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Resumo

A composição musical sempre esteve sujeita a diferentes abordagens inovadoras ao longo da
história. Uma abordagem possı́vel seria tentar recriar um dado estilo à nossa escolha de um
compositor que já tenha falecido ou de uma banda que já não existe. Queremos com este
trabalho criar um agente que consiga gerar músicas ou peças que se assemelhem às de um
dado estilo.

Com a ajuda de alguns dos modelos do estado da arte, um modelo foi selecionado e
otimizado, com o seu output gerado inquirido a uma população para perceber a sua perfor-
mance.

Apesar de este processo de seleção e otimização ter demonstrado que o modelo obtido
funciona para alguns estilos, são necessários mais desenvolvimentos e pesquisa.

Esperamos com este trabalho estabelecer uma base para ajudar futuros trabalhos neste
assunto, quer para criar aplicações relacionadas ou para realizar mais otimizações no modelo
proposto.





Abstract

Music composition has always been subject to several innovative approaches throughout his-
tory. A possible approach would be to try to resemble a given style that we like from a deceased
composer or an old band. We aim with this work to create an agent that is capable of creating
songs or pieces that would resemble those specific styles.

With the aid of some state of the art models, a model was selected and optimized, with its
generated output being surveyed to a set of respondents to perceive how well it performed.

Although this process of selection and optimization has shown that the obtained model
works for certain styles, further research and development needs to be done.

We hope with this work to establish a baseline to help future works on this matter, either
for creating related applications or further improving the proposed model.
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1Introduction
1.1 Motivation

From immemorial times, humans have been creating art to express their different fields of mind
in the most various ways; and being one of these ways music itself, one could argue that one
of the most complex tasks associated with it would exactly be composing music.

Some composers, throughout history, have found numerous ways of composing and even
created some sort of algorithms, like using cards with fragments of music written on and rear-
ranging them allowing thousands of different pieces, as in John Clinton’s Combinatorial Music
Machine, used to generate Quadrilles (Braguinski, Nikita, 2019) or using dice, as with Mozart’s
dice game, shown at figure 1.1.

Figure 1.1: Mozart’s dice game (Dice Game, 2012)

Since music can be composed, although not necessarily, with the aid of precise mathemati-
cal tools, based on sets of durations and frequencies (pitches), giving birth to motifs with chord
progressions, melodies, and harmonic structures using as more varied rhythms as possible, we
obtain a primary basis for writing music according to what is expected in a western culture
style frame.

Another point of view that we need to account for, is that in order to recreate the works of
a composer that has died or is hard to get access to, we need some way of being able to mimic
their style. Therefore, and given the possibility, we should aim for a solution that stylistically
resembles their work.
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1.2 Objectives

In order to attain some sort of resemblance with the works we are going to get inspiration on,
Artificial Intelligence and Machine Learning may help us reaching our goal of trying to recreate,
up to some extent, the human capability of music composition, by replacing the human agent
with a computational entity, more specifically, a trained neural network (Graves, Alex, 2014).

There are publicly available trained models and products, some using MIDI and others
using raw audio files, but since MIDI is much easier to classify and structure, more specifically
in terms of computation, its usage is encouraged for the sake of creating simpler models for
training, as raw audio input also requires considerations regarding signal processing.

Figure 1.2: A MIDI keyboard, an important element of modern music composition
(ClewsOctober, 2020)

We can then set up a set of experiments to be able to test our approach and try to achieve
satisfying results. The results may be tested by human listeners, preferably with different mu-
sical backgrounds. The main focus of this work is to recreate and mimic the original style by
feeding a given model a set of musical references in MIDI format. This task can be summed up
as:

• Capturing the style of the reference datasets with the help of a set of models.

• Picking the best model capable of consistently producing an output that can best suit the
given references.

• Checking if the resulting output (or alternatively a derived hand-picked set) can be rec-
ognized by the general public as being of those given styles.

We hope with this work to formulate a deep learning model that can comprehend the style
of the dataset that has been trained on to later replicate that style as a means of recreating its
respective key features. This model shall be robust as in it can always generate music of a given
style, regardless of what that style may be.

It is to be noted that motifs and other musical structures can appear in the output up to
some variation, since artists usually reuse some of their own motifs among different themes, as
a part of ”sticking to their own style”.
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Figure 1.3: Kiss’ unique style is also part of their visual (Miranda, 2020)

With this work, optimizing a pre-existing model while reuniting ideas from other models,
may lead us to a better outcome than the respective predecessors that inspired this work. Later
work may include an application, either for musicians or non-musicians to produce and tinker
music with, and some other optimizations that were limited by the time constraint.

1.3 Document structure

This work can be structured into its theoretical Background and Related Work, where we ex-
plain both the concepts that we will be exploring and the models that arise from the current
state of the art; the Methodology used, where we can prepare what to expect from our results
and all the scientific considerations involved; the Results and Discussion, where we evaluate
our output and how it fits in the methodology defined; and the Conclusions and Future Work,
where we analyze how successful were the results of this work, and where incomplete or un-
addressed topics will be given the spotlight.
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2Background and Related

Work

2.1 Musical considerations

2.1.1 Style

As defined in (Shlomo Argamon & (Eds.), 2010), musical style can be associated to several
different aspects of music, like:

• Historical periods (e.g. Classical, Baroque, etc.);

• Particular composers (e.g. Beethoven, Mozart, Vivaldi, etc.);

• Performers (e.g. Itzhak Perlman (figure 2.1), Miles Davis, Jimi Hendrix, etc.);

• As a synonym for texture, as in arrangements (instrumental choice), melodic patterns,
rhythmic patterns, harmonic patterns and chord progressions, and cadences. On a more
general aspect: orchestral, big band, marching band and other sorts of musical groups;

• Emotional associations (sad, exciting, soothing, calm, scary, etc.);

• As a synonym for genre, from the association to a given artist to a set of cultural and
social influences, such as traditional music, for example (such as Pop, Rock, Jazz, etc.).

Figure 2.1: Itzhak Perlman performing (Dobrin, 2019)
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Since we want to isolate specific styles to check how well the model behaves, it may be a
good approach to consider particular composers, bands or other sorts of distinguishable music
composers/groups as our definers for style.

This choice excludes the emotional and performance connotations, since we are trying to
capture style as both the genre and the sub-genre given by the intrinsic characteristics to each
composer (as an example, if we consider as our genre erudite Hungarian violin compositions,
we can consider Béla Bartók as our sub-genre).

This separation is optimal for creating a dataset of our own, with nuances like these. This
may also allow us to cross-influence styles if we join different styles on our datasets.

Other notions that were taken into account are both arrangement and instrumentation.
Arrangement, as in how the different melodies that compose the harmony are distributed by
the different voices/instruments; and instrumentation as which instrument shall perform a
given melody.

To deal with these situations, we decided to focus on tracks that can be reduced to single
instruments, as in if the track would work under the conditions of a piano arrangement. Al-
though not always being possible, most of the elements of our chosen datasets (section 2.1.5)
can fit into these conditions.

2.1.2 Some notions of music theory

Since our musical goals may seem vague, in hopes of clarifying what we are trying to achieve,
we may first define the notions that rule our work, like rhythm, chord progressions and melodic
lines. Each of these aspects has its own nuances and shall be treated with its own importance.

First and foremost, notes are associations made to certain pitches, in other words, frequen-
cies of sound, that can have various timbres associated to the instrument that plays it. Timbre
is what allows us to distinguish two instruments, like a piano and a guitar, that playing the
same base pitch, their differences in harmonics (in musical language, overtones), allow us to
identify them uniquely.

Notes usually have associated durations, i.e., different rhythmic values that correspond to
different figures in notation, each with a power of 2 associated, as shown in figure 2.2.

Rhythm also provides us a base to comprehend a time duration, assigning a given figure to
a certain amount of beats per minute, meaning that the occurrences defined by a certain time
signature, such as 4

4 can account for a duration of four beats, corresponding to quarter notes at
a given tempo, as shown in 2.3. Beats per minute can also be considered as the periodicity of
beats, as 60 beats per minute correspond to a 1 Hz beat frequency.

We can now look at the more melodic aspects, where the mathematical relationships among
different pitches are more interesting than the pitches themselves, creating a basic sensation of
tension and release. Although this may arise directly from a single melodic line, with a single
note at a time, it becomes easier to convey musical ideas through intervals and chords.

Thus, an interval may be seen as merely a relationship established by two notes (or pitches)
that can also be understood as a frequency ratio. Different ratios have different perceptions:
simpler ratios, like 3:2 or 2:1 sound more harmonious to the human hearing than 16:15 as the
prior ratios are more consonant.
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Figure 2.2: Rhythmic figure values (Image courtesy of TMIST)

Figure 2.3: Time signature explanation, edited from (Time Signatures 4/4 - KNILT, 2018)

Consonance is mathematically related to the ratio as, for instance, two notes related by a
3:2 ratio, played by any instrument, share more overtones than a 16:15 ratio, meaning that the
sounds will blend together with each other more harmoniously.

Intervals, however, in our current tuning system are not perfect ratios but factors of 12
√
2,

since by evenly dividing the most important ratio of 2:1, the octave, into its twelve tones used
in western music, the constant ratio that we get, close to the value of the smallest used interval,
is the one of 12

√
2. This builds the tuning system called Twelve Tone Equal Temperament (or

12-TET).

Different sets of notes, arranged in the most various intervals can create all sorts of chords,
if played simultaneously. However, if notes are arranged in sequences of ascending or descend-
ing notes, we obtain scales, one of the primary basis for melody. Different chord progressions
provide different intentions and expressions and generate unique structures, playing a crucial
role in defining style.

Relating these concepts to our work, the more diverse our set of melodies, chords and
harmonic intentions and expressions, the more stress-tested our models can be and the better
we can confirm their robustness for reaching our desired results.

2.1.3 Considerations on Western Music

Now that we have a better understanding of what concepts are at stake, we can now look at
how the stylistic choice results in simplifications.
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Western music has obeyed, throughout history, to practically the same set of rules, as pre-
viously defined, fixed in the same scales, the same chords and the same underlying rhythmic
and harmonic structures. For instance, we can look at Jazz as being the peak of using overly
complex rhythms and harmonies, with the style specificities relying strongly on the performer
as improvisation is a known key feature of Jazz.

Figure 2.4: Miles Davis performing Jazz (Futterman, 2016)

On the other end, we can look at Pop, with a pre-defined structure of pre-choruses, cho-
ruses and bridges, being very directional, with an associated rhythmic and harmonic structure
directly associated to each of the sections. Since human beings are creatures of habit, repetitive
structures have a tendency for becoming more catchy because we get used to them faster.

We can also identify, as an example for Pop, the structure as a letter code. This way, the
structure of: [Intro, Verse 1, Pre-chorus 1, Chorus 1, Verse 2, Pre-chorus 2, Chorus 2, Pre-chorus
3, Chorus 3, Outro] may become [A B C A B C A C A A], for example. The idea here is to
simplify the structure into more generic sections of a song/piece.

Anyhow, what both of these styles share is that every single note can be defined in a Twelve
Tone Equal Temperament system, in a specific rhythmic figure, in a specific amount of beats
per minute. These underlying qualities allow us to, up to some extent and at the stake of losing
the nuances of a human performer, to generate pianorolls to be played as MIDI data.

2.1.4 MIDI Data and Pianorolls

According to (MIDI, 2017), MIDI ”Stands for ”Musical Instrument Digital Interface.” MIDI is a
connectivity standard for transferring digital instrument data. It is primarily used by comput-
ers, synthesizers, and electronic keyboards.

MIDI data includes several types of information. For example, pressing a single key on
a synthesizer transmits the note played, the velocity (how hard the note is pressed), and how
long the note is held. If multiple notes are played at once, the MIDI data is transmitted for all
the notes simultaneously.” This means that with MIDI we can perfectly encode Western Music,
as this standard was first developed by musicians in a Western cultural context.
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A sample, being a pre-recorded sound of a desired instrument, we can play back MIDI ”as
audio samples, such as a piano or strings.” We can also edit MIDI being allowed ”to adjust
the timing and velocity of individual notes, change their pitch, delete notes, or add new ones.
MIDI data is often displayed in a digital format, with lines representing each note played.
Many programs can convert MIDI data to a musical score as well.”

”A MIDI recording simply contains instrument information and the notes played. The
actual sound is played back using samples (individual recordings) from real instruments. For
example, a MIDI track recorded as a song for piano can be played back with a guitar sound by
simply changing the output instrument — though it might not sound very realistic.”

A pianoroll is simply a sheet of paper with punctured holes in it, being the position in the
x-axis of these punctures corresponding to which note is played (the pitch axis) and the height
is the duration of how long these notes are played (the time axis).

Figure 2.5: An example of a paper pianoroll (Physical Pianoroll, 2020)

In more modern times, the pianoroll became a part of the MIDI editing interfaces, and thus,
was rotated by 90 degrees making our time axis horizontal and our pitch axis vertical, making
it a parallel to a regular music score. Pianorolls are simple and effective ways to edit MIDI by
simplifying the editing into basic features of pitch and duration.

Figure 2.6: An example of a digital pianoroll (Digital Pianoroll, 2020)
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2.1.5 Dataset choice

To make our stylistic choices, we need to find datasets that both vary in size and in specificity,
for instance, Pop is much more generic than Mozart which in turn may be a smaller dataset.
This variation is needed in order to guarantee that the model is robust and that the optimiza-
tions made to it are independent of the dataset type or the amount of data that the model is
fed.

Another aspect to be considered are the similarities that may occur between different styles,
either with their structural aspects, such as chord progressions, or among melodic lines and
arrangements, as in a more melodic style such as Pop can be more similar to Power Metal than
Videogame music, as both Pop and Power Metal have a defined musical structure, with very
strong directional structure, Videogame soundtracks are made to be more repetitive backing
tracks and, in the opposite end, styles such as of Mozart or Queen are more free-form.

As a part of the music writing process, our model will need references to learn from and
write music alike. Thus, the creation of stylistically consistent datasets is important to achieve
a reliable agent. A dataset with NES (Nintendo Entertainment System) videogames, a dataset
with Power Metal music, specifically Dragonforce, a dataset with Pop songs, a dataset with
Rock music, specifically Queen and a dataset with piano compositions from Mozart, establish
our baseline of datasets to train on.

A first dataset with Bach chorales was chosen as the baseline to compare our models, since
it is relatively simple, being widely used in similar works, and with it we can obtain a more
clear view of the path we may take and how we can create (or as seen later, optimize) a model
to suit our needs of generating music in these styles.

2.2 General concepts: Deep Learning

Relating to Deep Learning, we need to define some concepts in order to better understand the
models that we will be analyzing next. First off, we can look at an algorithm as being ”An
unambiguous specification of a process describing how to solve a class of problems that can
perform calculations, process data and automate reasoning.” (Appen, 2020)

Deep Learning is a subfield of Machine Learning, which in turn is ”The subfield of Artifi-
cial Intelligence that often uses statistical techniques to give computers the ability to “learn”,
i.e., progressively improve performance on a specific task, with data, without being explicitly
programmed.” (Appen, 2020)

With the basic concept of Machine Learning, the primary distinction of Deep Learning is
its usage of Neural Networks. ”An artificial neural network learning algorithm, neural net-
work, or just neural net, is a computational learning system that uses a network of functions
to understand and translate a data input of one form into a desired output, usually in another
form. The concept of the artificial neural network was inspired by human biology and the way
neurons of the human brain function together to understand inputs from human senses.

Neural networks are just one of many tools and approaches used in machine learning
algorithms. The neural network itself may be used as a piece in many different machine
learning algorithms to process complex data inputs into a space that computers can under-
stand.” (DeepAI, 2019b) These neural networks are composed by neurons (sometimes defined
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as nodes). These are defined as ”A unit in an Artificial Neural Network processing multiple
input values to generate a single output value.” (Appen, 2020)

In this context, we can also say that an epoch is, ”one pass of the full training data set.” We
can also say that a layer is ”A series of neurons in an Artificial Neural Network that process
a set of input features, or, by extension, the output of those neurons. Hidden Layer: a layer
of neurons whose outputs are connected to the inputs of other neurons, therefore not directly
visible as a network output.” (Appen, 2020) A feature is ”A variable that is used as an input to
a model.”

Overfitting is ”The fact that a model unknowingly identified patterns in the noise and as-
sumed those represented the underlying structure; the production of a model that corresponds
too closely to a particular set of data, and therefore fails to generalize well to unseen observa-
tions.”

Underfitting is ”The fact that a Machine Learning algorithm fails to capture the underlying
structure of the data properly, typically because the model is either not sophisticated enough,
or not appropriate for the task at hand; opposite of Overfitting.”

Tensorflow is ”An open-source library, popular among the Machine Learning community,
for data flow programming across a range of tasks. It is a symbolic math library and is also
used for machine learning applications such as neural networks.”

The learning rate is ”A scalar value used by the gradient descent algorithm at each iteration
of the training phase of an Artificial Neural Network to multiply with the gradient.” (Appen,
2020)

Training is the process of adjusting a Neural Network, through exposure to data, to the
desired parameters, in our case, to approximate the style of the generated output to the one of
the training data. It is tightly influenced by the values of the hyperparameters. ”In the context
of Supervised Machine Learning, the construction of algorithms that can learn from and make
predictions from data. Training Data: The subset of available data that a data scientist selected
for the training phase of the development of a model.”

A batch is ”The set of examples used in one gradient update of model training.” (Appen,
2020) The batch size is the size of the subdivisions that are made on the training set, as the
whole set of data is concatenated into a unique file. Thus, the data, in order to be manageable
in memory while training, needs to be separated into batches.

Classification is ”The task of approximating a mapping function from input variables to
discrete output variables, or, by extension, a class of Machine Learning algorithms that deter-
mine the classes to which specific instances belong.” (Appen, 2020)

”A recurrent neural network (RNN) is a feedforward neural network extended with recur-
rent connexions in order to learn series of items (e.g., a melody as a sequence of notes). The
input of the RNN is an element of the sequence(...). In other words the RNN will be trained to
predict the next element of a sequence. In order to do so, the output of the hidden layer reen-
ters itself as an additional input (with a specific corresponding weight matrix). This way, the
RNN can learn, not only based on the current item but also on its previous own state, and thus,
recursively, on the whole of the previous sequence. Therefore, an RNN can learn sequences,
notably temporal sequences, as in the case of musical content.” (Briot & Pachet, 2019), (Graves,
Alex, 2014).
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Figure 2.7: Recurrent Neural Network architecture

Reinforcement Learning is a paradigm of machine learning that aims for maximizing re-
ward over a performed set of actions by an agent (Briot & Pachet, 2019). This may be later
useful for optimizing the training of our Neural Networks.

Figure 2.8: Autoencoder architecture

LSTM (Long Short-Term Memory) nodes are special kinds of neural network nodes, that
for the sake of simplicity will be treated as black boxes since we are only interested in their
behaviour of retaining data if told to.

Embeddings are lower dimension representations of higher dimension vectors, meaning
that several data elements can be grouped as a single element of the embedding vector. This is
useful, for example, on grouping training parameters to be encoded as a single one.

”The term embedding comes from the analogy with mathematical embedding, which is an
injective and structure-preserving mapping. Initially used for natural language processing, it
is now often used in deep learning as a general term for encoding a given representation into
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a vector representation. Note that the term embedding, which is an abstract model represen-
tation, is often also used (we think, abusively) to define a specific instance of an embedding”.
(Briot & Pachet, 2019)

Training Data: The subset of available data that a data scientist selected for the training
phase of the development of a model.

”A hyperparameter is a parameter that is set before the learning process begins. These
parameters are tunable and can directly affect how well a model trains.” Hyperparameters are
manually adjustable parameters that determine the functional behavior and structure of the
neural network, such as learning rate, number of epochs, batch momentum or other regular-
ization constants. (DeepAI, 2019a)

Changing these values heavily influences how the different metrics evolve during training
and the final result. Are considered hyperparameters, for example, the learning rate, the nor-
malization momentum, the number of layers, the number of nodes, the number of epochs and
the batch size.

Loss is the set of errors that happen between training and test/validation sets and how well
the neural network is behaving; a lower loss implies a better behavior, i.e., a better fit between
results and original data.

2.3 State of the Art

In order to generate music automatically, we need to check on what technology we currently
have, not only to make our job easier, but also to check if our goal has already been accom-
plished in some way or another. For the sake of simplicity, drum models will not be considered
although they do serve a purpose in style, it is still possible to distinguish different styles with
the drum tracks being absent. Only Jukebox, AIVA and the Magenta models for drums, use
drum tracks as part of the composition process.

2.3.1 AIVA

First off, we can take a look at AIVA, (AIVA, 2020) an online interface that allows the user to
select a style, from a set of predefined styles, or to upload a song to serve as an influence.

It allows the user to ask AIVA to generate a given amount of songs and, after a few seconds,
it produces an output. If the user chooses a preset for style, it usually behaves well in that
matter, following more or less some key features of that style, but if an influence song is used
instead, the results do not sound as promising. To test this myself, I’ve used the theme for
Super Mario single-handedly since the tool only allows a single song to be used as an influence.
I further listened to the results and tried to check if a theme as memorable and catchy would
be produced, but to no avail.

AIVA is capable of producing songs with a strong sense of structure, i.e. a beginning, a
climax and an ending, in other words, it appears to be capable of capturing cadence. Although
these key features are important in many musical styles, capturing chord structure and stylis-
tic nuances such as voicings and instrument choices, are as important as the cadence itself,
rendering this model as a quite limited choice for achieving our goal.
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Another limitation is associated to the output of the model, that can be further changed in
a pianoroll but it only allows for moving the timestamps of where each part/instrument comes
in, making it very limited from the standpoint of MIDI editing.

Figure 2.9: AIVA’s pianoroll interface

Either way, this system relies on a pre-trained network and is a commercial product. Al-
though at first instance it might look like it can achieve our goal, the style specificity we are
looking for cannot be achieved. As an example, we can only select rock, but we cannot select
the style of a specific band/decade, making it unsuitable for recreating stylistic details.

2.3.2 OpenAI’s Jukebox

Next up, we have Jukebox (Dhariwal et al., 2020), part of the OpenAI project, in the words of its
creators: ”We’re introducing Jukebox, a neural net that generates music, including rudimentary
singing, as raw audio in a variety of genres and artist styles. We’re releasing the model weights
and code, along with a tool to explore the generated samples.”, which means that we can not
only explore their original code to help us achieving our goal, but also try to improve it to better
suit our needs.

Jukebox directly deals with sound waves, which helps it with the task of combining styles.
This approach, although being more memory expensive, is better for perceiving nuances, and
the online version displays written songs with lyrics, something that may be important for
capturing some stylistic details.

Functionally, the model first uses a VQ-VAE (Vector Quantized Variational Auto Encoder),
an approach of down-sampling long context inputs into smaller vectors, in order to compress
raw audio to a lower-dimensional space. After this, the embeddings are subject to random
restarts, and different auto-encoders are used in order to comprehend different levels of com-
pression. The model uses spectral loss, which helps it better capture the mid to high-range
frequencies. It is also conditioned in terms of artist, genre, timing, and lyrics, with the lyrics
being time aligned to associate the lyrics with the singing.

”But symbolic generators have limitations — they cannot capture human voices or many
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Figure 2.10: Jukebox’s map of styles and relationships between each other

of the more subtle timbres, dynamics, and expressivity that are essential to music. A differ-
ent approach is to model music directly as raw audio. Generating music at the audio level is
challenging since the sequences are very long. A typical 4-minute song at CD quality (44 kHz,
16-bit) has over 10 million timesteps.”

”Thus, to learn the high level semantics of music, a model would have to deal with ex-
tremely long-range dependencies. One way of addressing the long input problem is to use an
autoencoder that compresses raw audio to a lower-dimensional space by discarding some of
the perceptually irrelevant bits of information. We can then train a model to generate audio in
this compressed space, and upsample back to the raw audio space.”

I decided to take a look at the examples of Jukebox and listen closely to them and even
though it is a promising set of songs, it still has a long way to come along our desired results
(an in-style song, preferably catchy and memorable). Overall, the model has incredible ideas
in terms of design and structure that might help optimizing our final model.

Although this tool is great to capture style from single songs, it does it in a way that is not
the fastest nor the most granular, since we cannot separate the tracks into individual instru-
ments (whereas we can in MIDI) and one of our primary goals is to make the training fast and
flexible, allowing for swapping each of the instruments that make up the track, and therefore
this will not be our first option. We also cannot rely on the output lyrics and the sound itself
has way too many artifacts.

”For example, while the generated songs show local musical coherence, follow traditional
chord patterns, and can even feature impressive solos, we do not hear familiar larger musical
structures such as choruses that repeat. Our downsampling and upsampling process intro-
duces discernible noise. Improving the VQ-VAE so its codes capture more musical information
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would help reduce this.

Our models are also slow to sample from, because of the autoregressive nature of sampling.
It takes approximately 9 hours to fully render one minute of audio through our models, and
thus they cannot yet be used in interactive applications. Using techniques that distill the model
into a parallel sampler can significantly speed up the sampling speed. Finally, we currently
train on English lyrics and mostly Western music, but in the future we hope to include songs
from other languages and parts of the world.”

2.3.3 Google Brain’s Magenta

We can now consider Magenta (Git Magenta, 2020), from the Google Brain team, publicly avail-
able on GitHub. Magenta comprises a set of models that aim to enable music composition and
music generation, from drums to melody to harmony.

There is also a derived set of plugins for the average musician/producer to use but their
results are quite underwhelming (Roberts et al., n.d.). For instance, the models are capable of
generating music, given an influence, but they lack on producing the promised results, like
on the continuation model, that should continue the melody, it often has a lot of pauses and
deviates from the ”expected” natural evolution of the track. I’ve tried all of the three different
models but none of them captured the style of the track that I’ve tried (Super Mario’s theme)
properly.

Figure 2.11: LSTM node architecture

2.3.3.1 Polyphony RNN

Searching a bit deeper in our available models, a particularly interesting one is Polyphony
RNN, that by training on MIDI data can generate polyphonic MIDI files. This model is a se-
quence to sequence model, meaning that it directly tries to predict the next step (note) given the
previous sequence, using an RNN optimized with LSTM nodes, shown in figure 2.11 instead
of regular nodes, capable of being trained. (Graves, Alex, 2014)

From testing with our video-game dataset (a compilation of NES 64 themes) and our Bach
dataset, the results of training either get stuck into repetitive loops, probably from overfitting,
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or just do not sound good with lots of dissonances or unrelated motifs, which is a major prob-
lem and would require further investigation on the optimal values for hyperparameters, such
as keeping track of the optimal loss or the best value for accuracy.

These problems may arise due to the intrinsic more formal structure of the songs of the
training set, that Polyphony RNN fails to follow, since its design may be better-suited for free-
form music, which may be useful for other objectives, such as melodic creativity, but not nec-
essarily generating music in style, therefore rendering it inadequate to our goal.

2.3.4 DeepBach

Another model that uses MIDI is DeepBach (Hadjeres, Pachet, & Nielsen, 2017), which consists
of an architecture using two separate Deep Neural Networks and computes results with the
help of a third Neural Network, like represented in figure 2.12.

Figure 2.12: DeepBach’s architecture

Although similar to Polyphony RNN, DeepBach instead ”looks ahead”, considering the
next steps altogether with the previous steps, predicting the current one. DeepBach also uses
MIDI processing in both training and output generation. This model includes an altered form
of Gibbs sampling in order to harmonize the soprano pre-generated voice.

This model posed a problem on being usable, since I was not able of getting the code to
work and the model’s code being unmaintained does not help it either. Anyway, it looks like
a very promising approach and, from the published results, was capable of following the style
of Bach and even ”fooled” professional musicians, as shown in figure 2.13. We may later use
these methods, or similar, to help us recreate the desired style to be followed.
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Figure 2.13: Results of the “Bach or Computer” experiment. The figure shows the distribution
of the votes between “Computer” (blue bars, with 3 different models) and “Bach” (red bars) for
each model and each level of expertise of the voters (from 1 to 3).

2.3.5 Composer

Last but not least, we have a model made by the YouTube content creator Code Parade, initially
created to generate videogame music.

This model consists of a convoluted auto-encoder, (HackerPoet, 2018) that first converts
the MIDI file, as a pianoroll, into each of its measures to a frame of 96 pitches per 96 steps, and
each of the coordinates (step, pitch) corresponds to a different pixel on an image.

There were chosen 96 steps per measure as it evenly divides all the most common time
signatures exactly as figure 2.14 shows. A third dimension is added to account for each and
every measure of both the generated and training songs.

Figure 2.14: Correlation between the amount of steps and the most common time signatures

A dense network encodes each measure into a feature vector, which are in turn fed to a
dense auto-encoder, outputting another feature vector, that gets back-converted to measures,
like shown in figure 2.15. This network also allows for the use of embeddings.
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Figure 2.15: Network diagram

The trained encoder is then used in a PyGame interface with sliders corresponding to the
top 40 parameters of the encoder, as shown in figure 2.16. These sliders control the parameters
of the latent vector, changing the generated output. However, since they are not classified,
makes it preferable to utilize random values than tweaking around to see what fits better. This
interface allows for real-time generation of measures that can be played as pianoroll with some
MIDI instrument, with the interface offering four simple waveforms. On top of this, we can
save the generated song as a MIDI or WAV file for later playback.

We have now collected a set of models that we can use as a baseline for our model, provid-
ing ideas to optimize the best fitting model, having this choice better analyzed at section 3.2.
This also enables us to efficiently create a model based in models known to have worked and
fulfilled their purpose.
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Figure 2.16: Composer interface



3Methodology
3.1 Setup and approach

In order to achieve our goal of obtaining a reliable model to capture various dimensions of style,
we needed to sieve through different models, as presented in section 2.3, finding Polyphony
RNN (2.3.3.1) and Composer (2.3.5) as possible models to solve our problem.

With this work, we hope to not only better understand how style can be perceived in terms
of purely melodic, harmonic, and rhythmic structure but also how we can devise a model
to perform this task. The chosen models, having worked with the datasets that they were
originally intended to work with, we now want to know if they are suited for generating music
in other styles. We also hope to understand possible ways of, either creating a new model or to
optimize one of the pre-selected models, to consistently generate music on the styles given by
our datasets that each model trains on.

After testing with these models, we concluded that Composer can consistently produce
an output that neither lacks structure nor overly repeats itself, making it our ideal choice to
optimize, as better explained in section 3.2.

3.1.1 Dataset collection

To train our model, we need to collect the datasets chosen in section 2.1.5. In order to do so, we
need to retrieve their MIDI files from the Web:

• The Bach’s chorales dataset was retrieved from (Bach Dataset, 2018)

• The Videogame NES soundtrack dataset was retrieved from (Videogames Dataset, 2019)

• The Pop songs dataset was retrieved from (Pop Dataset, 2020)

• The Mozart pieces dataset was retrieved from (Mozart Dataset, 2020)

• The Queen songs dataset was retrieved from (Queen Dataset, 2020)

• The Dragonforce songs dataset was retrieved from (Dragonforce Dataset, 2020)

These datasets have the particularity of varying in size, style specificity, and historical pe-
riod; for instance, Queen or Dragonforce are more specific datasets than Pop, and the style of
Mozart can also be compared historically with the rest of the datasets. Although Bach was only
used as a baseline and not to generate the final results, it served to help us better understand
the models.
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3.1.2 Model training

Now that we have collected our datasets, we can focus on training our model. For that, a script,
now integrated at the initialization of training, converts and loads the dataset into a numPy
format for the training program to use. After that, we run the model with our default values
and check the number of epochs needed to either converge or reach an acceptable number of
epochs (in our tests, 100).

The first training optimizations that this model received were related to hyperparameter
tuning, as shown in the tables below, in order to have the model converging faster:

Batch momentum

Learning rate

0.9 0.99 0.999
0.002 21 23 21.3333
0.0025 20.6667 22.3333 20
0.003 20.6667 17 17
0.0035 22.6667 21.6667 24

Table 3.1: Training epochs for certain combinations of learning rate and batch momentum to
obtain a given loss value (0.0015), lower is better

With the results shown at table 3.1, we can deduct that for our model, to a given dataset, we
can get, on average, a better loss value if we choose a 0.99 batch momentum. Since our learning
rate will be adaptive, as inspired by (Xu & Metz, 2019), we can consider that a learning rate, at
most twice the minimum proposed (0.0015), may suffice.

An adaptive learning rate is simply a small decrement in the value itself, every time the
loss value increases, until we hit a pre-established minimum, in hopes of driving our model in
the right direction.

Batch size

Learning rate

5% 10% 25%
0.0025 18.6667 19.6667 33.3333
0.00275 21.3333 20.3333 30.3333
0.003 23.3333 28 28.33333

Table 3.2: Mini batch experimental confirmation, for a fixed loss (0.0015) and batch momentum
values (0.99), lower is better

From table 3.2 we can conclude that lower batch sizes, along with smaller learning rate
starting values allow for better convergence. However, for larger datasets, a smaller learning
rate may lead to very large training times and thus, we may benefit from using larger batch
sizes, up to 10 per cent, for similar convergence while spending less time.

The observed better convergence at smaller batch sizes may be due to a greater flexibil-
ity related to how the model captures the latent values, being capable of focusing in certain
nuances, allowing it to converge earlier.
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3.1.3 Model optimizations to the interface

Since there is room for improvement on not only the model itself but also on the interface that
we use to generate music, shown in figure 2.16, we can first look at how the model behaves.
Aside from the hyperparameter optimizations talked about in section 3.1, we have an interface
where we can operate with the obtained latent vector by moving a set of knobs to change
the factors for each of the values. Below we can see the relative importance of each of the
multipliers/knobs on the produced output:

Figure 3.1: Weight distribution of the latent vector for the NES videogames dataset (left)
Tuning knob for the interface (right)

Each bar represents a different knob, with the most important ones being visible on the
interface for fine-tuning. The least important weights do not appear as knobs for us to directly
change, but a key can be pressed to randomize these ”hidden” parameters. An appendix is
included with all the details to use the interface.

Our interface was also optimized in a way that allows us to change the key of the track by
multiplying or dividing every pitch by 12

√
2, as this value represents the smallest interval ratio

in western music, the semitone. With the associated keybindings we can freely change the key
of the track, semitone by semitone.

A waveform similar to the one of a piano was also added, using numPy to encode a func-
tion generator, by adding the first sine Fourier components of a piano sound wave.

3.1.4 Output generation

In order to generate our output, we can rely on our interface to extract the results. By varying
the knobs, or by randomizing their values, we can start obtaining our outputs as we hear it
since the model works in real-time, with a set of waveforms we can choose from.
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However, these outputs may need to be hand-picked since some of the results may not
reflect the dataset as intended, and since we’re trying to evaluate how well we can replicate
style with our model, and to improve our results, we can straight ahead remove songs that
don’t sound as good as expected and also avoid parameters that, at least for some datasets,
may not make sense, such as the note threshold, (the red bar in the interface) where increasing
it too much may lead to harmonies with many undesired dissonances.

We can now either export our files as MIDI to be sampled in a sampler or directly as WAV
files for generation. For some models, like the videogames one, since NES’ audio relied in
waveforms that require lower encoding, it may make sense for us to use the directly generated
WAV files. We can then, for each dataset, have an associated sampler to recreate our outputs.

For the sampled MIDI files, a different sampler was used for each of the datasets, to help
better distinguish them. For Mozart, a piano sampler was used; for Dragonforce, a distorted
guitar sampler; for Queen, an electric piano; for Pop, a synthesizer piano. The NES videogames
used directly the waveforms from the generator as they better fit the style of these videogames.
These samplers came from the program Reason 5 but any sampler should perform the job.

3.1.5 Experimental data collection

Now that we have generated our outputs, we can generate our results for the general public to
help us understand how well the model performs. Therefore, to fix some metrics, we need to
categorize our output into:

• Suitable for outputs that can be seen as possible songs/sections of songs of the style of
the training set.

• Sample suitable for outputs with motifs that can be considered of being of the style of the
training set.

• Unsuitable for outputs that have no relation to the style of the dataset, making dissonant
tracks or tracks endlessly repeating a single motif, be a part of this set as well.

With our now defined metrics in mind, we need to produce an experiment where we can
categorize the output accordingly. For that, we will generate a form for public data collec-
tion where a selection of handpicked outputs will be listened by the respondents for each of
the styles (NES videogames, Pop, Dragonforce, Queen and Mozart), in sets of 3 tracks each,
answering:

• Which of the songs is the most enjoyable, to try to pick a best track.

• How good the main voice sounds at the picked track, since the melody standing out is
usually important - if the answer is negative, the model for that style may be deemed
sample suitable.

• If the track could belong to that style as is, and in what degree - separating even further
suitable from sample suitable songs.

It is also asked the musical background and the familiarity with each of the styles for each of
the respondents to better categorize the answers. With this setup in mind, we need to finally
generate our outputs in order to fully implement our experiment.
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3.2 Initial model testing and experiments

We can prove why Composer was chosen over Magenta in a comprehensive comparison of
both models, with their functioning and their generated outputs for a same dataset, in this case
Bach, to test both models under the same conditions.

First off, the dataset was prepared in a way that the models recognize it. Magenta does
this with a note sequence file, converting all the MIDI files into a single file that can then be
read by the model for it to be trained. By contrast, Composer takes groups of 16 measures and
then treats each group as a single batch, with the complete samples in a numPy file and their
respective lengths in another file.

Then, during training, Polyphony RNN trains over the sequence, note by note, calculating
a value for accuracy and loss. For Composer, the model generates three files for the final latent
values, with an associated loss value, that combined with the previous two files will be part of
the output generator.

The model for Composer has been optimized with an adaptive learning rate, meaning that
this value decreases every time the loss value increases between different training epochs. This
allows to speed up training at the earlier stages. Other hyperparameters have been tested in
order to help further optimizing the model. The full process, from dataset collection to music
generation is summarized at 3.2.

Figure 3.2: Magenta vs Composer logic

Polyphony RNN’s output is generated from the trained network path and may use a set of
primer pitches or MIDI files to reference to:

”There are several command line options for controlling the generation process:

• primer pitches: A string representation of a Python list of pitches that will be used as a
starting chord with a quarter note duration. For example: ”[60, 64, 67]”.
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• primer melody: A string representation of a Python list of note seq.Melody event values
(-2 = no event, -1 = note-off event, values 0 through 127 = note-on event for that MIDI
pitch). For example: ”[60, -2, 60, -2, 67, -2, 67, -2]”.

• primer midi: The path to a MIDI file containing a polyphonic track that will be used as a
priming track.

• condition on primer: If set, the RNN will receive the primer as its input before it be-
gins generating a new sequence. You most likely want this to be true if you’re using
primer pitches to start the sequence with a chord to establish a certain key. (...)

• inject primer during generation: If set, the primer will be injected as a part of the
generated sequence. This option is useful if you want the model to harmonize an
existing melody. This option will most likely be used with primer melody and –
condition on primer=false.” (Git Magenta, 2020)

By contrast, Composer utilizes the user interface shown at section 2.3.5 in the figure 2.16
to change the multipliers of the latent vectors while having a real-time playback over 32 mea-
sures. This interface also allows for the note threshold, tempo, volume and pitch, as shown
respectively in the colored bars, to be adjusted. Each increment allows for:

• Note threshold bar allows the threshold for the notes appearing in red to turn white,
meaning that the certainty to play those notes increases and therefore more notes will be
played.

• Tempo bar allows for the playback speed to be changed.

• Volume bar changes the output volume.

• Pitch bar allows for each increment to increase or decrease the pitch value of all notes
by a semitone (the smallest interval in the 12-TET tuning system, used in Western Music,
which all of our datasets belong to) therefore changing the key of the played song.

For Polyphony RNN, the training was performed with a relatively low accuracy, reaching
75 per cent on the best cases and with a loss very close to 1, meaning that the dimension of the
errors is relatively high, being reflected on the outputs. These outputs were either unstructured
songs without a defined chord progression nor relevant melodic evolution, or very structured
songs always repeating the same motifs. Since none of these extremes is of interest to us, the
direct usability of this model is questionable.

Composer was tried afterwards, with the training performing with very low loss values
(under 0.002) and the produced outputs, although having a few dissonances, are much more
diverse while maintaining a chord structure. However, phrase/motif terminations (also known
as cadences) appear very rarely and they may occur more often somewhere in the middle of
the generated 32 measures, instead of the end. This sole difference in first results is what, due
to our time constraints, led to picking the Composer model over Polyphony RNN.

With these choices in mind, and with the Composer model fully optimized as described, we
can now proceed to collecting results from respondents. These results will also help reflecting
how well the model performs its task.
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4.1 Expected results and experimental observation

4.1.1 Expected results

Bearing in mind that our model behaves differently for each of these datasets, having a different
trained neural network for each one of them we can expect different results:

• The videogame music dataset is expected to be suitable for most of the outputs, as the
structure is very homogeneous (a looping [A B] structure, for example).

• Mozart’s pieces are expected to be sample suitable, since the dataset is similar from piece
to piece, with shared motifs and cadences although individually each of the pieces have
a free-form nature and each has a very heterogeneous internal structure ([A B C D E B],
for example).

• Pop music is expected to be sample suitable, since while having a very homogeneous
structure ([A B C A B C A], for example), has more instrumental arrangement variety,
making it less convenient to deal with, compared, for instance, to Mozart, which is only
bound to a single style.

• Queen’s songs are expected to be sample suitable or even unsuitable due to their structure
variety, since unlike Mozart, the structure varies both across the dataset and in the songs
themselves (some songs may have structure [A B C A] and others might have [A B C D E
B C], for example).

• Dragonforce style songs are expected to be sample suitable since the individual structure
of each of the songs in the dataset is pretty consistent and there is low variation among
the different structures (for instance, a song may be [A B C A D A] and another may be
[A B C A B A]).

Aside from this analysis, it is to be considered that the differences that exist between the
different trained versions of the model, while having the same base hyperparameters, were
considered to have negligible impact in how the output is perceived, associating the output dif-
ferences exclusively to the intrinsic behavior that is respective to the architecture of the model
itself.

It is also to be noted that these results are expected since we already know that the model,
being far from ideal, is capable of capturing some more prominent musical features very well,
such as basic chord structures and harmonies and even some melodies, as shown in 2.3.
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4.1.2 Experimental observations from the author

Aside from the presented output generation method, of randomizing parameters, some fine
tuning with the knobs and smaller randomization intervals have been tried. From all the
tweaks done with the aid of the model’s interface, two distinct ways of generating the out-
puts were identified:

• Using the default randomization interval more diverse results were obtained although
more of the generated outputs had to be discarded;

• Using a smaller randomization interval the results were more consistent and way fewer
had to be discarded but all the outputs were more similar.

We chose the smaller randomization interval for pop style to check how different the out-
put generation would perform, and, for the remaining styles, we chose the regular default
randomization intervals.

Starting with the NES videogames dataset, after listening to the generated results, the style
fits, just as expected, and, despite not having a notion of ending, it can loop on itself, making it
ideal for the desired environment of videogame soundtracks. Being this what our model was
originally designed to do, we can consider that this style has been successfully captured, being
suitable for videogame music generation.

Next up, with Pop songs, the model does not sound as good as the videogames’ dataset.
This may be due to the instrument diversity of this dataset, making it harder for our model
to capture some basic arrangement features of this style. This trained model may be therefore
classified as being sample suitable due to how diverse Pop is.

With the outputs generated with the piano pieces from Mozart, the captured style resem-
bles Mozart a lot if we ignore the constant pauses that appear in the middle of the track, classi-
fying this version of the model as being sample suitable. The reason why it is not classified as
suitable is mostly due to only some motifs being identifiable as possible sections for a Mozart
piece.

With Queen, the same problems that Pop suffered also appear due to the instrumental
variety. However, we consistently have the same instruments so the range of the tracks does
not vary as much. Another problem arises relating to how variable the section sizes are between
different songs. These features can render the model sample suitable but, just like with Pop,
also need to be carefully selected.

Finally, with the model trained over the Dragonforce dataset, since we have faster notes
being played, although this may be a key feature of the style, it makes perceiving the style more
complicated. Beyond this issue we can listen to the main voicings of the song and sometimes
understand what would be a solo. This makes this model sample suitable but, for some outputs
may produce unsuitable results.
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4.2 Results obtained from form answers

Bearing in mind some basic notions from the previous output analysis over how our model is
expected to behave, we can analyze what our population of thirty one respondents has to say
in this matter and check if the statistics are coherent with what we are upholding.

First off, we need to check how trustworthy are the obtained answers. In order to do this, it
was asked, in a scale of 1 to 5 how familiar they were with each of the styles, and respondents
that were not as familiar with a certain style could skip the section relating to that style, to
help us produce more reliable results. It was also asked the level of music theory knowledge in
order to further help us legitimize results, according to the average percentages shown below:

Figure 4.1: Relative familiarity of respondents with the different styles

It was then asked which of the tracks was the most enjoyable. If a certain track has a greater
bias than the others, it can be further analyzed why it is more successful than the others.

Favorite track for each style (%)
Videogames Pop Mozart Queen Dragonforce

Track 1 25,8 29,0 48,4 25,8 16,1
Track 2 25,8 22,6 16,1 38,7 6,5
Track 3 32,3 38,7 29,0 35,5 22,6

Table 4.1: Tracks chosen by the respondents
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It is to be noted that most of the population of our experiment are students from Instituto
Superior Técnico, having a different insight from the one that would be provided by profes-
sional musicians. And some of the answers may have been obtained with the people only
listening to one of the tracks of the dataset since we have no way to ensure that.

Figure 4.2: Level of musical theory knowledge of the respondents

We can now look at which style has the best/most catchy main voicing. This rating suffers
a penalization if the respondents who did not answer to certain styles are accounted. The
style that suffered the most with this was Dragonforce where 54,8% of the respondents did not
answer to this style, due to their low familiarity. Therefore, the graph shown below does not
account for the respondents that did not answer in order to help to even things out.

Figure 4.3: Most catchy main voice for each of the styles, according to respondents
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Finally, we can check the suitability for each of the trained neural networks in four distinct
categories:

• As proposed by our methodology, an unsuitable output.

• For sample suitable outputs, checking if either a lot or a few changes need to be made,
in order to help further separating suitable from unsuitable outputs and how close those
outputs are from being considered suitable.

• And finally, the outputs that are suitable.

Suitability for each style (%)
Videogames Pop Mozart Queen Dragonforce

Unsuitable 0,0 19,4 9,7 22,6 3.2
Requires a lot of changes 9,7 32,3 45,2 38.7 25.8
Requires a few changes 54,8 29,0 32,3 29.0 12.9

Suitable 19,4 9,7 6,5 9,7 3.2
Not answered 16,1 9,7 6,5 0,0 54,8

Table 4.2: Suitability of each of the models according to the respondents

4.3 Critique and discussion

4.3.1 Discussion of Form Results

We can now look at the results and compare them to the expected results. This way, we can
establish where the model performed better and worse and see if the ideas of structure and
harmony comply with these results.

First off, with the NES Videogames dataset, we obtained what could be considered a suit-
able output, since none of the respondents said that the output was unsuitable and more than
half (54,8%) claimed that only a few changes would be required for them to consider the tracks
as being part of a videogame soundtrack. The output for this style was also the one that best
performed in terms of a melodic line, meaning that some themes may be good enough to be
catchy.

For the Pop style, the outputs were sample suitable, with answers claiming that changes
need to be made, but how far the model is from being suitable, is harder to tell, since both
options of requiring a lot of changes or a few changes have close results (32,3% versus 29,0%).
The third track was chosen as being the favorite, probably because it is the one with a structure
that may more closely resemble what would be expected from the Pop style. It performed
average in terms of its melodic line, probably due to having a track of a style that lives from
the instrumental diversity being performed on a single instrument.
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With Mozart, the outputs also got to be sample suitable but this time 45,2% of the respon-
dents said that the model needs a lot of changes. A possible problem relating to this is the
fact that all the notes that have been produced by the model have the same duration and are
relatively short, creating pauses in many places that would have longer notes in a regular com-
position. The track that performed better was the first one most likely due to its more melodic
main line. Despite this, it was still deemed as being the worst dataset in terms of its lead line.

Every respondent listened to the tracks corresponding to the output of the Queen dataset,
and both the second and third track got the most votes (38,7% and 35,5% respectively). More
than a fifth of the respondents (22,6%) claimed that the output is unsuitable even though two
thirds of the population claimed that the model is, in a way or another, sample suitable. This
may be due to the previously referred problem that this dataset has of having variable amounts
of sections and section sizes, making it very hard for our model to grasp its structure. Despite
this, the lead melodic line was the second best.

Last but not least, for the Dragonforce dataset, the one that least respondents answered to
(only 45,2% of the respondents), the majority of the respondents claimed that it required a lot
of changes, probably having to do, just like with the Pop style, with the instrumental variety
being poorly portrayed here. The third track was the most popular one, possibly due to having
a more melodic bass line contrasting with what may be perceived as a lead guitar as this model
also performed average on its lead melodic line.

In general, the model performed as expected, with the NES Videogames style being the best
performing one as it stands for what this model, prior to its optimizations, had been originally
designed for. For the other styles, some improvements need to be made, with some solutions
suggested in our critique.

4.3.2 Critique to the model and posed problems

The model has performed reasonably and along what was expected. However, it is still missing
some features that would better capture style. For the model to be ideal, all the generated tracks
should hit the suitable mark, which checks to be true for most of the generated videogame
soundtracks, but lack, in a way or another, on the remaining styles.

Our first possible problem to be tackled would be the capturing of the batches of the
datasets, which ends up dividing them in batches of sixteen measures. To solve this, we would
need to have the several sections marked, having, for example, an ”A” section with the measure
where it occurs marked and a distinct ”B” section marked as well, in order to help producing
better results. This approach would also solve the problem of the songs not having a structured
ending.

Some problems that are expected to arise for the creation of this proposed solution have to
do with:

• Allowing a variable batch size, separating batches into different sections and a batch for
each of the songs in the dataset, making each of these batches also vary in size.

• Having a separate trained neural network for each of the sections.

• Joining both these neural network structures in a new architecture to help creating coher-
ent outputs.



4.3. CRITIQUE AND DISCUSSION 33

On top of that, having each of these sections trained separately could help further improve
our outputs. This has shown to be particularly an issue with the Queen dataset where each of
the sections’ size varies a lot, with the output not having any particularly distinguishable or
memorable sections.

Another problem is about the separation of tracks for multi-instrument datasets while al-
lowing for training of them at the same time. For instance, if the model could perceive the
different instruments, even reproducing them at the output, a different level of style could be
perceived by our model: the arrangement. A problem that is also associated with this is the
fact that all the notes have the same duration, regardless of what that should be, impacting the
output too and aspects associated with arrangement could also help solve this.

Both of the previously proposed solutions would together allow for outputs that have both
a coherent structure, due to section separation, and an arrangement that would now be more
bound to the style, due to permitting the capturing of the respective instrumental variety.

The last problem that needs to be analyzed is how the outputs are generated. Although
ideally the outputs, being randomly generated, should always produce suitable results, as-
suming the prior solutions have been applied, they could still not always be suitable. Even
though we have tried using a smaller randomization interval for the Pop style, the results do
not seem to be any different from the other datasets and thus it may be worth looking at a
different approach.

It could, for a possible solution, either be tried an increase on the size of the latent vector,
since with the current size a lot of its values have an high impact, being heavily correlated,
making it hard to perceive what each one does; or a classifier to perceive what musical aspect
each of the positions of the vector may correspond to. This may not be as defining as the other
problems but it is something worth considering nonetheless.

Our results, with the author and the respondents having similar opinions over the same
outputs for the same datasets, prove our initial ideas and consequent problems that arise from
the behaviour of the model. Thus, our critiques can be validated in terms of hypothesizing
the problems that our model has. With this in mind, we can now extract conclusions from this
work and provide some insight over possible future works.
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5Conclusions and Future

Work

5.1 Conclusions

With this thesis we have optimized a model in order to partially fulfil our goal of capturing
style and reproducing it in new outputs. This model was successful with:

• Generating composition ideas to a given style. This could help later create a tool for mu-
sicians/producers to extract ideas from other works and help with inspiring new works.

• Capturing some styles. The model behaved better for styles with a more coherent struc-
ture both at the songs themselves and across the different elements of the explored
datasets.

• Creating a baseline for better models. The critiques explored in 4.3.2 settle a baseline for
possible future models to be worked from here on, as an upgraded version of our model.

This model was not successful with:

• Instrumental arrangements, as these were proven to be a crucial part of perceiving style,
even for the most trained ears, requiring the usage of external samplers.

• Coherent outputs, as a random generation should, ideally, always allow for good results
(or at least at the majority of cases), requiring hand-picking the outputs.

• Structure capturing, where varying section sizes were not captured by the model, com-
promising directly how well some of the results ended up capturing style.

We hope that with the baselines born from this work, better models may arise bearing these
ideas in mind.

5.2 Future Work

Some possible implementations or optimizations of this work may arise, namely:

• An application for musicians and producers to tinker with, in order to speed up the cre-
ative process.

• As a follow-up of the previous topic, an application to blend different styles for generat-
ing new musical ideas.
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• A version of this model that preserves both the original section types, intrinsic to the style
to be captured, and the original arrangements, providing different possible arrangements
on a given musical style.

• A more fine hyperparameter selection, or perhaps a better architecture for the neural
network behind the model.

Being the instrumental arrangement and structuring of sections a core concept of under-
standing musical style, this optimization can be considered to be the most relevant to be per-
formed.

As for creating an application, we can look at the baseline from the current interface of
the model to create a conceptual view of what a possible interface for this application could
look like. This interface should make the process of training a neural network completely
hidden from the end user, by further optimizing our model. It is to be accounted that these
preoccupations may vary, according to who the end-users of the application may be.



Bibliography

Braguinski, N. (2019, November). “428 millions of quadrilles for 5s. 6d.”: John clinton’s combinatorial
music machine (Vol. 43). https://doi.org/10.1525/ncm.2019.43.2.86.

Briot, G. H., Jean-Pierre, & Pachet, F.-D. (2019, August). Deep learning techniques for music genera-
tion – a survey. http://arxiv.org/abs/1709.01620.

Cabaret player piano. (2020). Retrieved from https://www.piano4u.com/Piano/Detail/
2233

Christensson, P. (2017, July 15). Midi definition. https://techterms.com/definition/
midi. TechTerms.

Chung, C. G. K. C., Junyoung, & Bengio, Y. (2014, December). Empirical evaluation of gated recur-
rent neural networks on sequence modeling. http://arxiv.org/abs/1412.3555.

Classical piano midi page - mozart. (2020). Retrieved from http://www.piano-midi.de/
mozart.htm

ClewsOctober, D. (2020). The 15 best midi keyboards 2020: Mac, pc, iphone
and ipad midi controller keyboards for beginners to pros. MusicRadar. Re-
trieved from https://www.musicradar.com/news/the-best-midi-keyboards
-our-favourite-laptop-desktop-and-ios-keyboards

Deep learning concepts. (2020, November 11). https://appen.com/ai-glossary/.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., & Sutskever, I. (2020). Jukebox: A
generative model for music. arXiv preprint arXiv:2005.00341.

Dobrin, P. (2019, April 10). Itzhak perlman feels the philly love at philadelphia orchestra spe-
cial concert. Retrieved from https://www.inquirer.com/arts/itzhak-perlman
-philadelphia-orchestra-concert-review-20190410.html

Download midi melodies - dragonforce — midimelody. (2020). Retrieved from http://en
.midimelody.ru/dragonforce/

DuBreuil, A. (2020). Hands-on music generation with magenta: Explore the role of deep learn-
ing in music generation and assisted music composition. Packt Publishing. Retrieved from
https://books.google.pt/books?id=SUvODwAAQBAJ

Floriancolombo/bachprop. (2018, December 14). Retrieved from https://github.com/
FlorianColombo/BachProp

Futterman, S. (2016, August). Miles Davis: 15 Essential Albums. Retrieved 2020-12-03,
from https://www.rollingstone.com/music/music-lists/miles-davis-15
-essential-albums-247620/

37

https://doi.org/10.1525/ncm.2019.43.2.86.
http://arxiv.org/abs/1709.01620
https://www.piano4u.com/Piano/Detail/2233
https://www.piano4u.com/Piano/Detail/2233
https://techterms.com/definition/midi
https://techterms.com/definition/midi
http://arxiv.org/abs/1412.3555
http://www.piano-midi.de/mozart.htm
http://www.piano-midi.de/mozart.htm
https://www.musicradar.com/news/the-best-midi-keyboards-our-favourite-laptop-desktop-and-ios-keyboards
https://www.musicradar.com/news/the-best-midi-keyboards-our-favourite-laptop-desktop-and-ios-keyboards
https://appen.com/ai-glossary/
https://www.inquirer.com/arts/itzhak-perlman-philadelphia-orchestra-concert-review-20190410.html
https://www.inquirer.com/arts/itzhak-perlman-philadelphia-orchestra-concert-review-20190410.html
http://en.midimelody.ru/dragonforce/
http://en.midimelody.ru/dragonforce/
https://books.google.pt/books?id=SUvODwAAQBAJ
https://github.com/FlorianColombo/BachProp
https://github.com/FlorianColombo/BachProp
https://www.rollingstone.com/music/music-lists/miles-davis-15-essential-albums-247620/
https://www.rollingstone.com/music/music-lists/miles-davis-15-essential-albums-247620/


38 BIBLIOGRAPHY

Glossary of terms. (2020). https://www.berklee.edu/core/glossary.html. Berklee Col-
lege of Music.

Graves, A. (2014, June). Generating sequences with recurrent neural networks. http://arxiv
.org/abs/1308.0850.

HackerPoet. (2018, November 26). Retrieved from https://github.com/HackerPoet/
Composer

Hadjeres, G., Pachet, F., & Nielsen, F. (2017, 06–11 Aug). DeepBach: a steerable model for Bach
chorales generation. In D. Precup & Y. W. Teh (Eds.), Proceedings of the 34th international
conference on machine learning (Vol. 70, pp. 1362–1371). International Convention Centre,
Sydney, Australia: PMLR. Retrieved from http://proceedings.mlr.press/v70/
hadjeres17a.html

Hyperparameter. (2019a, May 17). https://deepai.org/machine-learning-glossary
-and-terms/hyperparameter.

Midi db — free midi files. (2020). Retrieved from https://www.mididb.com/

Miranda, I. (2020, January 28). Kiss: nova etapa da turnê final terá mudanças no repertório,
diz Tommy Thayer. Retrieved from https://whiplash.net/materias/news 747/
315731-kiss.html

Mozart musikalisches würfelspiel (mozart’s musical dice game). (2012, July 18). https://
thebrickinthesky.wordpress.com/2012/07/18/mozart-musikalisches
-wurfelspiel-mozarts-musical-dice-game/.

Neural network. (2019b, May 17). https://deepai.org/machine-learning-glossary
-and-terms/neural-network.

Oord, N. K. O. V. L. E. A. G. e. K. K., Aaron van den. (2016, 18 June). Conditional image generation
with pixelcnn decoders. http://arxiv.org/abs/1606.05328.

pelegk11. (2020, January 10). Retrieved from https://github.com/pelegk11/Composer

Piano roll editor. (2020). Retrieved from https://musescore.org/en/print/book/
export/html/278688

Queen midi files. (2020). Retrieved from http://tomqueen.tripod.com/midis.html

Roberts, A., Kayacik, C., Hawthorne, C., Eck, D., Engel, J., Dinculescu, M., & Nørly, S. (n.d.).
Magenta studio: Augmenting creativity with deep learning in ableton live. In Proceedings
of the international workshop on musical metacreation (mume).

Shlomo Argamon, K. B., & (Eds.), S. D. (2010). The structure of style: Algorithmic approaches to
understanding manner and meaning. In (pp. 45–58). Berlin: Springer-Verlag. https://
www.cs.cmu.edu/˜rbd/papers/rbd-style-2009.pdf.

Technologies, A. (2020). Retrieved from https://creators.aiva.ai

Tf magenta. (2020, May). https://github.com/tensorflow/magenta/.

Time Signatures 4/4 - KNILT. (2018, February 28). Retrieved 2020-12-02, from https://knilt
.arcc.albany.edu/Time Signatures 4/4

https://www.berklee.edu/core/glossary.html
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
https://github.com/HackerPoet/Composer
https://github.com/HackerPoet/Composer
http://proceedings.mlr.press/v70/hadjeres17a.html
http://proceedings.mlr.press/v70/hadjeres17a.html
https://deepai.org/machine-learning-glossary-and-terms/hyperparameter
https://deepai.org/machine-learning-glossary-and-terms/hyperparameter
https://www.mididb.com/
https://whiplash.net/materias/news_747/315731-kiss.html
https://whiplash.net/materias/news_747/315731-kiss.html
https://thebrickinthesky.wordpress.com/2012/07/18/mozart-musikalisches-wurfelspiel-mozarts-musical-dice-game/
https://thebrickinthesky.wordpress.com/2012/07/18/mozart-musikalisches-wurfelspiel-mozarts-musical-dice-game/
https://thebrickinthesky.wordpress.com/2012/07/18/mozart-musikalisches-wurfelspiel-mozarts-musical-dice-game/
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
http://arxiv.org/abs/1606.05328
https://github.com/pelegk11/Composer
https://musescore.org/en/print/book/export/html/278688
https://musescore.org/en/print/book/export/html/278688
http://tomqueen.tripod.com/midis.html
https://www.cs.cmu.edu/~rbd/papers/rbd-style-2009.pdf
https://www.cs.cmu.edu/~rbd/papers/rbd-style-2009.pdf
https://creators.aiva.ai
https://github.com/tensorflow/magenta/
https://knilt.arcc.albany.edu/Time_Signatures_4/4
https://knilt.arcc.albany.edu/Time_Signatures_4/4


BIBLIOGRAPHY 39

Training a neural network on midi data with magenta and python. (2019, October 4). https://
drive.google.com/file/d/14e0MCJD7RH m7CpsFZWPIpO0WgQrwi64/
view?usp=embed facebook. Retrieved from https://www.twilio.com/blog/
training-a-neural-network-on-midi-music-data-with-magenta-and
-python

Xu, A. M. D. J. K., Zhen, & Metz, L. (2019, September). Learning an adaptive learning rate schedule.
http://arxiv.org/abs/1909.09712.

https://drive.google.com/file/d/14e0MCJD7RH_m7CpsFZWPIpO0WgQrwi64/view?usp=embed_facebook
https://drive.google.com/file/d/14e0MCJD7RH_m7CpsFZWPIpO0WgQrwi64/view?usp=embed_facebook
https://drive.google.com/file/d/14e0MCJD7RH_m7CpsFZWPIpO0WgQrwi64/view?usp=embed_facebook
https://www.twilio.com/blog/training-a-neural-network-on-midi-music-data-with-magenta-and-python
https://www.twilio.com/blog/training-a-neural-network-on-midi-music-data-with-magenta-and-python
https://www.twilio.com/blog/training-a-neural-network-on-midi-music-data-with-magenta-and-python
http://arxiv.org/abs/1909.09712


40 BIBLIOGRAPHY



IAppendices





AComposer Interface

commands

Composer Controls:

• Right Click - Reset all sliders

• ’R’ - Random Song multiplying each of the slider by a random value that is at most the
standard deviation

• ’E’ - Random Song multiplying each of the slider by a random value that is at most 2 times
the standard deviation

• ’M’ - Save song as .mid file

• ’W’ - Save song as .wav file

• ’O’ - opens the loaded samples and plays the reconstructed version of one of the input
songs

• ’Escape’ - Quit

• ’Space’ - Play/Pause

• ’Tab’ - Seek to start of song

• ’1’ - Square wave instrument

• ’2’ - Sawtooth wave instrument

• ’3’ - Triangle wave instrument

• ’4’ - Sine wave instrument

• ’5’ - Circle wave instrument

• Red Slider - Threshold to play a note

• Green Slider - Speed of song

• Blue Slider – Volume

NEW OPTIMIZATIONS:

• Yellow Slider – Pitch changer (modifies the key of what’s being played)

• ‘P’ – Resets pitch

• ’6’ – Piano wave-like instrument

Imported from (pelegk11, 2020) fork:

• ’T’ - Randomizes last 2/3 of sliders

• ’X’ - Randomly alters each slider (adds a random number that’s 10 per cent of the standard
deviation to the current value)

• ’,’ - Multiplies each slider by 1.1
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• ’.’ - Divides each slider by 1.1

• ’-’ - Multiplies each slider by -1 (changed from the original)

• Up Arrow - increments the note threshold (Useful for trying to add one note at a time)

• Down Arrow - decrements the note threshold (Useful for trying to remove one note at a
time)

Unused features on this work also from (pelegk11, 2020):

• ’S’ - Save slider values to text file (includes threshold, speed and volume sliders, model
path and instrument number) Asks in command line what filename to save as To load a
saved song run the command py composer.py –model path song1.txt It knows to load the
saved song file because of the .txt extension and gets the model path from inside the file If
blend mode is on, it will save a file containing the names of the blended songs that can be
opened in the same ways

• ’L’ - Loads a song Asks in command line what song file (created by the S command above)
to open and play without closing the app

• ’A’ - Toggles auto save whenever the song finishes, it is saved and a new song is randomly
generated.

• ’B’ - Blends smoothly through a series of preset songs by taking a linear combination of the
latent vectors. Asks in command line what song files (created by the S command above)
to blend.
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21/12/2020 Evaluation of automatically generated music - Musical knowledge

https://docs.google.com/forms/d/1CnN7JlUXqi3Ji_JNwg5N1jR5OtrMqZ-BwpeZdKJDzVg/edit 1/7

1.

Mark only one oval.

Unfamiliar

1 2 3 4 5

Very familiar

2.

Mark only one oval.

Unfamiliar

1 2 3 4 5

Very familiar

3.

Mark only one oval.

Unfamiliar

1 2 3 4 5

Very familiar

4.

Mark only one oval.

Unfamiliar

1 2 3 4 5

Very familiar

Evaluation of automatically generated music
- Musical knowledge
This is expected to take 10-15 minutes to answer.
* Required

Are you familiar with Videogame soundtracks? *

Are you familiar with Pop music? *

Are you familiar with the music of Mozart? *

Are you familiar with the music of Queen? *
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https://docs.google.com/forms/d/1CnN7JlUXqi3Ji_JNwg5N1jR5OtrMqZ-BwpeZdKJDzVg/edit 2/7

5.

Mark only one oval.

Unfamiliar

1 2 3 4 5

Very familiar

Evaluation of automatically generated music - AI Videogame Compositions

6.

Mark only one oval.

Tracks listened.

If you are not familiar with videogame soundtracks, you can skip this section.
Skip to question 10

Evaluation of automatically generated music - AI Videogame Compositions

7.

Mark only one oval.

Track 1.

Track 2.

Track 3.

8.

Mark only one oval.

Too blended/non-existent/unpleasant

1 2 3 4 5

Stands out and may be catchy

Are you familiar with power metal (like Dragonforce)? *

Listen to the following tracks, supposedly following the Videogame soundtrack style
(check the box afterward): https://bit.ly/AIVGSoundtracks *

Which track do you identify as being the most enjoyable? *

Do you find any melody standing out on the best track? *
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https://docs.google.com/forms/d/1CnN7JlUXqi3Ji_JNwg5N1jR5OtrMqZ-BwpeZdKJDzVg/edit 3/7

9.

Mark only one oval.

The track does not fit

The track needs a lot of changes to stand out/fit the style

The track needs some minor changes to stand out/fit the style.

The track is good as is

Evaluation of automatically generated music - AI Pop Compositions

10.

Mark only one oval.

Tracks listened.

If you don't usually listen to Pop music, you can skip this section. Skip to question 14

Evaluation of automatically generated music - AI Pop Compositions

11.

Mark only one oval.

Track 1.

Track 2.

Track 3.

12.

Mark only one oval.

Too blended/non-existent/unpleasant

1 2 3 4 5

Stands out and may be catchy

Do you believe the best track could be a part of a Videogame soundtrack? *

Listen to the following tracks, supposedly following the Pop style (check the box
afterward): https://bit.ly/AIPopSongs *

Which track do you identify as being the most enjoyable? *

Do you find any melody standing out on the best track? *
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https://docs.google.com/forms/d/1CnN7JlUXqi3Ji_JNwg5N1jR5OtrMqZ-BwpeZdKJDzVg/edit 4/7

13.

Mark only one oval.

The track does not fit

The track needs a lot of changes to stand out/fit the style

The track needs some minor changes to stand out/fit the style.

The track is good as is

Evaluation of automatically generated music - AI Mozart Compositions

14.

Mark only one oval.

Tracks listened.

If you don't know any Mozart composition, you can skip this section. Skip to question 18

Evaluation of automatically generated music - AI Mozart Compositions

15.

Mark only one oval.

Track 1.

Track 2.

Track 3.

16.

Mark only one oval.

Too blended/non-existent/unpleasant

1 2 3 4 5

Stands out and may be catchy

Do you believe the best track could be a part of a Pop song? *

Listen to the following tracks, supposedly following the style of Mozart's pieces (check
the box afterward): https://bit.ly/AIMozart *

Which track do you identify as being the most enjoyable? *

Do you find any melody standing out on the best track? *
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https://docs.google.com/forms/d/1CnN7JlUXqi3Ji_JNwg5N1jR5OtrMqZ-BwpeZdKJDzVg/edit 5/7

17.

Mark only one oval.

The track does not fit

The track needs a lot of changes to stand out/fit the style

The track needs some minor changes to stand out/fit the style

The track is good as is

Evaluation of automatically generated music - AI Queen Compositions

18.

Mark only one oval.

Tracks listened.

If you don't know any Queen songs, you can skip this section. Skip to question 22

Evaluation of automatically generated music - AI Queen Compositions

19.

Mark only one oval.

Track 1.

Track 2.

Track 3.

20.

Mark only one oval.

Too blended/non-existent/unpleasant

1 2 3 4 5

Stands out and may be catchy

Do you believe the best track could be a section of a Mozart piece? *

Listen to the following tracks, supposedly following the style of Queen's songs (check
the box afterward): https://bit.ly/AIQueen *

Which track do you identify as being the most enjoyable? *

Do you find any melody standing out on the best track? *
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21.

Mark only one oval.

The track does not fit

The track needs a lot of changes to stand out/fit the style

The track needs some minor changes to stand out/fit the style

The track is good as is

Evaluation of automatically generated music - AI Dragonforce Compositions

22.

Mark only one oval.

Tracks listened.

If you don't know any Power Metal songs you can skip this section. Skip to question 26

Evaluation of automatically generated music - AI Dragonforce Compositions

23.

Mark only one oval.

Track 1.

Track 2.

Track 3.

24.

Mark only one oval.

Too blended/non-existent/unpleasant

1 2 3 4 5

Stands out and may be catchy

Do you believe the best track could be a part of a Queen song? *

Listen to the following tracks, supposedly following the style of Dragonforce's songs
(check the box afterward): https://bit.ly/AIDragonForce *

Which track do you identify as being the most enjoyable? *

Do you find any melody standing out on the best track? *
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25.

Mark only one oval.

The track does not fit

The track needs a lot of changes to stand out

The track needs some minor changes

The track is good as is

Musical background

26.

Mark only one oval.

None

Basic

Advanced

Professional

This content is neither created nor endorsed by Google.

Do you believe the best track could be a part of a Power Metal song? *

What is your musical theory knowledge? *

 Forms
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