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Abstract

Epilepsy is a neurological disease that affects about 50 million people worldwide, and around 50
thousand in Portugal alone. It is a disorder of the central nervous system, characterized by recurrent
seizures that can have a massive impact in the physical and mental health of the people who suffer from
it, as well as their loved ones.

Research is an invaluable tool in the improvement of conditions for clinicians and patients to deal
with epilepsy. However data is key, and it is not always available, at least not in the desired conditions.
Accordingly, this work proposes a practical alternative for the acquisition of biosignals using wearable
devices, with the ultimate goal of providing a fully automated seizure detection system, for scalable long-
term dataset creation.

EpiBOX was conceived as a practical and standalone multimodal acquisition system with capacity
for acquiring, displaying and storing up to 12 different channels, simultaneously, with a simple interaction
framework. Additionally, a seizure-specific SVM classifier was designed for eight different types of seizure,
using a limited-channel configuration (Fp1-Fp2). The dataset used was TUH EEG Seizure Corpus, for
which phenomenal results were achieved for tonic-clonic and myoclonic seizures, with sensitivities of
98.9% and 98.2%, as well as precisions of 100% and 99.8%, respectively.

This dissertation provides important ground work for larger collaborative projects in the field of
epilepsy and others, serving both as a complementary tool for research, as well as first steps for some
technological solutions.
Keywords: epilepsy, seizure detection, EEG, biosignal acquisition, BITalino, Raspberry Pi

1. Introduction
According to the World Health Organization

(WHO), 50 million people worldwide, and 50 thou-
sand people in Portugal, suffer from epilepsy, a
noncommunicable neurological disease that can
affect people of all ages.

This condition can have tremendous effects on
the lives of the people who suffer from it and the
people close to them, either due to the health im-
pacts it carries, such as the physical impairments
that can result from a seizure and the increased
risk of other chronic health conditions; or due to
the socio-economic burden it often brings.

Research in biomedical signals and systems has
an invaluable role in the evolution of how patients
and clinicians deal with epilepsy (as in any other
medical condition), as it can provide novel tools to
diagnose, monitor and manage the condition. An
essential agent in research is data and, in some
cases, it is not easily available. In epilepsy, there

are several available open-access online datasets
(such as CHB-MIT [15] and TUSZ [13]), however,
each dataset has its own singularities, either re-
garding seizure type, demographics of the sub-
jects, annotations, etc.

Moreover, the COVID-19 pandemic mitigation
measures introduced additional difficulties for the
management of the disease. In particular, there
has been a significant decrease between in the
patient-clinician encounters and inpatient visits for
long-term monitoring. This created a pressing
need for new ways of facilitating wearable and
practical patient monitoring, especially based on
remote and automated minimally-assisted meth-
ods.

Therefore, the purpose of this work is to cre-
ate an autonomous system for continuous or near-
continuous data acquisition using wearable de-
vices (EpiBOX ) and a seizure detection algo-
rithm. This is a necessary stepping stone to
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achieve the ultimate goal of providing a fully au-
tomated seizure detection system, which will en-
able scalable long-term dataset creation contain-
ing in-hospital and at-home recordings, both longi-
tudinal and cross-sectional [3]. Moreover, EpiBOX
is not limited to seizure detection and Electroen-
cephalography (EEG) acquisition. It is designed as
a versatile acquisition system, that can record mul-
timodal biosignal data, and can be integrated with
whichever Machine Learning (ML) algorithm.

2. Background
According to the WHO, epilepsy is characterized

by recurrent seizures, which are sudden and un-
controlled disturbances in the electrical activity of
the brain. However, a single seizure does not im-
ply epilepsy, but rather it is diagnosed only in the
event of at least two unprovoked seizures.

In epileptic seizures in particular, there are three
distinctly relevant features: the seizure focus (i.e.
the region of the brain where the sudden excessive
electrical discharge started), how far it spreads
across the brain and the symptoms it causes. In
focal (or partial) seizures, the focus is confined to
a specific region of the brain (and may spread from
there), whereas in generalized seizures the exces-
sive electrical discharge starts virtually simultane-
ously across the brain. Table 1 describes the differ-
ent seizure types within these two categories, and
based on the three key features.

Table 1: Types of seizures within generalized and focal
seizures, along with a description and common manifestations.
Source: Ochal et al. (The Temple University Hospital EEG Cor-
pus: Annotation Guidelines, 2020)

Seizure
Type

Description

Tonic Associated with stiffening of the mus-
cles and impaired consciousness.

Clonic Sustained, rhythmic jerking and po-
tential loss of consciousness, fol-
lowed by confusion.

Tonic-
clonic

Involves loss of consciousness and
violent muscle contractions.

Atonic Involves the loss of tone of muscles in
the body.

Myoclonic Results in brief involuntary twitching
or myoclonus.

Absence Involves lapse in attention, may result
in impaired memory.

Simple
partial

Onset in one location of the brain
(with the possibility of spreading).
Usually brief, characterized by full
awareness but may cause sensory
responses.

Complex
partial

Same as simple focal, but character-
ized by impaired awareness.

3. State-of-the-Art

Automated Electroencephalography (EEG) anal-
ysis for the detection of epileptic seizures is ex-
tensively studied in literature, encompassing sev-
eral feature extraction techniques and machine
learning methods, many of which show satisfac-
tory performances. However, high-density EEG
acquisition is only reasonable in clinical settings.
There is some literature researching the chan-
nels/montages that might be more significant for
the task of seizure detection, with the purpose of
limiting their use for wearable version of the acqui-
sition.

This type of study can be performed using, for
example, filter methods in order to find the most
relevant/informative channels and filtering out the
remaining [5] or wrapper-based methods (such
as backward-elimination) to identify the subset of
channels that provide the best seizure detection
performance [10].

Alternatively, a subset of channels can be pre-
determined based on domain knowledge and its
predictive power can be estimated directly from its
performance on seizure detection. Both Lin et al.
[8] and Sopic et al. [16] conducted similar studies,
but with different numbers of channels. Lin et al.
reported an average detection rate of 92.68% and
False Positive Rate (FPR) of 0.527/h for channel
Fp2-F8; and Sopic et al. achieved similar results,
with average sensitivity of 93.80% and specificity
of 93.37%, using channels F8-T4 and F7-T3.

Peterson et al. [11] suggested an interesting ap-
proach for the detection of absence seizures, in
particular, investigating the detection performance
of single channels (in absence seizures), from a
set of 18 channels. Their findings indicate that
frontal channels are overall better at discriminat-
ing this type of seizures. The authors reported that
the best overall channel was F7-FP1 (with a sen-
sitivity of 99.1% and a FPR of 0.5/h), followed by
F7-F3 (with the same sensitivity but with a FPR of
1.0/h). Fp1-Fp2 (which is particularly relevant for
this work) also achieved a reasonable performance
(with a sensitivity of 93.7% and FPR of 1.4/h).

4. EpiBOX - Biosignal Acquisition Setup

The designed setup for long-term biosig-
nal acquisition is composed of three main
elements, which interact through different
routes/mechanisms: 1) An autonomous recording
unit; 2) A biosignal acquisition system; and 3) A
mobile app. The setup is responsible for perform-
ing signal acquisition, storing the acquired signal
and providing its visualization to the user. Figure 1
illustrates the elements involved in the setup and
the communication channels between each.
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Figure 1: Architecture of the proposed system: elements involved and communication channels between each element. The area
colored in green corresponds to the communication channel between the RPi and the acquisition devices (Bluetooth); the area
colored in blue corresponds to the communication channel between the RPi and the mobile app (MQTT), which is purposefully
contained within the grey colored area (wireless network).

4.1. Elements of EpiBOX
Autonomous recording unit: The autonomous

recording unit is based on a Raspberry Pi (RPi),
which is a tiny, single-board computer that pro-
vides a good trade-off between portability and pro-
cessing power, for this particular application. It
acts as the main driver of the whole system, being
the sole communication agent with the biosignal
acquisition system and being responsible for the
launching and maintenance of the communication
channel with the mobile app. The mobile app acts
as a user-friendly interface with the headless RPi
through a pre-defined set of messages that trig-
ger certain actions on the RPi (e.g. which chan-
nels to acquire or when to start the acquisition).
These messages are exchanged between the two
elements through a MQTT protocol.

MQTT however, is built upon a wireless network,
which would be naive to expect to have available in
every home/hospital environment. Hence, the RPi
guarantees the setup of a standalone network.

Biosignal acquisition system: For data acqui-
sition, this work builds upon previous and ongoing
work from the Pattern and Image Analysis (PIA-Lx)
research group, at Instituto de Telecomunicações
(IT), and uses BITalino. BITalino is a hardware
and software toolkit, specifically designed to ac-
quire body signals, which has demonstrated to be a
valid equipment for research [4], superior to several
of its counterparts [7]. It allows the flexibility of con-
necting several different sensors beyond EEG (e.g.
Electrocardiography (ECG), Electrodermal Activity
(EDA), and several others); as well as enabling the
reconfiguration of the setup to different physical for-
mats.

The device provides the raw signals produced by
the analog-to-digital converter, which can be eas-
ily accessed - a crucial feature for the development

of EpiBOX. Furthermore, it allows for easy interop-
erability with a range of platforms, including RPi,
and provides an easy-to-use Python module. The
connection of the RPi to each BITalino is config-
ured whenever the acquisition process is triggered,
through the methods provided in this module.

An invaluable component of this toolkit is the
Bluetooth module, that acts as the communication
channel between the BITalino and the RPi, allow-
ing for real-time wireless data streaming. For the
purpose of this work, considering that each BITal-
ino allows to acquire up to 6 analog channels si-
multaneously and synchronously, a maximum of 2
devices were accounted for.

Communication protocol: MQTT is an ex-
tremely lightweight and reliable communication
protocol. It is particularly suitable for event-
driven machine-to-machine communication, mak-
ing MQTT very fit for our purpose of communi-
cating between the Raspberry Pi and the mobile
phone 1.

For this work, the RPi was set as the MQTT
broker, launching it on boot on the local network.
Both the RPi (as a client) and the mobile phone
connect to the broker, protected by password, and
subscribe to the topic ”rpi”, ensuring communica-
tion between the two, while increasing the privacy
of the transaction. This architecture corresponds
to the right portion of the illustration of the setup
(Figure 1).

Standalone wireless network: For the commu-
nication between the devices to be settled, there
needs to be a network available, which is respon-
sible for providing the environment in which the
MQTT protocol is established and can create the

1The fact that the communication between the Raspberry Pi
and the mobile phone is entirely based on rather short strings,
further enhances the suitability of MQTT protocol.
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channel for the message exchange. The Rasp-
berry Pi was configured to work as a wireless ac-
cess point to run a separate, private network. With-
out access to the Ethernet, the RPi can not provide
access to the internet, however, for this particular
setup, this acts as an advantageous asset; it pro-
vides the means needed to set the MQTT channel
within the network, while enhancing the overall se-
curity. For an additional layer of security, connec-
tion to this network is password protected.

4.2. Data Storage and Visualization
In every acquisition with this setup, there are two

major procedures happening: the storing of the ac-
quired data in a .txt file (saved with the identifica-
tion of the patient and the acquisition session) and
the real-time plotting of the acquired data when-
ever the user accesses the mobile app. They hap-
pen concurrently with the actual acquisition by the
BITalino device(s).

Storing: While the BITalino device acquires
data, the developed software receives it in batches
of 100 samples on the Raspberry Pi, to avoid the
computationally expensive process of sending one
sample at a time through Bluetooth. The RPi orga-
nizes and concatenates the data from the multiple
BITalino devices (if that is the case), which is then
saved in the corresponding .txt file. This file in-
cludes a description header that contains all the in-
formation needed to interpret the data saved, such
as the MAC address of each BITalino, the channels
acquired from each, the signal being acquired, and
other relevant settings

Visualization: The first step towards visualiza-
tion is the decimation of the data, applied to each
batch of 100 samples. This procedure is required
to allow for proper display of the signals, further ex-
plained below. The target sampling rate is 100 Hz,
which represents a significant subsampling com-
pared to the usual 1000 Hz used for physiological
signals, while at the same time preserving the most
significant frequencies of each type of signal.

As in any system, both the hardware and soft-
ware are not 100% reliable, and in a setup like
this one, in which several components and systems
are involved, the probability of error occurrence
is not negligible. Hence, the setup provides the
user some insight on the acquisition process, by
allowing near-to real-time visualization of the sig-
nal being acquired. Every time a new set of sam-
ples is received by the mobile app, each channel is
gone through and each sample point is individually
drawn in the corresponding plot.

The number of points simultaneous points dis-
played in each plot is in fact dependent on the
device hosting the mobile app, as it corresponds
to the available width for the plot, i.e. the num-

ber of samples corresponds to the number of pix-
els (which, in turn, establishes the time interval of
the signal that the user can visualize at any given
instant, as described in (1)). With this implemen-
tation, we guarantee optimal adaptability for every
mobile device and, most importantly, that there is
not an excess amount of points being drawn with-
out any practical effect on visualization.

tinterval =
width(plot)

sampling rate
(1)

5. Characterization of EpiBOX

Table 2: Characteristics obtained for EpiBOX, where the first
two sections correspond to a trial acquisition of approximately
10 hours (with ∼5 minutes of active screen time) and the last
one corresponds to inherent communication properties of Epi-
BOX (estimated for optimal conditions, without any physical bar-
riers).

Memory usage App: 87.97 MB
Data: 46.55 MB

Energy con-
sumption

17.93 mAh

Frame rendering w/ visualization: 30.3 ms
w/o visualization: 9.9 ms

Acquisition dura-
tion

10 h, 15 min and 35.7 s

Total samples Expected: 36 935 687
Actual: 36 827 800

# Lost samples in
batch

0

# Files Expected: 11
Actual: 12

File durations (51±16) min and (9±19) s
File sizes (110 ± 41) MB

Bluetooth range ∼10 m
WiFi speed 72 Mbps
WiFi strength -30 dBm

Overall, EpiBOX exhibits satisfactory properties,
particularly regarding the acquired data and the
communication channels (see Table 2), adequate
for application in a hospital/home environment.
Moreover, one of the advantages of EpiBOX, which
is not explicit in the Table, is the security of the data
transfer, considering it is executed through a pri-
vate network, not connected to the internet.

5.1. EEG Acquisition Wearable
Part of the purpose of this work is to develop

a seizure detection algorithm that can be inte-
grated with EpiBOX for a continuous monitoring,
and simultaneous event detection. EEG is a gold-
standard in the analysis of epilepsy, particularly in
the detection and prediction of seizures. As such,
we required a wearable device for the acquisition
of this biosignal, that could be directly implemented
with EpiBOX.
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EmotAI’s headband was specifically designed
for Esports analytics (namely cognitive, emotional
and behavioral), however, it has potential for use
in other areas, such as epilepsy. It provides the
recording of 2-channel EEG, through 2 pairs of dry
electrodes positioned to acquire the channels cor-
responding to Fp1 and Fp2. It also has an addi-
tional electrode, connected to the left ear, that acts
as reference and allows to decrease noise and ar-
tifacts (the patterns that are common between the
reference and the main electrodes), as well as a
Photoplethysmography (PPG) sensor. The limited-
channel configuration that EmotAI provides is par-
ticularly suitable for the goals of this work as it en-
ables a relatively discreet approach for continuous
monitoring of EEG. Moreover, EmotAI’s headband
is based on BITalino, which guarantees the neces-
sary scientific rigor of measurements, as well as
a seamless integration with EpiBOX without any
adaptation needed.

6. Seizure Detection Algorithm
Due to COVID-19 restrictions, it was not possi-

ble to collect real-world data in the context of this
work, hence, an external dataset was used (and
adapted) to act as a proof of concept of the acqui-
sition of EEG data using EmotAI’s headband, and
simultaneous automatic seizure detection.

6.1. Data and Preprocessing
Dataset: The TUH EEG Seizure Corpus [13]

was used, one of the largest publicly available
archive of clinical scalp-EEG, created by Temple
University Hospital. The use of this database
was only possible due to the participation in the
Neureka 2020 Epilepsy Challenge. The database
consists of approximately 504 hours of scalp-
EEG recordings (∼ 7% corresponding to seizures),
from 692 patients and containing more than 3000
seizures, all manually annotated. The dataset uses
2 different references for the recordings: Aver-
age Reference (AR) montage uses the average of
a certain number of electrodes as the reference,
whereas Linked-Eears Reference (LE) uses a lead
adapter to link both ears, using this as reference
[6]. Two montages are defined, based on the refer-
ence electrode used: 0103 (AR) and 02 (LE).

The annotations (provided as a .txt file
for each acquisition file) in TUSZ contain 12
different labels: Focal Non-Specific Seizures
(FNSZ), Generalized Seizures (GNSZ), Sim-
ple Partial Seizures (SPSZ), Complex Partial
Seizures (CPSZ), Absence Seizures (ABSZ), Tonic
Seizures (TNSZ), Clonic Seizures (CNSZ), Tonic-
Clonic Seizures (TCSZ), Atonic Seizures (ATSZ),
Myoclonic Seizures(MYSZ), and Non-Epileptic
Seizures (NESZ). Non-seizure events are anno-
tated as Background (BCKG).

Re-referencing: As mentioned, the algorithm
will be designed as a proof of concept of seizure
detection using EmotAI’s headband, therefore only
two channels will be extracted from the acquisition
files, stored in European Data Format (EDF): Fp1-
REF and Fp2-REF. For all acquisition files, in both
datasets (0103 and 02), the channels Fp1-REF
and Fp2-REF were extracted and re-referenced to
Fp1-Fp2, as in (2), timestamp-wise, resulting in a
single channel. In theory, this re-referencing to a
common montage would be enough to cancel the
effects of the different reference points; however, it
is important to note that, in practice, this might not
be the case: the reference point can have a ma-
jor impact on the nature of the waveforms, due to
the nonlinearity of the brain and scalp conduction
paths [9]. As such, the potential effect of the initial
reference will be analyzed during this work.

(Fp1−REF )− (Fp2−REF ) = Fp1− Fp2 (2)

Denoising: It is known that filtering can cause
significant distortion of the signal, hence why many
researchers choose to skip this preprocessing step
[18]. However, low-frequency noise is usually the
predominant source of noise in electrophysiologi-
cal data [18] and can have a major impact in the
extraction of features (particularly spectral ones).
All recordings were filtered using an 8-order high-
pass filter, with cutoff frequency of 0.8 Hz and an
16-order lowpass filter, with cutoff frequency of 48
Hz. Note that the choice of 0.8 Hz for the cut-
off frequency is slightly above the recommended
in [18]. However, it was a conscious decision, as
it allows to not only remove the unwanted, low-
frequency, noise components, but also to approxi-
mate the range of frequencies of the TUSZ record-
ings to the one EmotAI’s headband is able to ac-
quire (considering BITalino’s EEG bandwidth).

Signal segmentation and feature extraction:
Regarding the length of the epochs, there is
some degree of variety across literature, where
it is suggested a trade-off between avoiding non-
stationarity (too long epochs) and not overlooking
important information (too short epochs that can
not capture lower frequency patterns). However
most agree on a reasonably short epoch. For
example, neurologists typically analyze EEGs in
windows of 10 seconds and identify events with
a temporal resolution of ∼1 second [12]. Hence,
each recording was split into into non-overlapping
epochs, with duration of 1 second. The complete
set of extracted features for each epoch, composed
of nonlinear features (Higuchi Fractal Dimension,
Sample Entropy and Hurst Exponent) and DWT-
based features (enumerated in Table 3) corre-
sponds to a single feature vector concatenated to
form a single array of dimension 1× 28 features.
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Table 3: List of features extracted for each epoch in the scope
of this work. RE: Relative Energies, Mean: Mean of DWT coeffi-
cients, Std: Standard deviation of coefficients, Kurt: Kurtosis of
coefficients, Skew: Skewness of coefficients. cAn: approximate
coefficients from level n, cDn: detail coefficients from level n.

DWT-based
RE Mean Std Kurt Skew

recD2 meancA5 stdcA5 kurtcA5 skewcA5

... meancD5 stdcD5 kurtcD5 skewcD5

recD5

...
...

...
...

recA5 meancD2 stdcD2 kurtcD2 skewcD2

6.2. Sample Preprocessing and Feature Selection
Train-test split : Targeting the implementation of

an online algorithm (that may have temporal con-
straints in its final classification state), it is prefer-
able to test the performance in an online format as
well. However, in order to do so, the test samples
must be consecutive and have a temporal depen-
dency. Hence, an alternative splitting mechanism
was applied, based on an exhaustive search tech-
nique, which aims at finding the best combination
of recording sessions that yields a balanced test
subset, with approximately 20% of seizure sam-
ples.

Feature selection: For the purpose of this work,
two main criteria were used for the filter selection
method: linear separability and differential spread.
Statistical methods that assume specific conditions
(e.g. normal distribution) are not suitable for this
particular application, given that it can not be guar-
anteed for all the variables under study. Hence, an
alternative method was used - overlap coefficients
- that measures the overlap of the histograms of
both classes (background and seizure).

Figure 2 illustrates the results obtained for mon-
tage 02. CPSZ is the seizure type which shows
the largest overlap between the two distributions
across all features, which is not very promising
in terms of their usability for the upcoming task.
ABSZ, TCSZ (except between stdcD4 and skewcA5)
and MYSZ on the other hand, show much more
promising results, as we can see from the consis-
tently lower coverlap values. The set of ultimately
selected features for montage 02 are identified with
a white asterisk.

Outlier removal and feature scaling: Out-
liers can be particularly harmful when scaling with
a bounded range is performed prior to training,
hence why outlier removal is a crucial step in the
context of this work. This was performed through
the Interquartile Range method (illustrated in (3)).

IQR = Q3−Q1

outliers : x < Q1− 3× IQR || x > Q3 + 3× IQR

(3)

Figure 2: Heatmap with the coefficients of overlap between the
distributions of background and the respective seizure. Rows
correspond to the different seizure types and columns corre-
spond to set of extracted features. Extracted from dataset 02.

Each feature was also standardized (i.e. 0 mean
and unit variance) prior to model training, using
sklearn’s StandardScaler().

6.3. Classifier
Offline training: For each montage and each

seizure type, a Support Vector Machine (SVM)
classifier, with Radial Basis Function (RBF) ker-
nel, was trained. Particularly in the field of epileptic
seizure detection, SVM with RBF have been as-
sociated to very satisfactory results, often superior
to the state-of-the-art, both in limited-channel and
high-density configurations, e.g. [11, 2, 17].

The hyperparameter tuning of the regularization
parameter (C) and kernel coefficient (gamma) was
performed by grid search, with 5-fold cross valida-
tion (using the logarithmic grids C = [10, 1, 0.1] and
gamma = [0.1, 0.01, 0.001], which provide a rela-
tively large range).

2-fold testing: Testing was performed in two dif-
ferent ways: offline and online. Online testing sim-
ulates an online classification procedure, i.e. for
each sample received by the classifier, one label
is assigned. It also has an additional step in the
classification pipeline: a temporal constraint of 6
seconds 2 for the classification of seizures and the
re-classification (to seizure) of single background
samples within seizure samples.

6.4. Results
Hyperparameters: The best hyperparameters

were chosen as the ones that obtained the best
overall score across the 5 cross validations, per-
formed during training. Interestingly, within the
same montage, the values of the regularization

2Literature reports that EEG abnormalities are required to
persist for a minimum of 6-10 seconds in order to be considered
a seizure. [14]
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Table 4: Summary of the number of test samples after the splitting procedure described above. The first row indicates the dataset
to which the subsets belong. With these values we can infer how balanced the test subsets are and how close they correspond to
20% of the seizure samples. Note: ABSZ and MYSZ from 0103 did not have enough seizure samples, hence why they were not
included in the analysis.

0103 02
bckg sz target bckg sz target

FNSZ 4149 5355 20849 1830 2894 3206
GNSZ 5321 5301 8820 2952 5290 2953
SPSZ 476 248 424 – – –
CPSZ 5662 4237 5777 1367 1269 1245
ABSZ – – 3 1089 139 159
TNSZ 229 69 235 – – —
TCSZ 517 436 448 723 542 658
MYSZ – – 4 628 606 258

parameter were consistent across seizure types
(C = 1 for 0103 and C = 10 for 02). Similarly,
the kernel coefficients were the same for both mon-
tages, assuming an intermediate value, meaning
each sample does not have a very large nor very
small range of influence in classification. Nonethe-
less, we can observe that the regularization param-
eter is larger for montage 02. From this, we can in-
fer that montage 0103 has overall less separability
between classes, which implies a larger regulariza-
tion to avoid overfitting to the training samples.

Test results: The results from the framework
described above allow for three different frames
of analysis: 1) The feasibility of the proposed
electrode configuration in detecting each type of
seizure, independently; 2) The added value of
the correction implementation using temporal con-
straints; and 3) The impact of the reference elec-
trode. Table 5 shows the classification results for
the test subsets, using the best hyperparameters.
The values correspond to the average of F1-scores
across seizure and background classes.

Table 5: Classification results for the test subsets, using the
best hyperparameters, defined above. The values correspond
to the average of F1-scores, averaged over seizure and back-
ground classes (in %).

0103 02
offline online offline online

FNSZ 79.9 83.5 70.1 72.5
GNSZ 53.3 51.0 60.6 61.6
SPSZ 47.1 40.8 – –
CPSZ 41.3 42.4 62.2 63.3
ABSZ – – 74.6 82.2
TNSZ 30.7 29.3 – –
TCSZ 73.9 78.9 99.2 99.5
MYSZ – – 93.4 99.0

We can start by acknowledging that the online
format of classification, which includes the correc-
tion algorithm, is consistently superior to its offline
counterpart (except for GNSZ, SPSZ and TNSZ

of montage 0103). To validate this inference, a
Wilcoxon signed-rank test for pairwise testing was
adopted, under the null hypothesis that the median
of the differences in performances (between offline
and online) was positive against the alternative that
it was negative. The test showed that the cor-
rection algorithm elicited a statistically significant
improvement in the performance of the classifica-
tion using the subsets from montage 02 (w = 0.0,
p = 0.02), but not from montage 0103 (w = 11.0,
p = 0.58).

Given this, it is also interesting to note that mon-
tage 02 has overall better results than montage
0103 (except for the detection of FNSZ), which
again reflects the overlap between classes in 0103.
This contributes to the initial assumption that the
reference used in the montage does have the
potential to significantly impact the classification,
even after re-referencing. However, contrary to the
reference used in 0103 (Average Reference), the
reference used in 02 (Linked-Ears Reference) is
largely similar to the one in EmotAI’s headband
(Left Ear Reference). Therefore, the fact that this
montage exhibits better results is encouraging in
regards to the proposed future implementations.

Considering the evidence of the effect of the
montage, the analysis regarding the individual
seizure types will be focused on montage 02 alone.
Table 6 shows a more comprehensive group of
performance measures for montage 02 with online
testing.

Although FNSZ was not the type of seizure with
best performance, the reported results are satis-
factory, with an almost perfect sensitivity to seizure
events, albeit with a significant presence of false
positives. Similarly, ABSZ shows a large sensitivity,
comparable to the one reported in [11], for the de-
tection of absence seizures, using the same elec-
trode configuration (sensitivity: 93.7%). However,
the test results show a significantly lower precision
than that of [11] (precision: 86.7%).
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Table 6: Classification results for montage 02, with the online
testing format (including the correction algorithm). Acc: Accu-
racy, Sn: Sensitivity, P: Precision.

Acc % Sn % P %
FNSZ 77.8 99.4 73.6
GNSZ 64.0 41.5 69.3
CPSZ 63.5 57.9 63.2
ABSZ 90.5 98.6 54.4
TCSZ 99.5 98.9 100
MYSZ 99.0 98.2 99.8

Considering that GNSZ and CPSZ display con-
siderably lower overall performances than that of
the remaining types of seizures, can lead us to in-
fer that the chosen configuration of electrodes can-
cels out the relevant electric patterns that would be
crucial to distinguish between a seizure event and
background. Although montage 02 did not have
any SPSZ or TNSZ events, the results obtained
with 0103 indicate the performances would likely
be similar to GNSZ and CPSZ. Nevertheless, it is
relevant to notice that CPSZ and SPSZ, like FNSZ,
are very broad categories of seizures, in the sense
that they can have several different focalities, which
can result in contrasting detection performances
for different seizure onset localizations and, there-
fore, overall lower performance.

As anticipated during the analysis of the over-
lap coefficients, the best overall performance was
found for TCSZ, closely followed by MYSZ, with
performances comparable (and in most cases, su-
perior) to the state of the art reported for limited
channel configurations, as evidenced in Table 7.

7. Achievements
With this work we showed that it is possible

to automatically detect Tonic-Clonic Seizures and
Myoclonic Seizures using the limited channel con-
figuration of Fp1-Fp2. The algorithms designed for
these two seizure types achieved sensitivities of
98.9% and 98.2%, as well as precisions of 100%
and 99.8%, respectively, in the task of distinguish-
ing between non-ictal and ictal samples. These re-
sults are incredibly satisfactory, representing per-
formances comparable (and in most cases supe-
rior) to the state-of-the-art of similar works.

Furthermore, it also suggested the possibil-
ity of extending this detection to Focal Non-
Specific Seizures and Absence Seizures, with fur-
ther analysis regarding these two seizure types, as
they achieved moderately adequate performances.
They reported very high sensitivities of 99.4% and
98.6%, but disappointingly low precisions of 73.6%
and 54.4%. These results clearly indicate the need
to improve the representation of the background
class, as it was typically mistaken by seizure sam-

ples. Additionally, the obtained results suggest that
this particular channel configuration might not be
adequate to detect Generalized Seizures, Com-
plex Partial Seizures, Simple Partial Seizures and
Tonic Seizures, considering their overall lower per-
formance results in all testing configurations.

By performing separate analysis for each mon-
tage, we were able to verify the impact of the ref-
erence electrode in the overall classification task,
showing that the montage with Linked-Ears Ref-
erence (LE) has consistently better performances
than the one with Average Reference (AR). Nev-
ertheless, these results are promising, since the
proposed future implementations of the detection
algorithm are intended for EmotAI’s headband: a
limited-channel EEG acquisition wearable, with a
reference electrode very similar to LE (i.e. Left-Ear
Reference).

Regarding the autonomous system for data ac-
quisition, EpiBOX operates as a standalone unit
that acquires, displays and stores up to 12 differ-
ent biosignal channels, simultaneously. It oper-
ates within a private wireless network, in which an
MQTT broker was successfully established, guar-
anteeing the communication between the UI and
the autonomous recording unit (Raspberry Pi). A
preliminary technical characterization of EpiBOX
was performed, indicating satisfactory properties
of the system, including a large efficiency in the ac-
quisition (with only 0.3% of non-covered acquisition
time), moderate memory usage and energy con-
sumption, adequate WiFi speed to provide near-
real time transfer between the acquisition device
and the UI, estimated as 0.165 ms, as well as a
suitable Bluetooth range to operate within an inpa-
tient monitoring visit or home environment.

Furthermore, EpiBOX addresses all the issues
identified in the currently available biosignal ac-
quisition tool within Instituto de Telecomunicações
(IT), as it guarantees the same acquisition flexi-
bility (imposing no restrictions in terms of which
signals to acquire, nor relating to acquisition con-
figurations); while, at the same time, providing a
simple interface, which enables the acquisition by
non-technical personnel, contained within a (82 ×
108)mm case.

Despite some efforts that still remain to achieve
the ultimate goal of this work, this dissertation sup-
ports the potential applicability and encourages fur-
ther research in the use of EmotAI’s headband in
the automatic detection of TCSZ, MYSZ (and po-
tentially FNSZ and ABSZ). Furthermore, it simul-
taneously provides all the necessary ground work
to implement the prospected autonomous system
for continuous data acquisition, integrated with the
obtained automatic seizure detection algorithms.
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Table 7: Table of comparison between the results of this work and previous homologous works. (*): patient-specific approach,
N.S.: Not Specified. Acc: Accuracy, Sn: Sensitivity, P: Precision, Sp: Specificity.

Seizures Channels Acc (%) Sn (%) P (%) Sp (%)
TCSZ 99.5 98.9 100 99.2This work MYSZ Fp1-Fp2 99.0 98.2 99.8 98.3

[5] (*) N.S. 3 channels – 80.87 40.47 –

[10] (*) N.S. 1 channel 93.5 – – –2 channels 95.2

[11] ABSZ
F7-FP1

–
99.1 94.8

–F7-F3 99.1 90.2
Fp1-Fp2 93.7 86.7

[8] GNSZ Fp2-F8 92.68 – – –

[16] N.S. F8-T4, F7-T3 – 93.80 – 93.37

[12] N.S. P4-O2, C3-Cz – 31.15 – 40.82

8. Practical Guidelines for Future Work

This dissertation belongs to a larger collabora-
tive work, within IT, which intends to research and
develop technological solutions to mitigate several
drawbacks in the field of epilepsy. This work in
particular acts as the necessary stepping stone to
achieve one of the goals of providing a fully au-
tomated seizure detection system with continuous
monitoring and biosignal acquisition.

With that in mind, future work should start with
three angles of action: 1) Carry out a usability test-
ing phase, which should enable the detection of
limitations and potential improvements of the pro-
posed acquisition system, with the purpose of opti-
mizing the user experience during handling of Epi-
BOX ; 2) build upon the presented mobile app to
create a patient version, integrated with a seizure
diary, thus providing environmental context for the
recorded seizures; and 3) Initiate the assembly of
an EEG dataset with the use of EmotAI’s head-
band.

The third task envisions the study of the appli-
cability of the automatic detection algorithms that
were developed within this dissertation to the data
acquired with the wearable device. Although this
work reports encouraging results using the chan-
nel Fp1-Fp2 for the detection of TCSZ, MYSZ (and
potentially FNSZ and ABSZ), performing a similar
study with data acquired with the actual device is
crucial to take accurate conclusions on the subject.

Furthermore, an interesting analysis (that was
unfortunately not possible to perform in this work)
is the study of the impact of epoch length in the
automatic detection. The author suggests the use
of the present research as ground work to select
a smaller set of features, in order to decrease the
time necessary for feature extraction and conse-
quently enabling this more comprehensive anal-

ysis. Other pertinent considerations include the
investigation of alternative limited-channel config-
urations to surpass the limitations identified in
this work, particularly considering the detection of
GNSZ, CPSZ, SPSZ and TNSZ.

Additionally, the advantages of using multimodal
approaches in seizure detection and prediction
have been acknowledged in several studies [1].
Therefore, the author encourages the use of Epi-
BOX for simultaneous acquisition of EEG and
other modalities, to further investigate the effect of
such approaches in the scope of epileptic seizures.

Finally, it is impossible to not recognize the in-
valuable advantages of seizure prediction, i.e. an-
ticipating when a seizure will occur, based on the
dynamics of pre-ictal periods [1, 3]. Hence, it is un-
deniable that this work will eventually culminate in
a fully automated seizure prediction system, also
with several efforts within the research team of IT
being directed towards this reality. Nevertheless,
all the work done in this dissertation serves either
as a complementary tool to this objective (namely,
EpiBOX ) or as a background research to build use-
ful knowledge upon.
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gal), during the period February 2020 - January
2021, under the supervision of Prof. Ana Luı́sa
Nobre Fred and Prof. Hugo Plácido da Silva and
co-supervised by Dra. Carla Bentes, from Hospital
de Santa Maria.

9



References
[1] M. Abreu, A. Fred, H. Plácido da Silva, and

C. Wang. From Seizure Detection to Pre-
diction: A Review of Wearables and Related
Devices Applicable to Epilepsy via Peripheral
Measurements. Technical Report IT-FMCI-
20190905, Institute of Telecommunications,
03 2020.

[2] U. R. Acharya, R. Yanti, G. Swapna, V. S.
Sree, R. J. Martis, and J. S. Suri. Au-
tomated Diagnosis of Epileptic Electroen-
cephalogram Using Independent Component
Analysis and Discrete Wavelet Transform
for Different Electroencephalogram Durations.
Proc. of the Institution of Mechanical En-
gineers. Part H, Journal of Engineering in
Medicine, 227(3):234–244, 2013.

[3] H. Agboola, C. Solebo, D. Aribike, A. Lesi,
and A. Susu. Seizure Prediction with Adap-
tive Feature Representation Learning. Jour-
nal of Neurology and Neuroscience, 10:294,
jan 2019.

[4] D. Batista, H. P. Silva, A. Fred, C. Moreira,
M. Reis, and H. A. Ferreira. Benchmarking
of the BITalino Biomedical Toolkit Against an
Established Gold Standard. Healthcare Tech-
nology Letters, 6:32–36, 2019.

[5] J. Birjandtalab, M. Baran Pouyan, D. Co-
gan, M. Nourani, and J. Harvey. Au-
tomated Seizure Detection Using Limited-
Channel EEG and Non-Linear Dimension Re-
duction. Computers in Biology and Medicine,
82:49–58, 2017.

[6] S. Ferrell, , V. Mathew, M. Refford, V. Tchiong,
T. Ahsan, I. Obeid, and J. Picone. The Temple
University Hospital EEG Corpus: Electrode
Location and Channel Labels. The Neural En-
gineering Data Consortium, July 2019.

[7] K. Kutt, W. Binek, P. Misiak, G. Nalepa,
and S. Bobek. Towards the Development of
Sensor Platform for Processing Physiological
Data from Wearable Sensors. In Proc. of
the 17th Int’l Conf. on Artificial Intelligence
and Soft Computing 2018, pages 168–178, 06
2018.

[8] S.-K. Lin, Istiqomah, L.-C. Wang, C.-Y. Lin,
and H. Chiueh. An Ultra-Low Power Smart
Headband for Real-Time Epileptic Seizure
Detection. IEEE journal of Translational En-
gineering in Health and Medicine, 6:2700410,
aug 2018.
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