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ABSTRACT
The use of Java to develop Big Data platforms (e.g., Hadoop, Spark)
has been a favoured choice among developers due to its fast devel-
opment of large-scale systems, in part due to the automatic memory
management. However, the impact of garbage collection on these
platforms has been more and more of a concern, as platforms in-
creasingly require lower pause times, higher throughput, and better
memory usage by the garbage collector. In this project, we aim
to understand how different garbage collectors scale in terms of
throughput, latency, and memory usage in memory-hungry envi-
ronments, so that, for given a platform with particular performance
needs, we may map the most suitable garbage collection (GC) al-
gorithm. Previous works on this subject have used workloads that
either failed to represent realistic use case scenarios of Big Data
platforms or were run on top of academic implementations of the
JVM, that are not meant to run Big Data applications. In this work,
we use a combination of Big Data platforms (e.g., Cassandra, Lucene,
and GraphChi) and real-world-based benchmarks (e.g., DaCapo) on
top of an industrial JVM (OpenJDK HotSpot JVM) which provides
a high degree of accuracy to the results. Additionally, we develop
fine-grained benchmarks to study in more detail how particular
techniques (e.g., barriers) employed by garbage collectors affect
different performance metrics.

Keywords: Garbage collection, Big Data Platforms, Java Virtual
Machine, Automatic Memory Management

1 INTRODUCTION
There is an increasing need to manage Big Data [5], whose term
is often used to describe large data sets, rapidly growing, and in
need to be processed rapidly in order extract value of large quanti-
ties of information. The use of Java to develop Big Data platforms
(e.g., Hadoop [21], Spark [24]), on which Big Data applications
that manage such data are executed, has been a favoured choice
among developers. The use of Java results in faster development
of large-scale systems, mainly due to the automatic memory man-
agement, and the large number of available resources made by
the community. However, there is a cost associated with using au-
tomatic memory management. This cost is introduced mostly by
the garbage collector (GC), which is responsible for reclaiming the
memory space occupied by unreachable objects and giving it back
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when the application needs. A possible solution to eliminate this
cost would be to move back to an unmanaged language (e.g., C or
C++), where the developer is responsible for memory managing.
However, we would have to take into account the cost of a more
extended development period, due to debugging memory problems
and lack of reliability of such applications that would have many
more errors forcing, in some cases, such applications to crash [10].

Applications such as credit card fraud detection, social networks
management, financial analysis are examples of Big Data applica-
tions that need garbage collectors to scale in terms throughout and
latency. However, currently used (classic) garbage collectors are
not designed to be used with large-scale Big Data platforms, as they
fail to scale throughput and pause time. Currently used GCs require
stop-the-world collections to free the garbage from the heap, which
stops the application while the collection is in progress. As heap
sizes grow with large-scale Big Data platforms, the time it takes
to perform these collections also increases (since the time it takes
is proportional to the heap’s size), therefore, stopping the appli-
cation for more extended periods, which significantly affects the
application throughput negatively. Also, newly developed garbage
collectors like ZGC 1 or Shenandoah 2, even though they were
designed with such platforms in mind (GCs which collect the heap
concurrently with the application running), we still do not entirely
understand their impact on the performance of such platforms in
real use case scenarios. The goal of this thesis is to understand how
different garbage collectors impact different performance metrics,
more particularly latency, throughput, and memory usage. So that
with this knowledge, given an application with particular perfor-
mance requisites, we may give hints on which garbage collector
implementation is most suitable to fulfil its requirements.

We expect this research to contribute to the field of modern
garbage collectors for Big Data environments through the following
contributions: first, provide better knowledge on how to match
applications to a specific garbage collector, taking into consideration
the application needs and the garbage collector tradeoffs; second,
give hints w.r.t. which garbage collector to pick when we want to
optimize a particular performance metric; third, an overview of
the state of art garbage collectors developed for the Java Virtual
Machine and how they improve upon older implementations; and
finally, the design and development of a fine-grained benchmark
meant to stress-test specific GC components such as read and write
barriers.

1https://openjdk.java.net/jeps/333
2https://openjdk.java.net/jeps/189

https://openjdk.java.net/jeps/333
https://openjdk.java.net/jeps/189
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In the next section, we describe the garbage collectors studied
and the possible overheads inherent to each implementation. Sec-
tion 3 describes how recent literature has approached the problem
of how to map an application to the best-suited GC and how we
hope to improve these works. Section 4 describes the most relevant
aspects of the methodology used to evaluate the different collectors,
with Section 5 showing the evaluation results. The document ends
with the conclusion (Section 6), where we give hints on which GC
is best suited for an application w.r.t to latency, memory usage, and
throughput.

2 BACKGROUND
To understand how garbage collectors perform, we need first to
understand the how they operate and how implementations differ
from one another.

2.1 Generational Collectors
Most GCs in this work are generational collectors (e.g., ParallelOld,
CMS and G1), which separates the objects in the heap based on
their estimated lifetime. This approach bases itself on studies sup-
porting that Java object’s lifetime follows a bimodal distribution
[11, 12] and the weak generation hypothesis, saying that on most
applications, most objects die young [7, 20]. In this work, the gen-
erational collectors are divided into two generations, with every
object being initially allocated on the young generation sub-heap.
As time passes, objects that keep surviving collection cycles are
eventually promoted to another sub-heap, called the old generation.
Since the number of live objects in the young generation takes up a
small percentage of the available space, the work required to move
them to the old generation is linear to its small size.

Both the Parallel GC [2] and the Concurrent Mark/Sweep col-
lector [1], use a monolithic (the whole sub-heap must be collected
at once) "stop-the-world" copying collector to manage the young
generation. For the old generation, the ParallelOld uses a parallel
"stop the world" garbage collector with compaction. This approach
is usually the most efficient way to maximise the time spent do-
ing application work relative to the total time spent performing
garbage collection. However, there is an overhead inherent to this
approach in the form of long individual GC pause times caused
by compaction (usually a function of the size of the Java heap and
the number and size of live objects in the old generation) and the
monolithic "stop the world" collections. CMS, on the other hand,
was developed in response to a growing number of applications
that demanded a collector with lower worst-case pause times than
Parallel GC and where it was acceptable to forgo some applica-
tion throughput to eliminate or considerably reduce the number of
lengthy GC pauses. CMS old generation is managed by a mostly
concurrent mark and sweep collector without compaction. It is
called a mostly concurrent collector because most of its work is
done concurrently with the application threads, except for a couple
of phases of the old generation collection which require the halt of
the application threads for synchronization purposes. When objects
can no longer be promoted to the old generation, or concurrent
marking fails, it falls back to a monolithic "stop-the-world" com-
paction of the old generation. This compaction requires tracing the
whole old generation with the application threads on halt, which

will be the main responsible for the CMS collector’s lengthy pause
times.

The Garbage-First [6] follows a different approach compared to
the Parallel and CMS GC to address some of the shortcomings with
those collectors. Instead of having the young and old generation
be a contiguous chunk of memory where garbage collection is
monolithic, in G1 both the young and old generations are a set of
regions where most GC operations can be applied individually to
each region. Also, regions that belong to the same set and therefore
same generation do not need to be contiguous in memory. For the
young generation, similar to the previous collectors, G1 employs a
parallel "stop the world" copying collector. For the old generation,
on the other hand, G1 does not require the whole generation to
be collected. Instead, just a subset of the old generation region
set is collected at any one time during a mixed collection, using a
mostly concurrent mark and sweep collector. Amixed collection is a
young generation collection, where the subset of the old generation
region set chosen is also collected together. Using a full heap trace
allows G1 to track the amount of garbage in each region accurately
and therefore, preferentially target regions that will yield the most
garbage. In addition, incremental compaction is employed by G1,
which means that on every old generation collection, all objects in
the subset of regions being collected are relocated to unused regions.
When objects can no longer be promoted to the old generation, it
falls back to a monolithic ”stop-the-world” compaction of the old
generation.

Remembered Set. As objects get moved to the old generation,
newly created objects in the young generation referenced by those
in the old are invisible to the young generation collector, therefore
considered garbage. This is an incorrect assumption, as these ob-
jects are still reachable from the objects in the old generation, and
therefore could still be live. Instead, a remembered set data structure
is used to track outside (old generation) references to objects in the
young generation. This, however, presents a performance overhead,
as a write barrier is triggered, to update the remembered set, every
time a field of an object is updated or a new reference is stored. For
G1, splitting the Java heap into regions and performing collection
with incremental compaction on just a subset of the old generation
reduces the lengthy pause times that were present in Parallel and
CMS. However, this originates an additional overhead in memory
usage. Due to having the old generation split into regions, a remem-
bered set between each region is now required, which may result
in an overhead of up to 20% on memory usage [9] when compared
to previous collectors.

2.2 Concurrent Collectors
The Z Garbage Collector, also known as ZGC, and Shenandoah, are
experimental scalable low-latency collectors built to handle heaps
varying from relatively small to potentially multi-terabytes sizes.
Compared to G1, both ZGC and Shenandoah are also region-based
collectors; however, they are not generational. Instead, they are uni-
generational collectors who aim not to exceed 10ms pauses even
when increasing the heap or live-set size, by achieving concurrent
compaction. ZGC does so through the use of read barriers and
coloured pointers. The coloured pointer is a technique that uses 4
of the 22 unused bits of a 64-bit reference to store some important
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metadata. The first 42-bits of an object reference are reserved for the
actual address of the object, which gives a theoretical heap limit of
4TB address space. From the remaining unused bits, four of those are
used as flags named finalizable, remapped, marked1 and marked0,
which support the garbage collector correct implementation of
concurrent compaction.

Shenandoah, however, follows a different implementation strat-
egy. Instead of coloured pointers, Shenandoah makes use of Brooks
pointers, for allowing concurrent compaction of memory. The main
idea behind a Brooks pointer is that each object has an additional
reference field that always points to the current location of the
object. The referenced location can either be the object itself or,
as soon as the object gets copied to a new location, to that new
location.

During compaction, an object that is set to be relocated must
be copied from the "from-space" to the "to-space". The from-space,
as the name implies, is the original location of the object, and the
to-space is the destination of the object after the copying. A classic
"stop-the-world" compaction would then stop application threads
so it could update all references to the old "from-space" object, to the
current "to-space" reference. However, with Brooks pointers, we no
longer need to stop the application to update all references leading
to the "from-space" object. Every object now has an additional
reference field (forward pointer) that points to the object itself,
or, as soon as the object gets copied to a new location, to that
new location. To assure that all writes are done on the "to-space"
object, a write barrier is triggered for all writes. This write barrier is
responsible for dereferencing the forward pointer on the old object,
to reach the current location of the object. Additionally, if during a
copying phase a write barrier is triggered on a "from-space" object
that is set to be copied but has yet to be, the procedure is as follows:
i) creates the "to-space" object; ii) updates the "from-space" forward
pointer; iii) writes the value in the "to-space" copy; iv) updates the
reference that triggered the barrier to point to the new location.
Eventually, when the copying phase terminates, references that
still point to "from-space" objects that were copied are updated
during concurrent marking. When all references are updated, the
"from-space" object is collected.

This technique introduces some overheads, e.g., memory over-
head caused by the forward pointer (usually one word per object),
more instructions to verify that writes and reads are always done
in the "to-space" object, and the high possibility of cache misses
due to pointer-chasing indirection. Furthermore, when a read bar-
rier is invoked by loading a reference, there are a few assembly
instructions that need to be executed. Due to the high frequency
of reads and writes in an application, both write and read barriers
need to be extremely efficient as not to cause large performance
overheads. Even though ZGC does not make use of write barriers, it
uses read barriers called load-value barriers (LVB) to do concurrent
compaction. Shenandoah uses both read and write barriers.

3 RELATEDWORK
There are two distinct approaches in recent literature when it comes
to try and map the most suitable garbage collector to a particular
application needs. The first approach revolves around performing
extensive profiling of the application, before its execution, in order

Table 1: Comparison between the presented papers

Paper Garbage Collectors Benchmarks Performance
Metrics

Xu et al. [22]
Parallel Scavenge
Con. Mark Sweep
Garbage-First

Spark Framework Memory Usage

Yu et al. [23] Parallel Scavenge

JOlden
Dacapo
SPECjvm2008
Spark Framework
Giraph Framework

Latency

P. Pufek et al. [17]

Serial
Parallel Scavenge
Conc. Mark and Sweep
Garbage-First

Dacapo Latency

W. Zhao et al. [25] Garbage-First
Dacapo
SPECjvm98
pjbb2005

Memory Usage
Latency
Execution time

R. Fitzgerald et al. [8]
Null
Copying
Gen. Copying

SPECjvm98
MISCJAVA
IMPACT
DOCTOR

Execution time

S. Soman et al. [19]

Semispace Copying
Mark Sweep
Gen. Mark Sweep
Gen. Semispace
Non-gen. Semispace

SPECjvm98
SPECjbb2000
JOlden
JavaGrande

Execution time

J. Singer et al. [18]

Copy Mark Sweep
Gen. Mark Sweep
Gen. Copying
Mark Sweep
Mark Compact
Semispace

SPECjvm98
SPECjbb2000
Dacapo
JOlden

Execution time

to select the most suitable GC. Fitzgerald et al. [8] was the first
to present a profiling framework to choose a single most-suitable
GC. Soman et al. [19] took another approach, selecting multiple
garbage collectors instead and switching between them in runtime,
based on which GC is most-suitable for a particular period. The
main disadvantage of this approach is the requirement of extensive
profiling, which Singer et al. [18] tries to reduce using machine
learning techniques. A second approach consists of evaluating and
comparing different garbage collectors w.r.t specific performance
metrics, using one or multiple benchmark suites or applications.
Xu et al. [22] analyses the correlation between big data applica-
tions’ memory usage patterns and the collectors’ memory usage
to obtain findings regarding GC inefficiencies. Yu et al. [23] shows
a performance analysis on the overall performance impact of Full
GC in memory-hungry applications that handle large data sets,
more particularly when using the Parallel Scavenge (PS) garbage
collector. W. Zhao et al. [25] evaluates the impact of each of the sig-
nificant elements of G1 on performance (pause time, remembered
set footprint, and barrier overheads) by deconstructing the G1 algo-
rithm and re-implement it from first principles. P. Pufek et al. [17]
analyses several garbage collectors (i.e., G1, Parallel, Serial, and
CMS) with the DaCapo benchmark suite, comparing the number of
algorithms’ iterations and the duration of the collection time.

Table 1 shows a summary of all the garbage collectors, bench-
marks, and performance metrics presented in the previous papers.
With this work, using the second approach, we hope to improve on
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Workload Description

fop Takes an XSL-FO file, parses it and formats it, gen-
erating a PDF file

h2 Executes a JDBCbench-like in-memory bench-
mark

jython Interprets a the pybench Python benchmark

luindex Uses lucene to index a set of documents

lusearch Uses lucene to do a text search of keywords over
a corpus of data

pmd Analyzes a set of Java classes for a range of source
code problems

sunflow Renders a set of images using ray tracing

tradebeans Runs the daytrader benchmark via a Java Beans to
a GERONIMO backend

tradesoap Runs the daytrader benchmark via a SOAP to a
GERONIMO backend

xalan An XSLT processor for transforming XML docu-
ments into HTML

Table 2: DaCapo Benchmarks Summary

earlier studies (see Table 1) by using a wider range of state-of-the-
art garbage collectors, including fully concurrent implementations
such as the ZGC and Shenandoah. Additionally, we will be evaluat-
ing a broader range of performance metrics like latency, memory
usage, and throughput in contrast to a single performance metric
evaluation, such as execution time [8, 18, 19], latency [17, 23], or
memory usage [22]. The evaluation is performed using a widely
used benchmark suite, Big Data platforms, and fine-grained bench-
marks, on top of an industrial JVM (OpenJDK Hotspot), contrary
to the regularly used academic-oriented JikesRVM.

4 METHODOLOGY
In this section, we start by describing the benchmark suite and
workloads used to evaluate the various garbage collectors (i.e., Par-
allelOld, CMS, G1, Shenandoah and ZGC) presented in Section 2.
A combination of real-world and synthetic benchmarks and work-
loads is used to approximate the results to real-world scenarios.
An initial evaluation, that on one hand, allows us to visualise how
newer garbage collectors, such as the ZGC and Shenandoah, be-
have in widely used and well-studied benchmark suites like the
DaCapo (see Section 4.1). On the other hand, the benchmarking
of Big Data Platforms (see Section 4.2) allows us to detect how
the different collectors behave in memory-hungry environments
w.r.t throughput, latency and memory usage. Later in Section 4.3, a
fine-grained evaluation of the garbage collectors is proposed, using
a small self-made micro-benchmark that stresses particular garbage
collectors components to expose the overhead associated.

4.1 DaCapo Benchmark Suite
The DaCapo [3] is a well-known and widely used benchmark
suite to analyse the performance of a JVM. It is composed of sub-
benchmarks that simulate real-world workloads that focus on differ-
ent performance features, i.e., non-trivial memory-intensive work-
loads, CPU intensive workloads, etc. This benchmark suite outputs
the sub-benchmark’ execution time over one or more iterations of
each workload as its performance metric. All the sub-benchmarks
come with pre-configured workloads, which we run with the var-
ious chosen garbage collectors. There are several advantages to
using this suite, such as: i) allows the testing of the different garbage
collectors (i.e., ParallelOld, CMS, G1, Shenandoah and ZGC) with
many different workload types; ii) these workloads are well studied
facilitating the task of understanding potential results; iii) due to the
broad use of the benchmark suite it facilitates the comparison with
other works [17, 23, 25]. A summary of all the workloads present
in the DaCapo suite is presented in Table 2.

4.2 Big Data Platforms
To ensure the results obtained have a high degree of accuracy, we
use a combination of different Big Data Platforms in our evaluation.
We opted to use Cassandra and Lucene as distinct examples of
storage platforms because they are both widely used platforms
where downtime or data loss is unacceptable (i.e., there is a strong
emphasis on latency in these applications). In addition, to have
a representation of the different types of Big Data platforms, we
use GraphChi, a graph processing engine, in our evaluation as an
example of a Big Data processing platform and also a throughput-
oriented application.

4.2.1 Cassandra. Apache Cassandra [15] is a wide column store
and one of the most popular open-source distributed NoSQL data-
base management systems designed to handle large amounts of
data across many commodity servers. Three different workloads,
with varying percentages of read and write queries over 10000
queries per second are used in our evaluation with Cassandra: i) a
read-intensive (RI) workload (consisting of 75% read queries, and
25% write queries); ii) a write-intensive (WI) workload (75% write
queries, and 25% read queries); iii) a balanced workload (RW) (50%
read queries and 50% write queries). The choice to perform 10000
queries per second was to not bottleneck the application through-
put in any of the experiments in our evaluation. Each evaluation
performs a fixed number of read and write operations (i.e., the cu-
mulative number of read and write queries performed during the
evaluation) over numerous records. These workloads are synthetic
but mirror real-world settings of real users performing similar work-
loads upon database systems. Yahoo! Cloud Serving Benchmark
[4] (YCSB) is used to benchmark Cassandra utilising the various
garbage collectors.

4.2.2 Lucene. Lucene [16] is a free and open-source search engine
software library. While fitting for any application that requires
full-text indexing and searching capability, Lucene is primarily
used to implement Internet search engines, and local single-site
searching. The benchmark starts by building an in-memory text
index using a 31 GB Wikipedia dump divided in 33M documents,
which represents a real-world use-case of Lucene. The workload
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is comprised of 20000 writes (document updates) and 5000 reads
(document searches) per second, which represents an example of a
worst-case scenario for a garbage collector latency metric due to it
being a write-intensive computation. For the worst case of the read
operation (document searches), we loop through the 500 top words
in the dump, which is a read-intensive computation for Lucene.

4.2.3 GraphChi. GraphChi [14] is a disk-based system for comput-
ing efficiently on graphs with billions of edges in a single system.
The main advantage of using GraphChi is that we can compute on
large graphs without the hassle of having to use a large distributed
system. Performance-wise GraphChi is highly competitive with
large Hadoop clusters. Therefore, we use GraphChi as a throughput-
oriented system used to run two well-known algorithms, PageRank,
and connected components. Both algorithms are supplied with a
Twitter graph [13], which is an example of a real-world workload,
consisting of 42 million vertexes and 1.5 billion edges where all
in-edges from the graph are stored in shards. The intent is to load
into primary memory these vertexes and corresponding edges in
batches, where GraphChi main task is responsible for estimating a
memory budget to limit the number of edges to load from the shards
into memory in each batch. The preceding task (memory budget
estimation) depicts an iterative process, wherein each iteration, a
new group of vertexes is loaded and processed. GraphChi continues
to iterate until all vertexes and edges in the shards are processed.

4.3 Fine-Grained Benchmark
Concurrent compaction in recent garbage collectors (e.g., ZGC and
Shenandoah), as described before in Section 2.2, introduce new
overheads on the application performance. Typically, this overhead
presents itself as a consequence of the need for synchronisation
between mutator and collector, usually affecting the application’
throughput (e.g., barriers), memory usage (e.g., brooks pointers),
pressure over the TLB (e.g., coloured pointers) and execution time
by correlation with the former. In generational collectors, a write
barrier being triggered to update the remembered set, every time
a field of an object is updated or a new reference is stored, also
presents a overhead on performance (as described in Section 2.1). To
better understand precisely how and howmuch these techniques af-
fect performance metrics, we developed a micro-benchmark meant
to stress these particular components.

The main idea behind the fine-grained benchmark is that for
some garbage collectors, certain workload operations trigger spe-
cific garbage collector components, which has a performance im-
pact (e.g., read and write operations trigger read and write bar-
riers, respectively). Therefore, the base design of a fine-grained
benchmark would consist of populating a small data structure (e.g.,
HashMap in Java) in memory and running a workload on it to try
and stress a particular garbage collector component. The goal is
that by varying the percentages of read and write operations over
different micro-benchmark executions, we can determine the cost
in terms of throughput, latency and memory usage of the read and
write barriers associated with those operations. In Figure 1, we
show the life cycle of our micro-benchmark. A detailed descrip-
tion of the micro-benchmark implementation is present in the full
document.

5 EVALUATION
Usually, garbage collectors can be divided into three groups regard-
ing performance: i) those that offer a guarantee of low pause times,
typically under ten milliseconds, such as the ZGC and Shenandoah;
ii) those that seek to achieve the best throughput possible, such
as the ParallelOld; iii) and those that attempt to strike a compro-
mise between low pause times without sacrificing the application’s
throughput too much, such as the CMS and G1 collectors. To better
understand the trade-offs between each group, we study specific
performance metrics using the benchmarks described in Chapter 4.
In particular, we focus our analysis on the following performance
metrics: application throughput, memory utilisation, and latency.

The experiments consist of all possible combinations of the fol-
lowing:

(1) We use several Garbage Collectors (see Section 2), more
specifically the ParallelOld, CMS , G1, ZGC, and Shenandoah.

(2) We increase the size of the Java Virtual Machine (OpenJDK
11 Hotspot) heap, so that we may observe performance wise
how each garbage collector behaves with different sized
heaps and interpret why it performs that way.

(3) We use the benchmarks described in Chapter 4 (i.e., DaCapo,
Cassandra, Lucene, GraphChi, and the micro-benchmark),
which determine the type and numbers of accesses used in
each experiment.

The experiment results were analysed in different ways accord-
ing to the particular performance metric in question. We decided to
extract the number of operations per second performed by an appli-
cation and use a 95% confidence interval as the application through-
put metric. Latency was measured across multiple percentiles (i.e.,
99th, 99.9th, worst) of all pauses. Lastly, memory utilization was
determined as the percentage of heap space used by an application
over the defined total heap space with a 95% confidence interval,
extracting as well the max memory usage the application reached
during the benchmark execution. The reason we use 95% confi-
dence intervals instead of higher confidence intervals is so that
the result intervals are tight enough that there is sufficient dif-
ferentiation between the garbage collectors without losing much
confidence. With higher confidence intervals, the intervals become
significantly wider, which causes considerable overlapping when
comparing results between different garbage collectors.

5.1 Evaluation Setup
The evaluation was performed on a server equipped with an Intel
Xeon E5505, with 16 GB of RAM, with a Linux version 3.13. Each
experiment runs five times in complete isolation, enough to detect
and discard outliers. To ensure minimal overhead caused by the
Java Virtual Machine (e.g., JVM loading, JIT compilation), the first
two minutes of execution in each experiment were discarded. Heap
sizes vary between the values of 2GB up to a maximum of 12GB for
each of the used garbage collectors, i.e., ParallelOld, CMS, G1, ZGC,
Shenandoah. For all benchmarks, we set the initial heap size at the
same value as the maximum heap size and pre-touched the pages to
avoid runtime resizing, and memory commit hiccups. The number
of concurrent threads with respect to the application threads and
stop-the-world worker threads is left to the default value of the
JVM.
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Figure 1: High-level view of our micro benchmark

5.2 Results
5.2.1 Micro Benchmark. We start by analysing fine-grained bench-
marks that stress-tests the component that we suspect to be the
playing a major factor for the trade-off between performance met-
rics, as described in Section 4.3.

The workload stresses the memory barriers present in the dif-
ferent collectors in a controlled environment, more accurately the
remembered-set barriers in the generational collectors (e.g., Paral-
lelOld, CMS and G1) and the memory barriers that allow concurrent
compaction in the concurrent garbage collectors (e.g., Shenandoah
and ZGC).

The workload in our micro-benchmark mainly allocates small
objects that are very likely to be promoted to the old generation
(i.e., it does not abide by generational hypothesis that most objects
die young) while also being referenced by old generation objects,
which exercises the remembered set barriers. Combinedwith a large
allocation rate and garbage being created in the old generation, this
workload presents a highly stressful memory management for the
generational collectors. To exercise the memory barriers in the
concurrent collectors, all operations (i.e., read and writes) are done
over non-primitive types, which triggers a read and write barrier,
respectively.

Figure 2, shows for each garbage collector the application through-
put for our workload as we increase the percentage of read oper-
ations. The main finding regarding throughput is that when com-
paring the generational collectors, CMS is the most affected by the
workload characteristics as shown by the up to 50% decrease in
throughput when compared to G1 and ParallelOld. This decrease is
caused by CMS trying to promote objects from the young gener-
ation while concurrently performing mark-and-sweep of the old
generation. However, CMS ultimately falls back to a full GC as it
fails to concurrently collect the old generation fast enough. Since
the ParallelOld only collects the old generation through full col-
lections, the frequency of a full GC is higher, but their duration is
lower than CMS lessening the impact on throughput.

As for the concurrent collectors (i.e., Shenandoah and ZGC),
these present significantly lower throughput than the generational
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Figure 2: Throughput Results for the Micro Benchmark

collectors due to synchronization barriers that allow concurrent
compaction. When comparing ZGC and Shenandoah, the former
shows slightly higher throughput as it does not require the use
of write barriers in its implementation. Both concurrent collectors
manage to keep STW GC pauses below 10 ms with ZGC showing a
slightly higher sensitivity to the percentage of write operations.

With regards to memory usage, when comparing the concurrent
(i.e., Shenandoah and ZGC) and generational collectors (except G1),
the first one shows significantly higher memory footprints than
the second. Non-generational collectors take considerable longer
to collect garbage as they require the whole heap to be traced in
each collection, which results in a larger amount of accumulated
garbage in each collection. Shenandoah particularly shows a higher
memory footprint than all other collectors, which is mainly due to
a design choice (i.e., the usage of Brooks pointers as described in
Section 2.2 and the default adaptive heuristics).

When comparing the memory footprint between generational
collectors, the ParallelOld has a well-defined constant memory
ceiling, which is mainly dependent on the available memory space
as full garbage collections of the heap are triggered when there is a
failure in promoting a young generation object. Since most garbage
is being created in the old generation, this requires a full garbage
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ZGC without LVB

collection so that memory may be made available for objects to be
promoted. The mostly-concurrent mark-and-sweep collector allows
CMS to delay or even remove the need for a full garbage collection
to collect the old generation. However, as these mostly-concurrent
collections are either triggered by default at 90% of the heap capacity
or started with the aim of completing the collection cycle before
the old generation is exhausted, this may result in slightly higher
memory footprints for specific workloads (e.g., write-intensive)
when compared to ParallelOld mainly due to garbage collection
promptness. As shown in Figure 3, due to the high allocation rate,
CMS tradeoff does not pay off as it still falls back to full garbage
collections to reclaim and compact the old generation at a higher
memory threshold. For G1, as a region-based collector, the trade-off
for significantly less full garbage collections of the heap presents
itself in part in higher memory usages as a remembered set must
be maintained for each region and the collection of highly used
regions is delayed.

Concurrency Barriers. The primary purpose of this evaluation
is to assert the existence of a throughput overhead in concurrent
collectors (e.g., ZGC and Shenandoah) prompted by the necessity of
memory barriers to performing concurrent compaction. To measure
ZGC read barriers, named load-value barriers (LVB), we analyse
the throughput difference between the application performing read
operations over primitive types (which do not trigger LVB) and
read operations over non-primitive types (which triggers an LVB
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Figure 5: Throughput for the DaCapo Benchmark
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Figure 6: Worst Pause Times for the DaCapo Benchmark

on every read operation). Figure 4 shows the throughput result for
the experiment, which confirms a slight throughput overhead for
the non-primitive execution of the generic application. As shown
in the plot, the overhead is only noticeable for workloads with a
high percentage of read operations (above 60%) where it shows up
to 19% overhead on throughput. Furthermore, it shows that as the
percentage of read operations increases, so does the overhead on
throughput.

5.2.2 DaCapo Benchmark Suite. The main reason we use the Da-
Capo Benchmark suite in our evaluation is to understand how
the concurrent collectors (i.e., Shenandoah and ZGC) behave with
different workloads in smaller heap sizes and how they compare
to the generational collectors. For smaller heap sizes, according
to our results with the DaCapo benchmark suite, which is com-
posed of sub-benchmarks that simulate real-world workloads that
focus on different performance features. We found that the con-
current collectors on average perform 21%-26% worse than the
generational collectors throughput-wise for most sub-benchmarks.
Figure 5 shows the results for the throughput of the DaCapo Bench-
mark Suite, normalized to the current default JDK garbage collector
G1.

This finding is in agreement with our evaluation with ZGC and
Shenandoah (see Figure 4), where we confirmed a slight throughput
overhead with the memory barriers that allow Shenandoah and
ZGC to perform concurrent compaction. We found that both collec-
tors were inconsistent with maintaining pauses under 10ms for the
various benchmarks for the latency metric. Both collectors reached
worst-case pauses of up to 50ms (similar to the generational collec-
tors) in several benchmarks, as show in Figure 6. Regardingmemory
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Figure 7: Rate of G1 Humongous Regions per non-
Humongous Region for the Big Data Platforms Workloads

footprint and latency, in our evaluation with DaCapo, Shenandoah
shows a higher sensitivity to smaller heap sizes than ZGC.

5.2.3 Storage Platforms. Considering the evaluation of the garbage
collectors with the Big Data platforms, our primary purpose was
to determine the different garbage collectors’ scalability regarding
application throughput, latency and memory usage.

Cassandra and Lucene. The workloads used to benchmark Cas-
sandra were presented in Section 4.2.1, and operates upon a 2GB
working set. Regarding the heap size available to all workloads,
we benchmark Cassandra with 2, 4, 6, and 8GB heap sizes for all
garbage collectors. For Lucene wewere only able to evaluate Lucene
with 2, 3, 4, and 5GB total. The choice of heap sizes was limited
by the evaluation setup (see Section 5.1), where evaluations with
Cassandra on heap sizes above 8GB showed results highly affected
by the over-committing of memory by the system. On top of Lucene,
we perform client searches while continuously updating the index
(read and write transactions), and since these are done in separate
java virtual machines we were limited to half the available memory
for each virtual machine.
Latency-oriented The results presented with Cassandra and Lucene,
both storage platforms, show that if we want to minimize the la-
tency metric, ZGC and Shenandoah both guarantee the 99.9th per-
centile of STW GC pauses below 10 ms. However, ZGC showed
worst-case pauses of up to 50ms, which may require some profiling
and tuning. The generational collectors (i.e., ParalellOld, CMS and
G1) showed a slight increase in pause times as the percentage of
write operations increased (i.e., RW and WI workloads show higher
pause times than RI, and the WR shows lower pause times than
the WI). As the percentage of write operations increase, so does
the speed at which the memory ceiling is reached, triggering a full
collection of the heap which are responsible for most lengthy GC
pause times in ParallelOld. CMS showed lower pause times than
ParallelOld by performing mostly concurrent collections, which
allowed CMS to avoid falling back to full collections of the heap.
G1 showed pause times higher than CMS and ParallelOld, mainly
caused by a large number of humongous objects in the Cassandra
workloads (as shown in Figure 7) and lack of G1 specific tuning
(G1 targets by default 200ms pause times). Figure 7 shows for all
the Big Data workloads in our evaluation, the rate of G1 humon-
gous regions. This rate is calculated as the number of humongous
regions divided by the number of non-humongous region in the
old generation for the different evaluated heap sizes.

Heap Size

Th
ro

ug
hp

ut
 (

no
rm

.)

0.90

0.93

0.95

0.98

1.00

2GB 4GB 6GB 8GB

RI RW WI
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As for the scalability of the generational collectors, all showed
an increase in the 99th percentile of GC pause times as the heap size
increased. As the heap size increases, so does the size of the young
generation for the ParallelOld, which results in slightly longer but
still small collections. However, if a full garbage collection is trig-
gered (which occurred for the experiments with high max memory
usages with ParallelOld), a trace of the whole heap is required to
reclaim unreachable objects and perform compaction of the old
generation. The time it takes to perform this endeavour is propor-
tional to the size of the whole heap, which explains the increase
in worst GC pause times as the heap size increases for ParallelOld.
On average, ParallelOld, CMS and G1 showed a 23%, 9% and 16%
increase in 99th percentile GC pause times, respectively, as the
heap size increased for the Cassandra Benchmark. However, G1
seems to reduce the GC pause times across all percentiles when
the heap size is at least 3-4x the size of the working set which is
related to a drastic decrease in the number of humongous regions.
This decrease in the number of humongous regions is due to G1
increasing the regions’ sizes as the heap size increases, which also
automatically increases the threshold size for a object to be placed
in a humongous region (as shown in Figure 7). Lucene shows the
same behaviour as the heap size increases for all the generational
Collectors. However, the length of the GC pause times is drastically
reduced when compared to Cassandra. This reduction occurs due
to two factors: i) a good spatial locality of unreachable objects in
the old generation, causing less fragmented heaps, which take con-
siderably less effort (and therefore time) to collect than a highly
fragmented heap caused by poor spatial locality; ii) a drastic re-
duction in the size of the working set objects, which is shown in
Figure 7 (the number of G1 humongous regions never surpasses
3% the number of old regions).For the worst GC pause times, Paral-
lelOld, CMS and G1 shows on average a 22%, 25% and 22% increase
in the 99th percentile GC pause times, respectively, as the heap size
increases for the Lucene workload.

When performing the same evaluationwith Cassandra but chang-
ing G1 to target pause times similar to CMS and ParallelOld (50ms),
G1 showed to be able to reduce 99th percentile pause times by 16%
in smaller heap sizes and up to 50% in larger heap sizes. However,
targeting lower pause times presented an overhead on throughput,
as shown in Figure 8, where G1 shows a reduction in application
throughput of 3% for smaller heap sizes and up to 6% in larger heap
sizes. Figures 8 shows G1 application throughput for each Cassan-
dra workload with G1 targeting 50ms pause times. All values are
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Figure 10: Application Throughput (normalized to G1) for
Lucene Workload

normalized to the same experiment but with G1 targeting 200ms
pause times. Even though G1 managed to reduce pause times sig-
nificantly, it still shows higher pause times than all other collectors
(up to 138% in smaller heap sizes and 25% in larger heap sizes). We
estimate G1 to be able to show pause times similar to ParallelOld at
10-12GB heap sizes, which represents 5-6x the size of the working
set.
Throughput-oriented If we want to maximize the throughput met-
ric, for the storage platforms, we have to consider the size of the
objects we are dealing with to make a choice. Suppose the workload
is mostly comprised of small objects. In that case, Lucene’s results
(see Figure 10) show that Shenandoah and the ParallelOld are the
best collectors if memory is not a constraint as they appear to scale
better than the other collectors. If memory is a limitation, G1 and
CMS show the highest throughput; however, its scalability could
not be ascertained.

Suppose the workload comprises variable-sized objects where
the percentage of humongous regions with G1 is superior to 50%.
In that case, the ParallelOld is the most suitable GC according to
our results with Cassandra. If memory is not a constraint, then
ZGC quickly surpasses the ParallelOld as the heap increases while
maintaining all pauses under 10ms. Figure 11 shows the throughput
growth of all collectors for the different evaluated heap sizes for
Cassandra RW workload) The other Cassandra workloads (WI and
RI) show a similar throughput plot.

5.2.4 Processing Platforms. For processing platforms, the results
withGraphChi shows significant similarities with ourmicro-benchmark.
Both workloads allocate small objects that are mostly guaranteed to
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Figure 11: Application Throughput (normalized to G1) for
Cassandra RWWorkload
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Figure 12: Application Throughput (normalized to G1) for
GraphChi CCWorkload
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Figure 13: Application Throughput (normalized to G1) for
GraphChi PR Workload

be promoted to the old generation, which show that the CMS is the
collector who suffers the most in performance as the old generation
will eventually fall back to a full GC for Big Data applications whose
objects do not behave according to the generational hypothesis (as
shown in Figures 2, 12 and 13).

Graphchi. GraphChi is used in our evaluation as an example of a
Big Data processing platform and throughput-oriented application.
The workloads used to benchmark GraphChi were presented in
Section 4.2.3. Regarding the heap size available to both workloads
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Figure 14: Pause Time Percentiles (ms) for GraphChi CC
Workload
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Figure 15: Pause Time Percentiles (ms) for GraphChi PR
Workload

(i.e., CC and PR), we benchmark GraphChi with 4, 6, 8 and 10GB
heap sizes for all garbage collectors.
Latency-oriented According to our results with GraphChi, for pro-
cessing platforms, if wewant tominimize the latencymetric, Shenan-
doah guarantees pauses under 10ms, while ZGC guarantees pauses
of less than 30ms with similar throughput results. However, it is
important to remember that Shenandoah has a memory footprint
superior to ZGC.
Throughput-oriented If we want to maximize the throughput met-
ric, then G1 is the most suitable GC for our application if memory
is not a limitation. Otherwise, ParallelOld shows better throughput
results for larger heap sizes while showing smaller STW GC dura-
tion, as a result of more memory resulting significantly in less full
garbage collections of the heap. Figures 14 and 15 show on a loga-
rithmic scale, the latency profile for each garbage collector as the
heap size increases for the ConnectedComponents and PageRank
workloads, respectively.

6 CONCLUSIONS
We have seen an increase in the number of languages that run on
top of runtime systems in recent years. Some examples of widely
adopted languages that run on top of such runtimes are JavaScript,
Java, C#, Scala, Python, and Go. The widespread use of such lan-
guages shows that application developers want to take advantage
of all the benefits of using a runtime system and show that current
runtimes’ design is mature, providing competitive performance
compared to traditional languages such as C or C++. Therefore,
considering this, we foresee that runtime system utilization will
continue to grow in the future, suggesting the need for more re-
search in this area (such as the one presented in this work).

Answering our primary goal of giving hints on which garbage
collector is best suited to fit an application’s performance targets,

we concluded that current (classic) garbage collectors are still de
facto most suited collectors for smaller heap sizes. ZGC and Shenan-
doah significant tradeoff in lower throughput does not pay-off, as it
presents comparable pause times to the generational collectors for
small heaps. However, for Big Data applications, ZGC and Shenan-
doah are always the best collectors if we want to minimize the
latency metric. They present significant reductions in pause times
compared to the generational collectors, independently of the heap
size. ZGC and Shenandoah also show that if memory is not a con-
straint, they scale better than the generational collectors, providing
in most cases higher or comparable throughput. Otherwise, if we
want to maximize the throughput metric under a memory con-
straint, we found that the generational collectors are the still better
option. However, we have to consider the size of objects in the
working set, if the workload follows the generational hypothesis,
etc., to decide which particular GC to use. For a middle-ground
between latency and throughput, we found G1 to be the better
collector. However, its performance is highly dependant on the size
of objects in the working set and tuning performed.
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