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Abstract

In a reality where the demand for air transport has abruptly dropped due to a situation without
precedent, in a market which had already adapted to high demand, and which was already extremely
competitive, it is necessary to reduce operational costs to survive in a sector which has been mutilated by
these exterior circumstances. One of the areas in which this reduction has most potential is maintenance.
Technological advancements which facilitate the acquiring of flight data and new emerging machine
learning solutions enable the introduction of new methods to address problems deriving from faults in
aircraft components, which not only lead to delays, but many times the impossibility of flying, causing
a condition known as Aircraft-on-Ground (AOG), inevitably leading to major financial consequences.
This project had as objective the creation of a machine learning solution for the predictive maintenance
of the Flight Control System of Portugália Airlines’ fleet, comprised of 13 Embraer aeroplanes. For
this, flight data from the various aircraft sensors were used, as well as alert messages generated by the
aircraft’s systems, and the reports provided by the maintenance teams. Several variables were created
to model the degradation level of the system, so as to provide the necessary information to the created
model, so it could estimate how many flights the system has until it is likely to experience a fault,
based on previous flights. The results show the potential of the solution, and that the model succeeds
in identifying degradation patterns in the system
Keywords: Flight data, Predictive maintenance, Machine learning, Flight control system

1. Introduction
In an age of generally ever growing demand for air
transportation, yet along with a general decrease in
cost of airfares, and especially now with the crisis of
the COVID-19 pandemic which took a blow at the
aeronautical sector worldwide, it becomes increas-
ingly important to decrease operational costs.

Maintenance is a major factor in that regard,
with the global Maintenance, Repair and Overhaul
(MRO) spend in 2018 being valued at $69 billion,
representing 9% of airlines operational costs [1]. In
fact, maintenance improvements have been stated
as being one of the top three savings for airlines,
these savings listed as [1]:

• Health monitoring and predictive maintenance
driven by improved dispatch reliability, labour
productivity,

• Fuel cost savings, and

• Delay reduction through improved turnaround
process.

The maintenance actions of interest to this work
may be classified as one of the four main types: cor-
rective, preventive, condition monitoring, and pre-
dictive maintenance.

Corrective maintenance, also possibly referred to
as run-to-failure maintenance, is the act of repairing
a certain component only after a failure on it has
occurred.

Preventive maintenance, on the other hand, in-
volves a scheduled, regularly performed activity on
a component with the objective of bettering its
chances of not failing. The scheduling of this main-
tenance type may be done under either of two prin-
ciples: time-based (i.e. at a fixed period) or usage-
based (e.g. at a fixed mileage on a vehicle). Pre-
ventive maintenance is recommended when a com-
ponent has an increasing probability of failure over
time; if its failures are random, preventive mainte-
nance is futile.

Condition monitoring involves the assessing of a
component’s reliability based on available operation
data, attempting to identify wear or degradation in
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order to act accordingly.

Finally, predictive maintenance is a step up from
condition monitoring and regards acting to prevent
a failure based on knowledge of when it is going
to occur. In other words, data pertaining to the
component at hand may be used to apply machine
learning and analytics to assess its reliability, thus
performing maintenance actions accordingly and as
needed. As more and more data becomes available,
there is a gradual trend in adopting this technique
to avoid the shortcomings of the others.

The aviation industry is no exception to this
trend. In fact, many condition monitoring so-
lutions exist (specifically referred to as Aircraft
Health Monitoring systems), and more recently an
emerging market for predictive maintenance solu-
tions grows with the increasing desire to reduce
maintenance costs and improve the provided ser-
vices. Fig. 1 and Fig. 2 present the results of a
survey to study the adoption of these maintenance
solutions by the surveyed airlines, showing that over
half of these airlines had already Health Monitoring
Systems in use, and, concerning Preventive Main-
tenance, while it had not been as widely adopted
as the Health Monitoring Systems, already a very
high portion of the airlines relied on it.

Figure 1: Adoption of Aircraft Health Monitoring
systems, according to a survey by Oliver Wyman
[2]

Figure 2: Adoption of Preventive Maintenance Sys-
tems, according to a survey by Oliver Wyman [2]

Machine learning has become an ever so present
concept in the world we live in and so many tech-
nological advancements we rely on today.

And this is so as machine learning is such a versa-
tile concept, expandable to a plethora of subjects,
because instead of relying on programmers hard-
coding ways in which an algorithm should behave,
the machine is expected to learn by itself how to
deal with a certain input. This represents an obvi-
ous advantage to traditional programming: it would
be impossible to input every possible face into an
algorithm so as to have it recognise faces in pho-
tographs, whereas with machine learning, the pro-
gram is required to learn the general features of a
face, and apply that knowledge into some other ex-
ample, being then able to tell, with some degree
of certainty, whether or not there is a face in the
picture.

With such potential, it would only be a waste
to not try to apply machine learning to engineer-
ing problems. And indeed, “machine learning is
becoming a driving force in the field of industry-
grade predictions, delivering significantly more reli-
able forecasts than traditional statistical methods,
particularly where there is access to vast quantities
of ‘unstructured’ data” [3].

The objective of this work is hence to provide
Portugália Airlines with a machine learning solu-
tion to aid in applying predictive maintenance on
the Flight Control System of the aircraft of their
fleet. The solution should be able to output an es-
timated time until the next failure on this system,
i.e the Remaining Useful Life (RUL), taking advan-
tage of the flight data generated by each aircraft,
so that maintenance may rely less on preventive
and especially corrective methods, hence becoming
more efficient and less costly.

2. Fundamentals
Following is an introduction to the aircraft in anal-
ysis, along with an overview of its Flight Controls
System which should acquaint the reader with the
basic workings of each subsystem, along with their
main components, and some terminology. After
this, the available data are presented, and a brief
discussion on the relevant machine learning con-
cepts is had in order to introduce the terms later
used in the Methodology chapter.

2.1. Embraer E190 and its Flight Controls System
The Embraer E190 is part of the Embraer E-Jet
family, which is comprised of four different aircraft
models — E170, E175, E190, and E195 — all of
which narrow-body twin engine aircraft capable of
short to medium range flights, and with a seating
capacity of 70 to 130 seats, being marketed by Em-
braer as regional aircraft with ‘the big jet feel’. [4]

Portugália Airlines’ fleet is currently composed
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of nine Embraer E190 and 4 Embraer E195 [5].
These two variants differ from each other in fuse-
lage length (thus seating capacity) and not much
else. In fact, in terms of the Flight Control System,
and this work, both models are the same, hence
treated the same.

According to Airlines for America, formerly
known as the Air Transport Association of Amer-
ica (ATA), the Flight Control System belongs to the
ATA chapter 27 [6] (henceforth ATA 27, for short),
which is a numbering system standard for all com-
mercial aircraft documentation [7].

The flight control system is the system responsi-
ble for allowing directional control of the aircraft,
being comprised of surfaces on wings and tail, and
being made up of primary and secondary flight con-
trol systems [8]. The primary controls allow con-
trol of the aircraft about the lateral, longitudinal,
and vertical axes and include the following subsys-
tems: Ailerons, Elevators, Multifunction Spoilers,
and Rudder.

The secondary controls serve as aid in lift gener-
ation and handling of the aircraft. These include
the subsystems concerning the Flaps, Slats, Spoil-
ers/Speed Brakes, and Horizontal Stabiliser subsys-
tems. All these surfaces are represented in Fig. 3.

Figure 3: Flight controls system surfaces on the
aircraft [8]

Additionally, an Electrical System is responsible
for operating the electronically controlled fly-by-
wire system.

All controls have position sensors providing read-
ings of where each control for each surface — pilot’s
or copilot’s — is, along with the applied force when
applicable. All control surfaces have surface posi-
tion sensors which provide information on their de-
flection. Additionally, the flaps and slats also have
skew sensors which are used to prevent a skew con-
dition from occurring. A skew condition pertains
to when either the inboard or outboard edge of the
flap moves further than the other [9]; should this

happen, the skew sensors detect this, and the flap
is disallowed from moving further.

Within the subsystems corresponding to each of
the surfaces of the Flight Controls System, the
most critical components in terms of system reli-
ability were found to be the Power Control Units
(PCUs), which provide movement to the surfaces
of the Ailerons, Elevators, Rudder and Spoilers; the
Aileron cables, which provide a mechanical control
over the Aileron surfaces; the Flap and Slat skew
sensors; and the various sensors for the positions of
the aforementioned control surfaces from Fig. 3.

2.2. Available Data
The available data used in this work pertains to
three different sources: flight data consisting of sen-
sor data from the aircraft with readings of the sen-
sors throughout each flight, maintenance and crew
alerting messages generated by the aircraft’s Cen-
tral Maintenance Computer (CMC), and mainte-
nance reports.

The sensor data was obtained via the company
Sagem’s Analysis Ground Station (AGS) software,
which is the flight analysis software tool used by
Portugália Airlines. After exporting, the data con-
sisted of files — a file per flight — with sensor read-
ings of the Flight Control System throughout the
flight.

The event of failure was defined as the appear-
ance of the message FLT CTRL NO DISPATCH in
the Crew-Alerting System (CAS), which is a cau-
tionary message which dictates immediate mainte-
nance intervention, without which the aircraft is not
allowed to fly.

Messages generated by the aircraft’s CMC were
accessed via the Fault History Database (FHDB).
These pertain to maintenance messages generated
by the aircraft when it is in operation, indicating
alerts on its various systems.

Finally, the maintenance reports were accessible
via the AMOS software, the MRO solution in use
by Portugália Airlines.

2.3. Relevant Machine Learning Concepts
The dataset pertaining to the problem at hand con-
sists of sensor data which characterises the function-
ing of the control system of the aircraft throughout
time, and this therefore consists of time series data.
Not all machine learning solutions are suited for this
type of data. Recurrent Neural Networks (RNNs)
have the ability to remember the past and are there-
fore capable of capturing temporal relationships be-
tween the current input in the series and what hap-
pened in the past. However, despite being able to
remember the past, an RNN suffers from the issue
of short-term memory. Given a long input series,
the RNN might be able to relate the current input
with its neighbours but cannot relate it to elements
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which are further away in the series. This leads to
an RNN potentially forgetting useful information
simply due to the series being too long. The so-
lution to this is using instead models which have
longer memory, such as Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU).

Of specific interest to this work is the concept
of Autoencoder. It revolves around an algorithm
learning to encode a signal into a latent space, in
practicality compressing the signal, and its applica-
bility is surprisingly large, especially with respect
to anomaly detection, for example in both [10] and
[11].

Figure 4: Basic architecture of an autoencoder [12]

To have an Autoencoder learn to encode a signal,
it is necessary to have both an Encoder and a De-
coder (see Fig. 4). A signal is input in the Encoder,
which compresses it and feeds it to the Decoder,
which in turn tries to reconstruct the signal back
to its original state. In the end of this cycle, the
algorithm measures how close it was to the original
signal and the reconstruction error is used to iterate
again, repeating the cycle until the desired accuracy
is achieved. At this point, the Encoder can look at
the most relevant characteristics of the input signal
and construct a good encoding of said signal.

The most common way of making use of the con-
cept of Autoencoder in anomaly detection is via its
reconstruction error. The main idea behind this
is that if the Autoencoder is trained to be able
to encode and decode back (read reconstruct) nor-
mal data, then, when tasked with reconstructing
anomalous data, the reconstruction error will be
greater. This error can therefore be used as a mea-
sure of how anomalous the data is.

2.4. Health Indicator
Many methods to estimate the Remaining Useful
Life of a component revolve around the calculation
of a Health Index (HI). As the nomenclature sug-
gests, this is a numerical value representative of the
system’s health. There are three types of health
index, depending on how or on what basis it is cal-
culated [13]:

• The Physical Health Index is defined from

physical characteristics or parameters of the
current state of the component and its oper-
ation, such as cracks;

• the Probabilistic Health Index is defined by the
probability of the component being in a healthy
state, or its reliability; its value ranges from 0
to 1, 1 being the best possible state;

• the Mathematical Health Index has only math-
ematical meaning and it can present any value.
This is one of the most prevalent Health Index
types in Remaining Useful Life estimation via
machine learning methods, where HI is defined
by the algorithm from a set of data.

3. Methodology
The purpose of this work is to obtain an estimate
of how long a certain aircraft has until it is likely to
experience an event of failure of the Flight Con-
trol System, based on the sensor data available.
The machine learning solution chosen as the ba-
sis for this was proposed in [10], where an LSTM-
Autoencoder was employed to try to determine the
remaining useful lives of several instances in two
different publicly available datasets: the C-MAPSS
Turbofan Engine Dataset [14] and the Milling Ma-
chine Dataset [14].

Furthermore, the methodology used in the
present work to apply this algorithm to the specific
problem can be divided into four different stages:

• Data gathering — feature creation (which is to
say the creation of the possible input variables
for the model, of which a selection would be
made according to their usefulness in describ-
ing the system’s degradation);

• Data pre-processing and feature selection;

• Autoencoder, and

• Data post-processing.

3.1. Algorithm Overview
Given the system of interest’s run-to-failure se-
quences, an Autoencoder is made use of to try to
predict the Remaining Useful Life of a given test
instance which has not yet failed. A run-to-failure
sequence should be understood, in this context, as
the evolution, along time, of the set of features cho-
sen to represent the system’s health: each sequence
begins at a healthy state and ends at the instant
where there is a failure.

For this purpose, first, the Autoencoder is trained
to encode and decode again (i.e. reconstruct)
healthy data only, which is to say, as an approxi-
mation, data where it is known a failure will not
occur in a while. To achieve this, it is assumed that
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the initial cycles of each sequence pertain to healthy
data, so the Autoencoder is trained with those only.

The Autoencoder is then tasked with reconstruct-
ing the full sequences of the train data (which is
to say, the full run-to-failure sequences, with both
healthy cycles and degraded cycles). Because it
was trained on healthy data only, and these full
sequences represent a system that is degrading over
time, it is presumable that the Autoencoder will
make an ever-increasing error throughout the re-
construction of each sequence. This error is then
used as a measurement of the health of the system,
and so a normalisation of it is used as a Health In-
dex. So, for each cycle t of the sequence u, the error

e
(u)
t is normalised as [10]:

h
(u)
t =

e
(u)
M − e(u)t

e
(u)
M − e(u)m

, (1)

where e
(u)
M and e

(u)
m are the maximum and mini-

mum reconstruction errors obtained for sequence u,
respectively.

The result of calculating this Health Index for a
sequence u throughout its length L(u) is a Degra-
dation Curve H(u) which represents the degrading
health of the system, from healthy state to fail-

ure such that H(u) = [h
(u)
1 h

(u)
2 ... h

(u)
t ... h

(u)

L(u) ]. The
Degradation Curves obtained from the train data
are then stored.

Following, the same curves are obtained for the
test data. Because the test data represents in-
stances which have not yet run into a failure, the
resulting Degradation Curves are considered incom-
plete. It is by comparing — matching — the
test Degradation Curves with the train Degrada-
tion Curves that an estimation of the RUL for a
given test instance is made, as represented by Fig. 5,
showing that that estimation is obtained by vary-
ing a time-lag (horizontal offset) between the two
curves and calculating the RUL as the remaining
time cycles on the train curve after the last cycle of
the test curve.

Figure 5: Example of RUL estimation using Degra-
dation Curve matching [10]

There being various train curves and various pos-
sible values for the time-lag presented in Fig. 5,

there are multiple estimates for the RUL of a sin-
gle test instance, so a weighted mean of these es-
timations is taken as the final predicted RUL. The
weights for each estimate are given by the similarity
s between each test curve u∗ and train curve u for
given values of time-lag t, which is computed via
the following expression [10]:

s(u∗, u, t) = exp(−d2(u∗, u, t)/λ), (2)

where

d2(u∗, u, t) =
1

L(u∗)

L(u∗)∑
i=1

(h
(u∗)
i − h(u)i+t)

2 (3)

is the squared Euclidean distance between H(u∗) in
its cycles 1 through L(u∗), and H(u) in its cycles
t through t + L(u∗), and λ (λ > 0) is a parameter
controlling the scale of the similarity, smaller values
of λ implying larger difference in s, even when d is
small.

Thus, each RUL estimate R̂(u∗)(u, t) given by
each train instance and each time lag is used to

compute the final RUL estimate R̂
(u∗)
final by:

R̂
(u∗)
final =

∑
[s(u∗, u, t) · R̂(u∗)(u, t)]∑

s(u∗, u, t)
. (4)

Additionally, this summation is only over combi-
nations of u and t such that

s(u∗, u, t) ≥ α · smax (5)

with 0 ≤ α ≤ 1 and smax as the maximum ob-
tained similarity for a given test instance. This
means that any RUL whose similarity was below
this cutoff would not be used in the estimation.

The parameters λ, α, along with the maximum
allowable time lag tmax between two curves would
be parameters to be configured based on results of
a validation set.

3.2. Data Gathering/Feature Creation
The data gathering stage of the work pertains to
both obtaining the raw sensor data of the many
flights of each aircraft via the AGS software, and the
transformation of said data into usable information
for the algorithm.

The raw data consists of sensor recordings of all
flights from 13 different aircraft, concerning the pe-
riod of around 4 years. For each flight, a file con-
taining the evolution over time of over 70 sensor
readings is stored. This results in over 72 000 files
worth of data, each pertaining to the entirety of the
corresponding flight, making them a considerable
volume of data, and quite unfeasible to use ‘as-is’.

As such, given the flight files, a summary of each
flight containing its most important statistics stored
in variables was created. For this, each subsystem of
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the Flight Controls System was studied and the fi-
nal line-up of features consisted of three main types
of measurements for each given flight:

• Given pilot input how close the subsystem’s re-
sponse is to its theoretical response;

• The reading disparity between sensors which
are supposed to read the same values;

• The applied force required by the pilots to
move the controls.

Each subsystem was then studied based on these
main criteria, when applicable (some controls such
as the flap/slat lever do not have readings for force
applied on them, for instance).

With respect to creating features to gauge the
difference between theoretical and actual surface re-
sponse to a pilot input, the method differed widely
between each surface subsystem. For the Aileron
subsystem, for instance, a table regarding control
yoke rotation and expected left and right aileron de-
flection is given in the Embraer maintenance man-
uals, as presented in Table 1.

Table 1: Control yoke rotation versus left and right
aileron deflection [8]

Control Yoke Left Aileron Right Aileron
40º (LEFT) 25º (UP) 15º (DOWN)
35º (LEFT) 20.64º (UP) 13.54º (DOWN)
30º (LEFT) 17.01º (UP) 11.84º (DOWN)
25º (LEFT) 13.59º (UP) 10.06º (DOWN)
20º (LEFT) 10.52º (UP) 8.20º (DOWN)
15º (LEFT) 7.62º (UP) 6.27º (DOWN)
10º (LEFT) 4.92º (UP) 4.27º (DOWN)
5º (LEFT) 2.36º (UP) 2.18º (DOWN)

0º 0º 0º
5º (RIGHT) 2.24º (DOWN) 2.29º (UP)
10º (RIGHT) 4.36º (DOWN) 4.74º (UP)
15º (RIGHT) 6.43º (DOWN) 7.33º (UP)
20º (RIGHT) 8.33º (DOWN) 10.15º (UP)
25º (RIGHT) 10.21º (DOWN) 13.22º (UP)
30º (RIGHT) 11.96º (DOWN) 16.63º (UP)
35º (RIGHT) 13.67º (DOWN) 20.51º (UP)
40º (RIGHT) 15º (DOWN) 25º (UP)

Table 2: Flap/Slat lever position versus flap deflec-
tion in degrees [8]

Flap/Slat
Lever

Position

Flap
Position
Reading

(º)

Slat
Position
Reading

(º)
0 (UP) 0 0

1 7 15
2 10 15
3 20 15
4 20 25
5 20 25

FULL
(DOWN)

37 25

This allowed the creation of features such as the
average, maximum and minimum recorded differ-

ences between actual and theoretical Aileron sur-
face deflection, given pilot input, by interpolation
of the above-mentioned table.

Other subsystems — such as flaps and slats — did
not require interpolation due to the discrete nature
of the readings: on one hand, the flap/slat lever only
had 7 possible positions; on the other hand, despite
there being a continuous transition between angles
on the surfaces as they move, the AGS software
rounds any value to its closest entry of Table 2.

For these two subsystems, it was possible to di-
rectly measure the delay of the surface response,
after the lever is moved.

Finally, for the Elevator, Rudder and Spoiler sub-
systems, no table such as Table 1 or Table 2 is
provided in the aircraft’s maintenance manuals. In
these cases, the workaround to still be able to find
a theoretical input/output relation was to take files
corresponding to flights which were deemed healthy
(i.e., when it is known a failure is not going to occur
in a while) and compute a linear regression model
between the control’s position and the correspond-
ing surface’s deflection. This can be illustrated by
Fig. 6.

Figure 6: Elevator pilot input (PITCH CPT) ver-
sus surface output; LI = left inboard surface sensor
reading, LO = left outboard surface sensor reading,
LinReg = linear regression

After this step, the same principle for feature cre-
ation as the Ailerons was used, where the difference
between expected and actual surface deflection is
computed throughout the flight, and an average,
maximum and minimum differences are recorded for
the flight summary.

The other source of data pertains to the system
alert messages available in the FHDB. For these, a
feature was created for each subsystem presented
in Section 2.1, each consisting of a weighted sum of
all the messages corresponding to said subsystem.
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The weights for each message type were assigned
based on message importance, which was assessed
by the amount of times that message is present in
maintenance reports from system failures.

3.3. Data Pre-Processing and Feature Selection
The data pre-processing stage pertains to the steps
taken into preparing the gathered data to be input
in the algorithm, such as dealing with abnormali-
ties in the data, rearranging the flight summaries
into run-to-failure sequences, selecting which fea-
tures should be used in the model, normalising the
data, and creating the train, test, and validation
sets to train, tune, and test the model.

Of the 75 total features created across the Flight
Controls System, only a selection was later used in
the algorithm, since there were many which would
only add to the run time and nothing more. This se-
lection was made based on correlation to the faults.
Such correlation is visible in the feature plots, and
an example of this is shown in Fig. 7, where in the
first quarter of 2018, an unusual amount of force
seems to be needed to move the elevator controls;
this period eventually ends after a fault in a Flight
Control Module (FCM), an Electrical System com-
ponent.

Figure 7: Plot of an elevator force feature through-
out a given aircraft’s lifecycle, measuring the aver-
age force needed on the elevator control per flight;
vertical lines mark the dates where there was a fault
in the system, each colour representing the reason
for said fault

The flight summaries comprised of the features
which were selected for the analysis were then or-
ganised in run-to-failure sequences, and the features
were normalised by the following expression:

z =
x−min(x)

max(x)−min(x)
, (6)

where z is the re-scaled feature, x is the original

feature, and min and max are the minimum and
maximum values found for feature x, respectively.

The test and validation sets were sequences ran-
domly taken from the original dataset, simply trun-
cated at random so that the model had to estimate
when failures were going to occur.

3.4. Autoencoder
The used autoencoder was built in the R program-
ming language, making use of the Keras machine
learning library. The encoder consisted of one
LSTM layer with the rectified linear activation func-
tion and with a vector of 256 units as the output —
256 being the found number of units to be the best
balance between computing time and reconstruc-
tion results. The decoder consisted of an LSTM
layer with the ReLU activation function and with a
2D array with shape (number of timesteps, 256) as
its output, followed by a time distributed layer so
that the output of the autoencoder had the same
shape as the original input. Moreover, between the
encoder and decoder a repeat vector layer is re-
quired, so that the input of the decoder has the
required shape for the decoder’s LSTM layer (a 2D
array rather than a vector).

With all this being set, the autoencoder model
was then compiled and trained with the Mean
Squared Error as the loss function, and the Adam
optimiser, on 1000 epochs.

It was then tasked with reconstructing the se-
quences of the train, validation, and test sets.

3.5. Data Post-Processing
After obtaining the reconstructions of the train,
validation, and test sets, the reconstruction errors
throughout each sequence can then be computed.
Considering a time series Z = [z1, z2, ..., zt, ..., zL]
for a sequence u with length L (where zt is the vec-
tor of the features at time t), and considering its
reconstruction Z ′ = [z′1, z

′
2, ..., z

′
t, ..., z

′
L], this error

e
(u)
t is given by:

e
(u)
t = ||z(u)t − z′(u)t ||. (7)

Alternatively, a squared error can be considered
so that larger reconstruction error later results in a
much smaller health index:

e
(u)
t = ||z(u)t − z′(u)t ||2, (8)

and both versions were tested, the best being chosen
via a validation set.

Either of these error measurements would be nor-
malised so as to obtain a health index h

(u)
t , as men-

tioned before in Eq. (1), to arrive at the degradation
curves H(u).

Finally, these degradation curves were used as de-
scribed in the Algorithm Overview to arrive at a
final RUL estimation.
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4. Results
Two sets of results were obtained, where the second
was an attempt to obtain better estimations by fil-
tering some outlier data points which were found to
be due to either a recording, or software issue, con-
cerning sensor readings on the various subsystems.
These points were found to not relate to degrada-
tion of the Flight Control System, hence they were
removed for testing via a cutoff in a feature which
only presented higher values in this situation.

The performance metrics for assessing the model
and configuring the hyper-parameters were the
Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), number of False Positives and num-
ber of False Negatives. A False Positive in this
context was defined as the model underestimating
the RUL by under 15 days, while a False Negative
meant that the model overestimated the RUL by
over 15 days. The MAE and RMSE are presented
in the following expressions:

MAE =
1

n

n∑
u=1

|R̂(u) −R(u)| (9)

RMSE =

√√√√ 1

n

n∑
u=1

(R̂(u) −R(u))2, (10)

4.1. Base Results
The best configuration found for the validation

set was with e
(u)
t = ||z(u)t − z

′(u)
t ||2, λ = 0.0005,

α = 0.74, and tmax = 50. When applied this con-
figuration to the test set, the following results were
outputted by the model, as presented in Fig. 8. The
performance metrics coming from these results fol-
low in Table 3.

Figure 8: Actual and estimated RUL for the test
set, in ascending order of the actual RUL

Table 3: Performance metrics on the RUL estima-
tions from the base results

MAE 25.39
RMSE 31.19

Number of False Positives 5
Number of False Negatives 7

4.2. Data-Filtered Results
The best configuration for the validation set was

found to be with e
(u)
t = ||z(u)t − z′(u)t ||2, λ = 0.0005,

α = 0.95, and tmax = 50. This corresponded to the
estimates for the test set presented in Fig. 9, and
performance metrics presented in Table 4.

Figure 9: Actual and estimated RUL for the test
set, in ascending order of the actual RUL

Table 4: Performance metrics on the RUL estima-
tions from the system-wide-peak-filtered results

MAE 20.04
RMSE 27.97

Number of False Positives 2
Number of False Negatives 7

5. Result Discussion
Having obtained the predictions of the Remaining
Useful Life of the test set, the interest lies in under-
standing the reasons for which the model outputted
a certain RUL estimate and not another. When
the prediction was accurate, the algorithm should
understand why the system failed, thence showing
that in the features corresponding to the failed sub-
system; in the case of a False Positive, there should
be some basis for the algorithm to predict a shorter
RUL than its actual value; and finally, for a False
Negative, it interests to know why the model did
not see any anomalies and thus overestimated the
RUL of a sample sequence.

5.1. Base Results
For the Base Results, it was found that for exam-
ples of True positives the model identified which
subsystem was the reason for the failure of the se-
quence whose RUL it accurately estimated. This is
showcased by the fact that upon inspection of the
run-to-failure sequences in question, their features
and respective reconstructions show a greater re-
construction error in features corresponding to the
failed subsystem.

When looking at False Positive examples, how-
ever, no reason for the low RUL estimate compared
to its true value was found. The fact is that the
model identified anomalous behaviour where there
were no true operational reasons for that behaviour
to be taken as an anomaly: neither complaints from
the crew were found, nor any sort of maintenance
report pointing to any issue within the system.

As for False Negatives, where the estimated RUL
is much greater than its real value, it was found that

8



indeed the model could not identify any anomalies
in the behaviours of the features which could have
tipped it into estimating a shorter RUL. This may
stem from inadequate or insufficiently descriptive
features, as the model was not able to associate the
existing features’ behaviours to anomalies. It is also
possible that degradation only began much closer to
the day of the fault, in which case it would simply
not be possible for the model to accurately predict
the RUL, with the length of sequence it was given.

5.2. Data-Filtered Results
The data-filtered results show a substantial im-
provement to the base results, confirming the as-
sertion that the removed data points were not
consequential to system degradation (at least not
Flight Control System degradation, yet perhaps
some other system not in study in this work).

For these results, it was found that the True Pos-
itives once again that the RUL estimate came from
the model’s ability to identify anomalous behaviour
on the features corresponding to the failed subsys-
tem.

As for False Positives, it was found that the be-
haviours considered anomalous by the model were
indeed connected to the real operation of the air-
craft. In this case, it translated into complaints
from the pilots, or findings from the maintenance
team resulting in small maintenance interventions.
While these had not been considered faults per se,
the algorithm was still able to identify them as a
degraded state of the system.

Finally, with regards to False Negatives, it was
found that the model was simply unable to iden-
tify degradation or an anomalous behaviour in the
system.

5.3. Final Remarks on the Model
The filtered-data results show a promising ability
to detect anomalies in the Flight Control System,
where the True Positives stem from an understand-
ing of which subsystem is degraded, and the False
Positives still give valuable insight to a degrada-
tion which, while not necessarily leading to a major
fault, still has implications in the operation of the
aircraft.

False Negative estimations on both sets of results
show the possible inadequacy of the features in rep-
resenting the degradation of their respective subsys-
tem, and thus the degradation of the overall Flight
Control System. While it has been shown that cer-
tain behaviours in the feature plots seem to directly
relate to some oncoming faults, in truth many other
faults may not show in the gathered features, which
later results in an inaccurate prediction of the RUL.
As also discussed before, there is additionally the
problem of feature behaviour relating to faults, yet
not soon enough that this may be caught by the

algorithm in time. This was indeed the case in
many of the features, where anomalies were only
detectable some days in advance, and even many
times only on the actual day of the fault.

However, likely the major issue with this ap-
proach, was that too many subsystems which were
mostly independent from each other were being
modelled together. There were too many failure
modes, so even if the algorithm might be able to
predict a fault on the Electrical System for instance,
that was no guarantee that it is capable of predict-
ing a fault on the Aileron System. This would have
been of interest to explore, by separating all systems
and analysing them one by one, with only faults
and features pertaining to the respective system,
and perhaps the Electrical System being modelled
together with each of the subsystems which depend
on it. However, the lack of failure data, which had
already been an issue with all the systems together,
would now completely impede such study: there
was no single system with enough failures to cre-
ate an entire dataset of them, and the only system
coming close to that possibility was the Electrical
System, which would invariably require the analy-
sis of features from more subsystems along with it
anyway.

Still, the analysis done on the second set of re-
sults suggests that there is validity in the model’s
interpretation in what is an abnormal behaviour, so
a RUL estimation corresponding to a small value,
while not necessarily meaning there is an imminent
fault, may be an indicative that the aircraft may
benefit from a brief inspection.

6. Conclusions

The ultimate objective of this work was to provide
a solution in failure prediction on the Flight Con-
trol System to allow for a better maintenance strat-
egy beyond scheduled preventive maintenance, and
run-to-failure maintenance, and in that front, being
able to predict a few faults is still better than not
predicting any, so a solution which was not prone
to outputting False Positives was pursued, so that
whenever a small RUL was predicted, the action
should be to inspect the feature reconstructions and
if possible identify the source of the problem, or to
directly inspect the aircraft.

This work arrived at the objective of predicting
the Remaining Useful Life of a set of test sequences
of flights, with reasonable accuracy in predictions
of up to 20 days, and granted that the number of
flights to assess is great enough so as to give the
model enough data points to make its prediction.

Additionally, many statistics to gauge the Flight
Control System’s health were created, for each of
its many subsystems, and many of them proving
to directly relate to faults or system degradation.
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While some of the created features may have too
much variability from many factors to conclude on
the subsystem’s degradation, they may still be use-
ful to assess the performance of the controls, and to
cross check crew complaints with. Other features
were found to relate to some faults, and seeing as
sometimes a maintenance intervention was found to
worsen their respective behaviours, it may be prac-
tical to keep updated plots of each to catch any such
changes in behaviour almost as soon as they hap-
pen. This is also valid for many other features, as
many were seen correlating to some faults, even if
only one or two in the entire dataset.

These features also allowed the identification of
problems in either the recording system, or some
software glitch, which, while not problematic in the
aircraft’s operations, may be a hindrance in further
analysis of aircraft flight data.

Finally, implementation of the feature gathering
routines in Portugália Airlines’ environment could
prove to be beneficial for the reasons already men-
tioned, and even if not for their predictive capabili-
ties, then for their troubleshooting ones. As has al-
ready been shown, many features do relate to faults,
and some of them only show signs of anomaly much
too close to the day of the fault for their predic-
tive capabilities to be of any worth. Many a time,
troubleshooting the Flight Control System is not as
simple as reading an error code and cross checking
it with the maintenance manuals. Perhaps with the
aid of these variables, troubleshooting becomes eas-
ier and hence more efficient, therefore avoiding, or
otherwise minimising, flight delays. The program
would then not only work as a Predictive Mainte-
nance solution, but also a Health Monitoring one.
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