
Mono2Micro - From a Monolith to Microservices:
MetricsRefinement

João Francisco Almeida
Instituto Superior Técnico

Lisbon, Portugal
joao.santos.almeida@tecnico.ulisboa.pt

Abstract—The microservices architecture has become main-
stream for the development of business applications because it
supports the adaptation of scalability to the type of demand,
but, most importantly, because it fosters an agile development
process based on small teams focused on the product. Therefore,
there is the need to migrate the existing monolith systems to mi-
croservices. Current approaches to the identification of candidate
microservices in a monolith neglect the cost of redesigning the
monolith functionality due to the impact of the CAP theorem.
In this paper we propose a redesign process, guided by a set
of complexity metrics, that allows the software architect to
analyse and redesign the monolith functionality given a candidate
decomposition. Both, the redesign process and the metrics are
evaluated in the context of candidate decompositions of two
monolith systems.

Index Terms—Microservices architecture, Monolith migration,
Complexity metrics, Microservices patterns

I. INTRODUCTION

Microservices architecture emerged due to the need to have
highly available and scalable systems that can be developed
by multiple teams in an agile environment. This is achieved
through the definition of independently deployable distributed
systems, implemented around business capabilities. As the
monolith application size increases, it imposes several draw-
backs as the lack of agility, modifiability and deployablity. As
a consequence there is the need to migrate monolith systems
to a microservices architecture.

However, this transition imposes a cost because the applica-
tion cannot preserve the behavior that existed in the monolith.
This is due to the introduction of distributed transactions,
as the monolith functionalities will be implemented through
multiple independent microservices (transactions). Therefore,
transaction management is more complex in a microservice
architecture because transactions cannot be executed according
to the ACID (Atomicity, Consistency, Isolation, Durability)
properties, which introduces extra complexity for developers
to handle. This extra complexity is explained by the CAP
theorem [6], where the decision to maintain the same level
of consistency as in a monolith can only be achieved through
the application of a two-phase commit protocol, which does
not scale with many local transactions. To solve this problem,
the use of sagas [5] was suggested, in the context of the
microservices architecture [11], [13], as the main alternative
to the two-phase commit protocol to handle distributed trans-
actions. On the other hand, the API Gateway pattern has

been proposed [11], [13] to implement queries in a distributed
system.

The SAGA pattern can be applied to functionalities that
create or update data, and consist in dividing a transaction
in multiple local transactions, where each local transaction is
executed inside a single service following the ACID properties.
A saga can have two different structures: (1) choreography
where the decision and sequencing is distributed through the
saga participants, or (2) orchestration, where the decision and
sequencing is decided in one orchestractor class, inside a
cluster. Independently of the structure, the usage of sagas can
guarantee the properties atomicity, consistency, and durability
but cannot ensure the isolation property [13].

The lack of isolation can generate anomalies such as: (1)
lost updates - when a saga overwrites data without reading
changes performed by others sagas, (2) dirty reads - when a
saga reads data changed by others sagas that have not been
committed, (3) nonrepeatable reads - a saga reads the same
data twice and gets different results. To correct this anomalies
there is a set of countermeasures that can be applied. One of
them is the semantic lock that corrects these errors by creating
intermediate states as application-level locks that indicate if an
entity was written by one saga, alerting others concurrent sagas
to these events. It can be integrated with the SAGA pattern
typically indicating the current saga state. Because now all
the functionalities must be aware of the semantic lock, this
imposes extra complexity to the functionalities design and
implementation. It also adds complexity to queries, that have
to handle the possible combination of semantic locks of the
data that they are integrating.

Due to the lack of isolation, the saga local transactions can
be of three types: (1) pivot - a transaction that if succeeds
then the saga is going to succeed; (2) retriable - transactions
that occur after the pivot transactions, do not rollback; and (3)
compensatable - the transactions that may have to rollback.
In a saga there is at most one pivot transaction, and all
transactions that are not retriable nor the pivot transaction,
are compensatable.

In previous work [12], [14], a tool was developed that
collects information from monolith systems and, based on
similarity measures, suggests a microservice candidate decom-
position. Its level of complexity can be assessed through a
complexity metric that determines the decomposition com-
plexity based on the mean of its functionalities complexity.

This metric calculates the impact that the relaxing of atomic
transactional behaviour has on the redesign and implementa-
tion of the functionalities. In this paper we leverage on the
previous work by, given a decomposition and a complexity
value, support the redesign of the functionalities and queries,
applying the SAGA and the API Gateway patterns, while
the complexity value is tuned, because there is more precise
information on the decomposition. With our approach we
intend to answer the following questions:
• RQ1. What set of operations can be provided to the

architect such that the functionalities can be redesigned
by applying microservices pattern?

• RQ2. Is it possible to refine the complexity value associ-
ated with the monolith migration when there is additional
information about the functionalities redesign?

This paper makes two contributions. First, we define a
set of operations that the architect can apply to the initial
execution flow of a monolith functionality, such that it can be
transformed in a microservices execution flow based on the
SAGA pattern. Second, we define new metrics that provide
a more precise value on the cost of the migration, due to the
inclusion of the information about the application of the SAGA
pattern.

In the next section we present the set of operations used
in the redesign. In section III we present the new complexity
metrics. In section IV we evaluate our work in the context of
two monolith systems. Section V addresses the related work
and section VI the conclusions.

II. FUNCTIONALITY REDESIGN

Definition: Monolith. A monolith is a pair (F,E), where
F represents its set of functionalities, the functionalities are
represented with lower case f , and E represents its set of
domain entities, which are accessed by the functionalities, the
domain entities are represented with lower case e.

The entities are accessed by the functionalities in two
modes, read and write. Therefore, M = {r, w} represents the
access modes in a monolith, and an access is a pair domain
entity access mode, represented by (e,m).

The accesses of a functionality f are represented as a
sequence of accesses s, where S represents all the sequences
of accesses done in the monolith by its functionalities to the
domain entities, f.sequence denotes the sequence of access
of functionality f , s.entities denotes the entities accessed in
sequence s.

It is also defined the auxiliary function entities(s : S,m :
M) : 2E , as entities(s,m) = {e ∈ E : (e,m) ∈ s}, which
returns the entities accessed in s in mode m.

When a monolith is decomposed into a set of candidate
microservices, each candidate microservice is a cluster of
domain entities.

Definition: Monolith Decomposition. A monolith decom-
position into a set of candidate microservices is defined by a
set of clusters C of the monolith domain entities, where each
cluster c represents a candidate microservice and c.entities
denote the domain entities in cluster c, such that all domain

entities are in a cluster,
⋃

c∈C c.entities = E, and in a single
one, ∀ci 6=cj∈Cci.entities ∩ cj .entities = ∅.

Given e ∈ E and a decomposition C, e.cluster denotes
the entity’s cluster, and given a set of entities E′ ⊆ E,
E′.cluster = {c ∈ C : ∃e∈E′e ∈ c.entities} denotes its
set of entities clusters.

Given a monolith candidate decomposition, the monolith
functionalities are decomposed into a set of local transactions,
where each local transaction corresponds to the ACID execu-
tion of part of the functionality domain entity accesses in the
context of a candidate microservice.

Definition: Functionality Decomposition. A monolith
functionality f is decomposed, in the context of a candidate
decomposition C, by a sequence of sequences of access
to domain entities, denoted by f.subsequences, where all
domain entities in a subsequence are in the same cluster,
∀s∈f.subsequences∃c∈C : s.entities ⊆ c.entities, two
consecutive subsequences occur in different clusters,
∀0≤i<f.subsequences.size−1f.subsequences[i].entities
.cluster 6= f.subsequences[i + 1].entities.cluster. In
order to have a consistent subsequence associated with a
functionality f in a decomposition, the following condition
must hold:

concati=0..f.subsequences.size−1(f.subsequences[i])

= prune(f.sequence)

Where the prune function removes, for each sequence of
accesses inside each cluster c ∈ C, the accesses according
to the following rules: (1) if a domain entity is read, all
subsequent reads of that entity are removed, (2) if an domain
entity is written, all subsequent accesses of that entity are
removed. A sequence of domain entity accesses where these
two rules hold is pruned, it only contains the read and write
accesses that are visible outside the cluster, the ones that are
relevant for the semantic lock countermeasure.

In the redesign of a functionality in the context of a decom-
position we define the set of local transactions participating in
the saga that implements the functionality.

Definition: Local Transaction. A local transaction lt of a
functionality f , is a pair (s, t), where s is a pruned sequence of
access domain entities, all its accesses are to domain entities
of the same cluster, ∃c∈C : s.sequence.entities ⊆ c.entities,
and t is the transaction type, which can be compensatable,
pivot, and retriable.
T denotes the set of transaction types, LT denotes the set

of local transactions in a decomposition, lt denotes a local
transaction, lt.cluster denotes the cluster where the lt occurs,
lt.sequence denotes the sequence of accesses, and lt.type
denotes the type of the local transaction.

A local transaction sequence should be pruned, for each
domain entity in the sequence there is 0..1 read accesses and
0..1 write accesses, and when there is a read and a write
access to the same domain entity, the read access has to occur
first. These are the accesses that have impact outside the local
transaction atomic execution.

The redesign of a functionality in the context of a decom-
position corresponds to the application of a set of operations
to a graph which represents the functionality execution, where
the nodes represent the functionalities’ local transactions and
the edges the remote invocations between transactions.

Definition: Functionality Execution Graph. A function-
ality f redesign in the context of a monolith decomposition
is represented by a graph g, where the nodes are local
transactions, denoted by g.lt, and the edges remote invocations
between local transactions, denoted by g.ri:
• g.lt is the set of local transactions, such that:

1)
⋃

lt∈g.lt lt.sequence.entities =
f.sequence.entities

2) #{lt ∈ g.lt : lt.type = pivot)} ≤ 1

• g.ri is the set of local transactions pairs that represent
the remote invocations:

1) ∀(lti,ltj)∈g.ri{lti, ltj} ⊆ g.lt
2) ∀(lti,ltj)∈g.ri¬∃ltk 6=i∈g.lt(ltk, ltj) ∈ g.ri
3) The remote invocations define a partial order be-

tween the local transactions, denoted by <g , and
build using the transitive closure of the following
initial elements, ∀(lti,ltj)∈g.ltlti <g ltj . Therefore,
given lti, ltj ∈ g.lt if lti <g ltj then lti executes
before ltj .

The redesign of a functionality in the context of a decom-
position starts with its initial graph, which is generated from
the functionality decomposition.

Definition: Initial Graph. The initial graph gI of
a functionality f has as vertices the local transac-
tions lt associated to each one of the subsequences
of f , gI .lt = {lt ∈ LT : lt.sequence ∈
f.subsequences ∧ lt.type is not defined}, and has as edges
the pairs of local transactions associated with consecutive sub-
sequences, (ltj , ltk) ∈ gI .ri iff ∃0≤i<f.subsequences.size−1 :
ltj .sequence = f.subsequences[i]∧ ltk.sequence =
f.subsequences[i + 1]. It is trivial to observe that the initial
graph gI is a well-formed graph of f .

A semantic lock is an intermediate state set by a compen-
satable local transaction, a write access, that is visible by the
other functionalities, and that may eventually be undone.

Definition: Local Transaction Semantic Lock. Given an
execution graph g of a functionality f , and one of its local
transactions lt, lt.sl denotes the domain entities with a seman-
tic lock in lt, such that lt.sl =

⋃
(e,m)∈lt.sequence(lt.type =

compensatable ∧m = w).
Definition: Functionality Semantic Lock. Given an execu-

tion graph g of a functionality f , g.sl denotes the domain en-
tities with a semantic lock in g, such that g.sl =

⋃
lt∈g.lt lt.sl.

Definition: Final Graph. A final graph gF of a func-
tionality f is a graph of f where all transactions have a
type, ∀lt∈gF .ltlt.type is defined, and all the transactions that
follow the pivot transaction are retriable, given lti ∈ gF .lt :
lti.type = pivot =⇒ ∀jtj :lti<gF

ltj ltj .type = retriable.
Additionally, it is not possible to have a remote invocation
between local transactions belonging to the same cluster,

∀(lti,ltj)∈gF .ri{lti.cluster 6= ltj .cluster}. Given that a graph
has at most one pivot transaction, and in a final graph all
transactions have a defined type, it is trivial to observe that all
the transactions that do not occur after the pivot transaction
should be compensatable.

Definition: Redesign Process. The redesign of a function-
ality f is a process that starts with its initial graph gI and
through the application of graph operations produces a final
graph gF , where, in a first step, the software architect will
perform operations over the execution graph to redesign the
execution flow of f , and, finally the architect will characterize
the type of local transactions, such that the SAGA pattern is
applied to the functionality f in the context of the monolith
decomposition.

We propose three basic operations and a composed opera-
tion to support the redesign of a functionality. The basic op-
erations are: Sequence Change, where the order by which the
local transactions are invoked is changed; Local Transaction
Merge, where two local transactions belonging to the same
cluster are merged; and, Add Compensating, where a new
local transaction is added when it is necessary to undo the
changes done by local transactions. Additionally, we propose
a composed operation, Define Coarse-Grained Interactions,
where repetitive fine-grained interactions between two candi-
date microservices are synthesized into a single coarse-grained
interaction.

By applying these operations, the software architect trans-
forms the sequence of local transactions in the initial graph to a
saga like interaction, either an orchestration or a choreography,
where in the former case there is a cluster that coordinates the
execution flow between the local transactions.

Definition: Sequence Change. Given a graph g of func-
tionality f , three distinct local transactions, lt1, lt2, lt3 ∈ g.lt
where lt1 6= lt2 6= lt3 6= lt1, lt3 <g lt2, and a remote
invocation ri = (lt1, lt2) ∈ g.ri, it is possible to replace
ri by ri′ = (lt3, lt2), such that g is transformed to g′ =
(g.lt, g.ri \ {ri} ∪ ri′), a graph of f . It is trivial to observe
that the transformed graph is a well-formed graph of f in the
context of the decomposition, because lt3 executes before lt2
we can conclude that the resulting order continues to be a
partial order and all local transactions are remotely invoked
by at most one local transaction.

The change sequence operation is used to change the flow of
execution of the functionality in the context of the decomposi-
tion and it is possible to apply when no local transaction in the
invocation chain between lt3 and lt2 requires data produced
by lt2. For instance, to change the local transaction (hence the
cluster) that is responsible to trigger the execution of another
particular local transaction, which may be useful to centralize
the control of execution in a microservice that coordinates
the execution of other local transactions, and so reduce the
transactional complexity behavior.

Definition: Local Transaction Merge. Given a graph g of
functionality f and two local transaction lt1, lt2 ∈ g.lt, such
that they belong to the same cluster, lt1.cluster = lt2.cluster,
and they have adjacent executions, either (1) (lt1, lt2) ∈ g.ri

or (2) ∃lti∈g.lt : (lti, lt1) ∈ g.ri ∧ (lti, lt2) ∈ g.ri,
a new graph g′ of f is produced, where, considering
the two cases: (1) g′.lt = g.lt \ {lt1, lt2} ∪ ltm, where
ltm.sequence = prune(concat(lt1.sequence, lt2.sequence))
and g′.ri = g.ri \ {(lt1, lt2)} \ {(lto, lt1) : (lto, lt1) ∈
g.ri} \ {(ltk, ltl) ∈ g.ri : ltk = lt1 ∨ ltk = lt2} ∪ {(lto, ltm) :
(lto, lt1) ∈ g.ri} ∪ {(ltm, lti) : (lt1, lti) ∈ g.ri ∨ (lt2, lti) ∈
g.ri}; (2) g′.lt = g.lt \ {lt1, lt2} ∪ ltm, where
ltm.sequence = prune(concat(lt1.sequence, lt2.sequence))
or ltm.sequence = prune(concat(lt2
.sequence, lt1.sequence)), and g′.ri = g.ri \
{(lti, lt1), (lti, lt2)} \ {(ltk, ltl) ∈ g.ri : ltk = lt1 ∨ ltk =
lt2} ∪ {(lti, ltm)} ∪ {(ltm, ltl) : (lt1, tll) ∈ g.ri ∨ (lt2, tll) ∈
g.ri}.

The local transaction merge operation is used when, in the
redesign process, two local transactions become adjacent in
the execution graph, and can be included into a single local
transaction. From the transactional perspective, it is necessary
to integrate their execution sequences, what is achieved with
the prune function, and in the second case, is the software
architect that decide the order by which the sequences are
integrated. As result of applying this operation, the number of
intermediate states in result of the distributed execution of the
functionality is reduced.

Definition: Add Compensating. Given a graph g of func-
tionality f , a new graph g′ = (g.lt ∪ {ltc}, g.ri ∪ {ric}) of
f is produced, where ltc /∈ g.lt, ltc.sequence.entities =⋃

lti∈g.lt{e ∈ entities(lti.sequence, w) : lti.cluster =
ltc.cluster ∧ lti.type = compensatable ∧ lti <g ric[1]},
∀(e,m)∈ltc.sequencem = w, ric /∈ g.ri and ric = (ltj , ltc),
where ltj .cluster 6= ltc.cluster ∧ ltj ∈ g.lt.

This operation is used to create new local transactions that
access some of the domain entities changed by other local
transactions. It can be used to create the compensating trans-
actions that are necessary for each compensatable transaction.

Definition: Define Coarse-Grained Interactions: Given
a graph g of functionality f , two candidate microservices,
represented by the clusters c1 6= c2, two remote invocations
{(lt11, lt21), (lt12, lt22)} ∈ g.ri, where the remote invocations
are between the given microservices, c1 = lt11.cluster =
lt12.cluster ∧ c2 = lt21.cluster = lt22.cluster, and lt11
executes before lt12, lt11 <g lt12, a new graph g′ of f is
produced by applying the basic operations change sequence
and local transaction merge. First, change sequence operation
is applied for lt11 and (lti, lt12), to produce a new graph with
remote invocation (lt11, lt12). Note that is possible to apply the
operation, because lt11 <g lt12 and so there exists the remote
invocation (lti, lt12). Then, local transaction merge operation
is applied to lt11, lt12 to produce a new local transaction lt1m
which has remote invocations to lt21 and lt22. Finally, local
transaction merge operation is applied to lt21 and lt22 which
results in lt2m local transaction and a coarser-grained remote
invocation (lt1m, lt2m). Note that this operation can be applied
to any number of remote invocations between two cluster, in
the given conditions.

This operation is used to create two coarse-grained local

transactions, one in c1 and another in c2, by joining local
transactions that are executed in those clusters, in order to
reduce the number of remote invocations. It must be used
when, after the automatically generated decomposition, the
software architect realizes that there are several recurring
fine-grained interactions between two candidate microservices,
due to an object-oriented programming style in the monolith,
which promotes the use of fine-grained invocations between
the domain entities.

After the operations have been applied to the initial graph
gI of functionality f , the last step of the redesign is to produce
a final graph gF through the characterization of each one
of the local transactions. Therefore, the software architect
must select one transaction in the graph to be the pivot
transaction. Transactions that follow the pivot transaction are
guaranteed to succeed are classified as retriable, and all
other local transactions are classified as compensatable. The
compensatable transactions that have semantic locks need to
have at least one compensating transaction because some of
the transactions that execute after it in the saga might fail.

III. COMPLEXITY METRICS

Given a monolith decomposition, the base metric [14] was
defined in previous works, which measures the complexity
associated with the migration of a monolith system to a
microservices architecture. It considers the complexity of each
functionality redesign for the overall complexity of redesign-
ing the monolith system, due to relaxing the functionality
execution isolation, because the redesign of a functionality has
to consider the intermediate states introduced by the execution
of other functionalities.

Definition: Functionality Complexity in a Decomposi-
tion. Given a candidate decomposition C of a monolith,
the complexity associated with the migration of a monolith
functionality f is given by

∑
si∈f.subsequences

#
⋃

(e,m)∈si

{fi ∈ F \ {f} : (e,m−1)

∈ prune(fi.sequence)}

Where fi is a distributed transaction, it executes in more
than one cluster, and m−1 represents the inverse access mode,
r−1 = w and w−1 = r.

The overall idea behind the metric is to count, for each
subsequence of a functionality, executing inside a cluster, the
impact domain entities accesses have. The impact of a write
depends on other functionalities that read it, and, therefore,
they may have to consider this new intermediate state, while
the impact of a read depends on how many other functionalities
write it, and, therefore, introduce new intermediate states to be
considered by the functionality. This metric reflects how many
other functionalities need to be considered in the redesign
of a functionality, thus, how the functionality redesign is
intertwined with others functionalities business logic redesign.

However, during the redesign process, while the function-
alities are redesigned, the concepts of local transaction and

remote invocation are introduced, which allows a refinement
of the previous metrics, such that, during the redesign process,
the software architect can have more precise values about the
complexity.

Therefore, and because the metric will be used to inform
the functionality redesign activity, we distinguish between the
complexity of redesigning the functionality from the complex-
ity that the functionality redesign adds to the redesign of other
functionalities.

Definition: Functionality Redesign Complexity. The com-
plexity of redesigning a functionality f , executed as a graph
g, is the sum of the complexity of each one of its local
transaction:

complexity(f) =
∑

lt∈g.lt

complexity(lt)

The complexity of one local transaction depends on the
number of semantic locks that are introduced, because each
semantic lock corresponds to an intermediate state for which
may be necessary to write a compensating transaction, and it
also depends on the intermediate states set by other function-
alities that the local transaction may have to consider in its
reads. Note that, during the redesign of a functionality, some
of the functionalities that f interacts with may not have been
redesigned yet, and so, the metric should take into account
both situations.

Definition: Local Transaction Redesign Complexity. The
complexity of lt is given by the number of semantic locks
implemented in entities of lt.sequence, plus the number of
other functionalities that write in entities read in lt, or which
have semantic locks in those entities:

complexity(lt) = #lt.sl +
∑

(e,r)∈lt.sequence

#{fi ∈ F \ {f} : (e, w) ∈ writes(fi)}
where

writes(fi) =

{(e, w) : (e, w) ∈ prune(fi.sequence)}

if fi not redesigned
{(e, w) : (e, w) ∈ gi.sl}

if fi redesigned as gi

Note that when a functionality is redesigned some writes
may not be considered, because if they belong to pivot or re-
triable local transactions, they will not introduce intermediate
states, and so, the metric will provide a more precise value.

The redesign of a functionality impacts on other function-
alities redesign complexity. For instance, if a semantic lock is
created in one entity e due to the execution of a functionality
fi then every other functionality fj (where i 6= j) that read the
same entity e must have to be changed to accommodate the
existence of the semantic lock. Hence, the cost of redesigning
fj depends on the amount of semantic locks created by fi in
entities that fj access.

Definition: System Added Complexity. Given the redesign
of a functionality f executed as a graph g, the system added
complexity introduced by redesign g, is given by:

addedComplexity(f, g) =
∑

lt∈g.lt

∑
fi∈F\{f}

#(reads(fi).entities ∩ lt.sl.entities)

where

reads(fi) =

{(e, r) : (e, r) ∈ prune(fi.sequence)}

if fi not redesigned
{(e, r) : ∃lt∈gi.lt(e, r) ∈ lt.sequence}

if fi redesigned as gi

The redesign of functionality f may introduce inconsistent
states in the application when it has two or more semantic
locks. However, this situation only occurs when the entities
belong to different clusters, because inside one cluster the
entities are updated simultaneously by ACID transactions.
Hence, we consider that a functionality changes a cluster when
it introduces a semantic lock in one of its entities. If we
consider that a functionality f writes in more than one cluster,
this behaviour may introduce inconsistency views for any other
functionality fi that reads two or more of the changed clusters.
Therefore, any functionality fi that reads domain entities in
different clusters, previously changed by f , might encounter
inconsistent states.

From a redesign point of view, the inconsistency state
complexity is particular relevant for functionalities that only
read and have a single local transaction for each cluster they
access. We call queries to this type of functionalities.

Definition: Query. A query q is functionality which graph
g has the following properties: (1) its local transactions are
read only, ∀lt∈g.ltlt.sequence.mode = {r}; and (2) they
only access a cluster at most once, ∀lti 6=ltj∈g.ltlti.cluster 6=
ltj .cluster.

Note that, if there is a functionality that only has read
accesses, it is possible, by applying the redesign operations,
to generate an execution graph that is a query. We define the
cost of implementing a query as the inconsistency state it has
to handle.

Definition: Query Inconsistency Complexity. Given a
query q, its inconsistency complexity is the sum of all the
other functionalities that write in at least two clusters that q
also reads:

queryInconsistencyComplexity(q) =

#{fi ∈ F \ {q} : #clusters(entities(prune(q.sequence))

∩writes(fi).entities) > 1}

where writes(fi) is defined as in the local transaction
complexity metric.

0 2,000 4,000 6,000

0

0.2

0.4

0.6

0.8

1

1.2
·104

Base Complexity

Fu
nc

tio
na

lit
y

C
om

pl
ex

ity
+

Sy
st

em
C

om
pl

ex
ity

Fig. 1: Correlation between the base metric and the sum of
Functionality complexity and System complexity in the LdoD
system.

IV. EVALUATION

To evaluate the operations and metrics presented we ana-
lyzed two systems, LdoD1 (122 controllers, 67 domain en-
tities) and Blended Workflow2 (98 controllers, 49 domain
entities)3. Since the operations and metrics are applied in the
context of a candidate decomposition, we used the expert de-
compositions of these systems. As the main goal of this work
is to refine the existing complexity metric we start by showing
that the base metric and the new metrics are correlated, when
applied for the initial graph where every local transaction is
typed as compensatable. In figures 1 and 2 we can observe the
correlation graphs, for the monolith functionalities, where each
point represent for one functionality its values according to the
base metric and to the sum of the refined metrics, complexity
and added complexity. It can be observed that the metrics are
correlated.

A. Operations Evaluation

Firstly, the set of redesign operations were defined, and
formalized, after an extensive experimentation by the expert
that identified which changes have to be applied to the
decomposition of a functionality to create a suitable SAGA
implementation, while preserving its semantics.

To validate the proposed operations we started by filtering
the functionalities in each system. The goal is to have two sets
of functionalities, one with the functionalities that perform
some create, update or delete operation (CUD operations),
i.e, functionalities that write domain entities and that will be
implemented using the SAGA pattern, and another with the
functionalities that only read entities, i.e, functionalities that
are queries and which implementation is done using other type
of patterns, e.g. API Gateway pattern. Then, for each system,

1data/ecsa2020 in https://github.com/socialsoftware/mono2micro
2https://github.com/socialsoftware/blended-workflow
3https://github.com/socialsoftware/edition

0 0.5 1 1.5 2 2.5 3

·104

0

2

4

·104

Base Complexity

Fu
nc

tio
na

lit
y

C
om

pl
ex

ity
+

Sy
st

em
C

om
pl

ex
ity

Fig. 2: Correlation between the base metric and the sum
of Functionality complexity and System complexity in the
Blended Workflow system.

we performed a quartile analysis over the complexities in the
CUD set where we got 4 distinct groups of functionalities,
grouped by their complexity. We randomly picked a function-
ality from each group and after careful analysis of the source
code we applied the operations to redesign the functionality
for the given decomposition. The redesign goal was done to
achieve a saga orchestration style as recommended in [13], to
minimise the remote invocations between services and reduce
the network latency effect.

In table I are, for each of the selected functionalities, and
for the final execution graph, the number of transactions of
each type, the total number of local transactions and the total
number of accessed clusters. Additionally, it presents the sum
of the two complexity metrics, for the initial and final graph.
We can also observe that, to preserve the data dependencies
in the functionality, it is not possible to apply the operations
until the number of local transactions is equal to the number
of accessed clusters.

In what concerns the local transactions types, one clear
and obvious conclusion, since the complexity depends on the
number of local transactions, is that the sum of the refined
metrics increases with the number of transactions. We can
also observe that the number of compensatable transactions
impacts on the complexity. This is due to the fact that the
existence of compensatable transactions involves the creation
of semantic locks (if the access mode is write) and also the
creation of more transactions to implement the compensating
transactions logic needed in case of a transaction abort.

B. Complexity Metrics Evaluation

Table II shows the complexities for each functionality
analyzed in the systems LdoD e Blended Workflow. We can
observe that for both systems the reduction in the function-
ality complexity surpasses, in average, 50%. This shows the
advantage of the proposed redesign operations and the refined

Local Transactions Metrics

Functionality C P R Total # Access
Clusters Sum for the gI Sum for the gF

LdoD
removeTweets 0 1 3 4 4 442 82
getTaxonomy 0 1 4 5 3 529 192
associateCategory 7 1 4 12 4 3470 1067
signUp 0 1 4 5 4 3861 376
Blended Workflow
updateView 2 1 0 3 3 415 257
removeSequence
ConditionToActivity 2 1 3 6 2 1110 455

addActivity 6 1 2 9 3 3323 1493
extractActivity 25 1 3 29 4 20628 5636

TABLE I: Operations performed and local transactions types in the functionalities of LdoD and Blended Workflow. C -
Compensatable; P - Pivot; R - Retriable; # Clusters - number of accessed clusters.

metrics. On the other hand, we also observe the relation
between the functionality associateCategory and signUp. Be-
fore redesign the associateCategory has a lower complexity
value than signUp. However after the redesigning, and the
application of the SAGA pattern, that relation is reversed
and the complexity value for the associateCategory is higher
than for signUp. This shows that the impact of the redesign
operations is not the same and depends on the functionality
business logic. Additionally, it shows an advantage of allowing
the software architect to redesign the model that results from
the automatic decomposition of the monolith, in particular
the verification of whether the most complex functionalities,
according to the base metric, can or not be significantly
reduced.

By analysing the system added complexity values, in both
system we got a significant reduction in the complexity values
after the redesign, which allows us to provide the architect with
more precise values on the impact the functionalities redesign
has in the system.

Since the refined metrics separate the base metric into
two different concerns, functionality complexity and added
complexity to the system, we can do a more rich and precise
analysis. For instance, only the functionality associateCate-
gory has a non zero value in the LdoD system, which indicates
that only this functionality, of the four functionalities analyzed,
introduces complexity in to others functionalities redesign
despite that in gI all functionalities had a non zero value.
A strong example is the functionality signUp, which at the
beginning was considered to have the most impact on the
system, ended up having no impact on the system since it
does not create any semantic locks.

When analyzing both tables, it is visible the relation be-
tween the existence of compensatable transaction and a pos-
itive value for the system complexity, where the only excep-
tion is the functionality removeSequenceConditionToActivity in
the Blended Workflow system that contains 2 compensatable
transactions and 0 system complexity. After analysing the final

redesing graph we noted that the 2 compensatable transactions
were read only transactions. They are considered compensa-
table because, by definition, all the local transaction that do
not occur after the pivot transaction are compensatable, but
in this case they do not need a compensating transaction in
case of a transaction abort. However, as previously noted in the
relation between the number of compensating transactions and
complexity, we can conclude that most of the compensating
transactions require semantic locks.

Due to space restrictions, the Query Inconsistency Complex-
ity (QIC) analysis is omitted. However its evalution on queries
of both systems (LdoD and Blended Workflow) showed that,
despite this new metric does not derive from the base metric,
the complexity value from QIC increases as the base metric
increases, they are correlated.

Going back to the research questions raised:
1) What set of operations can be provided to the archi-

tect such that the functionalities can be redesigned by
applying microservices pattern?

2) Is it possible to refine the complexity value associated
with the monolith migration when there is additional
information about the functionalities redesign?

To answer them, first we have defined a suitable set of
operations that the architect can use in the design stage in
order to design functionalities in a microservices architecture.
Secondly, by separating the base metric in two distinct metrics
we can target different affected areas during the functionalities
design and implementation, and we obtained more precise
values for the functionality migration cost.

C. Threats to Validity

In terms of internal validity, the use of the expert decompo-
sition has no impact on the validation conclusions, actually,
to evaluate the metrics refinement and the operations, any
candidate decomposition could be used. The validation of
the operations was done to a small subset of functionalities,
but a systematic method to select them was chosen and

Functionality Initial
FRC

Final
FRC % Reduction Initial

SAC
Final
SAC % Reduction

LdoD
removeTweets 134 82 39 % 308 0 100 %
getTaxonomy 317 192 39 % 212 0 100 %
associateCategory 1803 662 63 % 1667 405 76 %
signUp 1490 376 75 % 2371 0 100 %

Average: 54 % 94 %
Blended Workflow
updateView 204 134 34 % 211 123 42 %
removeSequence
ConditionToActivity 861 376 56 % 249 79 68 %

addActivity 1775 721 59 % 1548 772 50 %
extractActivity 13849 2930 79 % 6779 2706 60 %

Average: 57 % 55 %

TABLE II: Functionality complexity and System complexity for the functionalities in the systems LdoD and Blended Workflow.
FRC - Functionality Redesign Complexity; SAC - System Added Complexity.

functionalities with different levels of complexity were also
chosen. Another threat to internal validity is that the redesign
was done to follow an orchestration style for the functionalities
sagas. However, considering that: (1) we are evaluating the
applicability of the redesign operation; (2) evaluating whether
the new metrics can provide a more precise value, this is
not biased by following a orchestration style, though the
complexity values reduction could be smaller, but precise
anyway.

In terms of external validity, we believe that our conclu-
sion can be generalized to the monolith systems that were
implemented using a rich domain model, which is the case
of the two analyzed systems, that were implemented using
fine-grained object-oriented interactions.

V. RELATED WORK

Previous work on the migration monolith systems to a
microservices architecture [1], [7]–[9] and on the quality
of microservices architectures [2]–[4], evaluate the candidate
decompositions and the microservices architectures through
metrics that focus on aspects like modifiability, cohesion,
coupling, performance or even the size of clusters. However,
they do not analyse the complexity associated with the effort
of migrating the monolith, according to the candidate decom-
position. Therefore, their focus is not in the complexity added
to the functionalities business logic, as explained by the CAP
theorem [6]. In this paper we address the effort required in
the monolith functionalities redesign and the application of
microservices design patterns.

Some research has been done on metrics and microservices
patterns. In [15] a set of metrics is proposed to assess
the architecture conformance to microservice patterns. Their
metrics evaluate characteristics like independent deployability
and shared dependencies between components. In [4] it is
developed a system that evaluates microservices architectures

conformance to a set of microservices design principles. For
each principle a metric is defined. None of these research
addresses the monolith functionality redesign cost using mi-
croservices patterns.

Although there are many proposals on how to decompose
a monolith into a microservices architecture, as far as we
know, only in [10] is proposed a tool that, besides providing
visualisation of the decomposition, allows the creation of new
microservices, move classes between microservices, and clone
a class in several microservices, while recalculating a set of
metrics on the decomposition quality. However, their modeling
focus is not on functionality redesign.

The proposed redesign process, and metrics refinement,
leverages on our previous work on the decomposition of
monolith systems based on the identification of transactional
contexts, to reduce the impact of transactional context changes
on the functionalities behavior [12], and on a complexity
metric for migration decomposition [14].

VI. CONCLUSIONS

This paper proposes a set of operations for the redesign
of monolith functionalities given a decomposition on a set
of candidate microservices. The redesign is guided by a set
of metrics which calculate the complexity associated with
functionalities business logic rewriting, due to the lack of
isolation. The SAGA pattern is applied to the functionalities
and the number of semantic locks is used to calculate the
complexity. On the other hand, by dividing the complexity
into two distinct metrics, it becomes possible to distinguish
between the complexity inherent to the each functionality
redesign, and the complexity added in the redesign of other
functionalities. As an extension of these two metrics, we also
propose a query inconsistency metric that measures the cost of
applying the API Gateway pattern. As result of the evaluation,
we observed that through the application of the operations

a suitable execution flow of the functionality, following the
SAGA patterns, is obtained. As expected, more operations are
required when the complexity of the functionality, before the
redesign, is higher, but we also observed that the percentage
of complexity reduction depends on the business logic func-
tionality.

REFERENCES

[1] D. Athanasopoulos, A. V. Zarras, G. Miskos, V. Issarny, and P. Vas-
siliadis. Cohesion-driven decomposition of service interfaces without
access to source code. IEEE Transactions on Services Computing,
8(4):550–562, 2015.

[2] Justus Bogner, Stefan Wagner, and Alfred Zimmermann. Automati-
cally measuring the maintainability of service-and microservice-based
systems: a literature review. In Proceedings of the 27th International
Workshop on Software Measurement and 12th International Conference
on Software Process and Product Measurement, pages 107–115. ACM,
2017.

[3] Mario Cardarelli, Ludovico Iovino, Paolo Di Francesco, Amleto
Di Salle, Ivano Malavolta, and Patricia Lago. An extensible data-driven
approach for evaluating the quality of microservice architectures. In
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Comput-
ing, SAC ’19, page 1225–1234, New York, NY, USA, 2019. Association
for Computing Machinery.

[4] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander
Hofmann. Evaluation of microservice architectures: A metric and tool-
based approach. In Jan Mendling and Haralambos Mouratidis, editors,
Information Systems in the Big Data Era, pages 74–89, Cham, 2018.
Springer International Publishing.

[5] Hector Garcia-Molina and Kenneth Salem. Sagas. ACM Sigmod Record,
16(3):249–259, 1987.

[6] Seth Gilbert and Nancy Lynch. Perspectives on the cap theorem.
Computer, 45(2):30–36, February 2012.

[7] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng. Service
candidate identification from monolithic systems based on execution
traces. IEEE Transactions on Software Engineering, pages 1–1, 2019.

[8] S. Klock, J. M. E. M. van der Werf, J. P. Guelen, and S. Jansen.
Workload-based clustering of coherent feature sets in microservice
architectures. In 2017 IEEE International Conference on Software
Architecture (ICSA), pages 11–20, 2017.

[9] G. Mazlami, J. Cito, and P. Leitner. Extraction of microservices
from monolithic software architectures. In 2017 IEEE International
Conference on Web Services (ICWS), pages 524–531, 2017.

[10] R. Nakazawa, T. Ueda, M. Enoki, and H. Horii. Visualization tool for
designing microservices with the monolith-first approach. In 2018 IEEE
Working Conference on Software Visualization (VISSOFT), pages 32–42,
Sep. 2018.

[11] Evangelos Ntentos, Uwe Zdun, Konstantinos Plakidas, Daniel Schall, Fei
Li, and Sebastian Meixner. Supporting architectural decision making on
data management in microservice architectures. In European Conference
on Software Architecture, pages 20–36. Springer, 2019.

[12] Luı́s Nunes, Nuno Santos, and António Rito Silva. From a monolith
to a microservices architecture: An approach based on transactional
contexts. In Tomas Bures, Laurence Duchien, and Paola Inverardi,
editors, Software Architecture, pages 37–52, Cham, 2019. Springer
International Publishing.

[13] Chris Richardson. Microservices Patterns. Manning Publications Co.,
2019.

[14] Nuno Santos and António Rito Silva. A complexity metric for mi-
croservices architecture migration. In Proceedings of the IEEE 17th
International Conference on Software Architecture (ICSA 2020), pages
169–178. IEEE, 20202.

[15] Uwe Zdun, Elena Navarro, and Frank Leymann. Ensuring and assessing
architecture conformance to microservice decomposition patterns. In In-
ternational Conference on Service-Oriented Computing. ICSOC. Lecture
Notes in Computer Scienceg, pages 411–429. Springer, 2017.

	Introduction
	Functionality Redesign
	Complexity Metrics
	Evaluation
	Operations Evaluation
	Complexity Metrics Evaluation
	Threats to Validity

	Related Work
	Conclusions
	References

