
Exploring processor Frontend capabilities via
micro-benchmarking

Rafael Forte
Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
Email: rafael.forte@tecnico.ulisboa.pt

EXTENDED ABSTRACT

Abstract - Nowadays, processor companies are con-
stantly innovating to achieve higher performing and more
efficient processors. As advances are made in micro-
architectures, their complexity keeps increasing, making
it harder for application developers to identify the factors
that affect application efficiency and performance. In order
characterize and improve applications it is necessary to
have tools that provide useful insights on how an appli-
cation is performing on the micro-processor. Such tools
use models based on micro benchmarking and hardware
counters to asses the micro-architecture limitations. Even
though there are performance models utilizing micro-
benchmarking, all of them are overlooking an important
part of the micro-architecture, the Front End. To tackle
this issue, this Thesis proposes a new methodology of
micro-benchmarking to assess Front End limitations, in
order to provide useful insights on their impact in appli-
cation performance.

I. INTRODUCTION

Over the course of the last decade micro-processors were
target of several micro-architectural enhancements in order to
keep up with the increasing performance demands. However,
this contributed to increase the complexity of the underlying
hardware. For example, current modern multi-core systems
contain a memory hierarchy with several memory levels, and
support a wide range of function units. For this reason, achiev-
ing an efficient execution of applications is modern systems
is a demanding task. In order to overcome the problems in
achieving higher application performances it is necessary to
assess the performance limits of micro-architectures. However,
this is not always an easy task due to the multitude and
complexity of the components inside the micro-architecture,
many of which work in conjunction making it more difficult
to evaluate their limits. The assessment of their limits can
be performed through micro-benchmarks, that are designed
to exercise the different components in the core pipeline of
micro-architectures. This is an important process because it
gives the realistic performance limits, different from theo-
retical found in the data sheets. The added value of micro-
benchmarks make them popular among several state-of-art

works, that rely on them to obtain their metrics. For exam-
ple, the carm [1] uses micro-benchmarks in order to obtain
micro-architecture metrics, such as memory bandwidths and
computational throughput of instructions. Unfortunately, the
current tools available to analyse application performance
do not provide insightful information regarding one critical
micro-architecture component, the Front End. In order to
tackle this issue, this Thesis proposes a micro benchmarking
methodology of the Front End of current micro-architectures,
which allows to assess the impact of the different Front End
components in the overall performance.

The remaining of this paper is organized as follows: Sec-
tion II provides an overview on the Intel Skylake micro-
architecture, the multi-core processor used in this thesis, with
more emphasis on its Front End. In section III the importance
of micro benchmarking is highlighted and some performance
models based on micro benchmarking and hardware counter
are briefly presented. Section IV presents and analyses the
proposed micro benchmarking methodology. In Section V
the experimental results of the micro benchmarking of the
Intel Skylake Front End are presented and discussed. Section
VI describes other related works. Finally section VII draws
conclusions regarding the experimental results and insights
gained in previous sections.

II. INTEL SKYLAKE-SP MICRO-ARCHITECTURE

The Intel Skylake micro-architecture was launched by Intel
in August 2015. Although 5 years have passed most Intel
processors found in home computers and industries servers
have micro-architectures based on Intel Skylake, for example,
the Intel Skylake-SP launched in 2017. Thus the core pipeline
of Intel current processors is very similar apart of some minor
improvements. In the next paragraphs core pipeline of the Intel
Skylake-SP is divided into two main subsystems, i.e., the Front
End (FE) and the Back End (BE), and briefly presented.

A. Front End (FE)

The FE of Intel Skylake-SP is presented in Figure 1 .
This part of the core pipeline is responsible for fetching

1



and decoding the instructions into micro-operations. Since
it is a complex system that contains multiple components
which can limit the performance of applications, to correctly
identify which component impacts application performance, it
is crucial to understand how each component works and their
limitations.

Fig. 1: Intel Skylake-SP Front End [2]

There are three paths available to decode x86 instructions
into micro operations: the Micro-Instruction Translation En-
gine (MITE), the Decoded Stream Buffer (DSB) and the
Micro-Code Store Read Only Memory (MSROM) , all of
them send decoded micro operations to an allocation queue
named Instruction Decode Queue (IDQ). Regarding the MITE
path, the x86 instructions are fetched from the L1 Instruction
Cache (32 KiB 8-Way associative) in a 16 byte window
to the pre-decode component. The fetched instructions have
variable length ranging from 1 byte to 15 bytes, depending
on the instruction. These pre-decoded instructions, typically
called macro operations, are sent to the Instruction Queue (IQ)
at a maximum rate of 6 macro operations per cycle. With
this information there is already one theoretical bottleneck
for applications. Knowing that the maximum bytes fetched
from the L1 is 16 bytes per cycle, the bigger the size of
the instructions the lower the throughput of macro operations,
implying that fewer instructions are being feed to the rest of
the pipeline. After reaching the IQ, macro operations are sent
to the Instruction Decoder at a maximum rate of 5 macro
operations per cycle. The instruction decoder is responsible
for decoding the macro operations into micro operations that
have fixed length and can be interpreted by the BE. It can
decode instructions and sent them to the IDQ at a rate of 5
micro operations per cycle. However, when macro operations
correspond to more than 4 micro operations, these instructions
are decoded by the MSROM. In this case the instruction
decoder is deactivated and the macro operations are decoded
and delivered to the IDQ by the MSROM, at a maximum rate
of 4 micro operations per cycle.

Besides the MITE and the MSROM, micro operations can
also be delivered to the IDQ through the DSB, which works
as a L0 instruction cache. It contains 32 sets, 8-ways and
it is inclusive to the L1 instruction cache. It stores the last

micro operations decoded and issued by the MITE, with a
maximum capacity of 1536 micro operations. Hence, when
micro operations are delivered by the DSB to the IDQ, all the
instruction decoding stages previously mentioned are avoided,
decreasing the possibility of execution bottlenecks. The micro
operations are stored along 256 lines, each line holding any-
where from 1 micro operation to 6 micro operations. The DSB
lines are divided in groups with a maximum of 6 lines, each
corresponding to code blocks aligned to 64B. In the scenario
that a 64B block contains more than 36 micro operations, i.e.,
the maximum number of micro operations that can fit in 6
DSB lines, none of the micro operations of the block are
stored in the DSB. The filling strategy of the DSB has the
disadvantage of some lines ending up partially filled with less
than 6 micro instructions. Since the DSB can deliver one line
per cycle, its maximum throughput is directly related to the
fill ratio of its lines. The DSB is specially useful to improve
throughput of bigger instructions, since their throughput is
usually limited by the MITE 16B window. After reaching the
IDQ, micro operations are sent to the BE at a maximum rate
of 6 micro instructions per cycle. Another component of the
FE that can impact performance is the Branch Predict Unit
(BPU). This component is responsible for deciding from which
path (MITE, DSB or MSROM) the instructions are fetched.
The BPU also predicts the next instructions that belong to the
correct stream of instructions, even before a branch true path
is known. This usually leads to a big increase in performance,
since current BPUs have very good prediction ratios. However,
in the case of applications that have a instruction stream that
cannot be predicted by the BPU, the overall performance can
be severely impacted, since every time a branch prediction
misses the core pipeline needs to be flushed and cleared, which
represents a big overhead of cycles.

Besides the instruction decoding and issuing process, fetch-
ing instructions from the memory subsystem can also lead
to severe application bottlenecks, especially when considering
the high complexity of current memory subsystems containing
several memory levels and TLBs. Furthermore, the memory
subsystem of the Intel Skylake-SP micro-architecture contains
three memory levels that can be used to store instructions,
namely: L1 Instruction Cache (L1 ICache), L2 and L3. The
L1 ICache, which is 8-way set associative and can store a
maximum of 32KiB, has a maximum bandwidth of 16 bytes
per cycle. The L2 Cache is a 1 MiB 16-way cache and, unlike
the L1 ICache, it is shared between instructions and data.
The bandwidth between this cache and the L1 ICache is 64
bytes per cycle. Unfortunately there is usually a penalty in
performance when fetching instructions from the L2, caused
by the latency of bringing the instructions from the L2 to the
L1 ICache. The last level cache, the L3 cache, has a maximum
bandwidth of 64 bytes per cycle between itself and the L2
and it stores 1.375MiB (per Core) in a 11-way configuration.
Considering the latency penalty of accessing this cache, we
should expect to see a drop in performance when accessing
the L3. Although it is not part of the micro-processor there

2



is another memory level worth mentioning, the DRAM. This
level can have different configurations with much bigger sizes
but it will always have a big negative impact in the application
performance since its bandwidth is lower than the caches with
much bigger latency penalties.

Besides the different memory levels, the TLBs can also
play an important role when limiting application performance.
The Instruction TLB (ITLB) in Skylake-SP is similar to a 8-
way cache that facilitates the translation of virtual addresses
to physical addresses. It can hold 128 entries for pages of
4KB, which means it can hold all the pages of a code with a
maximum of 512KB of instructions. If a page is not present in
the ITLB the processor will spend a lot of cycles translating
the virtual address which will lead to a loss in performance.

B. Back End (BE)

The BE, illustrated in Figure 2, is the out-of-order (OOO)
part of the processor where the instructions are executed. To
attain an efficient OOO execution, the BE relies on several
components. These components have limitations that can be-
come the bottleneck of applications. The first component of
the BE, the one that receives micro instructions from the FE,
is the Re-Order Buffer (ROB).

Fig. 2: Intel Skylake-SP Back End [2]

The ROB receives up to 6 micro instructions per cycle
from the IDQ. At this stage, micro-architecture registers are
mapped onto the physical registers, available scheduler ports
are determined and register naming is performed through the
Register Alias Table (RAT). The ROB also interacts with the
Branch Order Buffer (BOB) which guarantees that in the case
of a branch miss speculation the processor can invalidate its
state and role back to a previous valid state. From the ROB
micro operations are delivered to the Scheduler. The scheduler
holds micro instructions until all the operands are available
for the operation and the Execution Units (EUs) necessary
are free. Once a micro instruction is ready for execution, the
scheduler sends it to the respective EU. The memory sub-
system connected to the BE is responsible for feeding both
the loads and stores instructions. The memory sub-system is
capable of sustaining two memory reads and one memory
write per clock cycle since it has two available ports for

loading instructions (ports 2 and 3), and one for writing(port
4). The memory hierarchy is shared with the FE, with the
exception of a private L1 Data cache with 32KB (8-Way
associative), which can perform two loads (2 x 64B) and a
store per cycle (64B).

All these micro architecture characteristics should be known
before developing a micro benchmarking methodology to
assess micro-architecture limitations. This knowledge allows
for a better use and understanding of the components and
grant a more comprehensive and critical view of the micro
benchmarks results.

III. MICRO BENCHMARKING

Micro benchmarking is the process through which we can
experimentally obtain the characteristics of an architecture and
its components, from their limitations to their capacities and
performance. By evaluating the performance of a hardware
component under diverse execution scenarios it is possible to
uncover its impact on the application performance. Due to
the ability of micro-benchmarking methodologies to accurately
expose the micro-architectural bottlenecks that contribute to
reduce application performance, several performance models,
such as CARM are derived based on these methodologies.
These micro-benchmarks rely on hardware counters built
on current processors to assess the characteristics of micro-
architecture components and to validate their results. There are
several state-of-the-art models that can be used to predict and
analyse the performance of applications in modern processors,
each of them have a distinct approach [3–6]. The most
adopted models rely on micro-benchmarking and hardware
counters. The following paragraphs will briefly present two
performance models based on Micro benchmarking and/or
hardware counters.

A. Cache-Aware Roofline Model (CARM)

One of the most popular solutions that rely on micro
benchmarking and hardware counters are the roofline mod-
eling approaches, in particular CARM. CARM evaluates both
memory bandwidth and floating point performance from the
core point of view, accounting for all data transfers. It relays
on micro benchmarking to obtain the different values of
computational performance and memory bandwidths. CARM
defines an application metric, Arithmetic Intensity (AI), as
the number of floating point operations (φ) divided by the
number of bytes transferred (β) from the core point of view.
Combining the different memory bandwidths (By) with this
metric (AI) and the maximum floating point performance of
the processor, Fp in flops, CARM calculates a maximum
attainable performance, Fa,y(AI), given by Equation 1.

Fa,y(AI) = min(ByAI, Fp) (1)

3



With this new equation for Fa,y(AI), the CARM provides
performance limits (roofs) for each memory level and for
different computational instructions, as is demonstrated in
Figure 3. The position of the application on the graph tells
the programmer what is the maximum performance their
application could get, and if it that performance would be
memory bounded (application is under a memory roof) or
compute bounded (application under computational roof). It
also provides a sense of where should the developer focus to
improve the application, if the application has a very high AI
but is far away from the computational roof, the programmer
should spend most of its efforts on improving the code to allow
better resource utilization. On the other hand, if the application
has a low AI and it is far away from the memory roof, the
programmer should invest more time in improving accesses
to memory. Furthermore, the point where the curves intercept
is called ridge point, and also provides some insight on the
overall performance of the computer. If it is too far to the
right, it means that in order to achieve Fp an application has
to have very high AI which can be difficult to program, if it
is far to the left means that almost every application will be
able to achieve peak performance.

Fig. 3: Example CARM Model. [7]

The CARM model has already been incorporated in Intel
Advisor, which is an Intel high-performance framework that
provides insight into code vector optimization, memory access
patterns, thread prototyping, flow graph analysis and Roofline
analysis [8]. Unfortunately, this model does not account for
any limitations on the FE, which can provide misleading
information regarding applications bottlenecked by the FE.

B. Top Down Method

Besides models based on micro benchmarking, state-of-the-
art methods that rely on performance counters can also be a
viable mechanism to identify the main bottlenecks that limit
application performance. This is the case of Top Down method
[6], which uses a wide set of performance counters presented
in modern processors to identify the possible bottlenecks
that affect application execution. To perform this task, this
method provides an in-depth and hierarchical structure, which
decouples application execution time in several nodes, each
representing a potential bottleneck. At the top of the hierarchy

there are 4 main nodes. These nodes will be flagged if they
represent a bottleneck for the application, so that the user
knows what path of the hierarchy to follow in order to get
more details regarding the bottlenecks. The hierarchic view of
this method is displayed in Figure 4.

Fig. 4: Top Down Hierarchy

The top four nodes are:

• Frontend Bound - Highlights performance issues at the
initial stage of the pipeline, the Front End. The rate that
the front end feeds instructions to the back end can be
a major performance problem. The Top Down method
divides Frontend bound in two other subcategories: the
fetch latency and the fetch bandwidth. The first relates
to performance bottlenecks caused by cache misses, like
a instruction cache miss. The last refers to performance
bottlenecks caused by inefficiency in the instruction de-
coders.

• Bad Speculation - Reflects time wasted when a branch
misprediction occurs, including the time the processor
was executing operations of the wrong path (that have to
be discarded) and the time the processor takes to recover
to a stage before the miss prediction. High values in this
domain should be considered a red flag by the user, since
the amount of time lost to perform a flush of the pipeline
is huge.

• Retiring - This node represents the time spent retiring
micro operations. A high percentage of application time
spent in this node is what we would want. High percent-
ages of retiring means the processor is working at his the
maximum, and it is mostly bounded by the capacity of
the micro-architecture to retire instructions.

• Backend Bound - This node divides represents time spent
performing memory accesses (or waiting for memory
accesses) and time spent in the execution units of the
pipeline.

When using this method to analyse application performance
is important to compare only the categories in the same
hierarchical level and from the same group. For example,
it is fine to compare Fetch Latency with Fetch Bandwidth,
but Fetch Latency can not be compared with Core Bound
or with ICache Miss. The Top Down Method is already

4



implemented in Intel VTune. Intel VTune is an Intel product
which implements the Top Down Method, providing the user
with a simple graph with the metrics related to it. Although the
Top Down considers FE problems based on FE stalls emitted,
it does not show the affect those stalls have in the performance
or even what performance we could achieve if we improved
our FE performance.

In order to assess the FE problems in a way that can
provide useful information regarding how its limitations are
affecting application performance, a new micro benchmarking
methodology is presented and discussed in the next section.

IV. MICRO BENCHMARKING METHODOLOGY

In order to derive the metrics to experimentally obtain
the performance upper-bounds of the FE components, it is
necessary to access a set of hardware counters available in
current processors. In particular for Intel Skylake, each hard-
ware counter is represented by a register, i.e., a Model Specific
Register (MSR), that can be identified by its unique address.
This unique address is always used when it is necessary to
read the counter value, or when the counter is modified.
To perform a read or a write on a MSR specific assembly
instructions must be used, i.e., rdmsr, to read the counter, and
wrmsr, to configure the counter. However, both the reading and
configuration of the counters can only be performed in kernel-
space. Thus, to access the MSRs, a separate kernel module
needs to be incorporated in the micro-benchmarks in order to
access the counters from the user space.

A. Micro Benchmarking Tool

To solve this issue the benchmarking tool illustrated in
Figure 5 was used, which provides an interface between the
user-space and kernel-space through a set of system calls.

Fig. 5: Benchmarking tool layout

As it can be observed in Figure 5, the tool starts by
initializing the interface between user-space and kernel-space.
After the interface initialization, the threads are launched by
using the function pthread create from the phtreads interface.
Then, each thread configures the counters necessary to obtain
the measurements required to derive the metrics used to
evaluate each component (e.g. throughput, bandwidth, etc).
At this point, the tool creates the MSR configuration in the
user side and uses the system calls and assembly instructions
to send the configuration to the kernel-space, along with its
unique address and command (read/write).

To configure the counters it is necessary to enable them
through the IA32 PERF GLOBAL CTRL MSR [9]. The first

8 bits of this MSR enable the general purpose counters, while
the bits from 32 to 34 enable the fixed counters, therefore
we need to set all these bits to 1 so that we can access both
types of counters. After enabling the counters we configure the
general purpose counters. This is done by using the respective
IA32 PERFEVTSEL MSR [9]. The first 8 bits of this MSR
(0-7) correspond to the event select of our desired counter
and the next 8 bits (8-15) correspond to its unit mask. In the
case where our counter needs to define a counter mask this is
also done on this MSR. With all the configuration done, the
counters can be read from the respective IA32 PMC MSR [9].

B. Front End Micro Benchmarks

To benchmark the FE components 4 general purpose
counters and 2 fixed counters are configured in ev-
ery micro-benchmark. While the general purpose coun-
ters vary based on the tested component, the fixed coun-
ters CPU CLK UNHALTED.THREAD (to measure the
number of cycles), and INST RETIRED.ANY (to mea-
sure the number of instructions retired) are configured
for all the FE micro-benchmarks. Furthermore, to en-
sure that the micro-benchmarks were exercising each
component as expected, the counters IDQ UOPS NOT
DELIVERED.CYCLES FE WAS OK (measures the cy-

cles where FE issues 4 micro operations or is stalled
by the BE), IDQ.ALL MITE CYCLES 4 UOPS (mea-
sure the cycles where MITE issues 4 micro operations)
and IDQ.ALL DSB CYCLES 4 UOPS (measure the cycles
where DSB issues 4 micro operations) were also measured in
order to confirm the origin of the performance issues. Through
the fixed hardware counters, we define the throughput as the
number of micro operations per cycle, which is given by
equation 2:

P =
#instructions× (#micro operations#instructions )

#cycles
, (2)

where #micro operations is the number of micro operations,
#cycles is the amount of elapsed cycles and #instructions is
the number of instructions retired.

Since there are three different paths in the FE to decode and
issue instructions (MITE, DSB and MSROM) the total number
of execution cycles can be estimated by adding together the
number of cycles where each of the decoding paths is issuing
and the number of cycles all decoding paths are stalling for
instructions (assuming there are no stalls from the BE), which
leads to equation (3):

Cycles =MITE Cycles+DSB Cycles+

MSROM Cycles+ FE Stalls,
(3)

where MITE Cycles is the amount of cycles where the
MITE is issuing micro operations, DSB Cycles is the amount

5



of cycles where the DSB is issuing micro operations,
MSROM Cycles is the amount of cycles where the MSROM
is issuing micro operations and FE Cycles is the amount of
cycles where all FE components are stalling for instructions.

For the proposed micro-benchmarking methodology, all the
tested instructions have one micro operation per instruction,
allowing us to calculate the throughput by using only the
number of cycles and the number of instructions retired.

1) MITE and Memory Subsystem: The micro benchmark
code used to test the limitations of the MITE has the structure
illustrated in Figure 6. The code contains two main loops: the
outer loop, and the inner loop. The outer loop ensures that
every benchmark runs during a pre-defined amount of time.
To achieve this, the code is first executed a small number of
times in order to calculate how long it takes to run a single
micro-benchmark iteration. After knowing how long it takes
to execute it once, the number of iterations of the outer loop
is calculated in order to achieve an execution time equal (or at
least very close) to the pre-defined time duration. This way the
outer loop guarantees small benchmarks run enough times that
any sporadic error that may occur in one iteration is attenuated.

Fig. 6: Micro benchmark structure

The inner loop focus on attenuating the impact of the
first run of the benchmarks. The first time instructions are
being executed they are not stored in either the DSB or
the caches, to mitigate this situation our inner loop has a
fixed value of 10 iteration, decreasing the weight of the first
iteration. When parsing the results of these micro benchmarks
all the iteration values are considered in order to obtain the
results regarding a single code execution. Inside the inner
loop only one instruction per benchmark is used, meaning
to test two different instruction, for example, 2B NOP and
3B NOP, two different benchmarks are created. To minimize
the BE interference in the measurements, the MITE micro
benchmarks only contain NOP instructions. With this approach
it is guaranteed that any performance limitations identified
through the measurements are related uniquely to the FE, with
the exception of the micro-architecture limitation of 4 micro
operations per cycle.

In order to test the limitations of the MITE under different
execution scenarios, different instruction sizes are considered,
through the utilization of NOP instructions with sizes ranging
from 2B to 10B. Moreover, to evaluate how the accesses to

different memory levels impacts the MITE performance, the
code size of the benchmark varies according to the tested
memory level.

To analyse the MITE performance and later on predict FE
bottlenecks two different metrics are proposed. These are:
the overall MITE throughput (POverall MITE) and the MITE
throughput (POnly MITE), calculated through Equations (4)
and (5) respectively:

POverall MITE =
#MITE Uops

#Cycles
, (4)

POnly MITE =
#MITE Uops

#MITE Cycles
, (5)

where #MITE Uops is the number of micro operations
issued by the MITE, #Cycles is the amount of elapsed cycles
and #MITE cycles is the amount of cycles where the MITE is
issuing micro operations. This metrics will be used to calculate
and predict FE bottlenecks, provided we also have the number
and size of instructions issued by the MITE.

In order to micro benchmark the L1 instruction cache and
the rest of the memory system, the micro benchmarks use the
structure as for the MITE micro benchmarks. The purpose
of micro benchmarking the memory system is to analyse
how accesses to different memory levels can impact the FE
performance. Hence, these benchmarks will begin with a small
number of instructions that will steadily increase until the total
code size reaches 16MB, ensuring the code goes from fitting
in the L1 to fitting in the DRAM, passing by all memory
levels in between. Since only the overall FE performance
is being analysed, when evaluating the instruction caches,
only the fixed hardware counters are needed to obtain our
metrics. Considering the MITE is directly connected to the L1
instruction cache, FE problems caused by memory accesses
should start to appear only when instructions no longer fit
inside the L1 and start being fetched from the L2. At this
point only the MITE is decoding instructions, consequently
the overall throughput (POverall) can be calculated through
equation (6). Besides the POverall it is possible to calculate
the bandwidth of each memory level, from the point of view of
the FE, (Bmem level). This is calculated based on the code size
and the total number of cycles, resulting in equation (7). With
the bandwidth values it is possible to calculate the maximum
throughput of the FE for different size instructions, when the
only limitation factor is the memory.

POverall =
#Inst.Retired

#Cycles
=

#MITE Uops

#Cycles
, (6)

B (bytes/cycle) =
CodeSize

#Cycles
=

#Inst.× Inst. Size

#Cycles
,

(7)

6



2) DSB: The DSB micro-benchmarks follow the exact
same micro-benchmark structure presented in Figure 6, but
only considered a maximum code size of 32KB, since the
DSB only stores instructions contained in the L1 instruction
cache. Similarly to the MITE tests, DSB micro-benchmarks
are composed of instructions with the same size. Due to
the use of NOP instructions to avoid bottlenecks outside of
the FE, it is expected the DSB to be limited by the micro-
architecture retiring limit of 4 micro instructions per cycle.
In order to analyse DSB performance two different metrics
are calculated, the overall DSB throughput (POverall DSB)
and the DSB throughput (POnly DSB), which are calculated
through equations (8) and (9) respectively.

POverall DSB =
#DSB Uops

#Cycles
, (8)

POnly DSB =
#DSB Uops

#DSB Cycles
, (9)

where #DSB Uops is the number of micro operations issued
by the DSB and #DSB cycles is the amount of cycles where
the DSB is issuing micro operations. This metrics will be used
to calculate and predict FE bottlenecks, provided we also have
the number and size of instructions issued by the DSB.

C. Bottleneck Prediction

Our proposed method to calculate the FE bottlenecks of an
application is based on the number of instructions, the instruc-
tions sizes, the percentage of each instruction and the metrics
presented previously, namely the memory bandwidths, the
MITE throughput and the DSB throughput. Since applications
are composed by a mixture of instructions, for our method to
combine the expected throughput of different instructions, we
adapted our performance metric and arrived to equation (10).

Pa =
θ

T
=

∑
i θi∑
i
θi
Pi

=

∑
iR

θ
i ∗#θi∑

i
Rθi ∗#θi
Pi

=
1∑
i
Rθi
Pi

, (10)

In equation (10) our performance Pa is defined as the
total amount of instructions, θ, divided by the total time,
T . Developing the equation further we can define the total
amount of instructions as the sum of all types of instructions,∑
i θi, and the total time corresponds to the sum of all

θi divided by the maximum attainable performance of each
instruction, Pi. In order to account for the percentage of each
instruction in the code, we redefine θi as the the ratio of
each instruction, Rθi , times the number of micro instructions
per instruction, #θi. Since in our tests all instructions have
one micro instruction per instruction, we can simplify the
equation once more, giving us the final form we see in equation
(10). For the value of Rθi we will use the results obtained
in our micro benchmarking, more specifically Rθi will be
the lowest bottleneck between DSB+MITE throughput and

memory bandwidth, both calculated according to the size of
the instruction, code size and the memory level where the
instruction is fetched.

After micro benchmarking the FE and obtaining the metrics
needed for the proposed method, a series of 3 benchmarks
is developed in order to validate our method under different
execution scenarios.

1) Validation Test 1: The first validation test focus on
evaluating the proposed method in situations where the code is
composed by a mix of instructions. This validation test inherits
the same structure used in the previous micro benchmarks,
with the only difference being the instructions used to fill the
inner loop will be a mix of randomly chosen NOPs.

2) Validation Test 2: The second validation test focus
on evaluating the proposed method in situations where the
code is composed by logic and computational instructions. It
follows the structure of the previous benchmarks by placing
logical/computational instructions in the inner loop, instead of
NOPs.

3) Validation Test 3: The third validation test will evaluate
the proposed method against memory operations, i.e. loads and
stores. Unlike the previous benchmarks, this test has a slightly
different structure, with and extra loop inside the inner loop,
to ensure the instructions are fetching data from the memory
level being tested.

V. RESULTS OF FRONT END MICRO BENCHMARKING

In this section the execution setup and the experimental
results are presented and discussed in detail. To obtain the
results of our micro-benchmarks a machine with an Intel Core
I7 6700K was used. This machine had its frequency fixed at the
base frequency and every benchmark runs in single-threaded
mode.

A. MITE and Memory Results

The results obtained for the MITE metrics POverall MITE

and POnly MITE can be observed in Figures 7 and 8 respec-
tively. In Figure 7 the POverall MITE depends significantly
on the code size. While the code size is lower than 8KB,
POverall MITE value is always close to 0 until it increases
drastically. The drastic increase happens at different code
sizes for different instruction sizes, for example, while for all
instructions bigger than 5B (6B, 7B, 8B and 9B and 10B)
this occurs at around 8KB, for 2B instructions this occurs
earlier, at around 2 KB. This behaviour is related to instruction
size because it depends on the moment the DSB gets fully
filled. With the results seen in Figure 7 prior to 32KB, three
conclusions can be made: the DSB is issuing instructions while
the code is in the L1; for small codes the DSB is issuing all the
instructions, justifying why POverall MITE is 0 until the point
where the DSB gets full; the initial spike in POverall MITE

implies that some instructions previously issued by the DSB

7



start being issued by the MITE, otherwise POverall MITE

would increase more gradually.

Fig. 7: Results for POverall MITE

Fig. 8: Results for POnly MITE

Once the code size surpasses the L1 instruction cache
size (32KB) and fetches instructions from the L2 cache the
POverall MITE stays constant until reaching the limits of the
L2. This constant value depends on instruction size, due to the
MITE 16B window and the MITE behaviour. For example, the
results show for 10B instructions a value around 1.6, which
is the result obtained by dividing the 16B window for 10B
(the instruction size). For some instruction sizes this value
can not be calculated only by dividing the 16B window by the
instruction size. For example, for 3B instructions this constant
value seen in 7 is around 3.2, and not 5.33, because how 3B
instructions fit in the MITE window. We might have expected
to see a slight performance drop when the code size passes
from the L1 to the L2 but has it can be seen Figure 7, there is
no noticeable drop for any of the instructions tested, meaning
there are no apparent penalties in terms of POverall MITE in
fetching instructions from the L2. When reaching the end of
the L2 (256KB) we see an expected performance drop, that
can be attributed to the smaller bandwidth and higher latency
penalties of the L3. POverall MITE continues to decrease
until all the code is inside L3, at which point POverall MITE

achieves another constant region, except for 2B and 3B in-
structions. This exceptions occur for these specific instruction
types since their reduced size allows each cache line of 64B
to contain enough instructions to hide L3 latency.

Knowing the MITE is not the only component issuing code,
it is necessary to look at POnly MITE (Figure 8) so we
can later combine both the MITE and DSB performance to

obtain an overall performance. When analysing these results,
it is possible to observe an unexpected behaviour until the
code size reaches 8KB. The behaviour is caused by residual
instructions issued by the MITE which are not the focus of
our tests, producing the unexpected results. After surpassing
this point, POnly MITE achieves a constant value for each
instruction size and maintains this throughout all caches. The
constant value is related to the 16B window and the size of
each instruction, for example, 10B instructions will have a
POnly MITE of 16

10 = 1.6. This confirms our suspicions that
POnly MITE is not affected by accesses to higher latency
caches, allowing the of POnly MITE to be used to predict
FE bottlenecks.

To evaluate the impact of the memory subsystem on the
FE performance, the maximum code size was extended to
16MB, in order to include the impacts of the DRAM. The
results of these benchmarks, that focus on the evaluation of
the memory subsystem when fetching different instructions,
are presented in Figures 9 (POverall) and 10 (B - overall
bandwidth). Regarding POverall, its initial values are the result
of a mixture of instructions coming from the DSB and from the
MITE, up until reaching the end of the L1 Instruction cache
where the value of POverall equals the values seen before
for the POverall MITE . From L2 to DRAM, POverall behaves
like POverall MITE , suffering performance losses whenever it
reaches a new memory level, as we can see, for example,
in instructions of 5B, where both POverall (Figure 9) and
POverall MITE (Figure 4) values are 3.2, when the code is
inside the L2, and both decreasing to 2.7 after the code reaches
the L3. The only exceptions to this behaviour are the 2B and
3B instructions due to being small instructions, and providing
enough instructions in a 16B window to hide the L3 penalties.

Fig. 9: Overall Throughput - POverall

Regarding the bandwidth results on Figure 10, where the
bandwidth, calculated through equation 7, is presented, it
is possible to observe that L1 bandwidth depends on the
instruction size. For example, for 2B attains 8 bytes per cycle
while for 10B achieves values from 34 to 16 bytes per cycle.
These results can be explain by the use of the DSB to issue
instructions. Since DSB is able to issue big instruction at a
higher rate than the MITE, the overall bandwidth achieves
higher values.

When entering the L2 cache the DSB stops issuing instruc-

8



Fig. 10: Overall Bandwidth

tions and we see our bandwidth stabilize at 16B per cycle,
which corresponds to the window size of MITE. The only
exceptions are the L2 bandwidths of 2B and 3B instructions.
When the code size reaches the L3 cache, the bandwidth for
2B and 3B instructions remains the same while all the other
instructions see their bandwidths drop to around 13.6 bytes
per cycle. Finally, when reaching the DRAM all instructions
are affected, even the 2B and 3B instructions, with their
bandwidth falling to around 3.5 bytes/cycle. The DRAM is the
first memory level to affect both the 2B and 3B instructions
since its the only situation where the memory bandwidth
limitation is lower than the limitation of the MITE, making it
the performance bottleneck for these instructions. With these
results we can attribute a bandwidth value for the different
levels of memory which will be use to predict performance
and application bottlenecks. Since the L2 does not seem to
have an impact in the FE performance, due to the bottlenecks
related to the 16B windows of MITE, the method proposed
in this paper only considers the bandwidth values for the L3
cache (BL3 = 13.6 bytes/cycle) and DRAM (BDRAM = 3.5
bytes/cycle).

B. DSB Results

While the results for POverall DSB were obtained, these are
not presented here due to space constraints. The results for the
POnly DSB , displayed in Figure11, are constant for the entire
range of code size. This is expected since it is calculated
based on the number of cycles the DSB is issuing micro
operations and all the code fits in L1 ICache. Furthermore, this
throughput also depends on the instruction size. For example,
with instructions from 2B to 7B having a POnly DSB of 5.33
and bigger instructions having POnly DSB of 4 or lower due to
their sizes. These values are expected since the DSB structure
is based on lines that can have from 1 to 6 micro operations,
depending on how the instructions fit in each line. Moreover,
in order to accurately use POnly DSB and POnly MITE to
predict the FE performance, it is crucial to uncover the number
of micro operations at which point the MITE starts issuing
and how many micro operations the DSB issues before and
after this point. With this aim the variation of amount of
micro operations served by the DSB with the number of total

instructions is displayed in Figure 12. Due to space constraints
only the results for instructions of 2B to 5B are shown.

Fig. 11: Results for POnly DSB

Fig. 12: #Uops issued by DSB per Total instructions - 2B-5B
Instructions

In Figure 12 it is clear that once the drop of instructions
happens, due to the DSB reaching its limits, the DSB keeps
issuing approximately the same amount of instructions until
the code exceeds the L1 cache. Moreover, for some instruction
sizes there is two regions of instructions. For example, the
2B instruction has a constant region of 780 micro operations
for code sizes between 2KB and 3.5KB. After 3.5KB, it
drops for another constant region of 400 micro operations.
This effect occurs due to switches between MITE and DSB,
which results in FE stalls. In order to reduce the impact of
this penalty, the FE is designed to avoid switching between
MITE and DSB frequently, which explains the existence of
this constant regions. The proposed method will use the
results presented in Figure 12 to calculate the point where
MITE starts issuing instructions, in order to estimate the
number of micro operations coming both DSB or MITE. With
the number of instructions coming from these components
and their respective throughput, the FE performance can be
calculated.

C. Validation Tests

To validate the approach proposed in this Thesis, the three
validation tests mentioned earlier where developed and tested.
The results of the proposed method in all three tests were
very positive, with the predictions having error values almost

9



always under 5%, but due to space constraints, only the results
for some instructions of the the second validation test are
presented. The second set of tests validates the proposed
method for logical and computational instructions. The results
presented in Figure 13 used instructions VPADDW, with
registers of both xmm and ymm type, and sizes of 4B and 5B
dependent on the registers at use. This instruction only has 3
executions units in the BE, making its maximum throughput
limited to 3 uops/cycle, as we can see in Figure 13, up
until the code size reaches the L3 cache (256KB), where
the throughput decreases to 2.7 for the 5B instructions, while
the 4B instructions maintain their throughput. At this point
the results are bottlenecked by the FE, more precisely by
the accesses to the memory. When the instructions reach the
DRAM their throughput drops to around 0.7. As it can be
seen in Figure 13, the results follow almost perfectly the
method’s prediction. This happen in all the validation tests,
which illustrates the accuracy and usability of the proposed
approach to predict the performance of applications limited
by the FE.

Fig. 13: Throughput Instructions VPADDW

VI. RELATED WORK

Besides the CARM model and the Top Down Method which
were already presented, there are several other state of the art
works that utilize benchmarks and hardware counters in order
to evaluate and/or improve their systems. From works focused
on creating series of micro benchmarks to characterize the la-
tency, throughput and port usage of instructions on Intel micro-
architectures [10], to works that utilize micro-benchmarks in
order to analyse application performance in different systems
like Virtual Environments[11] or in the Cloud [12]. In some
works, micro-benchmarking is used to uncover key micro-
architectural specifications of micro-architectures, as it was
the case for the Chinese supercomputer TaihuLights [13, 14].
More recently micro-benchmarking has also been used to
study and assess GPUs [15] limitations.

VII. CONCLUSIONS

Over the last years the advances made in processor micro-
architectures have significantly increased their complexity.

This increase the difficulty of optimizing application perfor-
mance. In order to provide insightful information regarding ap-
plication performance, is necessary to assess the limitations of
the underlying hardware. To do so, many state of the art works,
including performance models, rely on micro benchmarking.
Unfortunately is an essential part of the micro-architecture that
has been overlooked, the FE. This Thesis tackled this issue by
researching a modern micro-architecture, the Intel Skylake,
and by proposing a micro-benchmarking methodology of the
FE that exercises multiple FE components under different
execution scenarios. This new methodology provides a new
set of metrics linked to the FE components that were used to
calculate FE bottlenecks and predict application performance.
Finally the proposed methodology was validated with a set of
benchmarks that mimic real life applications. The small errors
in all of the validations tests, proved the accuracy and usability
of this approach in predicting the performance of applications
bottlenecked by the FE.

VIII. REFERENCES

REFERENCES

[1] L. S. Aleksandar Ilic, Frederico Pratas, “Cache-aware roofline
model: Upgrading the loft,” Apr. 2013.

[2] “Skylake SP Micro-Architecture Specifications Wiki.”
https://en.wikichip.org/wiki/intel/microarchitectures/skylake (server).

[3] C. Y. A. A. Tuomas Koskela, Zakhar Matveev, “A novel
multi-level integrated roofline model approach for performance
characterization,” May 2018.

[4] L. S. Aleksandar Ilic, Frederico Pratas, “Beyond the roofline:
Cache-aware power and energy-efficiency modeling for multi-
cores,” June 2016.

[5] D. P. Samuel Williams, Andrew Waterman, “Roofline: An
insightful visual performance model for floating-point programs
and multicore architectures,” 2009.

[6] A. Yasin, “A top-down method for performance analysis and
counters architecture,” June 2014.

[7] A. I. L. S. Diogo Marques, Helder Duarte, “Performance
analysis with cache-aware roofline model in intel advisor,” Sept.
2017.

[8] “Intel Advisor User Guide.” https://software.intel.com/en-
us/get-started-with-advisor.

[9] Intel, Intel 64 and IA-32 Architectures Software Developer’s
Manual, May 2019.

[10] J. R. Andreas Abel, “uops.info: Characterizing latency, through-
put, and port usage of instructions on intel microarchitectures,”
Oct. 2018.

[11] K. D. M. Z. Sajib Kundu, Raju Rangaswami, “Application
performance modeling in a virtualized environment,” Jan. 2010.

[12] P. L. Joel Scheuner, “Estimating cloud application performance
based on micro-benchmark profiling,” July 2018.

[13] S. M. L. C. A. N. Zhigeng Xu, James Lin, “Evaluating the
sw26010 many-core processor with a micro-benchmark suite
for performance optimizations,” Sept. 2018.

[14] S. M. Zhigeng Xu, James Lin, “Benchmarking sw26010 many-
core processor,” June 2017.

[15] X. L. Ryan Taylor, “A micro-benchmark suite for amd gpus,”
Sept. 2010.

10


	Introduction
	Intel Skylake-SP Micro-Architecture
	Front End (FE)
	Back End (BE) 

	Micro Benchmarking
	Cache-Aware Roofline Model (CARM)
	Top Down Method

	Micro Benchmarking Methodology
	Micro Benchmarking Tool
	Front End Micro Benchmarks
	MITE and Memory Subsystem
	DSB

	Bottleneck Prediction
	Validation Test 1
	Validation Test 2
	Validation Test 3


	Results of Front End Micro Benchmarking
	MITE and Memory Results
	DSB Results
	Validation Tests

	Related Work
	Conclusions
	References

