smoothing10. All implementations
were provided in the nltk.lm.models module and both bigram
and trigram models were considered to obtain the results
with these smoothing techniques.

4.3.3 Machine Learning Techniques.
In order to use Machine Learning approaches, such as Sup-

port Vector Machine (SVM), Logistic Regression (LR), Naive
Bayes (NB), Decision Tree (DT) and Random Forest (RF), in
a textual classification task, the sentences and words must
first be converted into vectors of features with the help of
vectorizers and encoders, which will be better explained later
in Section 5. The vectorizers’ implementations considered to
translate the textual data into numeric feature vectors were
the Scikit-Learn’s CountVectorizer11, HashingVectorizer12 and
TfidfVectorizer13.
All classifiers start by looking at the data with which

they will be trained, the Annotations Dataset. The dataset

8https://www.nltk.org/_modules/nltk/lm/models.html#Laplace
9https://www.nltk.org/_modules/nltk/lm/models.html#
WittenBellInterpolated
10https://www.nltk.org/_modules/nltk/lm/models.html#
KneserNeyInterpolated
11https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.
CountVectorizer.transform
12https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.HashingVectorizer.html#sklearn.feature_extraction.text.
HashingVectorizer
13https://scikit-learn.org/stable/modules/generated/sklearn.feature_
extraction.text.TfidfVectorizer.html#sklearn.feature_extraction.text.
TfidfVectorizer

is then stripped from the annotations so it can be processed
by the classifiers. The resulting dataset without annotations
is shuffled and partitioned in two groups at random (via the
Scikit-Learn function, train_test_split), 70% for training and
30% for testing. Then, the training dataset is vectorized and
fitted to each classifier. All classifiers are parameter-tuned
through the GridSearchCV function of Scikit-Learn in order
to find the best parameters for each classifier. After the train-
ing phase is finished, the classifiers analyze the test set and
produce predicted labels for each processed string. These are
then compared with the dataset’s original annotated labels
to calculate metrics that evaluate the classifier’s accuracy, as
shown in 5.
The implementations used in this work were, for SVMs,

the Scikit-Learn’s SVC14 from the sklearn.svm module; for
LRs, the Scikit-Learn’s LogisticRegression15 from the sklearn.
linear_model module; for NBs, the Scikit-Learn’s Multino-
mialNB16 from the sklearn.naive_bayes module; for DTs, the
Scikit-Learn’s DecisionTreeClassifier17 from the sklearn.tree
module; and for RFs, the Scikit-Learn’s RandomForestClassi-
fier18 from the sklearn.ensemble module.

5 Evaluation

The metrics used to evaluate and compare the proposed
system in this work were Precision, Recall and F-measure.
For the RE method variation, the system obtained an f-

measure score of 0,816 for the address, 0,681 for the opening
hours and 0,987 for the phone number attribute. For the
LM variation, the system obtained f-measures of 0,086 and,
when combining the LM model with a previous RE filter,
a maximum score of 0,940 was obtained for the address.
Finally, for the ML variation, the system obtained for the
address attribute a maximum f-measure of 0,928. The best
result however came from using a mixed approach of a ML
classifier and RE rules, where the system reached amaximum
f-measure of 0,957.
The final validation phase allowed us to infer that for

the address and phone number attributes, OSM has mostly
current and valid information, while for the opening hours
the results are mainly outdated or incorrect. Also, from the
results we reached the conclusion that our system finds the
great majority of phone numbers available on aweb page, but
fails to find a considerable amount of values for the address
and opening hours attributes as they have many distinct

14https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.
html#sklearn.svm.SVC
15https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html
16https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.
MultinomialNB.html
17https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html
18https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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representations and it is difficult for a system to capture all
of them.

6 Conclusion

In this work, we proposed an approach to enrich current
location databases, such as OSM, with reliable entity related
content. To build such a platform, the system is composed of
two modules that contribute to finding all attribute (address,
opening hours and phone number) values for an entity. The
first module of the system is a Web Scraper, that extracts
content from the Web. The returned HTML web pages are
then passed to the final module, the Slot Filling Component,
that selects candidate attribute strings based on several meth-
ods. These methods are: Regular Expression rules, that filter
the extracted text and try to match predefined strings with
it; Language Model algorithms, that first learn a language’s
vocabulary and then try to recognize it in the extracted text
and attribute to each analyzed sentence a probability score
describing the likeliness of belonging to the vocabulary the
LM recognizes; and Machine Learning algorithms, that an-
alyze an attribute annotated dataset with labels for each
candidate and, based on the labels viewed, decide if they are
valid values.

Thus, this work’s main contribution is the creation of
a system for the extraction and processing of certain geo-
graphical entities’ information (address, opening hours and
phone number) from their official online websites. Its results
allowed for an analysis of the data contained in the OSM
platform, mainly its currency and correctness. Additionally,
this work also produced an annotated dataset (for the ad-
dress, opening hour and phone number attributes) for 30
OSM entities - Annotations Dataset. In total 38222 sentences
were annotated, where 542 contained addresses, 933 opening
hours, 558 phone numbers (36189 sentences contained no
attribute value whatsoever).

Although this field of study lacks diverse annotated datasets,
the results obtained in this work were quite encouraging,
which shows the potential a tool like ours could have to
improve current location databases.
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