
EcoAndroid: An Android Studio Plugin for
Developing Energy-Efficient Java Mobile

Applications (Extended Abstract)*

Ana Sofia Gonçalves Ribeiro
Instituto Superior Técnico, Universidade de Lisboa

anasofiaribeiro@tecnico.ulisboa.pt

Abstract—Mobile devices have become indispensable in our
daily life and reducing the energy consumed by them has become
essential over recent years. For economical and environmental
reasons, as well as enhancing the user experience, extending bat-
tery duration has become a non-functional requirement develop-
ers should be concern with. However, developing energy-efficient
mobile applications is not a trivial task. To address this problem,
we present EcoAndroid, a publicly-available Android Studio
plugin that automatically applies a set of energy patterns to
Java source code. It currently supports ten different cases of
energy-related refactorings, over five energy patterns taken from
the literature. We used EcoAndroidto analyze 100 Java mobile
applications from F-Droid and we found that 35 of the projects
had a total of 95 energy code smells detected by the plugin.
We used EcoAndroidto automatically refactor all the code smells
identified. We submitted the 42 refactorings that introduced code
fixes (and not just informational warnings) as pull requests to
the maintainers of the respective projects. Of a total of 42 pull
requests, we received replies to 25 of them (59.5%); of those,
20 (80%) were accepted and merged into the original projects.
In total, we contributed to improve the energy efficiency of 12
different Android mobile applications. These results, together
with the results obtained in a user study with 12 participants,
show that EcoAndroid is useful, usable, and the alterations
proposed by the tool are easily accepted by developers.

Index Terms—Sustainable Software, Green Software, Energy
Consumption, Energy Patterns, Code Smells, Refactoring.

I. INTRODUCTION

Mobile devices have become a fundamental accessory in
a person’s current day-to-day life. They are used as credit
cards, work tools, educational helpers, among various useful
purposes. Unfortunately, the battery power on them is finite
and, despite the advances in hardware and battery technology,
the needs of most users are not yet met. As a result, the
reduction of the energy consumed by mobile devices has
become an important non-functional requirement.

Regarding user practice, decreasing the energy consumption
directly reduces the amount of times a mobile device needs
to be charged, creating a more convenient experience of the
device for the user. A study [2] in 2013, analysing comments
left in the Google Play market place for Android applications,
concluded that 18% of the complaints were related to energy
problems.

* This extended abstract is an earlier draft of the paper [1] and is required
as part of the MSc submission at Instituto Superior Técnico, University of
Lisbon.

Environmental concerns are also an incentive to reduce
the energy consumed by our devices. The production of
energy from fossil fuels produces greenhouse gases which
contributes directly to the air pollution. Even if nowadays there
are renewable sources to produce energy, such as solar and
wind, electricity generated from fossil fuels still accounts for
significant percentage of the energy produced. For example,
in 2018, 70% of the world’s energy was produced from fossil
fuels [3].

One way of decreasing the energy consumed by a mobile
device is to ensure that the mobile applications that the device
runs are energy-efficient. However, improving the energy
efficiency of a mobile application is a complex task since
a lot of factors can influence energy consumption. Factors
include: the mobile networking technology used (3G, GSM or
WiFi) [4]; heavy graphic processing; and screen usage while
on an application. Taking these factors into consideration is
not always trivial, meaning that they can be easily overlooked
by developers when coding.

An approach that makes the development of energy-efficient
mobile applications easier is following so-called energy pat-
terns, which are code patterns known to use energy prudently.
Work documenting these patterns has been growing in recent
years [5]–[8]. In 2019, Cruz et al. [5] presented a catalog of 22
energy-related patterns. The catalog can be of great assistance
to mobile application developers, as it describes each pattern
and its context, also providing a series of examples and
references. However, the manual application of these patterns
is not trivial and can be time-consuming.

A. Objectives and Contributions

The main goal of this project is to create a developer tool
that can assist in the development of energy-efficient mobile
applications, by automatically refactoring their source code so
that they follow well-known energy patterns. We also aim at: a)
giving an overview of previous work done in this field, listing
energy patterns already documented (in the search of a subset
to support); b) discussing which mobile platforms (Android or
iOS) and which languages are the most used in each platform
(meaning a bigger impact if supported); c) listing a set of
source code refactoring tools that can be used to implement
the main goal.

1

Our main contribution is a publicily-available tool named
EcoAndroid1 that focuses on Android applications and is in the
form of an Android Studio plugin that automatically applies
a set of energy patterns to Java source code. At the time
of writing, the plugin supports ten different cases of ener-
gy-related refactorings, over five energy patterns taken from
the literature [5]. Out of the ten cases, two are informational
warnings, as they only insert //TODO’s to the source code,
due to the complexity applying the refactoring ourselves — for
example when it is needed to register the mobile application
to set up push notifications on the app.

We used EcoAndroid to analyze 100 projects from F-Droid
and we found that 35 of the projects had a total of 95 energy
code smells detected by the plugin. We used EcoAndroid to
automatically refactor all the code smells identified. We sub-
mitted the 42 refactorings that introduced code fixes (and not
just informational warnings) as pull requests to the maintainers
of the respective projects. Of a total of 42 pull requests, we
received replies to 25 of them (59.5%); of those, 20 (80%)
were accepted and merged into the original projects. In total,
we contributed to improve the energy efficiency of 12 different
Android mobile applications. Through this work, we propose
to answer the following research questions:
RQ1. What energy patterns are already known by the soft-

ware engineering community?
RQ2. What are the most relevant energy patterns to support?
RQ3. Are there existing tools that automatically apply energy

patterns to the source code of mobile applications?
RQ4. What are the challenges in automatically applying

energy patterns?
The main contributions can be summarized as follows:
• EcoAndroid, an extendable Android Studio plugin, cre-

ated to assist developers in creating energy-efficient mo-
bile applications;

• Refactoring of real-world code: we improved the energy
efficiency of 12 real-world Android mobile applications
by using EcoAndroid to automatically fix 25 code smells;

• A study of the most common code smells in 100 Android
mobile applications.

II. BACKGROUND AND RELATED WORK

A. Energy Consumption and Energy Profiling

Energy Profiling is the process of measuring the energy
consumed by a device, and in our specific case, a mobile
device. This process has been addressed by the scientific
community before. Ahmad et al. [9] present a paper which
reviews mobile applications energy profiling. They divided en-
ergy profiling schemes into two categories: software-based and
hardware-based. Software-based exploits a software module to
collect mobile component’s power usage statistics to construct
power models to estimate application’s energy consumption.
Hardware-based utilizes external hardware equipment, which
are expensive, labor-intensive, and non-scalable compared

1Available in the JetBrains store: https://plugins.jetbrains.com/plugin/
15637-ecoandroid.

with software-based solutions. There are tools [10]–[15], that
have tackled this problem, in both categories.

B. Energy Patterns

An Energy Pattern describes, formally, the alterations
needed to reduce the energy consumed by a device. Stud-
ies [5]–[8], [16] with the goal of documenting energy patterns
have emerged over recent years. Table I summarizes every
energy pattern documented and the paper it belongs to.

TABLE I
ENERGY PATTERNS SUMMARY.

Energy Pattern Paper(s)

Dark UI Colors [5]–[7]
CPU Offloading [6]
HTTP Requests [6], [16]
Software Piracy [6]
I/O Operations [6]
Continuously Running App [6]
Third-Party Advertising [7]
Binding Resources Too Early [5], [7]
Statement Change [7]
Data Transfer [7]
Use of Memory [16]
Performance Tips [16]
View Holder [8]
DrawAllocation [8]
WakeLock [8]
Recycle [8]
ObsoleteLayoutParam [8]
Power Save Mode [5]
Power Awareness [5]
Enough Resolution [5]
No Screen Interaction [5]
Avoid Extraneous Graphics and Animations [5]
Dynamic Retry Delay [5]
Race-to-idle [5]
Reduce Size [5]
Batch Operations [5]
Cache [5]
Decrease Rate [5]
User Knows Best [5]
Inform Users [5]
Manual Sync, On Demand [5]
Push Over Poll [5]
WiFi Over Cellular [5]
Suppress Logs [5]
Sensor Fusion [5]
Kill Abnormal Tasks [5]
Avoid Extraneous Work [5]

C. Mobile Applications Environments and Languages

In 2017, a study done by Habchi et al. [17] compared
the ratio of energy code smells in iOS and Android mobile
applications, concluding that the latter had a higher number
of energy code smells in the source code. The study also
states that these differences are related to the platform and
not to the differentiation in programming language. The main
languages for programming iOS mobile applications are Swift
and Objective-C while for Android mobile applications are
Java and Kotlin. Since we are interested in maximizing the

2

https://plugins.jetbrains.com/plugin/15637-ecoandroid
https://plugins.jetbrains.com/plugin/15637-ecoandroid

impact of this project,we focus on Android mobile applica-
tions, targeting Java applications.

The most used IDEs for Java development are IntelliJ,
Eclipse and NetBeans. In terms of Android application devel-
opment, the IDEs Android Studio (built on IntelliJ), IntelliJ,
and Eclipse are the best choices, being that the first one is
the official one for Android development and the one chosen
for this project. Note that, even though we focus on Android
mobile applications, Android Studio can also be used to
develop iOS mobile applications. As long as these applications
are written in the Java programming language, the tool that we
propose can be used.

D. Refactoring for Java Source Code
Refactoring is the process of changing the internal structure

of a program without changing its external behaviour. It is
mainly used to improve code quality and reliability. It has
both benefits and risks and it might be difficult to discover
when to apply refactoring [18]. As presented in the study by
Kim et al. [19], while refactoring can be known to reduce the
number of bugs in a program and improve maintainability and
reliability, it also has some risks associated. Such risks are, for
example, the introduction of regression bugs and the increase
of the testing cost.

Leafactor [20], [21] is a tool that automatically refactors
Android mobile applications source code to reduce energy
consumption. Leafactor is an Eclipse plugin while our tool
is compatible with both Android Studio and IntelliJ. The
5 refactorings supported by Leafactor are acquired from a
previous study [8], by the same authors, about the effect of
performance-based practices on mobile application’ energy
consumption. These patterns listed in table I.

Chimera [22] covers 11 energy-greedy code patterns. This
paper [22] also compares the energy savings of combinations
of refactorings. It uses the Lint2 for the inspection phase and
Autorefactor [23] for the refactoring phase. A new aspect
about this project is how broad the evaluation is, inspecting
more than 600 mobile applications. It covers the same code
smells as Leafactor and the four extra ones.

AEON (Automated Android Energy-Efficiency Inspec-
tion) [24] is a support framework, compatible with IntelliJ and
Android Studio. It automatically detects energy inefficiencies
in Android mobile applications and helps developers fixing
those inefficiencies. It also supports developers in verifying,
refactoring and profiling such inefficiencies.

EARMO [25] is an approach that detects and corrects
energy-related anti-pattern in mobile applications, while ac-
counting for energy consumption when performing the refac-
torings. It supports 8 anti-patterns within two categories:
Object-oriented specific and Android-specific. The refactoring
is achieved by support of refactoring-tool-support of Android
Studio and Eclipse. When that was not possible, the changes
were applied manually.

aDoctor [26], a tool proposed by Palomba et al., is able
to identify 15 Android-specific code smells from a catalog

2Lint is a code analysis tool developer.android.com/studio/write/lint.

by Reimann et al. [27]. It is built on top of Eclipse Java
Development Toolkit (JDK). Later on, aDoctor was extended
as an Android Studio plugin supporting 5 energy-related
refactorings.

A paper [28] by Le Goaër presents a new category in
Android lint entitled Greenness. This category has 11 checks,
which can be viewed as an inspection in Android Studio.

HOT-PEPPER [29] is able to detect and correct 3 types
of Android-specific code smells. It uses PAPRIKA [30], a
static tool analysis for Android apps for the detection and
correction of code smells. As a final step, HOT-PEPPER uses
a tool called NAGA VIPER, to compute energy metrics and
evaluate the impact of corrected APKs, being able to inform
the developer which APK is the best energy-efficient version,
for a given scenario.

TABLE II
ENERGY-SPECIFIC REFACTORING TOOLS/APPROACHES.

Tool/Approach Name Refactoring Environment Paper(s)

Leafactor Eclipse [20], [21]
Chimera - [22]
AEON IntelliJ, Android Studio [24]
EARMO IntelliJ, Android Studio [25]

,Manually
aDoctor Eclipse, Android Studio [26], [31]
Greeness category Android Studio [28]

(Android lint)
HOT-PEPPER - [29]

III. ECOANDROID: AN ANDROID STUDIO PLUGIN

A. Architecture

EcoAndroid is a publicly-available Android Studio plugin
that suggests automated refactorings with the aim of reducing
energy consumption of Java android applications. Android
Studio is an integrated development environment for Google’s
Android operating system, built on JetBrains’ IntelliJ IDEA.
Due to this fact, EcoAndroid plugin is also compatible with
IntelliJ. Android Studio is the official IDE for Android app
development, making it the best choice for a maximizing the
impact of our project. To the best of our knowledge, there
are no general-purpose refactoring plugins for Android Studio
that can serve as the basis for this project. Thus, to aid in the
refactoring of the source code, the Program Stucture Interface
(PSI) [32] of IntelliJ will be used. PSI is a layer of the IntelliJ
Platform responsible for parsing files and creating the syntactic
and semantic code model. It creates PSI files, that are the
root of a structure representing the contents of a file as a
hierarchy of elements in a particular programming language.
PSI is a read-write representation of the source code as a tree
of elements corresponding to the structure of a source file.
The PSI can be modified by adding, replacing and deleting
PSI elements. These features are what allows the detection of
possible energy improvements and the refactoring itself.

EcoAndroid is implemented as extending IntelliJ’s func-
tionality. As it is, the functionality is added as an

3

developer.android.com/studio/write/lint

<extension/> element in the plugin.xml.3 In this ex-
tension, there are inspections (where each represent a case the
plugin supports). An IntelliJ’s plugin can have two type of
inspections: a local inspection or a global inspection. As the
names suggest, a local inspection looks at only one file while a
global inspection looks at a group of files. Due to this, a global
inspection does not appear as warning along the source code
but needs to be run manually by the user. Since we do not wish
to alter a big portion of the source code, every energy pattern
is implemented as a local inspection. The results from the
inspection can be viewed in two ways: a warning of the source
code currently being viewed; or from the results of the IDE’s
inspection task as a list. In the latter way, the developer can
ask to inspect a file, a folder or even the whole project. They
can also choose what inspections to ran. The plugin supports
a total of five energy patterns, with ten cases among those.
Each case is implemented as a local inspection in the plugin.
Figure 1 illustrates the process flow of the user interaction
between the developer and EcoAndroid. The plugin starts by
performing a static analysis, aided by the PSI API. The source
code is represented as Abstract Syntax Trees (AST) (actions
1 and 2). If a code smell is found, a warning is shown

to the developer (action 3) and, if the they wish to do so
(action 4), the refactoring, which is also aided by the PSI
API, is executed (action 5).

Fig. 1. EcoAndroid detection and refactoring process.

B. Implementation

EcoAndroid supports a total of 5 energy patterns, divided
in 10 separate cases. The energy patterns supported are a
subset of the ones presented in the catalog by Cruz et al. [5].
The energy patterns are: Dynamic Retry Delay, Push Over
Poll, Reduce Size, Cache, and Avoid Extraneous Graphics and
Animations. However, in some of these patterns more than one
case was implemented. EcoAndroid distinguishes two types
of warnings: informational ones and non-informational ones.

3Plugin.xml is the plugin configuration file which has information about
the actions and inspections done by the plugin.

The first type exist due to either the inability to implement the
change or because the refactoring implied too many changes
to the source code. The catalog [5] presents a list of GitHub
commits in which alterations correspond to the application of
the energy patterns. During the development of EcoAndroid,
the approach taken when supporting an energy pattern was to
support the alteration made by the commits shown in Cruz
et al.’s catalog. Where possible, every Java source case was
covered. Every example shown in the subsections below is
available in the GitHub project for the EcoAndroid plugin.

1) Dynamic Retry Delay: The objective of the Dynamic
Retry Delay pattern is to increase the interval between attempts
to access a resource, avoiding trying to constantly access a
resource that most likely went down. If an attempt to access a
resource fails, the time between attempts should be increased,
until a certain value, in order to space the access to the
resource. If the access is successful, the interval should not
be changed. The energy pattern has two cases: Dynamic Retry
Delay and Check Network. The first one is detailed in the next
section.

a) Dynamic Wait Time: The first case of the Dynamic
Retry Delay energy pattern is the entitled, by the plugin,
Dynamic Wait Time. The interval between threads sleep should
grow exponentially and not stay constant, decreasing the
change of trying to access a resource that most likely went
down.

private void startLongPoll(String polledFile,
int backOffSeconds) {
pollingTask = new Thread () {

public void run() {
long start_time = System.currentTimeMillis();
long longpoll_timeout = 480;
int newBackoffSeconds = 0;
if(backOffSeconds != 0) {

log.info("Backing off for "+
backOffSeconds + " seconds");
try {

Thread.sleep((long)

(backOffSeconds * 1000));
} catch (InterruptedException e) {

e.printStackTrace();
}

}
if(System.currentTimeMillis() - start_time <
longpoll_timeout * 1000) {

log.info("Longpoll timed out to quick,
backing off for 60 seconds");
newBackoffSeconds = 60;

}
else {

log.info("Longpoll IO exception,
restarting backing off {} seconds"
+ 30);
newBackoffSeconds = 30;

}
startLongPoll(polledFile, newBackoffSeconds);

Listing 1: Dynamic Wait Time - energy opportunity detected.

In the example shown in listing 1, there is a sleep invo-
cation, using the backOffSeconds variable. This variable
comes from the parameter of the method startLongPoll.
As it is a parameter, the inspection looks for method calls of
the method startLongPoll in the current Java file. As we
can observe from the listing, there is a method call which uses

4

the newBackOffSeconds variable to invoke the method.
The variables are assigned with constant values, either 30 or
60. With this scenario, the plugin flags this as a problem,
showing up as a warning on the variable backOffSeconds.
Since the code does not already have an informational warning
about this pattern added by the plugin, EcoAndroid presents
the user with two warnings.
1 ”EcoAndroid: Dynamic Retry Delay Energy Pattern -

information about a new approach to implement it”

pollingTask = new Thread () {
/*
* TODO EcoAndroid

* DYNAMIC RETRY DELAY ENERGY PATTERN INFO WARNING

* Another way to implement a mechanism that manages
the execution of tasks and
their retrying, if said task fails

* This approach uses the android.work package

* If you wish to know more about this topic,
read the following information:

* https://developer.android.com/topic/libraries/
architecture/workmanager/how-to/define-work

*/
public void run() { ... }

Listing 2: Dynamic Wait Time - energy pattern applied (in-
formation about a new approach to implement it).

The informational warning given to the developer does not
alter any source code, only adding a comment with a link to
further explain how to use the WorkRequest class instead
of using Thread class.
2 ”EcoAndroid: Dynamic Retry Delay Energy Pattern

- switching to a dynamic wait time between resource
attempts case”

private void startLongPoll(String polledFile,
int backOffSeconds) {
pollingTask = new Thread () {

int accessAttempts = 0;
public void run() {

if(System.currentTimeMillis() - start_time
< longpoll_timeout * 1000) {
log.info("Longpoll timed out to quick,

backing off for 60 seconds");
accessAttempts++;

}
else {

log.info("Longpoll IO exception,
restarting backing off {} seconds"

+ 30);
accessAttempts++;

}
newBackoffSeconds = (int) (60.0 *

(Math.pow(2.0, (double) accessAttempts)
- 1.0));

startLongPoll(polledFile, newBackoffSeconds);

Listing 3: Dynamic Wait Time - energy pattern applied
(switching to a dynamic wait time between resource attempts
case).

The second option presented to the developer alters the
source code, changing every static variable assignment to
a dynamic one. It starts by creating a variable entitled
accessAttempts, initialized at 0. As the name suggests,
the variable holds the number of access attempts to a resource.
Then every static assignment done to the variable that puts the

thread to sleep, in this case it is newBackfffSeconds, is
altered to an incremental assignment of accessAttempts
variable. At last, the number of access attempts is altered to
a value of time with an upper bound. Lisiting 3 represents
the application of the Dynamic Wait Time pattern, which
applys the alterations described.

2) Push Over Poll: A push notification establishes and
maintains a connection with the server over the Internet and
that allows the server to send data to the application when
something has actually changed on the server. On the other
hand, Polling is the continuous checking of other programs
or devices by one program or device to see what state they
are in, usually to see whether they are still connected or want
to communicate. The goal of this energy pattern is to use
push notifications instead of actively querying resources, such
as polling. This transformation is specifically beneficial when
there is not a significant number of notifications, as shown
by Dinh and Boonkrong [33], who compare battery usage
between these two techniques. If there is not a significant
number of notifications coming in, pushing notifications will
be a better choice since it’s not always actively querying
resources. If there is always notifications coming in, the
difference between these two mechanisms is not as significant.
This energy pattern has one case: Informational Warning FCM.

3) Reduce Size: The goal of the pattern Reduce Size is to
reduce the size of the data being transferred as much as pos-
sible, therefore reducing the energy being used in the transfer.
The change to be made consists in transforming/compressing
the data being transmitted, whenever a data transfer occurs.
This energy pattern has one case: GZIP Compression.

4) Cache: The goal of the Cache pattern is to store data
that is being used frequently, which means a lower energy
consumption since it reduces the amount of code executed.
This energy pattern has five cases: Check Metadata, Check
Layout Size, SSL Session Caching, Passive Provider Location
and URL Caching.

5) Avoid Extraneous Graphics and Animations: Displaying
graphics and animations are resources with an high energy
consumption. The intent of the Avoid Extraneous Graphics and
Animations’s pattern is to reduce the usage of this resources as
much as possible. For example, on the usage of any resource
with an high energy consumption that doesn’t have a direct
impact on the user experience. However, knowing when to
apply this pattern is a challenge since it is difficult to know
exactly when a resource is strictly needed or when the resource
does not have a direct impact on the user experience. The
energy pattern has one case: Dirty Rendering.

IV. EVALUATION

A possible way of evaluating the effectiveness of EcoAn-
droid is to measure the consumption of energy before and
after a proposed refactoring. However, due to the complexity
of directly measuring or estimating the energy a mobile
application consumes [9], we follow a different approach.
Since the energy patterns applied are retrieved from research
papers who verified their reliability, we argue that measuring

5

the energy consumed after refactoring is not strictly necessary,
since a decrease of energy consumption is almost guaranteed.
The evaluation is thus divided into three phases:
First Phase. We measure how many refactorings EcoAndroid

suggests for a realistic set of mobile Java applications and
how many of those are false positives. We call this phase
the Objective Evaluation.

Second Phase. Based on the results obtained in the first phase
of the evaluation, we send the proposed changes to the
maintainers of each mobile application (as pull requests).
The goal is to obtain feedback from the application
developers, but also, to measure the number of proposals
accepted. We call this phase the Subjective Evaluation,
since results depend on the appreciation of the mobile
applications’ maintainers.

Third Phase. The final phase of the evaluation consists in
a user study, which aims to assess the usability of
EcoAndroid. In the user study, we focus on the most
relevant energy patterns (e.g. we only consider patterns
that effectively change the code, rather than just adding
annotations).

A. Mobile Applications Analyzed

For the evaluation of EcoAndroid, it is required to identify
a set of mobile applications on which EcoAndroid is used
to detect possible improvements in terms of energy con-
sumption.We used Android mobile applications retrieved from
F-droid [34], an alternative app store that catalogs over 2000
mobile applications that are Free and Open Source Software
(FOSS). We retrieved meta-information about all the F-Droid
applications4 and we filtered and ordered them before being
used for the evaluation.

• The source code of the application is available in GitHub;
• The GitHub project is not archived;
• The GitHub project has had a commit since 2018;
• The source code of the application is written in Java.

The mobile applications were then sorted by the following
order:

1
st

Percentage of Pull Requests accepted;
2

nd
Date of Last Commit;

3
rd

Total merged Pull Requests;
4

th
Number of GitHub Stars;

5
th

Number of GitHub. Watchers
The first three criteria were chosen to increase our chances

of having feedback from developers. Our intuition is that
maintainers of projects that accept more pull requests might
be more open to discuss our proposals. The last two criteria
were chosen to maximize impact by selecting popular projects.
After filtering and ordering the mobile applications, the top
100 applications were used in the evaluation process. The first
phase of the evaluation consisted in determining how many
refactorings are suggested by EcoAndroid for the top 100
mobile applications retrieved from the filtered and ordered

4Collection date: 25 June 2020

dataset. For this, we executed EcoAndroid in batch mode,
since doing it manually for 100 applications would be too
time-consuming. Table III presents the results. The lines with
a gray background refer to the refactorings which introduce
//TODO’s into the source code. This first phase happened
in three stages: we first processed the top twenty mobile
applications, then the following twenty, and then the remaining
sixty applications. Between each stage, we incorporated any
relevant feedback received from developers. For example,
errors resulting in false positives were fixed and no longer
a problem in the following stages.

Two feedback from developers were labeled as errors of
the plugin and fixed. On the pull requests in stage 1, a pull
request to the Second Screen app with the Check Network
energy pattern, the developer said that the project did not
declare permission to use the internet so the refactoring did
not make sense. This was fixed and no longer was a problem
in the following stages. Another pull requests from stage 1, to
the Hacs mobile application with the Check Metadata energy
pattern, the developer answered that the refactoring could
break some notification. This bug was fixed and is no longer
a problem in the following stages.

TABLE III
NUMBER OF ENERGY OPPORTUNITIES DETECTED BY ECOANDROID.

Energy Patterns Case Refactorings

Dynamic Retry Delay Dynamic Wait Time 0
Check Network 5

Push Over Poll Info Warning FCM 8
Reduce Size GZIP Compression 14
Cache Check Metadata 7

SSL Session Caching 10
Check Layout size 0
Passive Provider 11
Location
URL Caching 40

Avoid Extraneous Dirty Rendering 0
Graphics and
Animations
Total 95

A total of 95 refactoring opportunities were found in the
7441 Java files, giving an average of one refactoring per
78.33 ≈ 78 files. Since, in average, the source code of a
mobile application inspected has 74.41 Java files, this means
an average of around 0.95 ≈ 1 refactorings per project. This
is the case with most projects.

Case Analysis: The case with the most refactorings is
URL Caching with 42.1% of the occurrences. It is then
followed by Check Metadata (14.7%), Passive Provider Lo-
cation (11.6%), SSL Session Caching (10.5%), Push Over
Poll(8.4%), and Check Network(5.3%). EcoAndroid found no
opportunities for applying refactorings related to the cases
Dynamic Wait Time, Check Layout Size and Dirty Rendering.
The combination of patterns with the highest number of
associated refactorings is URL Caching with GZIP Com-
pression with nine projects being affected. This is expected

6

since they both look for an invocation of the method URL-
Connection#openConnection() as a first step. The next two
combinations with the most occurrences are URL Caching
with SSL Session Caching and URL Caching with Passive
Provider Location, both affecting three mobile applications.
With two occurrences, the combination Check Network and
URL Caching is next. With only one occurrence are the
combinations: Info Warning FCM with URL Caching, Info
Warning FCM and GZIP Compression, Check Network and
Check Metadata, Check Network and SSL Session Caching,
Check Metadata and Passive Provider Location, Check Meta-
data and URL Caching and the last one is Check Metadata
and GZIP Compression.

B. Second Phase: EcoAndroid Refactorings Submitted to
Project Maintainers

In the second phase of the evaluation, we sent the refac-
torings obtained in the first phase to the maintainers of the
affected projects. We excluded cases presenting only infor-
mational warnings (that introduces //TODO’s into the source
code). Therefore, we did not consider the cases InfoWarning
FCM, URL Caching, and the cases with an informational
solution for Passive Provider Location (Possible switch to
Passive Provider Location). We then created pull requests5 to
the original GitHub projects for the remaining refactorings.

A total of 31 pull requests were created, covering 42
refactorings. We received 25 responses (17 were unanswered).
Out of the pull requests with feedback from the applications’
developers, 20 were accepted and 5 were rejected. This rep-
resents an overall acceptance rate of 46.62%. However, when
considering only pull requests with feedback from developers,
the acceptance rate was of 80%. Out of the five pull requests
rejected, two were due the refactoring not saving energy in
those cases (one in the pattern Cache - SSL Session Caching
and Reduce Size - GZIP Compression), two were because the
class did not use internet but was later fixed (in the pattern
Dynamic Retry Delay - Check Network) and last one was
because the refactoring could break notifications, but was later
fixed (in the pattern Cache - Check Metadata).

In feedback received from a pull request to the mobile
application Hendroid related to the case Check Network, which
had two instances of this pattern, the developer stated that their
application depended on another mobile application, changing
the target project of the pull request to the mobile application
Hentoid. While inspecting the new target project, there was
one fewer refactoring, altering the number of Check Network
refactorings to four instead of five. Moreover, in feedback from
a pull request related to the case Check Metadata to the app
SecondScreen, a developer suggested creating a pull request to
a sister mobile application — Taskbar on position #581 in our
ordered mobile applications list — adding another refactoring
associated with the pattern. In feedback for a pull request
related to the case CheckMetadata to the mobile application

5For a real and full example, see https://github.com/farmerbb/Taskbar/pull/
138.

ZimLx, the developer suggested that a pull request to another
project would be more efficient, adding another refactoring
associated with the pattern to the app Omega. This new project
was not part of our mobile application list.

Che
ck

Netw
ork

GZIP
Com

pre
ssi

on

Che
ck

M
eta

da
ta

SSL
Sess

ion
Cac

hin
g

Pass
ive

Prov
ide

r Loc
ati

on
0

2

4

6

8

10

12

14

4

14

9

10

5

2

9

8

6

00

8

7

5

0

2

1 1 1

0

N
um

be
r

of
re

fa
ct

or
in

gs

Total Refactorings
Refactorings with Feedback

Accepted
Rejected

Fig. 2. Number of refactorings proposed by EcoAndroid for each pattern and
statistics on the pull requests sent.

Figure 2 presents the number of refactorings sent and the
answers given by the maintainers. By observing the bar chart,
we can see that the results are mostly positive. The energy
pattern with the highest percentage of acceptance is Check
Metadata with 78%, followed by GZIP Compression (57%)
and SSL Session Caching (50%). The other two energy patterns
did not have any accepted pull requests (nor feedback from the
maintainers). When considering the percentage of rejections,
the energy pattern with the highest value is Check Network
with 50%, followed by Check Metadata (11.1%), SSL Session
Caching (10%), and GZIP Compression (7.14%). It should be
noted that we only obtained responses for 60% of the pull
requests.

C. Third Phase: User Study

The final phase of the evaluation was a user study to validate
the usefulness and usability of EcoAndroid. We wished to
answer two research questions:

RQ1: Is it easier and/or quicker to apply energy patterns
when using EcoAndroid?

RQ2: Is EcoAndroid usable for developers?

1) Structure and Setup: We divided the user study into
two parts that considered different energy patterns. Out of the
10 energy patterns supported by EcoAndroid, only the ones
that did not insert //TODO’s into the source code and that
had any occurrences in the first phase of the evaluation were
considered. This left us with 5 energy patterns to examine.

7

https://github.com/farmerbb/Taskbar/pull/138
https://github.com/farmerbb/Taskbar/pull/138

Due to the complexity in understanding the changes required
in a short amount of time, the Check Network energy pattern
was excluded. This left us with 4 energy patterns, two per
part. The first part covers the Cache - Check Metadata and
Reduce Size - GZIP Compression energy patterns and the
second part covers Cache - SSL Session Caching and Cache
- Passive Provider Location energy patterns. For each energy
pattern, a GitHub project was chosen to be used in the study:
from the projects with occurrences identified in the first phase,
we chose the one with most GitHub stars. The number of
participants was defined considering the work by J. Nielsen’s
on usability and user tests [35], which states that a sufficient
number for a usability test is five. We decided to set the
number of participants per part to six, due to the need to
divide evenly between two groups the users. This means that
our user study had a total number of twelve participants.
Out of the twelve participants (10 females and 2 males),
10 are computer science master students and 2 are software
professionals, with a bachelor degree in computer science. The
tasks were performed using Android Studio (version 4.1.1) on
a MacBook Air with macOs Catalina (version 10.15.7). Due
to the imposed COVID-19 social distancing restrictions, users
participated remotely using Zoom’s remote control feature. For
each part, the users were divided into two distinct groups: a
test group and a control group. Both groups had access to
the same system and the same version of Android studio.
However, the test group was given access to the EcoAndroid
plugin while the control group was not. For the convenience
of all the participants, access to the catalog from where the
energy patterns were mainly retrieved from [5] and to specific
Android documentation for each energy pattern was given.

2) Tasks and Participants: Participants were first given 10
minutes to read through a short document explaining in detail
the tasks in the user study, with brief explanations of the
energy patterns involved in the task and with an example of
the pattern being used. Then, to apply both energy patterns,
participants were given a maximum of 45 minutes to detect
in the selected project where to apply the refactoring and
to actually apply it. If in the first 10 minutes of this part,
participants could not detect were the energy pattern was to
be applied, they could ask for hints to help them figure it
out. In the last 5 minutes, participants were asked to answer
a questionnaire to better understand their experience in this
study.

3) Results: We collected information during the execution
of the tasks proposed and at the end, by asking participants
to fill in a questionnaire. During the execution of the tasks,
we measured whether or not participants were able to detect
where energy patterns could be applied and whether they could
change the code correctly, counting the time to perform each
step separately. Tables IV and V present the data obtained for
both parts of the study.

TABLE IV
USER STUDY RESULTS: PART 1.

Group

Task 1 Task 2

Time Time Time Time
to detect to solve to detect to solve

(min) (min) (min) (min)

Test 9.67 5.3 5 2.33
Control 10.67 8.33 2.67 4

Part 1: In the first pattern, only 1 participant was able
to detect the problem (in both groups). In the test group, two
participants were able to solve the problem. In the control,
all three participants were able to solve the problem. In the
second pattern, every participant was able to detect and solve
the problem. Out of the three participants in the test group,
only two used the plugin to execute the first task and all
used the plugin to execute the second task. While the plugin
was accessible during the test, it was not mandatory to apply
the pattern with it. With this, one participant in the test
group solved attempted to solve problem manually. As it was
expected, the time to solve the problem in the test group is
shorter than the time in the control group since no manual
coding had to be done.

TABLE V
USER STUDY RESULTS: PART 2.

Group

Task 1 Task 2

Time Time Time Time
to detect to solve to detect to solve

(min) (min) (min) (min)

Test 7.67 1 4.67 1
Control 5 1.33 6.67 1.67

Part 2: Every participant was able to detect and solve
the problem in both groups. Since the alterations to apply both
energy patterns do not entail as many alterations as in the first
part, the difference between the time to solve the pattern is
not as significant as before. However, in average, the control
group requires more time than the test group, which suggests
that the plugin can save time to developers.

Questionnaire: Regarding the plugin, every participant
stated that the comments added by EcoAndroid were highly
necessary in order to understand the changes made to the
source code. With a classification from 1 (strongly disagree) to
5 (strongly agree), when asked if a web link to documentation
further explaining the refactoring would be helpful (for exam-
ple, to the documentation of the class) the average of answers
was 4.33. Also with the same classification, the answer to
whether the plugin adds enough comments to the source code,
the answer given the users was 3.66. As mentioned, the partic-
ipants of the study had available a document with descriptions
and documentation of classes which objected were altered
during the refactoring process. During conversation at the end

8

of the study, three participants mentioned that the document
had a significant impact in the understanding and application
of the task. Regarding the complexity of the energy patterns,
the Check Metadata pattern was the hardest to understand,
which can be seen by the percentage of participants that were
able to detect and solve this problem. It is also the energy
pattern with the highest time to both detect and solve the
task in both groups. Nearly every participant reported that the
hardest part of the user test was understanding the conditions
which the energy pattern should be applied.

One of the main disadvantages reported is the fact that
warnings are easily missed. This is not necessarily a problem
from the plugin, since it uses the IDE system for warnings;
moreover, this problem might have been exacerbated by the
participants being only looking for mistakes, rather than
being actively coding during the task. Another disadvantage
identified was the potential lack of comments added in the
refactoring for a clearer understanding of the change. The main
advantages reported by the participants are the quickness of the
alterations done and how the tool is integrated in the coding
environment (the developer does not need to run anything to
see the results from the inspection, only needing the plugin
installed).

D. Answers to Research Questions

RQ1: Is it easier and/or quicker to apply energy patterns
when using EcoAndroid?: In telling the participants that they
had EcoAndroid at their disposal, a significant number of the
participants lost time in the detection part of the task, trying to
find warnings along the source code instead of looking for the
right place to implement the energy pattern. This can be seen
by the fact that, generally, the test group took more time than
the control group in detecting where to apply the first pattern.
As reported in the questionnaire, most participants felt that the
warnings could be easily missed; this could have contributed
to increase the detection time. However, on the second task,
the participants were more familiar with the environment and
the control group took longer to detect where to apply the
patterns. When comparing the solving times between the two
groups, the test group was always quicker, which indicates
that EcoAndroid saves time. The application with the energy
pattern consists of clicking on the warning presented to the
user. This would mean the time to solve the problem is close
to 0. This does not happen since some participants, even if
they used EcoAndroid, tried to solve the pattern manually to
see the differences between their implementations and the one
given by the plugin. In conclusion, using the EcoAndroid is, in
average, fast and always easier to apply energy patterns. When
the developer is accustomed to the way EcoAndroid presents
their warnings, the detection time of the problem is faster.

RQ2: Is EcoAndroid usable for developers?: Out of six
participants of the test group, four were able to detect the
energy pattern and five were able to apply the refactoring.
It should be noted that participants that were not able to
finish the tasks were all applying the same energy pattern
— Cache - Check Metadata, which had the lowest level of

understanding by the participants. Regarding questions about
the information present in the warning name, information
present in the comments and amount of comments, the average
feedback was mostly positive. From the feedback obtained,
participants would like EcoAndroid to introduce more com-
ments, When asked if they would recommend EcoAndroid to
Java developers, the average answer was 4.83 (using the same
classification as before). Most participants felt that the plugin
was ready to use.

V. CONCLUSION

EcoAndroid is an Android Studio plugin capable of detect-
ing and correcting energy-related code smell, supporting a total
of ten refactorings, over five energy patterns, and where two
are informational warnings. When using the plugin to inspect
a set of mobile applications, it found refactoring opportunities
in 35% of the set, having an average of one refactoring
per 78 files. When evaluating EcoAndroid by sending pull
requests, the feedback given by mobile applications developers
was mostly positive. Out of forty two pull requests sent
where twenty five have feedback, only five were rejected.
This concludes an 80% acceptance rate in pull requests with
response and an 46.62% acceptance rate when including all
pull requests sent.

We proposed to answer a set of research questions that are
answered along the chapters. Next is a summarized answer for
each question.

RQ1: What energy patterns are already known?: Table I
presents a summary of energy patterns already documented,
specifying the paper they are reported in.

RQ2: What are the most relevant energy patterns to
support?: The patterns selected should not need input from the
user in order to save energy, should not imply big alterations
to the source code and should not include a new functionality.
The energy patterns are present in the catalog by Cruz et
al. [5].

RQ3: Are there existing tools that automatically apply
energy patterns to the source code of mobile applications?:
Table II lists examples of energy-specific refactoring tools.
The differences between EcoAndroid and these tools are the
IDE chosen to implement the plugin on - our plugin is
compatible with Android Studio, the official IDE for Android
development, and IntelliJ, and the energy patterns it chose to
support. Another different is the way it executes the inspection
and refactoring, through the PSI API, since none of these tools
chose this path.

RQ4: What are the challenges in automatically applying
energy patterns?: In some cases, since this is a refactoring
tool and the alterations performed by it should never be too
extensive, we face the challenge of not being able to wise to
apply the pattern. The approach chosen was to, in these cases,
add a comment before the method where the code smell is
located explaining the change, usually with a web link for
the documentation supporting it. We may also not be able to
apply the pattern ourselves, in the case of the Push Over Poll
energy pattern since the registration of the class in Firebase

9

is needed. To fix the problem, the same approach as before is
used: adding a comment before the method.

Some suggestions for future work include supporting the
remaining energy patterns of the catalog [5], running the
EcoAndroid with an energy profiling tool to verify the energy
savings existence. Other possible work is adding Kotlin sup-
port for the energy patterns in question (the Kotlin language
is supported by the PSI API).

REFERENCES

[1] A. Ribeiro and J. F. Ferreira, “EcoAndroid: An Android Studio plugin
for developing energy-efficient Java mobile applications,” 2021, submit-
ted to publication.

[2] C. Wilke, S. Richly, S. Götz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in 2013 IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing. IEEE, 2013, pp. 134–141.

[3] “Forbes so you think we’re reducing fossil fuel use? think
again,” https://www.forbes.com/sites/jamesconca/2019/07/20/
so-you-think-were-reducing-fossil-fuel-think-again/, accessed: 2020-
12-01.

[4] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: a measurement study and im-
plications for network applications,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement. ACM, 2009, pp.
280–293.

[5] L. Cruz and R. Abreu, “Catalog of energy patterns for mobile applica-
tions,” Empirical Software Engineering, pp. 1–27, 2019.

[6] G. Pinto, F. Soares-Neto, and F. Castor, “Refactoring for energy effi-
ciency: a reflection on the state of the art,” in Proceedings of the Fourth
International Workshop on Green and Sustainable Software. IEEE
Press, 2015, pp. 29–35.

[7] M. Gottschalk, J. Jelschen, and A. Winter, “Saving energy on mobile
devices by refactoring.” in EnviroInfo, 2014, pp. 437–444.

[8] L. Cruz and R. Abreu, “Performance-based guidelines for energy effi-
cient mobile applications,” in 2017 IEEE/ACM 4th International Con-
ference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 2017, pp. 46–57.

[9] R. W. Ahmad, A. Gani, S. H. A. Hamid, F. Xia, and M. Shiraz, “A review
on mobile application energy profiling: Taxonomy, state-of-the-art, and
open research issues,” Journal of Network and Computer Applications,
vol. 58, pp. 42–59, 2015.

[10] C. Seo, S. Malek, and N. Medvidovic, “An energy consumption frame-
work for distributed java-based systems,” in Proceedings of the twenty-
second IEEE/ACM international conference on Automated software
engineering. ACM, 2007, pp. 421–424.

[11] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for profiling
the energy usage of mobile applications,” in Proceedings WMCSA’99.
Second IEEE Workshop on Mobile Computing Systems and Applications.
IEEE, 1999, pp. 2–10.

[12] Y.-F. Chung, C.-Y. Lin, and C.-T. King, “Aneprof: Energy profiling
for android java virtual machine and applications,” in 2011 IEEE 17th
International Conference on Parallel and Distributed Systems. IEEE,
2011, pp. 372–379.

[13] L. Cruz and R. Abreu, “Emaas: energy measurements as a service for
mobile applications,” in Proceedings of the 41st International Confer-
ence on Software Engineering: New Ideas and Emerging Results. IEEE
Press, 2019, pp. 101–104.

[14] K. S. Banerjee and E. Agu, “Powerspy: fine-grained software energy
profiling for mobile devices,” in 2005 International Conference on
Wireless Networks, Communications and Mobile Computing, vol. 2.
IEEE, 2005, pp. 1136–1141.

[15] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile
application energy consumption using program analysis,” in 2013 35th
international conference on software engineering (ICSE). IEEE, 2013,
pp. 92–101.

[16] D. Li and W. G. Halfond, “An investigation into energy-saving pro-
gramming practices for android smartphone app development,” in Pro-
ceedings of the 3rd International Workshop on Green and Sustainable
Software, 2014, pp. 46–53.

[17] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha, “Code smells in ios
apps: How do they compare to android?” in 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft). IEEE, 2017, pp. 110–121.

[18] K. Stroggylos and D. Spinellis, “Refactoring–does it improve soft-
ware quality?” in Fifth International Workshop on Software Quality
(WoSQ’07: ICSE Workshops 2007). IEEE, 2007, pp. 10–10.

[19] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring
challenges and benefits,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering.
ACM, 2012, p. 50.

[20] L. Cruz, R. Abreu, and J.-N. Rouvignac, “Leafactor: Improving energy
efficiency of android apps via automatic refactoring,” in 2017 IEEE/ACM
4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). IEEE, 2017, pp. 205–206.

[21] L. Cruz and R. Abreu, “Using automatic refactoring to improve energy
efficiency of android apps,” arXiv preprint arXiv:1803.05889, 2018.

[22] M. Couto, J. Saraiva, and J. P. Fernandes, “Energy refactorings for
android in the large and in the wild,” in 2020 IEEE 27th Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 217–228.

[23] “Autorefactor,” http://autorefactor.org/, accessed: 2020-12-01.
[24] “Aeon: Automated android energy-efficiency in-

spection,” https://plugins.jetbrains.com/plugin/
7444-aeon-automated-android-energy-efficiency-inspection, accessed:
2020-12-01.

[25] R. Morales, R. Saborido, F. Khomh, F. Chicano, and G. Antoniol,
“Earmo: An energy-aware refactoring approach for mobile apps,” IEEE
Transactions on Software Engineering, vol. 44, no. 12, pp. 1176–1206,
2017.

[26] E. Iannone, F. Pecorelli, D. Di Nucci, F. Palomba, and A. De Lucia,
“Refactoring android-specific energy smells: A plugin for android stu-
dio,” in Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 451–455.

[27] J. Reimann, M. Brylski, and U. Aßmann, “A tool-supported quality
smell catalogue for android developers,” in Proc. of the conference Mod-
ellierung 2014 in the Workshop Modellbasierte und modellgetriebene
Softwaremodernisierung–MMSM, vol. 2014, 2014.

[28] O. Le Goaër, “Enforcing green code with android lint.”
[29] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,

“Investigating the energy impact of android smells,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2017, pp. 115–126.

[30] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and L. Duchien, “Tracking
the software quality of android applications along their evolution (t),” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2015, pp. 236–247.

[31] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“Lightweight detection of android-specific code smells: The adoctor
project,” in 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER). IEEE, 2017, pp. 487–
491.

[32] “Program structure interface (psi),” https://www.jetbrains.org/intellij/
sdk/docs/basics/architectural overview/psi.html, accessed: 2020-12-01.

[33] P. C. Dinh and S. Boonkrong, “The comparison of impacts to android
phone battery between polling data and pushing data,” in IISRO Multi-
Conferences Proceeding. Thailand, 2013, pp. 84–89.

[34] “F-droid,” https://f-droid.org, accessed: 2020-12-01.
[35] “How many test users in a usability study,” https://www.nngroup.com/

articles/how-many-test-users/, accessed: 2020-12-01.

10

https://www.forbes.com/sites/jamesconca/2019/07/20/so-you-think-were-reducing-fossil-fuel-think-again/
https://www.forbes.com/sites/jamesconca/2019/07/20/so-you-think-were-reducing-fossil-fuel-think-again/
http://autorefactor.org/
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection
https://plugins.jetbrains.com/plugin/7444-aeon-automated-android-energy-efficiency-inspection
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://f-droid.org
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/

	Introduction
	Objectives and Contributions

	Background and Related Work
	Energy Consumption and Energy Profiling
	Energy Patterns
	Mobile Applications Environments and Languages
	Refactoring for Java Source Code

	EcoAndroid: An Android Studio Plugin
	Architecture
	Implementation
	Dynamic Retry Delay
	Push Over Poll
	Reduce Size
	Cache
	Avoid Extraneous Graphics and Animations

	Evaluation
	Mobile Applications Analyzed
	Second Phase: EcoAndroid Refactorings Submitted to Project Maintainers
	Third Phase: User Study
	Structure and Setup
	Tasks and Participants
	Results

	Answers to Research Questions

	Conclusion
	References

