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Resumo

Numa realidade em que a procura de transportes aéreos caiu abruptamente derivando de uma situação

sem precedentes, num mercado que já se adaptara à alta procura, e era já extremamente competi-

tivo, é necessário reduzir os custos operacionais para sobreviver num sector mutilado por estas cir-

cunstâncias exteriores. Uma das áreas em que esta redução tem maior potencial corresponde à área

da manutenção. Avanços nas tecnologias que facilitam a obtenção de dados de voo, e novas soluções

emergentes de aprendizagem automática possibilitam agora a introdução de novos métodos para abor-

dar os problemas derivados de falhas em componentes da aeronave, que causam não só atrasos, como

muitas vezes a impossibilidade de proceder o voo, causando a condição de Aircraft-on-Ground (AOG),

o que leva invariavelmente a consequências financeiras altas.

Este projecto teve por objectivo a criação de uma solução de aprendizagem automática para a

manutenção preditiva correspondente ao Sistema de Controlos de Voo da frota da Portugália Airlines,

composta por 13 aeronaves da Embraer. Para tal, foram usados os dados vindos dos vários sensores

das ditas aeronaves, mensagens de alerta gerados pelas mesmas, e os relatórios provenientes das

equipas de manutenção.

Várias medidas foram criadas para relatar o nı́vel de degradação do sistema, de modo a fornecer

ao modelo criado a informação necessária para que pudesse estimar, com base em voos anteriores,

quantos voos restam até se dar uma falha no sistema.

Os resultados obtidos mostram o potencial da solução e que o modelo consegue identificar padrões

de degradação no sistema.

Palavras-chave: Dados de voo, Manutenção predictiva, Aprendizagem automática, Sistema

de controlo de voo

vii



viii



Abstract

In a reality where the demand for air transport has abruptly dropped due to a situation without precedent,

in a market which had already adapted to high demand, and which was already extremely competitive,

it is necessary to reduce operational costs to survive in a sector which has been mutilated by these

exterior circumstances. One of the areas in which this reduction has most potential is maintenance.

Technological advancements which facilitate the acquiring of flight data and new emerging machine

learning solutions enable the introduction of new methods to address problems deriving from faults in

aircraft components, which not only lead to delays, but many times the impossibility of flying, causing a

condition known as Aircraft-on-Ground (AOG), inevitably leading to major financial consequences.

This project had as objective the creation of a machine learning solution for the predictive mainte-

nance of the Flight Control System of Portugália Airlines’ fleet, comprised of 13 Embraer aeroplanes.

For this, flight data from the various aircraft sensors were used, as well as alert messages generated by

the aircraft’s systems, and the reports provided by the maintenance teams.

Several variables were created to model the degradation level of the system, so as to provide the

necessary information to the created model, so it could estimate how many flights the system has until

it is likely to experience a fault, based on previous flights.

The results show the potential of the solution, and that the model succeeds in identifying degradation

patterns in the system.

Keywords: Flight data, Predictive maintenance, Machine learning, Flight control system
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Chapter 1

Introduction

The following sections discuss the motivation behind this project, with a brief introduction to the mainte-

nance practises in the aviation industry, along with rising tools to make said maintenance more efficient.

After that, the objectives of the project are stated, and the structure of the text of this work is given.

1.1 Motivation

In an age of generally ever growing demand for air transportation (see Fig. 1.1), yet along with a general

decrease in cost of airfares, and especially now with the crisis of the COVID-19 pandemic which took

a blow at the aeronautical sector worldwide, it becomes increasingly important to decrease operational

costs.

Figure 1.1: World annual traffic from 1978 to 2018, in Revenue Passenger Kilometers (RPK) [1]
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Maintenance is a major factor in that regard, with the global Maintenance, Repair and Overhaul

(MRO) spend in 2018 being valued at $69 billion, representing 9% of airlines operational costs [2]. In

fact, maintenance improvements have been stated as being one of the top three savings for airlines,

these savings listed as [2]:

• Health monitoring and predictive maintenance driven by improved dispatch reliability, labour pro-

ductivity,

• Fuel cost savings, and

• Delay reduction through improved turnaround process.

According to [3], the industry definition of maintenance costs is the spend derived from restoring

or maintaining the systems, components, and structures of an aeroplane in an air-worthy condition; it

can be divided in two kinds of cost: direct airframe and engine maintenance, and maintenance over-

head. The former kind pertains to all costs concerning the “servicing, repair, modification, restoration,

inspection, test, and troubleshooting tasks during on-aeroplane and shop maintenance activities”; while

the latter kind pertains to “unallocated labour costs and expenses for maintenance supervision, training,

and planning, equipment rental and utilities”.

The maintenance actions of interest to this work may be classified as one of the four main types:

corrective, preventive, condition monitoring, and predictive maintenance.

Corrective maintenance, also possibly referred to as run-to-failure maintenance, is the act of repair-

ing a certain component only after a failure on it has occurred. While it may be the ideal system for

“low-priority equipment, without which the company’s operations can continue running normally” [4], it

becomes undesirable when it pertains to critical or otherwise generally necessary components.

Preventive maintenance, on the other hand, involves a scheduled, regularly performed activity on a

component with the objective of bettering its chances of not failing. The scheduling of this maintenance

type may be done under either of two principles: time-based (i.e. at a fixed period) or usage-based (e.g.

at a fixed mileage on a vehicle). Preventive maintenance is recommended when a component has an

increasing probability of failure over time; if its failures are random, preventive maintenance is futile.

Condition monitoring involves the assessing of a component’s reliability based on available operation

data, attempting to identify wear or degradation in order to act accordingly.

Finally, predictive maintenance is a step up from condition monitoring and regards acting to prevent a

failure based on knowledge of when it is going to occur. In other words, data pertaining to the component

at hand may be used to apply machine learning and analytics to assess its reliability, thus performing

maintenance actions accordingly and as needed. As more and more data becomes available, there is a

gradual trend in adopting this technique to avoid the shortcomings of the others.

The aviation industry is no exception to this trend. In fact, many condition monitoring solutions exist

(specifically referred to as Aircraft Health Monitoring systems), and more recently an emerging market

for predictive maintenance solutions grows with the increasing desire to reduce maintenance costs and
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improve the provided services. Fig. 1.2 presents the results of a survey to study the adoption of these

maintenance solutions by the surveyed airlines, showing that over half of these airlines had already

Health Monitoring Systems in use, and, concerning Preventive Maintenance, while it had not been as

widely adopted as the Health Monitoring Systems, already a very high portion of the airlines relied on it.

(a) (b)

Figure 1.2: Adoption of Aircraft Health monitoring and Preventive Maintenance Systems, according to a
survey by Oliver Wyman [5]

Aircraft manufacturers already offer health monitoring services. AIRcraft Maintenance ANalisys (AIR-

MAN) is Airbus’ solution [6], used by 140 costumers on around 7 000 aircraft as of 2016. It provides a

constant monitoring of the aircraft’s system’s health and transmits important fault and warning messages

to ground control. Boeing also possesses a service in this area, the Airplane Health Management (AHM)

service [7], which also collects data from the fleet and sends it to ground control.

The manufacturer of the aircraft in analysis, Embraer, also provides a similar service: the AHEAD-

PRO, which provides aircraft usage information, while sending emerging error messages of the aircraft’s

systems in real time to the operation centre, providing with them the likely causes of such messages.

Data generated by the aircraft in Portugália Airlines’ fleet can reach several megabytes per flight.

This data has the potential of being used not only in a health monitoring tool, but also a predictive

maintenance one, which is where the machine learning solution of this work finds its use.

Machine learning has become an ever so present concept in the world we live in and so many

technological advancements we rely on today. Many times, we do not realise what is under the hood,

what engine is driving some piece of technology; but most times we do not even so much as realise, or

care to notice, we are using it. Simply typing in a query on a web search engine and being presented

search suggestions is a product of machine learning advancements. Likewise, having videos, movies

or series which we are likely to enjoy being automatically recommended to us is a product of machine

learning advancements. Text-to-speech, translation software, text recognition and face recognition in

images are all possible thanks to machine learning.

And this is so as machine learning is such a versatile concept, expandable to a plethora of subjects,

because instead of relying on programmers hard-coding ways in which an algorithm should behave, the
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machine is expected to learn by itself how to deal with a certain input. This represents an obvious ad-

vantage to traditional programming: it would be impossible to input every possible face into an algorithm

so as to have it recognise faces in photographs, whereas with machine learning, the program is required

to learn the general features of a face, and apply that knowledge into some other example, being then

able to tell, with some degree of certainty, whether or not there is a face in the picture.

With such potential, it would only be a waste to not try to apply machine learning to engineering

problems. And indeed, “machine learning is becoming a driving force in the field of industry-grade pre-

dictions, delivering significantly more reliable forecasts than traditional statistical methods, particularly

where there is access to vast quantities of ‘unstructured’ data” [8].

1.2 Objectives

The objective of this dissertation is to provide Portugália Airlines with a machine learning solution to aid

in applying predictive maintenance on the Flight Control System of the aircraft of their fleet. The solution

should be able to output an estimated time until the next failure on this system, taking advantage of the

flight data generated by each aircraft, so that maintenance may rely less on preventive and especially

corrective methods, hence becoming more efficient and less costly.

1.3 Thesis Outline

This work is divided in 6 chapters: Introduction, Fundamentals, Methodology, Results, Result Discus-

sion, and Conclusion.

The Introduction chapter aimed to establish the objectives of the project, along with their motivation,

as well as establishing a structure for this text.

The Fundamentals chapter is meant to introduce the main theory of this text to the reader, so as

to provide an easier understanding of the terminology, and the workings of the concepts which are the

basis of the project. Here, an brief overview of the studied aircraft model and its Flight Control System is

made, along with the data that were used to arrive at the desired model; an introduction to some relevant

machine learning fundamentals is also made.

The Methodology chapter discusses and presents the methods used to arrive at the wanted solu-

tion, going through data gathering, data pre-processing, machine learning model used, and data post-

processing to achieve the results.

After this, said results are presented in the Results chapter, where two different sets of Remaining

Useful Life predictions are shown, the second set being an attempt at improving the first set.

Following, the Result Discussion chapter analyses the obtained predictions for each set, discussing

validity and generalisability, and finally exploring the obstacles found on the implementation, along with

what could be done to improve it.

Finally, the Conclusion chapter closes the text with the discussion of the achievements of this work,

along with possible future work to be done as an extension of this.
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Chapter 2

Fundamentals

With the set objective of studying failure predictability on the Flight Control System of the Portugália

Airlines’ fleet via a machine learning solution, some basic fundamentals should be introduced in order

to have a full grasp on the intricacies of the task.

Following is an introduction to the studied aircraft, along with an overview of the Flight Control System

which should acquaint the reader with the basic workings of each subsystem, along with their main

components, and some terminology. After this, the available data are presented, and a brief discussion

on the relevant machine learning concepts is had in order to introduce the terms later used in the

Methodology chapter.

2.1 Embraer E190

The Embraer E190 is part of the Embraer E-Jet family, which is comprised of four different aircraft models

— E170, E175, E190, and E195 — all of which narrow-body twin engine aircraft capable of short to

medium range flights, and with a seating capacity of 70 to 130 seats, being marketed by Embraer as

regional aircraft with ‘the big jet feel’. [9]

Portugália Airlines’ fleet is currently composed of nine Embraer E190 and 4 Embraer E195 [10].

These two variants differ from each other in fuselage length (thus seating capacity) and not much else.

In fact, in terms of the Flight Control System, and this work, both models are the same, hence treated

the same. Table 2.1 shows the general specifications of the E190 model.
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Table 2.1: Embraer E190 general specifications [11]

Engine 2 × General Electric CF34-10E

Power 2 × 20 000 lbf

Avionics Honeywell Primus Epic EFIS

Max Cruise Speed Mach 0.82

Service Ceilling 41 000 ft

Range 4 537 km

Seating Capacity 106 on a 2-class layout

Fuselage Length 36.24 m

Fuselage Diameter 3.01 m

Wingspan 28.27 m

Maximum Take Off Weight 50 300 kg

2.2 Flight Control System – An Overview

(a) Lateral, longitudinal, and vertical axes on the aircraft (b) Flight control system surfaces on the aircraft

Figure 2.1: Flight Control System overview [12]

According to Airlines for America, formerly known as the Air Transport Association of America (ATA),

the Flight Control System belongs to the ATA chapter 27 [13] (henceforth ATA 27, for short), which is a

numbering system standard for all commercial aircraft documentation [14].

The flight control system is the system responsible for allowing directional control of the aircraft,

being comprised of surfaces on wings and tail, and being made up of primary and secondary flight

control systems [12]. The primary controls allow control of the aircraft about the lateral, longitudinal, and

vertical axes (see Fig. 2.1a) and include the following subsystems: Ailerons, Elevators, Multifunction

Spoilers, and Rudder.

The secondary controls serve as aid in lift generation and handling of the aircraft. These include

the Flaps, Slats, Spoilers/Speed Brakes, and Horizontal Stabiliser subsystems. All these surfaces are

represented in Fig. 2.1b.
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Additionally, an Electrical System is responsible for operating the electronically controlled fly-by-wire

system.

All control surfaces have surface position sensors which provide information on their deflection. Ad-

ditionally, the flaps and slats also have skew sensors which are used to prevent a skew condition from

occurring. A skew condition pertains to when either the inboard or outboard edge of the flap moves

further than the other [15]; should this happen, the skew sensors detect this, and the flap is disallowed

from moving further.

In the next sections, a brief description of each of the aforementioned subsystems is given.

2.2.1 Electrical System

The Flight Controls Electrical System is responsible for operating the fly-by-wire technology used to allow

pilot control of most of the control surfaces, and it should not be mistaken for the aircraft’s main Electrical

System, which is not a subject of this project, as it pertains to the ATA chapter 24 [13]. Further mentions

of “Electrical System” in this work henceforth imply “Flight Controls Electrical System”. Fig. 2.2 illustrates

this system’s components and how they interface, which is discussed in the following paragraphs.

Figure 2.2: Flight Control Electrical System components interface [12]

The Flight Controls Electrical System is comprised of a flight control panel, four Flight Control Mod-

ules (FCMs), three Primary Actuator Control Electronics (P-ACEs), a trim control panel, and a fly-by-wire

backup battery [12]. Of these, the FCMs and P-ACEs will be the most mentioned in this text, as they are

the source of most Electrical System faults.

The P-ACEs are analog controllers providing a direct electronic path between the cockpit control

position sensors and the actuators which power the primary control surfaces. Each P-ACE includes two
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ACE channels, A and B. [12]

There are a total of four FCMs, each numbered 1 through 4 accordingly. An FCM is a dual slot wide

module housed in the Modular Avionics Unit (MAU). A MAU is a cabinet system holding multiple Line

Replaceable Modules (LRMs), supplying instalation space, power sources, and the necesseray aircraft

interfaces required for those LRMs. There are three MAUs in an aircraft, only two of them housing

FCMs, MAU1 and MAU3: MAU1 houses FCMs 1 and 2, and MAU3 houses FCMs 3 and 4. The FCMs

are primarly digital controllers which provide the digital interface between the Flight Control System and

the aircraft’s avionics systems. Furthermore, they provide digital control inputs to the P-ACEs, by means

of a Controller Area Network (CAN) bus interface, to augment the cockpit control inputs. [12]

2.2.2 Ailerons

The Ailerons are the only primary control surfaces not operated via fly-by-wire technology. Instead,

movement on the control yoke is transmitted to the surfaces via a hydromechanical control system:

movement on either of the two mechanically-connected control yokes (pilot or copilot) is transmitted to

the torque tubes, then to the cable circuit comprised of corrosion-resistant steel cables, pulleys and

quadrants, and eventually this motion is transmitted by input rods to the hydraulic Power Control Units

(PCUs), which in turn move the aileron surfaces. [12]

The most relevant components to the reliability of this subsystem will be shown to be the cables, and

the PCUs, the latter not exclusively to the Aileron subsystem.

2.2.3 Elevators and Rudder

Both the elevators and the rudder are controlled via fly-by-wire technology. The positions of their respec-

tive controls — control column and pedals — are electronically sensed and processed by the P-ACEs to

move the surfaces with the PCUs. Additionally, the FCMs amplify the cockpit controls signal and transmit

that to the P-ACEs as well, as discussed before. [12]

2.2.4 Horizontal Stabiliser

The horizontal stabiliser is moved by a Horizontal Stabiliser Trim Actuator’s (HSTA’s) one of two brush-

less motors. The Horizontal Stabiliser Actuator Control Electronics (HS-ACE) receives trim signals from

either an FCM via a CAN bus interface, or the cockpit’s trim switches, and in turn sends an input to the

HSTA. [12]

2.2.5 Flaps and Slats

The flaps are electronically commanded via the Slat/Flap Control Lever. When the lever is moved from

one position to another, the Flap/Slat Actuator Control Electronics (FS-ACE) commands the Flap Power

Drive Unit (FPDU), which outputs a rotary motion. This motion is transmitted along the wing by a
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mechanical drive line to the flap actuators, which convert it into a linear motion to move the flap panels

[12]. The slats work analogously to the flaps.

As will later be discussed, the most prevalent failure modes on the Flap and Slat subsystems pertain

to failure of the position sensors, skew sensors, and actuators.

2.2.6 Spoilers and Speed Brakes

The Spoiler and Speed Brake subsystem is comprised of both Ground Spoilers and Multifunction Spoil-

ers.

Ground Spoilers, as the name suggests, are only used on the ground, which is to say, when the

condition “weight-on-wheels” is fulfilled, and theirs is a single function: to decrease the required stopping

distance of the aircraft after touchdown, during the roll-out. These spoilers are deployed automatically

after touchdown by the four FCMs, and there is no other means of input. [12]

In the available dataset, the Ground Spoilers were not found to be the source of any fault, neither

are there much relevant sensor data on them, so they are henceforth neglected toward the system

analysis. For this reason, any further mention of simply “Spoilers” should be understood as “Multifunction

Spoilers”.

The Multifunction Spoilers have four separate functions [12]:

• Roll augmentation to aid the function of the Ailerons, where they are proportionally commanded

by the control wheel’s displacement, as an asymmetrical deployment;

• Lift reduction during flight, controlled by the Speed Brake Handle, and deployed symmetrically;

• During roll-out after touchdown deployed symmetrically with the Ground Spoilers, and

• During steep approach mode, deployed symmetrically.

Each of the six multifunction spoiler panels is controlled by a PCU. Because the Spoiler Actuator

Control Electronics (S-ACE) reside within the FCMs, these PCUs receive input from FCMs 1, 3 and 4,

which in turn receive input from the roll commands and the speed brake handle. [12]

2.3 Available Data

The available data used in this work pertains to three different sources: flight data consisting of sensor

data from the aircraft, maintenance and crew alerting messages generated by the aircraft’s Central

Maintenance Computer (CMC), and maintenance reports.

The sensor data was obtained via the company Sagem’s Analysis Ground Station (AGS) software,

which is the flight analysis software tool used by Portugália Airlines. After exporting, the data consisted

of files — a file per flight — with sensor readings of the Flight Control System throughout the flight.

The event of failure was defined as the appearance of the message FLT CTRL NO DISPATCH in the

Crew-Alerting System (CAS), which is a cautionary message which dictates immediate maintenance

intervention, without which the aircraft is not allowed to fly.
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Messages generated by the aircraft’s CMC were accessed via the Fault History Database (FHDB).

These pertain to maintenance messages generated by the aircraft when it is in operation, indicating

alerts on its various systems.

Finally, the maintenance reports were accessible via the AMOS software, the MRO solution in use

by Portugália Airlines.

2.4 Relevant Machine Learning Concepts

In this section, the relevant machine learning concepts to this work are introduced.

2.4.1 Supervised and Unsupervised Learning

There are two main categories in machine learning pertaining to the nature of the input, and which

influence how an algorithm may or may not be developed. These are supervised and unsupervised

learning. [16]

Supervised learning pertains to when the data from which the algorithm will learn (train data) contains

both the defining variables of the data (the features) and the known result that that combination of

variables yields (the labels). That is to say that, for instance, there could be a dataset consisting of

cars, whose features might be horsepower, mileage, consumption, number of doors, etc., while the

labels might be the prices of said cars. So, for each combination of features given to the algorithm, the

resulting price is also given. The algorithm would then learn from the dataset and, given a test example

it has never seen before, it should be able to output an estimated price for that car based on its previous

given knowledge.

On the other hand, when the data consists of only features and no labels, the corresponding algorithm

would be an unsupervised learning algorithm.

2.4.2 Regression and Classification Problems

Depending on the possible output extracted from the machine learning model, a problem may be clas-

sified as either a Regression problem, or a Classification problem [17]. Going back to the car dataset

example, the output of the algorithm is the price of a car, which could be any value within a continuous

range. This is therefore a Regression problem.

On the other hand, given for instance a dataset of flowers, whose features might be the physical

characteristics of each sample flower, such as height, petal colour, petal length, etc., an algorithm might

be tasked with determining the species of flower that is presented to it. In this case, there are only so

many values (categories) which the output can present, that is to say that there is a discrete range of

values for the output. This is then referred to as a Classification problem.
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2.4.3 Time Series Processing Models

The dataset pertaining to the problem at hand consists of sensor data which characterises the function-

ing of the control system of the aircraft throughout time, and this therefore consists of time series data.

Not all machine learning solutions are suited for this type of data. For example, a regular Neural Network

(NN) takes as input a fixed size vector which is limiting when dealing with a series data input is needed.

One workaround would be to take each step of the series and call the NN repeatedly. However, this

approach would completely disregard the fact that every input of the series depends on what precedes

it: there is no sense of time dependency.

The solution to this issue lies in a variant of the NN called Recurrent Neural Network (RNN). RNNs

have the ability to remember the past and are therefore capable of capturing the relationships between

the current input in the series and what happened in the past. However, despite being able to remember

the past, an RNN suffers from the issue of short-term memory. Given a long input series, the RNN might

be able to relate the current input with its neighbours but cannot relate it to elements which are further

away in the series. This leads to an RNN potentially forgetting useful information simply due to the series

being too long. The solution to this is using instead models which have longer memory, such as Long

Short-Term Memory (LSTM) or Gated Recurrent Units (GRU).

2.4.4 LSTM Layer

Figure 2.3: Architecture of an LSTM unit (left) and a GRU (right) [18]

The way the data is processed in a regular RNN is that each cell receives an input from the data and

the state vector of the preceding cell. These two vectors are concatenated and transformed with a tanh
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function. With this, the cell creates its own state vector and passes it down the next cell. As stated

before, this implementation suffers from short-term memory.

The way this problem is circumvented is by introducing gates in the cell (see Fig. 2.3). In an LSTM

unit, each cell has gates, whose job is to learn which of the data from the preceding cell are important

to keep, and which can be safely thrown away.

2.5 The Autoencoder

Of specific interest to this work is the concept of Autoencoder. It revolves around an algorithm learning

to encode a signal into a latent space, in practicality compressing the signal, and its applicability is

surprisingly large, especially with respect to anomaly detection (as examples, see [19, 20]).

2.5.1 Functioning of an Autoencoder

Figure 2.4: Basic architecture of an autoencoder [21]

To have an Autoencoder learn to encode a signal, it is necessary to have both an Encoder and a Decoder

(see Fig. 2.4). A signal is input in the Encoder, which compresses it and feeds it to the Decoder, which

in turn tries to reconstruct the signal back to its original state. In the end of this cycle, the algorithm

measures how close it was to the original signal and the reconstruction error is used to iterate again,

repeating the cycle until the desired accuracy is achieved. At this point, the Encoder can look at the

most relevant characteristics of the input signal and construct a good encoding of said signal.

2.5.2 Autoencoders in Anomaly Detection

The most common way of making use of the concept of Autoencoder in anomaly detection is via its

reconstruction error. The main idea behind this is that if the Autoencoder is trained to be able to encode

and decode back (read reconstruct) normal data, then, when tasked with reconstructing anomalous
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data, the reconstruction error will be greater. This error can therefore be used as a measure of how

anomalous the data is.

2.6 Health Indicator

Many methods to estimate the Remaining Useful Life of a component revolve around the calculation of a

Health Index (HI). As the nomenclature suggests, this is a numerical value representative of the system’s

health. There are three types of health index, depending on how or on what basis it is calculated [22]:

• The Physical Health Index is defined from physical characteristics or parameters of the current

state of the component and its operation, such as cracks;

• the Probabilistic Health Index is defined by the probability of the component being in a healthy

state, or its reliability; its value ranges from 0 to 1, 1 being the best possible state;

• the Mathematical Health Index has only mathematical meaning and it can present any value. This

is one of the most prevalent Health Index types in Remaining Useful Life estimation via machine

learning methods, where HI is defined by the algorithm from a set of data.
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Chapter 3

Methodology

The purpose of this work is to obtain an estimate of how long a certain aircraft has until it is likely

to experience an event of failure of the Flight Control System, based on the sensor data available.

The machine learning solution chosen as the basis for this was proposed in [19], where an LSTM-

Autoencoder was employed to try to determine the remaining useful lives of several instances in two

different publicly available datasets: the C-MAPSS Turbofan Engine Dataset [23] and the Milling Machine

Dataset [23].

Furthermore, the methodology used in the present work to apply this algorithm to the specific problem

can be divided into four different stages:

• Data gathering — feature creation;

• Data pre-processing and feature selection;

• Autoencoder, and

• Data post-processing.

In the subsequent subsections, an overview of the used algorithm will be made, followed by a de-

scription of each of these four stages.

3.1 Algorithm Overview

Given the system of interest’s run-to-failure sequences of sensor data over time, an Autoencoder is

made use of to try to predict the Remaining Useful Life of a given test instance which has not yet failed.

A run-to-failure sequence should be understood, in this context, as the evolution, along time, of a set of

variables chosen to represent the system’s health: each sequence begins at a healthy state and ends

at the instant where there is a failure.

For this purpose, first, the Autoencoder is trained to encode and decode again (i.e. reconstruct)

healthy data only, which is to say, as an approximation, data where it is known a failure will not occur in
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a while. To achieve this, it is assumed that the initial cycles of each sequence pertain to healthy data, so

the Autoencoder is trained with those only.

Having a trained Autoencoder, it is then tasked with reconstructing the full sequences of the train

data (which is to say, the full run-to-failure sequences, with both healthy cycles and degraded cycles).

Because it was trained on healthy data only, and these full sequences represent a system that is de-

grading over time, it is presumable that the Autoencoder will make an ever-increasing error throughout

the reconstruction of each sequence. This error is then used as a measurement of the health of the

system, and so a normalisation of it is used as a Health Index. So, for each cycle t of the sequence u,

the error e(u)t is normalised as [19]:

h
(u)
t =

e
(u)
M − e(u)t

e
(u)
M − e(u)m

, (3.1)

where e
(u)
M and e

(u)
m are the maximum and minimum reconstruction errors obtained for sequence u,

respectively.

The result of calculating this Health Index for a sequence u throughout its length L(u) is a Degradation

Curve H(u) which represents the degrading health of the system, from healthy state to failure such that

H(u) = [h
(u)
1 h

(u)
2 ... h

(u)
t ... h

(u)

L(u) ]. The Degradation Curves obtained from the train data are then stored.

Following, the same curves are obtained for the test data. Because the test data represents instances

which have not yet run into a failure, the resulting Degradation Curves are considered incomplete. It is

by comparing — matching — the test Degradation Curves with the train Degradation Curves that an

estimation of the RUL for a given test instance is made, as represented by Fig. 3.1, showing that that

estimation is obtained by varying a time-lag (horizontal offset) between the two curves and calculating

the RUL as the remaining time cycles on the train curve after the last cycle of the test curve.

Figure 3.1: Example of RUL estimation using Degradation Curve matching [19]

There being various train curves and various possible values for the time-lag presented in Fig. 3.1,

there are multiple estimates for the RUL of a single test instance, so a weighted mean of these esti-

mations is taken as the final predicted RUL. The weights for each estimate are given by the similarity s

between each test curve u∗ and train curve u for given values of time-lag t, which is computed via the

following expression [19]:
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s(u∗, u, t) = exp(−d2(u∗, u, t)/λ), (3.2)

where

d2(u∗, u, t) =
1

L(u∗)

L(u∗)∑
i=1

(h
(u∗)
i − h(u)i+t)

2 (3.3)

is the squared Euclidean distance between H(u∗) in its cycles 1 through L(u∗), and H(u) in its cycles t

through t+ L(u∗), and

λ > 0

is a parameter controlling the scale of the similarity, smaller values of λ implying larger difference in s,

even when d is small.

Thus, each RUL estimate R̂(u∗)(u, t) given by each train instance and each time lag is used to

compute the final RUL estimate R̂(u∗)
final by:

R̂
(u∗)
final =

∑
[s(u∗, u, t) · R̂(u∗)(u, t)]∑

s(u∗, u, t)
. (3.4)

Additionally, this summation is only over combinations of u and t such that

s(u∗, u, t) ≥ α · smax (3.5)

with 0 ≤ α ≤ 1 and smax as the maximum obtained similarity for a given test instance. This means that

any RUL whose similarity was below this cutoff would not be used in the estimation.

The parameters λ, α, along with the maximum allowable time lag tmax between two curves would be

parameters to be configured based on results of a validation set.

3.2 Data Gathering — Feature Creation

The data gathering stage of the work pertains to both obtaining the raw sensor data of the many flights

of each aircraft via the AGS software, and the transformation of said data into usable information for the

algorithm.

The raw data consists of sensor recordings of all flights from 13 different aircraft, concerning the time

period of around 4 years. For each flight, a file containing the evolution over time of over 70 variables is

stored. This results in over 72 000 files worth of data, each pertaining to the entirety of the corresponding

flight, making them a considerable volume of data, and quite unfeasible to use ‘as-is’.

As such, the first step into making this information serviceable was to discard unnecessary data —

in this case, cutout unwanted flight phases from the files. This was possible since the AGS software is

able to calculate, based on different factors, the flight phase of each moment of the flight, and represent

it via the following numerical mapping, presented in Table 3.1.
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Table 3.1: Numerical mapping of the flight phases in the AGS software

Code Description

0 Illegal

1 Engine Stopped

2 Taxi Out

3 Take-off

4 Rejected Take-off

5 2nd Segment

6 Initial Climb

7 Climb

8 Cruise

9 Descent

10 Approach

11 Final Approach

12 Landing

13 Go Around

14 Taxi In

Seeing as the subject of interest of this work is the control system of the aircraft, the least significant

flight phases are those pertaining to when the aircraft is stopped. Hence, any information relating to

flight phases 0 and 1 was discarded. While this constituted a considerable reduction on the volume of

data, working with flight files was still later found to not be viable: the algorithm would come to require

an evolution, from healthy state to failure, for each aircraft, which would involve setting up the flight data

back-to-back. This would not only be extremely computationally expensive, given the 72 000 files, but it

would also likely fail to capture the important characteristics of each flight, degradation-wise. In other

words, given that the majority of available variables concern the pilots’ inputs in the various controls,

and the respective outputs on the control surfaces, this alone yields little information on the degradation

state of the control system at that flight.

Given this, the second step into setting up the required information was to create a summary of

each flight, containing its most important statistics. That is to say, for each subsystem of the aircraft’s

control system, a set of features thought to relate to degradation was created. Then, all of these flight

summaries were organised in run-to-failure sequences for each aircraft, so as to be studied and used in

the algorithm.

Following is the detailing of the creation of these features per subsystem.

3.2.1 Flight Controls Electrical System

By inspection of the many flights of the various aircraft, it was possible to conclude that, for each sub-

system with dedicated ACEs, the number of engaged ACE channels at a time is mostly the same, and
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exceptions seem to happen very sporadically and many times at the very beginning of the flight (in the

taxi-out phase). While this may be simply due to the AGS software’s mis-categorisation of the flight

phase (i.e. maybe the taxi-out phase actually started some seconds before or after the software’s ac-

knowledgement), it could also be due to a delay in engaging the ACEs. Moreover, when these exceptions

did not happen in the taxi-out phase it could be due to some other problem in the electrical system. So

the features created concerning this are variables which count how many times the number of engaged

ACE channels in each subsystem is not the respective usual value:

• FSACE: Number of times that the number of engaged FS-ACE channels is not 6 in a flight (starting

from the Taxi-Out flight phase);

• HSACE: Number of times that the number of engaged HS-ACE channels is not 1;

• ELACE: Number of times that the number of engaged P-ACE elevator channels is not 4;

• RDACE: Number of times that the number of engaged P-ACE rudder channels is not 2.

Furthermore, with the exception of the Flap/Slat subsystem where all the possible FS-ACE channels

are engaged at the same time, there are spare channels in every subsystem. So, for each flight, only a

portion of the total number of ACE channels is used, and upon inspection of all flights it was possible to

conclude that the groups of engaged/disengaged ACE channels are typically well defined and are inter-

changed each day. To exemplify, there are eight FCM channels for the elevator P-ACEs, corresponding

to 1A, 1B, 2A, 2B, 3A, 3B, 4A and 4B, however only four are used each flight, and there are only two

possible combinations: in a single flight, either channels 1A, 2B, 3A and 4B are used, or channels 1B,

2A, 3B and 4A, with exceptions happening extremely sporadically.

Additionally, it was found that the accuracy of some sensor readings depends on which group of

channels is used for each subsystem, and because of this, it was thought useful to know which channels

are most active in each flight:

• ELACE ENG: Which group of P-ACE elevator channels is engaged in the flight;

• HSACE ENG: Which HS-ACE channel is engaged in the flight;

• RDACE ENG which group of P-ACE rudder channels is engaged in the flight.
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3.2.2 Ailerons

The variables concerning the ailerons given by the AGS software are listed in Table 3.2.

Table 3.2: Parameters provided by the AGS software pertaining to the Aileron Subsystem

Parameter Description

AILL Aileron Surface Left Position

AILR Aileron Surface Right Position

ROLL CW 1A, 1B, 3A, 3B, 4A, 4B Control Wheel Position FCM 1A, 1B, 3A, 3B, 4A, 4B

ROLL FC P1, P2 Control Wheel Force Pilot Sensor 1, 2

ROLL FC C1, C2 Control Wheel Force Copilot Sensor 1, 2

From here, it is visible that the first three rows of the table are variables which are basically the input

of the pilots (ROLL CW xx) and the output on the ailerons (AILL and AILR). In this sense, it was thought

useful to somehow evaluate the input-versus-output relationship throughout the flights and see how that

might correlate to the degradation of the Aileron Subsystem.

The producer of the aircraft at hand, Embraer, provides maintenance manuals, where Table 3.3 is

made available, concerning the ailerons and the control yoke:

Table 3.3: Control yoke rotation versus left and right aileron deflection [12]

Control Yoke Left Aileron Right Aileron

40o (LEFT) 25o (UP) 15o (DOWN)

35o (LEFT) 20.64o (UP) 13.54o (DOWN)

30o (LEFT) 17.01o (UP) 11.84o (DOWN)

25o (LEFT) 13.59o (UP) 10.06o (DOWN)

20o (LEFT) 10.52o (UP) 8.20o (DOWN)

15o (LEFT) 7.62o (UP) 6.27o (DOWN)

10o (LEFT) 4.92o (UP) 4.27o (DOWN)

5o (LEFT) 2.36o (UP) 2.18o (DOWN)

0o 0o 0o

5o (RIGHT) 2.24o (DOWN) 2.29o (UP)

10o (RIGHT) 4.36o (DOWN) 4.74o (UP)

15o (RIGHT) 6.43o (DOWN) 7.33o (UP)

20o (RIGHT) 8.33o (DOWN) 10.15o (UP)

25o (RIGHT) 10.21o (DOWN) 13.22o (UP)

30o (RIGHT) 11.96o (DOWN) 16.63o (UP)

35o (RIGHT) 13.67o (DOWN) 20.51o (UP)

40o (RIGHT) 15o (DOWN) 25o (UP)

With this information, it was possible to fit functions between the control wheel rotation and the
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deflections on each of the ailerons, in order to interpolate the data. From here, the inputs for each

instant of the flights could be used to compute a theoretical output based on those functions, and then

this value could be compared to the actual output on the ailerons. The average difference between the

two values throughout each flight was then stored as a flight summary feature, as were the maximum

and minimum occurring differences in one flight.

It is of note that this theme involving the comparison between a theoretical output and an actual

one is present in the feature creation amongst most flight control subsystems, and furthermore there

are many features which represent the same thing, simply for a different subsystem, so a feature nam-

ing convention was adopted with common representations across subsystems, which are presented in

Table 3.4.

Table 3.4: Feature naming convention commonalities for created features

Representation Description
AV Average

MIN Minimum
MAX Maximum
DIF Difference
VAR Variance

L Left
R Right

POS Position
FC Force
S Surface Sensor

So the variables AIL AVDIF L (R), AIL MINDIF L (R), and AIL MAXDIF L (R) represent the average,

minimum and maximum occurring differences between expected and actual deflections for the left (right)

aileron in a flight, respectively.

On the subject of the Aileron subsystem, it is of value to note that, while there are six variables for

the control wheel position, this arises simply because there are six sensor readings total. There are

two torque tubes below the cockpit, under the control column, each torque tube having three bell cranks

connected to position sensors. As such, the average of the six variables was taken as the pilot input.

Furthermore, in an effort to try and also study the possible correlation between the degradation of the

subsystem and the level of disparity of all six position readings, the average, maximum and minimum

variance in these for each flight were also stored as features in the flight summary, and were called

ROLL CW AVVAR, ROLL CW MAXVAR, and ROLL CW MINVAR, respectively.

Regarding the force variables, features were created to try to see if there might be a correlation

between possible looseness or stiffness of the control wheel (even if only noticeable in the data) and

system degradation: the average, minimum, and maximum absolute forces per flight were then recorded,

and named AIL AVFC, AIL MINFC, and AIL MAXFC respectively.
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3.2.3 Elevator

Concerning the elevator, the AGS software provides the flight parameters listed in Table 3.5.

Unlike the ailerons, there is no theoretical input/output table available for the elevator. As such, it is

not easy to compute an expected, theoretical, value of deflection based on pilot input, however it is not

impossible. Rather than a theoretical relation from the manufacturer, it was instead possible to analyse

various flights to obtain a linear regression model for the expected elevator deflection.

Table 3.5: Parameters provided by the AGS software pertaining to the Elevator Subsystem

Parameter Description

ELEV LI, LO Elevator Surface Position Left Inboard, Left Outboard Sensors

ELEV RI, RO Elevator Surface Position Right Inboard, Right Outboard Sensors

PITCH CPT, FO Control Column Position Pilot, Copilot

PITCH FC P, C Control Column Force Pilot, Copilot

In this case, seeing as the intention was to capture a degradation trend, it was most logical to try

and obtain this regression only for flights where the system was deemed “healthy”. Because of this, the

lifetime of each aircraft was divided into its many run-to-failure sub-sequences (this task is described in

Section 3.3.2 - Lifecycle Splitting. Within these sequences, only a number of initial flights were taken

to calculate the regression between the input PITCH CPT and the various surface position variables

presented in Table 3.5.

Furthermore, when plotting the elevator deflection over the pilot input, it was found that the plots

differed significantly depending on the flight phase. Among other possible reasons, this is due how slow

or how fast the pilots move the controls, as can be shown in Fig. 3.2, which represents two extremes.

(a) (b)

Figure 3.2: Plots of the left elevator deflection sensor readings (inboard in pink and outboard in green)
over the pilot input, for the taxi-out phase (left) and the landing phase (right) of many flights for a

specific aircraft
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During the taxi-out phase, Fig. 3.2a, the pilots test the aircraft controls by moving them and checking

the surface response. These movements are much faster and with a greater range than those typical of

when the aircraft is flying, so there is a noticeable delay and the response of the surface is a function of

both the pilot input and time, hence this simple linear regression model loses its validity. On the other

hand, during the landing phase, Fig. 3.2b, the controls are moved much more slowly, and the response

can be approximated as a function of only the pilot input. All other flight phases fall somewhere between

these two, thus the phase which was chosen to perform the analysis was the landing, as it was the

one where the linear model best applied. Moreover, and for the same reason, the outboard sensor was

chosen for the analysis, as it presented the best fit across all aircraft.

From these results, the same principle as the ailerons was applied: the input of the pilots throughout

each flight in the specified flight phase was used to calculate the theoretical value for elevator deflection

and this result was used to compare to the actual values of deflection. Like the Aileron Subsystem

once again, the average, maximum and minimum differences between expected and actual elevator

deflections in each flight were then stored in the flight summary, for each of the elevators — left and

right. These features were named ELEV AVDIF L (and R), ELEV MAXDIF L (and R), ELEV MINDIF L

(and R), totalling six features.

Another set of features arose due to the fact that each elevator surface can be controlled by either

of two PCUs (inboard or outboard PCU), each having its own position sensor, so there are two position

sensors per elevator surface. Both of the sensors are connected to different P-ACEs, which in turn con-

nect to different FCMs, so a possible difference between the two readings could correlate to degradation

or a fault within this circuit. As such the average, maximum and minimum differences between the two

sensor readings were computed, for each elevator surface, creating the features ELEVS AVDIF L (and

R), ELEVS MAXDIF L (and R), and ELEVS MINDIF L (and R), respectively.

Furthermore, there are two available readings for control column position: one for the pilot, and

one for the copilot, while both control columns are mechanically connected. This means both sensors

should read similar values, so the difference between the two was also studied. Features pertaining to

the average difference, and maximum and minimum occurring differences were stored in variables with

names PITCH POS AVDIF, PITCH POS MAXDIF, PITCH POS MINDIF, respectively.

Finally, the average, maximum and minimum forces were also taken to study possible looseness or

stiffness of the control column. These features were named ELEV AVFC, ELEV MINFC, ELEV MAXFC,

respectively.
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3.2.4 Rudder

The parameters for the rudder taken from the AGS software are presented in Table 3.6.

Table 3.6: Parameters provided by the AGS software pertaining to the Rudder Subsystem

Parameter Description

RUD PDLFC P1, P2 Rudder Pedal Force Pilot Sensors 1, 2

RUD PDLFC C1, C2 Rudder Pedal Force Copilot Sensors 1, 2

RUD PDLL, PDLR Rudder Pedal Position Left, Right

RUD UP Rudder Upper Surface Position Sensor

RUD LO Rudder Surface Position Sensor

Like the elevator, a table regarding pilot input versus control surface deflection is not provided by

Embraer, so the procedure was the same. A group of flights where the control system was assumed

to be healthy was used to compute an input/output relation for each flight phase, and then all of the

flights were assessed based on those relations. The average, maximum and minimum differences for

each flight were taken as the flight summary features RUD AVDIF, RUD MAXDIF, and RUD MINDIF,

respectively.

Another considered set of features relates to the fact that the rudder surface can be operated by either

the upper or lower PCU, each having its own position sensor, all the while the rudder being considered

a single rigid body, for which, in theory, the two sensors should read similar values. For that reason, the

average, maximum, and minimum differences between the two readings throughout the flights were also

taken as features: RUDS AVDIF, RUDS MAXDIF, RUDS MINDIF, respectively.

There are also two values for the position of the rudder pedals and once again it was thought that the

evolving difference between the two readings might correlate to degradation, so the average, maximum

and minimum difference between them was taken per flight: RUD PDL AVDIF, RUD PDL MAXDIF, and

RUD PDL MINDIF, respectively.

Finally, features pertaining to the force exerted on the pedals were also taken. The average, maxi-

mum, and minimum force for each flight were stored in variables RUD PDL AVFC, RUD PDL MAXFC,

and RUD PDL MINFC, respectively.

3.2.5 Horizontal Stabiliser

There were no meaningful variables directly pertaining to the Horizontal Stabiliser available in the flight

files, however the vast majority of Horizontal Stabiliser faults in the dataset were either classified as false

positives (see Section 3.3.2 - Lifecycle Splitting) or have their source in the Electrical System, so it was

understood that the lack of features directly representative of this subsystem was not problematic.
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3.2.6 Flaps

For the flaps, the AGS software provides the parameters listed in Table 3.7:

Table 3.7: Parameters provided by the AGS software pertaining to the Flap Subsystem

Parameter Description

FLAP LVR Flap/Slat Lever Position

FLAPC Flap Surface Corrected Position Angle

Additionally, Embraer makes the following table available in their maintenance manuals, concerning

the position of the flap lever versus the flap surface position, Table 3.8:

Table 3.8: Flap/Slat lever position versus flap deflection in degrees [12]

Flap/Slat Lever Position Inboard Flap Position (o) Outboard Flap Position (o)

0 (UP) 0 0

1 7.1 7.0

2 10.1 10.1

3 20.2 20.0

4 20.2 20.0

5 20.2 20.0

FULL (DOWN) 37.1 36.5

Here, both the input and the output are considered discrete variables: the input because there are

only 7 possible positions for the lever, and the output because, despite there being a continuous transi-

tion from an angle to another on the flaps, the AGS software rounds any value to its closest entry in this

table. In fact, the software further rounds all entries to the unit, so a table regarding the FLAP LVR and

FLAPC variables would rather look like Table 3.9:

Table 3.9: Flap/Slat lever position versus flap deflection with values as read in the AGS software

FLAP LVR Value Expected FLAPC Value

0 0

1 7

2 10

3 20

4 20

5 20

6 37

where the second column pertains to expected values because there is always a delay between engag-

ing the flap/slat lever and the flap surfaces arriving at their correct deflection.

This meant that creating features accounting for the difference between theoretical and actual flap

deflection like the other surfaces would simply be a very indirect way of measuring the response delay,
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seeing as the surface is always reported by the software to eventually arrive at the exact theoretical

deflection. Because of this, the features which were created were aimed at assessing the response time

of the surfaces more directly. A first approach was to simply measure the delay every time the lever

was moved and take the average, maximum, and minimum delays per flight, which however had the

drawback of not taking into account that for example going from a deflection of 20o to 37o naturally takes

longer than going from 7o to 10o, as the system does not adjust the speed based on target deflections.

So, instead the features which were taken concerned the mean angular velocity of the flaps: every time

the lever was moved, the initial and final deflections and the measured delay between them were used

to compute this velocity, and then a mean, maximum and minimum velocity would be taken per flight.

Moreover, by inspection of the flights, it was found that the velocities when increasing the flap deflec-

tion were considerably different from velocities when decreasing it, so these cases were treated sepa-

rately and different features were created for each. So, features accounting for the average, maximum

and minimum flap extent speeds were created, and named FLAP AV EXTSDP, FLAP MAX EXTSPD

and FLAP MIN EXTSPD respectively, along with features accounting for the average, maximum and

minimum flap retract speeds, named FLAP AV RETSDP, FLAP MAX RETSPD and FLAP MIN RETSPD

respectively.

However, characteristics of certain flights made it so that these features were very susceptible to

missing values. This issue is discussed in Section 3.3.3 - Feature Selection/Feature Plot Visual In-

spection, and its implication was that it was necessary to create an additional feature for the flaps: the

fraction of time in a flight where the flaps are in the wrong deflection given lever input and considering

an ideal response of the surfaces without any delay (moreover, the flight phases corresponding to cruise

and climb were not used for this calculation, as flaps are not used there). This feature was named

FLAP TIMEFRACTION.

3.2.7 Slats

The following parameters, listed in Table 3.10, are those made available by the AGS software regarding

the slats:

Table 3.10: Parameters provided by the AGS software pertaining to the Slat Subsystem

Parameter Description

FLAP LVR Flap/Slat Lever Position

SLATC Slat Surface Corrected Position Angle

Furthermore, like the flaps, Embraer provides a table correlating the Flap/Slat lever position and the

slat surface angle, as shown in Table 3.11.
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Table 3.11: Flap/Slat lever position versus slat deflection [12]

Flap/Slat Lever Position Slat 1 Position (o) Slat 2, 3 and 4 Position (o)

0 (UP) 0 0

1 12 15

2 12 15

3 12 15

4 20 25

5 20 25

FULL (DOWN) 20 25

The slats were therefore treated the same as the flaps, as the same concepts apply: the mean,

maximum and minimum slat extend speeds were taken (SLAT AV EXTSDP, SLAT MAX EXTSPD and

SLAT MIN EXTSPD respectively), along with the mean, maximum and minimum slat retract speeds

(SLAT AV RETSDP, SLAT MAX RETSPD and SLAT MIN RETSPD respectively).

Yet once again like the Flaps, a feature had to be created due to the others being susceptible to

missing values, accounting for the fraction of time in a flight where the slats are considered to be in the

wrong deflection, with the correct deflection being an ideal Slat system with no input/output delay. This

feature was called SLAT TIMEFRACTION.

3.2.8 Spoilers and Speed Brakes

The available sensor readings concerning the Spoiler subsystem follow in Table 3.12:

Table 3.12: Parameters provided by the AGS software pertaining to the Spoiler subsystem

Parameter Description

SPD BRK Speed Brake Lever

SPD BRK1, 3, 4 Speed Brake Lever Position FCM 1A, 3A, 4A

SPOIL INNL, R Multi-function Spoiler Surface Position Inner Left, Right

SPOIL MIDL, R Multi-function Spoiler Surface Position Middle Left, Right

SPOIL OUTL, R Multi-function Spoiler Surface Position Outer Left, Right

where the SPD BRK variable informs on the source of the commands for the Spoilers at that instant —

autopilot or the speed brake lever.

Like the Elevator and Rudder subsystems, the means to compare theoretical deflection to actual

deflection throughout the flights had to be done via a linear regression on flights assumed not anomalous

to compute a theoretical input/output model. From this, and given lever position throughout the flight

when the autopilot is not the agent, the expected deflections were computed, and the average, maximum

and minimum differences between these values and the actual recorded ones were stored as features

named SPOIL AVDIF, SPOIL MAXDIF and SPOIL MINDIF, respectively.
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Moreover, given the three different readings for the speed brake lever position, the possible cor-

relation between faults and the level of disparity between them was studied via the features for aver-

age, maximum, and minimum variance on these readings: SPD BRK AVVAR, SPD BRK MAXVAR and

SPD BRK MINVAR, respectively.

Additionally, and seeing as when spoiler movement is given by the lever all of the spoilers should

move to the same positions, features regarding the disparity between all of the readings were also taken,

which is to say the average, maximum and minimum variance per flight: SPOILS AVVAR, SPOILS MAXVAR,

and SPOILS MINVAR, respectively.

3.2.9 FHDB Messages

In addition to having data pertaining to the various sensor readings on the flight control system, a

database containing all the maintenance messages that the system shows was also available. From

this data base, it was possible to extract all the messages related to the ATA Chapter 27, along with

the amount of times they were active per day, for each aircraft. In total, there are 603 different possible

messages. The objective was to create a feature for each message for the flight summary, whose values

would correspond to the message count in that flight. The two major problems with this were that there

would be too many features, and that it was not possible to know the message count per flight, only

per day. The latter issue was circumvented by assuming that in every flight the message count was the

average count between all flights of that day. As for the other issue, many steps were taken into reducing

the number of features pertaining to these messages.

First, any messages which never showed in any aircraft throughout the ∼4 year period were dis-

carded, which reduced their number to 285. After this, all the messages were organised as features in

the flight summaries. Because this data is organised on a per-flight basis, any messages that showed

in days where there were no flights for that aircraft do not show in the data. This further decreased the

number of possible messages to 239.

Following this, it was found that there were many messages which could be grouped as a single

message, because they pertained to the same event, simply a different FCM channel, or something akin

(e.g., “PROC1(MW1)/PROC4(MW2)[FCMxx] MCMPR”, where “xx” can be either 1A, 1B, 2A, 2B, 3A, 3B,

4A or 4B). In these cases, the feature which was taken was the sum of the counts of all of these similar

messages, which decreased the feature number to 117.

From this step, it was deemed useful to remove messages with a low count, as even if there might

be a strong correlation to degradation, the variables were so sparse that they were unlikely to influence

the algorithm in any meaningful way. This sparseness can be further appreciated when considered that

when in a flight a message is activated by the system, often it is more than once, so for example a total

count of 20 does not mean that the message appeared in 20 separate days, rather it appeared more

times in less days. Given all of this, the cutoff was set to 100: if the message count was a total of 100 or

less throughout the 4 year period and throughout all aircraft, it was discarded, which resulted in 60 total

messages left.
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A correlation matrix was then computed to try to reduce pair-wise correlation in this dataset. Result-

ing from this step, the number of total messages decreased to 46.

Next, messages pertaining to subsystems that were thought to not be as important to gauge the

overall system’s health were also discarded. In this case, it was found that there were many messages

for the Slat/Flap subsystem, which had only been the direct cause of a failure event in the dataset once

for all aircraft. This further reduced the message count to 30.

However, in later testing it was found that the majority of these remaining features were still too

sparse. This issue stemmed from the fact that, for most of these messages, the features from data for

training the autoencoder (data which had been deemed to belong to healthy periods of the aircraft’s

lifetime) were mostly always zero. In the reconstruction phase of the algorithm, where the data is no

longer necessarily healthy, the message count is no longer always zero, however, by this time, the

autoencoder has already learned that, not only are all these features supposed to be zero, but they

are also “supposed” to be all equal to each other (as the autoencoder learns the features as well as

their relation to each other). This caused rather undesirable results in the reconstruction of the features

whenever one of the counts for a message presented a relatively high value, as the autoencoder tried

to reconstruct that feature, but then tried to add the same characteristics of that plot into features from

other messages, as shown in Fig. 3.3, where two of the message features are presented, for a single

run-to-failure sequence on a specific aircraft.

(a) (b)

Figure 3.3: Two message features for a specific run-to-failure sequence (blue), along with their
respective reconstructions (red); the reconstruction of the feature on the left influences the

reconstruction of the feature on the right

This meant that the error which was supposed to arise from one feature only was being amplified by

a potential 29 others. Along with the fact that the path towards reducing the number of used messages,

explained above, might have led to the discarding of important information, this prompted the dropping

of this method in favour of some other.
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If the problem was the sparseness of the message features, then a workaround was to sum all of the

message counts, which would along solve the high feature number complication. With this objective, it

was decided that messages pertaining to each subsystem were to be summed. Moreover, these should

be weighted sums, so as to somehow take into account message importance, as there were messages

which appeared many times, yet were widely ignored by the maintenance team for not being important,

while there were others which seemed to immediately grant intervention. As such, all maintenance

reports pertaining to the Flight Control System which mentioned the replacement of a component (these

reports are discussed further in Section 3.3.2 - Lifecycle Splitting) were gathered. Then, the number of

reports where each message was mentioned was stored.

From this, 5 categories of message importance were created, based on both the number of oc-

currences in reports, and also the type of fault they were attached to (i.e., if the report was due to a

FLT CTRL NO DISPATCH or not). These are shown in Table 3.13 by order of least important to most

important.

Table 3.13: FHDB message importance based on mentions in maintenance reports

Category Condition

I Message does not appear in reports

II Message appears less than 5 times in reports

III Message appears 5 or more times in reports

IV Message appears less than 4 times in FLT CTRL NO DISPATCH reports

V Message appears 4 or more times in FLT CTRL NO DISPATCH reports

Weight values between 0 and 1 were then assigned to each category, and the weighted sums per

subsystem were finally computed. These were the features used in the model: AIL MSG, ELEV MSG,

FLAPSLAT MSG, RUD MSG, MFS MSG and ELECSYS MSG, for the Aileron, Elevator, Flap/Slat, Rud-

der, Spoilers, and Electrical subsystems sums, respectively.

3.3 Data Pre-Processing and Feature Selection

The data pre-processing stage pertains to the steps taken into preparing the gathered data to be input in

the algorithm, such as dealing with abnormalities in the data, rearranging the flight summaries into run-

to-failure sequences, selecting which features should be used in the model, normalising the data, and

creating the train, test, and validation sets to train, tune, and test the model. These steps are discussed

in the following sections.

3.3.1 Abnormalities in the Raw Data

One aspect of the raw data which has not yet been mentioned is the appearance of unexpected abnor-

malities which are not necessarily associated to faults, yet some could later pollute the gathered features

if left unchecked. These abnormalities are addressed in the following paragraphs.
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Unusually Long Flights

In rare occurrences, the file corresponding to a certain flight would be so long as to belong to a

flight lasting upwards of 100 hours. When inspected, these files also showed odd data, such as the

flight starting in the cruise flight phase, going back to taxi-out, and back to cruise multiple times. Flight

summaries belonging to any of these flights (any flight lasting over 5 hours as discussed and stipulated

with Portugália Airlines given their normal operations) were discarded in order to prevent the appearance

of these situations in the data, which do befoul the gathered features, as shown in Fig. 3.4, where for the

FSACE feature for a certain aircraft, these unusually long flights create two points on the plot completely

dwarfing the rest.

Figure 3.4: Example of the effect of an abnormally long flight on the collected features

Repeated Flights

Another irregularity in the data concerns separate files which supposedly report different flights, yet

the aircraft along with the exact date and time are the same. In these cases, the contents of the files,

although not exactly the same, are very similar, only differing slightly in length. To deal with this, the

flight summary of only the first file was kept (which is to say, the file with the lowest flight ID, as they both

carry the same date).

Missing Values

Some of the created features are somewhat prone to missing values, as they require some sort of

condition to be true in order to be computed. As will be discussed in Section 3.3.3 - Feature Selec-

tion/Feature Plot Visual Inspection, on the features which were not discarded and were kept for inputting

in the algorithm, this issue was dealt with by replacing the missing values with the median of the respec-

tive feature, as the missing values were found to not correlate to system degradation.
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3.3.2 Lifecycle Splitting

As explained before, in the Algorithm Overview section, the data needed to be organised in a very

specific way so as to be used by the algorithm. Specifically, after having created the features and

systematising them into flight summaries (each flight summary containing the features obtained for a

single flight), it was necessary to further organise them by aircraft and by date, but most importantly, to

arrange them in run-to-failure sequences.

In order to do this, the flight summaries were ordered by date for each aircraft, and where there was

a report of FLT CTRL NO DISPATCH, this main sequence was cut, originating a run-to-failure sequence.

True Positives and False Positives

Despite this task’s apparent triviality, various issues arose in its implementation largely due to the

faults’ trustworthiness. This is to say that the fact that there existed an event of FLT CTRL NO DISPATCH

is not an absolute confirmation that there was an actual fault on the system, and this is possible to assess

via the reports of the maintenance team — the work-orders.

A work-order that arises due to a FLT CTRL NO DISPATCH message on the CAS typically provides

the steps which were taken into dealing with the fault, along with the information the maintenance team

used to isolate the fault, if any (i.e., maintenance messages active on the CMC of the aircraft, which

provide a fault code that can be cross checked with the aircraft’s maintenance manuals). With this

information, it is possible to know when a component had to be replaced, or some other corrective

action had to be taken. These events were treated as true positives, as the CAS message did not

disappear until the action was taken, which indicates that there was indeed a fault in the system.

However, not all work-orders report an action such as described above, and instead they point to

failure events which might be more ambiguous. Specifically, those work-orders were labelled such that

there are four main categories of maintenance action which can lead to either suspicion that the event

was a false positive, or in simpler cases actual confirmation that there was no fault: a Control System

Return to Service (RTS) test, Power Down/Power Up (PDPU), Transitory Condition of the system, or

simply a maintenance report which is too unclear or does not specify what action was taken. These

actions/events are henceforth referred to as RTS, PDPU, TRANSITORY CONDITION, and UNCLEAR,

respectively, and are explained in the following paragraphs.

An RTS is, as the name suggests, a test performed by the maintenance personnel to determine

whether the control system of the aircraft is fit to fly. If it passes the test, it is allowed to return to service,

and if it does not, further action is required. The reality of it is that it is not uncommon for the aircraft

to have a FLT CTRL NO DISPATCH message display on the CAS, the RTS being successful, but the

message is displayed again at a later flight. Table 3.14 gives three examples of this in the data, where

the column named “Reason” pertains to the source of the fault code associated with the fault, which

might be shown in the CMC, even in cases involving an RTS. This is the code the maintenance team

would have used as a starting point to isolate the fault, had the test not been successful. In these RTS

cases, however, no fault code had been given, or at least it was not reported. Table 3.14 shows then
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that these events might have actually been true positives, and because of this, the trustworthiness of the

test may be questioned.

Table 3.14: Examples of successful RTS tests on events of failure that might have been true positives

Timestamp Reason Action

11/12/2017 00:00:00 (None given) RTS

13/12/2017 07:39:36 Rudder Rudder Surface Rigging Performed

01/03/2018 12:24:00 (None given) RTS

01/03/2018 13:07:48 Rudder Rudder Surface Rigging Performed

17/08/2016 12:49:48 (None given) RTS

21/08/2016 07:19:48 (None given) RTS

22/08/2016 05:58:48 Rudder Lower Rudder PCU Replaced

Despite this, many other events where the RTS test was successful may actually be considered false

positives with some degree of certainty. The best example of this is shown in Table 3.15, where all faults

of a single aircraft are listed. The fact that these events are so far apart, and with none of them having

an associated fault code suggests that these were indeed false alarms.

Table 3.15: All FLT CTRL DISPATCH events recorded for a single aircraft

Timestamp Reason Action

24/01/2017 00:00:00 (None given) RTS

13/07/2017 06:00:36 (None given) RTS

07/02/2019 13:48:00 (None given) RTS

20/10/2019 13:15:36 (None given) RTS

31/01/2020 04:42:00 (None given) RTS

With all of these considerations concerning RTSs, the action which was taken regarding the splitting

of the data into run-to-failure sequences was that all of these faults should be ignored. In the cases

where there was no given fault code and the fault was isolated, it was considered to be a false positive.

On the other hand, in the cases where they were close to other faults, with or without an associated

fault code, it was decided that the sequence should only be cut on the fault which had a corrective

action taken. This was because flights between the initial RTS and the final fault may still be of use in

describing a very degraded system. In fact, the last flight before the fault which was acted on describes

a system in such way critically degraded that it no longer passes the RTS test where, before, it did.

A PDPU is a simple powering down of the aircraft, followed by a powering up. If the CAS message

disappears from the display, the aircraft is deemed suitable for flight, and no further action is taken.

These cases are far more rare than RTSs, and they commonly also lead to the situation that was repre-

sented by Table 3.14. Because of this, PDPU events were treated the same as RTS events: they were

ignored when creating the run-to-failure sequences.
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A TRANSITORY CONDITION pertains to faults where the reason for the emerging of the CAS mes-

sage was attributed to some transient state in the system. This attribution can also occur when the

aircraft showed a fault message, but when it arrived at the hands of the maintenance team, this mes-

sage was no longer present, and the fault could not be replicated. In these cases, no corrective action is

taken. Like the RTS cases, many FLT CTRL NO DISPATCH events labelled TRANSITORY CONDITION

precede another event where corrective measures had to be taken, so these cases were treated the

same as RTSs, once again.

Finally, UNCLEAR cases label reports that were too unclear or did not specify what action was taken

to deal with the fault. In these cases, there was not enough information to assess the trustworthiness

of the fault, but since a maintenance action involving the replacement of some part or something akin

would likely be clearly reported by the maintenance team, these faults were taken as false positives, and

hence ignored.

Very Short Sequences

When splitting the flight summaries into run-to-failure sequences, some would end up very small, as

there were faults very close to each other. These small sequences were discarded for the possibility that

there was not much of an evolution of degradation, rather the system was never healthy to begin with.

The number of flights for this cutoff would later be studied and selected.

Successive Corrective Actions on the Same Component/Subsystem

In addition to the true positive versus false positive issue, special attention was also given to cases

where there was a reported fault which was acted on, yet soon after the same fault arose again, indi-

cating that the maintenance intervention either failed to address the original problem (at least in its full

amplitude), or originated another instance of the same or similar problem. This may be exemplified by

the data presented in Table 3.16, where the faults regarding the multi-function spoilers represent the

former problem, while the faults regarding P-ACE 1 stand for the latter.

Table 3.16: Examples of successive corrective actions regarding the same fault

Timestamp Reason Action

28/07/2018 06:51:00 Multi-function Spoilers Multi-function Spoilers Left Inboard PCU Replaced

29/07/2018 04:21:00 Multi-function Spoilers Swapped FCM 3 with FCM 2

10/10/2016 08:36:36 P-ACE 1 P-ACE 1 Replaced

11/10/2016 02:58:12 P-ACE 1 P-ACE 1 Replaced

The P-ACE 1 faults represent the vast majority of this kind of issue: a component was faulty and was

therefore replaced, however its replacement also originated a fault, so corrective measures had to be

taken again.

Unlike the cases involving an RTS, PDPU or TRANSITORY CONDITION, here the issue persisted

until corrective measures were taken, so it was considered that the run-to-failure sequence should end
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at the first fault. As for the faults which followed, the corresponding sequences would be very short, so

they were discarded as discussed before.

A special case of the same type as described above worth mentioning concerns reports where the

fault was not successfully corrected, resulting in the aircraft not being allowed to fly — Aircraft on Ground

(AOG). In this scenario, another report is made when the fault is corrected, and for the purpose of this

project, these cases were treated the same as described above: the sequence should be cut at the first

report, and the following sequence (which here would have no flights) was discarded.

Maintenance Checks

The final obstacle in obtaining the run-to-failure sequences were maintenance checks. Maintenance

checks are scheduled maintenance actions which can take up to months to undergo. The problem they

present is that each sequence should be a “natural” degradation of the system. If major maintenance

work was done on the system, then there likely is a discontinuity in its behaviour which does not correctly

portray its normal evolution. This can be shown in the created features, as presented in Fig. 3.5.

Figure 3.5: Example of changes in behaviour after a maintenance check

There, a period of no flights is visible in the first quarter of 2019, along with the change in behaviour

of this particular feature, after this period.

Another posing issue pertains to the fact that it is not unusual that certain features show a behaviour

worsening after the maintenance check, as shown in both plots of Fig. 3.6. In these cases, Fig. 3.6a

shows a greater disparity between the control wheel position sensors after a check at the end of the year

2018, while for a different aircraft Fig. 3.6b shows that the control wheels became remarkably stiffer, after

the check sometime near the end of the year 2018.

Note that here (Fig. 3.6) the most common plot type in this text is introduced. The scatter points

represent the value of the respective feature in a certain flight, while the vertical lines represent the dates

at which there was a fault. Here, the colour of the lines further denotes the reason of the corresponding

fault (the same reason introduced for tables such as Table 3.17).
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(a) (b)

Figure 3.6: Examples of maintenance checks which resulted in not only a change in behaviour, but also
a worsening of certain features

Fig. 3.6a shows another difficulty. Right after the maintenance check there was a fault on the Aileron

subsystem: was this fault a culmination of the evolution of the subsystem, or was it caused or aggravated

by the maintenance check? Inspection of the Aileron faults around this period (as shown in Table 3.17)

shows that before the maintenance check, there had already been several Aileron faults, all labelled

either RTS, PDPU, TRANSITORY CONDITION, or UNCLEAR, and that the last intervention, which

included corrective action, ended this succession of failures.

Table 3.17: Reported aileron faults in the period around the maintenance check

Timestamp Reason Action

23/11/2018 12:12:00 (None given) RTS

24/11/2018 12:40:12 Aileron PDPU

25/11/2018 05:22:12 Aileron UNCLEAR

07/01/2019 09:09:00 Aileron TRANSITORY CONDITION

07/01/2019 09:42:36 Slat/Flap/Aileron RTS

07/01/2019 09:45:36 Aileron AIOP 1A and Left Inboard Aileron PCU Replaced

There are then the following possibilities for the source of this fault: either the aileron faults before the

maintenance check show that the subsystem was already degraded and it would invariably fail, requiring

corrective action at some point, or the maintenance check created or exacerbated the issue, which is

not unreasonable to think, given the visible worsening of this feature concerning the aileron.

Given all of this, it was decided that sequences should never encompass periods where a mainte-

nance check was done on the aircraft. If a sequence was to begin before a check and end at a fault after

the check, it was discarded. Furthermore, the next sequence should start at the end of the maintenance

check. In these cases, one of two things could happen: if there was a fault not too long after the check,
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it means the system was not healthy right after this maintenance intervention, and the sequence would

be so small that it would be rejected along with all other small sequences, as described before; if there

was no fault, then the system was considered healthy, so the sequence was used and cut at whichever

valid fault came next.

Failure Redefinition

All of these steps to select which faults should be taken into account when splitting the sequences

left the data with a problem it already showed before, but was now amplified: lack of failure data. In fact,

throughout the almost 4 year period and across 13 aircraft, there were only 179 reports of FLT CTRL

NO DISPATCH, and of these a total of 112 pertain to RTSs, PDPUs, TRANSITORY CONDITIONs, and

UNCLEARs, leaving only 67 failure events which could, unambiguously, be considered true positives.

Moreover discarding certain sequences because of the additional issues described above and consid-

ering still that the data had to be divided into train, test and validation sets, the final number of faults was

even lower.

While this did not pose a substantial issue towards training the Autoencoder (as the data required

for this should pertain to healthy data, of which seemingly there was plenty), it presented a significant

obstacle considering that each run-to-failure sequence was going to be used to arrive at a Degradation

Curve. As such, each Degradation Curve would show a distinct “path” towards failure, and it was there-

fore important to have as many sequences as possible so as to be able to compare to curves from a test

set.

This originated the need to reevaluate the definition of “failure” which had been used until now — that

there was a failure if the CAS displayed the message “FLT CTRL NO DISPATCH” — so all of the work-

orders pertaining to the Flight Control System in the considered period were gathered for analysis. This

time, attention was given to work-orders which involved corrective action due to a finding of a degraded

or faulty component, or a complaint from the pilots — these would be added as extra failure events. This

further helped identifying the sources of certain behaviour changes in the features which could otherwise

not be explained.

Due to there being close to three thousand reports, it was impossible to individually analyse all of

them, and therefore attention was given first and foremost to reports which mentioned the replacement

or installation of a component, as these would be the most critical events. After checking these, if there

were still unexplained abnormal behaviours or behaviour changes on any features, the rest of the reports

was inspected on the periods around those abnormalities.

A common event to report was found to be the replacement of the aileron cables due to them having

excessive wear. This usually marks a change in the AIL AVDIF features. Fig. 3.7 shows plots of these

features for a given aircraft.
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(a) (b)

Figure 3.7: Example of the effect of aileron cable replacements on two aileron features

The vertical black line marks the first reported date in the studied period at which the maintenance

personnel found the Aileron cables with excessive wear, thus replacing them in a certain aircraft. Inter-

estingly, while this intervention seemed to have a positive effect on the right-hand side feature (a lesser

difference between theoretical and actual aileron deflection), the same cannot be said for its left-side

counterpart, where an increase is visible. Indeed, these features are not only dependant on the state of

the cables, but mostly on their calibration, so even small differences on the way they were installed are

visible here. This originated difficulties in assessing the components’ health via these features, for it was

not possible to know in advance whether high values were due to degradation, or calibration. In fact,

up to this intervention’s date, no degradation trend is visible in these plots, rather only drastic behaviour

changes which were more likely to be due to component replacements, or simply calibration actions.

This does not mean this degradation was completely invisible in all aircraft, however, as can be

shown in the plots in Fig. 3.8, where an increasing trend is visible (most prominently in the right-hand

side feature) in the several months prior to the maintenance action of this same type (as represented by

the black vertical line).

(a) (b)

Figure 3.8: Example on another aircraft of the effect of aileron cable replacements on two aileron
features
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Another somewhat common report pertained to the pilots’ complaints on the stiffness of the aileron

controls. With only one exception (see Fig. 3.9b), these are only well visible on the AIL MAXFC feature.

Fig. 3.9a shows this feature in one of the aircraft, with vertical black lines representing these complaints.

The last of these events was the only one where corrective action was taken, as is visible by the abrupt

behaviour change in the plot. It is worth noting that despite there being an increasing trend on this plot

culminating in the need for maintenance action, the feature’s actual values alone in this period would not

grant immediate conclusion that there was a problem with the aileron subsystem, as on other aircraft

this feature often presents even higher values, without complaints from the pilots.

(a) (b)

Figure 3.9: Examples of aileron force feature correlation to pilot complaints on control stiffness

Fig. 3.9b shows the one exception where these complaints can be cross-checked with not only

AIL MAXFC, but also AIL AVFC and AIL MINFC. However, in this instance, no corrective measures were

taken, and indeed, unlike the plot in Fig. 3.9a, there is no sudden change in the behaviour of the feature

to indicate a maintenance intervention. In these cases, the complaints were not considered faults, as

nothing was done to the system, yet it still flew with no further reported issues.

Finally, the most common of reports pertains to issues on either the Flap or Slat subsystems, con-

cerning faults, and consequent replacements, of skew sensors, surface position sensors and actuators.

Interestingly, these two subsystems were the least common source of FLT CTRL NO DISPATCH events,

and were it not for these new added faults, their respective features would have been discarded. With this

new failure data, however, correlations between feature behaviour and faults are visible, as presented

in Fig. 3.10, where lower average flap extend speeds are visible in the flights close to the two 2017 flap

faults (beginning and middle of the year 2017, as presented by the vertical black lines in Fig. 3.10a and

Fig. 3.10b).
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(a) (b)

Figure 3.10: Flap feature correlation to flap faults found in the maintenance reports

These and some other less frequent faults were added to the dataset, and the issue of lack of failure

data was reduced.

3.3.3 Feature Selection/Feature Plot Visual Inspection

The total created features amounted to 75, yet of these only a selection would later be used in the

algorithm, since there were many which would only add to the run time of the algorithm and nothing

more. This selection should be made based on correlation to the faults. This was done via a visual

inspection of the plots of each feature throughout time (i.e. the dates of the flights) to assess their

usefulness in predicting impending faults. This section covers that analysis.

It should be noted that in testing it was found that some sensor readings were susceptible to dramatic

outliers both due to the rapid command movements in the taxi-out phase, and the inherent noise the

signal carries. In these cases, the respective features which represented an average were found to be

more useful when they were used as a median, so they were changed.

The following covers only those plots which were deemed of most interest to show, yet all the plots

along with their reasoning for keeping/discarding are presented in Appendix B.
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Electrical System

Following in Fig. 3.11 are the plots for features ELACE, RDACE and FSACE for the aircraft chosen

to best demonstrate the statements made in the following paragraphs regarding the Electrical System.

(a) (b) (c)

Figure 3.11: Plots for the ELACE (left), RDACE (centre), and FSACE (right) features on a single aircraft

ELACE is, for most aircraft, very sparse, presenting mostly values of zero, and with outliers which

do not seem to have any correlation to the faults. In fact, for aircraft where this feature is not so sparse,

the distributions of the points seem to bear little to no information about fault imminence. As presented

in Fig. 3.11a, there start being more ELACE occurrences mid 2019, and this behaviour continues for at

least a year, with no reported issues, which seems to indicate this is not a good candidate for prognostics

analysis.

RDACE mostly presents a distribution similar to ELACE, which is not unexpected given that both of

these features pertain to P-ACEs. As such, this feature carries the same characteristics as ELACE.

FSACE, like ELACE, is very sparse and its occurrences seem to have no correlation to faults on either

the Electrical, Flap, or Slat subsystems. However, and as shown in Fig. 3.11c, it carries a characteristic

which will henceforth be referred to as “system-wide peaks”. In this figure, one of these very distinct

peaks is visible in the last quarter of 2019 — these are phenomena of anomalous behaviour which,

when present at a given period, show in many other features, across multiple subsystems. These

abnormalities will be discussed later in this section when analysing the features directly pertaining to the

Flap and Slat subsystems.

HSACE was found to always be a constant of zero, therefore carrying no information for the algorithm.

All of these characteristics dictated that these features be discarded, as they were not worth the

additional computing time required for having them.

As for the ELACE ENG, HSACE ENG, and RDACE ENG features, their initial function was not to

point to system degradation (as they only show which groups of ACEs were chosen for the specific

flights), but rather to aid the algorithm in identifying and better dealing with changes in behaviour which

are not necessarily due to an impending fault, and instead are due to this change in ACEs, as is shown

in Fig. 3.12a, where the ELACE ENG value is represented by the colour of each point in the plot. This
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would be advantageous since the measurement of health will be taken from the error of the AE in recon-

structing the data it is given. Of these, only ELACE ENG was kept, as RDACE ENG largely coincides

with it, and HSACE ENG pertains to the horizontal stabiliser, for which no features were created.

(a) Example of feature dependency
on the ELACE ENG variable

(b) Plot for the ELECSYS MSG
feature for a given aircraft

(c) Example of a fault on the Electrical
System’s influence on features
belonging to other subsystems

Figure 3.12: Plots representing some characteristics of the Electrical System

Finally, the ELECSYS MSG feature shows that its distribution might be related to certain faults not

limited to the electrical system. In Fig. 3.12b, for example, the relatively high incidence of outliers around

the first half of 2019 is concurrent with the high fault frequency in the same period. In fact, apart from

two other outliers, this period ends with a fault, and respective maintenance action, on MAU1.

Given these examples across many aircraft, this feature was kept. It should be noted that it was

decided all features regarding the FHDB messages were to be kept, given the importance of these

messages and how many of them dictated the actions of the maintenance team.

Furthermore, while this means that there was only one feature directly representative of the Electrical

System’s degradation state, this should not be taken as a sign of its unimportance. In fact, the most

common source of faults in the dataset is precisely this subsystem, so it should be handled as such —

and despite this apparent issue, it is in truth not being belittled. Verily, being as global a system as it is,

it affects all others, and hence many anomalies in the behaviours of features belonging to other systems

(such as the Rudder, or Elevators) can be traced back to faults in the Electrical System. An example

of this is given by Fig. 3.12c, in the first quarter of 2018, where an unusual amount of force seems to

be needed to move the elevator control column in some flights; this issue eventually ends after a fault

and its respective corrective action on FCM1 — an Electrical System component. As a final note on this

matter, although it might seem so, the described behaviour in Fig. 3.12c is not a system-wide peak, as

it is exclusive to this feature at this period for the given aircraft.
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Ailerons

Of the three ROLL CW xxVAR features (presented in Fig. 3.13 for a specific aircraft), only

ROLL CW MINVAR was kept, for two reasons. The first being its clarity in possible fault correlation,

which is visible in Fig. 3.13a as a behaviour change by the second half of 2018 extending to the first

quarter of 2019, which worsens by the end of 2018, and eventually ends at an FCM4 fault. The sec-

ond reason was for this feature generally being, of the three, the one least affected by system-wide

peaks (as will be shown later in this section that these peaks come in detriment to the data, rather than

improvement).

(a) (b) (c)

Figure 3.13: Plots for the ROLL CW MINVAR (left), ROLL CW AVVAR (centre), and
ROLL CW MAXVAR (right) features on a single aircraft

Regarding the set of features presented in Fig. 3.14, along with their left side counterparts, only

AIL AVDIF R and AIL AVDIF L were kept, seeing as they presented the greatest variability with which

coming visible behaviour changes after maintenance actions. Fault correlation with these features has

already been discussed in the paragraphs accompanying Fig. 3.7 and Fig. 3.8, in Section 3.3.2 - Lifecy-

cle Splitting so this is not repeated here. An additional reason these features were chosen over the rest

was their imperviousness to system-wide peaks.

(a) (b) (c)

Figure 3.14: Plots for the AIL MINDIF R (left), AIL AVDIF R (centre), and AIL MAXDIF R (right)
features on a single aircraft
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Finally, for the aileron force features (Fig. 3.15), both AIL MINFC and AIL AVFC display seasonal

behaviours which are only disrupted by maintenance actions on the system (see Fig. 3.9b for an example

of such disruptions). According to these two features, generally, more force is required to move the

aileron controls in the winter season, and conversely, less is required during the summer season.

As for AIL MAXFC, it is the only aileron force feature independent from season, and it is also in

fact the one where the majority of complaints on control stiffness is visible, as discussed before, in

Section 3.3.2 - Lifecycle Splitting. For this reason, it was the only one which was kept.

(a) (b) (c)

Figure 3.15: Plots for the AIL MINFC (left), AIL AVFC (centre), and AIL MAXFC (right) features on a
single aircraft

Elevators

The ELEVS AVDIF features have been identified as correlating to some faults in the dataset. The

plots presented in Fig. 3.16a and Fig. 3.16b show an interesting example regarding this. Specifically, for

the right-side elevator surface, Fig. 3.16b, it shows that the difference between readings of the inboard

and outboard sensors is seldom greater than 0.1o in magnitude, and when it is, the same happens for

the left-side elevator sensors. However, this is not the case for the period starting from the end of 2018,

where it is visible for the right side an increase in sensor reading discrepancy, which only ends after a

fault in the elevator subsystem, which was acted upon by replacing the right inboard elevator sensor.

Moreover, on the left side variable, an increase in discrepancy is also visible by the end of 2019, and

it would not be illegitimate to think that there might be an impending fault concerning either of the left

side sensors, however by this time the data is considerably more scarce due to there being less flights.

Given this, both ELEVS AVDIF L and ELEVS AVDIF R were kept in the dataset.

Regarding the ELEVS MAXDIF L and ELEVS MAXDIF R features (ELEVS MAXDIF L being repre-

sented in Fig. 3.16c for a specific aircraft), they are both random with unchanging behaviour across all

aircraft safe for the system-wide peaks, which means they do not carry any additional information, so

they were discarded.

The ELEVS MINDIF features were both found to be a constant of zero in all aircraft, so they were

also removed from the dataset.
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(a) (b) (c)

Figure 3.16: Plots for the ELEVS AVDIF L (left), ELEVS AVDIF R (centre), and ELEVS MAXDIF L
(right) features on a single aircraft

Finally, regarding the elevator force features, both ELEV MINFC (Fig. 3.17a) and ELEV MAXFC

(Fig. 3.17c) seem to carry no meaningful information regarding faults or system degradation, despite

there being some behaviour changes. For instance, in Fig. 3.17c, there are clear differing distributions:

one starting at the last quarter of 2017 and ending around the first quarter of 2018, and the other being

the rest of the scatter plot — no reason was found for any of these behaviour changes in the maintenance

reports (possibly the FCM3 fault marked the end of the abnormal behaviour, but it is not certain), and

this happens in all other aircraft. In fact, ELEV MAXFC is for the majority of aircraft random and these

behaviour changes are very rare, yet when they exist, no source was found.

As for ELEV AVFC, Fig. 3.17b shows not only the previously mentioned fault correlation to the FCM3,

but also an increasing trend throughout 2018 ending in December of 2018 where some elevator compo-

nents were found with physical damage, and were hence replaced (in the plot, this fault is marked as an

Aileron fault, however there was also this one in the same day).

In conclusion, only ELEV AVFC was kept, as it showed in some aircraft both degradation and corre-

lation to faults on the Elevator and Electrical Systems.

(a) (b) (c)

Figure 3.17: Plots for the ELEV MINFC (left), ELEV AVFC (centre), and ELEV MAXFC (right) features
on a single aircraft
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Rudder

As for the rudder surface sensors reading disparity features (Fig. 3.18), RUDS AVDIF was kept for

its most evident apparent correlation to rudder faults. For instance, in Fig. 3.18a, an increasing trend

from the last quarter of 2017 and extending towards the middle of 2018, seems to have led to, or at least

was corrected after, successive faults on the rudder, followed by a rudder PCU replacement. Another

example on the same plot would be the behaviour acquired after the maintenance check on the last

quarter of 2018, comprised of relatively high values on the feature, closely followed by a fault of a P-

ACE. What seems to compromise the usefulness of this feature, however, is the fact that not long after,

it assumes values quite higher than those before the aforementioned faults, yet no other issues were

reported. Still, it was kept. As for RUDS MAXDIF, it seemed to bear no more information than its average

counterpart; RUDS MINDIF was always zero.

(a) (b)

Figure 3.18: Plots for the RUDS AVDIF (left), and RUDS MAXDIF (right) features on a single aircraft

Regarding the rudder features accounting for its input/output relationship (see Fig. 3.19), only

RUD AVDIF was kept, as it displayed the greatest apparent correlation to rudder faults, the most flagrant

example in the datset being represented in Fig. 3.19b, where the first faults in the studied period (rudder

faults) seem to stem from the high values of this feature.

(a) (b) (c)

Figure 3.19: Plots for the RUD MINDIF (left), RUD AVDIF (centre), and RUD MAXDIF (right) features
on a single aircraft
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Flaps/Slats

The flap and slat subsystems are here discussed together as their respective feature analyses are

the same regarding fault correlation (flap feature plot characteristics leading to flap faults are the same

as slat feature plot characteristics leading to slat faults, and in fact flap feature plots are generally quite

similar to their slat equivalents).

(a) (b) (c)

Figure 3.20: Plots for the FLAP MIN EXTSPD (left), FLAP AV EXTSPD (centre), and
FLAP MAX EXTSPD (right) features on a single aircraft

Of the features regarding the speed of the flaps to arrive at their correct deflection (Fig. 3.20), it was

found that the retract and extend feature plots were very similar to each other in shape, differing only in

scale. Of all of them, FLAP MIN EXTSPD was chosen to represent this system characteristic for two

major reasons. On one side, for its clarity in fault correlation, visible in the two flap faults in 2017 in

Fig. 3.20a with their respective outliers in the plot, indicating the speeds were found to be lower than

normal, which is consistent with the fact that most of the system messages found on reports for these

kinds of fault mentioned “surface jammed” or “underspeed”. On the other side, the number of possible

normal values for this feature was remarkably lower than for the other two features (the apparent three

horizontal lines that are formed by the plot points versus the more evident scatter on the other plots) —

this would make this feature’s healthy state easier for the autoencoder to learn.

Analogously, the chosen feature for the slats was SLAT MIN EXTSPD.

As mentioned before, these speed features were found to be prone to missing values, and initially

this was thought to be due to very short flights — such as rejected take-offs, — where the flaps and

slats are barely used, if at all. However this was found not to be the case, which prompted individual

inspection of the flights which were causing the issue. These flight raw data files, along with the discrete

nature of the flap sensor readings, provided a glance at the nature of the aforementioned system-wide

peaks.

Indeed, it was found that for these troublesome flights, the sensors were reading both flaps and

slats to move irrespective of the flap/slat lever position: the lever could show to stay in position, yet

the flap and slat surfaces would move, and it was not possible to calculate a speed of arrival at the

theoretical deflection, because there was no means to compute that deflection without lever movement
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— hence the missing value. So when circumventing this issue by creating the FLAP TIMEFRACTION

and SLAT TIMEFRACTION features, the following was found, as shown in Fig. 3.21:

(a) (b) (c)

Figure 3.21: Plots for the FLAP TIMEFRACTION (left), ELEV MAXDIF R (centre), and
SPD BRK AVVAR (right) features on a single aircraft

The problematic flights belonged to the outliers which represent the system-wide peaks. This figure

shows plots representing features for three distinct subsystems, all having this anomaly, and in truth it

affected all subsystems.

This discovery helped shedding light on the credibility of these data points: if something as critical

as the control surfaces moving on their own were happening, across multiple systems, no aircraft would

be flying in any way, shape, or form. In fact, it would have been something the pilots would be aware

of, from the very beginning of the flight — in the taxi-out phase, where the controls are tested and the

surfaces are checked for movement.

Along with the fact that no reports show any such critical complaints around these periods, and in

addition the fact that this seemed to happen at around the same period for all aircraft (see Fig. 3.22),

this lead to the conclusion that the issue was not in any of the studied systems, and should instead be

either a recording, or a software concern.

Figure 3.22: Plot for the AIL MAXDIF R feature for all aircraft, each color representing one aircraft;
most system-wide peaks appear at around the same periods
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Due to this, it was concluded that system-wide peaks are not representative of the system’s health,

and that faults happening seemingly connected to them was largely coincidental, as supported by the

fact that the vast majority of peaks either is not preceding any fault, or is preceding a fault that is not

remotely as critical as this event would be, were it a true fault (for instance, Fig. 3.21’s peak at the

beginning of 2019 seemingly relating to a rudder fault, yet it is known that this fault was exclusive to the

rudder).

This is the reason features exhibiting this characteristic were avoided whenever possible, as it was

understood the peaks were polluting the data. The same reasoning lead to the discarding of the

FLAP TIMEFRACTION and SLAT TIMEFRACTION features, with the missing values on the flap and

slat speed features being replaced with their respective medians.

Spoilers and Speed Brakes

The three SPD BRK features are illustrated in Fig. 3.23, and of them SPD BRK MINVAR most ev-

idently showed correlation to multifunction spoiler faults: as exemplified in Fig. 3.23a, the first half of

2018 displays a high frequency of higher values than usual, followed by several FCM faults, and finally

a multifunction spoiler fault (marked “MFS” in the plot legend). Moreover, SPD BRK AVVAR might have

also been a choice, however it displays in some aircraft a single outlier several orders of magnitude

greater in value than the rest of the plot — likely connected to the system wide peaks — so it was not

used.

(a) (b) (c)

Figure 3.23: Plots for the SPD BRK MINVAR (left), SPD BRK AVVAR (centre), and
SPD BRK MAXVAR (right) features on a single aircraft

SPOIL AVDIF, SPOIL MAXDIF and SPOIL MINDIF (see Fig. 3.24) all share the same problem, which

is that they rely on pilot input to be able to be calculated. The speed brake subsystem can be either

controlled by the pilots, or the auto-pilot, and information about which of these is the agent on the position

of the surfaces is given by the AGS variable SPD BRK, which is 0 when the agent is the auto-pilot, and

1 when it is either of the pilots. The issue arises from the fact that it is not unusual that in a flight the

SPD BRK variable is always 0, meaning there was no instant where the pilots moved the speed brake

lever. As such, for these cases, a difference between expected and actual surface deflections cannot be

calculated, which then translates into missing values on these three features. The frequency of these
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can be seen at the top of the plot for SPOIL MINDIF (Fig. 3.24a), and at the bottom of the plot for

SPOIL MAXDIF (Fig. 3.24c) for they turn into +∞ and −∞ for these features, respectively. As visible,

these cases are quite numerous. In fact, almost 50% of all flights carry this characteristic.

Given this, and the fact that no obvious visual correlation to spoiler faults was found in any of these

features in any aircraft, they were all discarded.

(a) (b) (c)

Figure 3.24: Plots for the SPOIL MINDIF (left), SPOIL AVDIF (centre), and SPOIL MAXDIF (right)
features on a single aircraft

Of the spoiler sensor reading variance features (Fig. 3.25), SPOILS MINVAR was the one quite

notably most representative of fault imminence, for all aircraft. Fig. 3.25a shows quite an illustrative

example on the matter, where a sudden increase in the values for this feature leads to multiple spoiler

faults a few months later, the fault being corrected by the replacement of a PCU. For this reason, it was

the only one kept.

(a) (b) (c)

Figure 3.25: Plots for the SPOILS MINVAR (left), SPOILS AVVAR (centre), and SPOILS MAXVAR
(right) features on a single aircraft
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3.3.4 Test and Validation Set Creation

In order to test the algorithm, it was not enough to only have a set of data with which to train the model,

that is to say the train set. Rather, it was also necessary to have data to test the model — test set —,

and data with which to tune the hyper-parameters (such as λ, α, and tmax discussed in Section 3.1 -

Algorithm Overview), called the validation set.

To do this, both the validation set, and the test set needed to be comprised of sequences which

had not yet led to failure, and still the true RUL had to be known. This was accomplished such that

the sequences corresponding to the test set were simply sequences taken from the original dataset, but

truncated at random, so the algorithm never sees the discarded part, but the true RUL is known so as to

gauge the model’s performance. The same method was applied to the validation set.

3.3.5 Data Normalising

Having selected which features to keep, the dataset was still comprised of features of greatly different

scales, which could cause problems during modelling [24]. In this case, an example of great disparity

in scale would be comparing a maximum force feature, ranging from ∼100lbf to ∼400lbf, to a minimum

variance feature, ranging from 0 to ∼0.01. With such variety in scale, normalisation of the data had to

be done.

The method used to deal with this was the Min-Max normalisation, in order to linearly re-scale every

feature into values in the interval [0, 1], as shown in the following expression:

z =
x−min(x)

max(x)−min(x)
, (3.6)

where z is the re-scaled feature, x is the original feature, and min and max are the minimum and

maximum values found for feature x, respectively.

Additionally, the Z-score normalisation method was also tested:

z =
x− µ
σ

, (3.7)

where µ and σ are the mean and standard deviations of the original feature, so that the normalised

features have a distribution with a mean of 0 and a standard deviation of 1. However, both the computing

time for training the autoencoder and the reconstruction quality were found to be better with the Min-Max

normalisation method.

It should be noted that, for each feature, the statistics required for the normalisation were determined

from the training data only, and then applied to all the data, so that both validation and test data were

completely unseen by the model, and were also normalised to the same standard as the train data.
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3.4 Autoencoder

The autoencoder is the key element of the algorithm. By training it to reconstruct data pertaining only

to flights where the Flight Control System was assumed to be healthy, it is expected to display a greater

reconstruction error when tasked with reconstructing cycles where this system is degraded.

The used autoencoder was built in the R programming language, making use of the Keras machine

learning library. The encoder consisted of one LSTM layer with the Rectified Linear activation function

and with a vector of 256 units as the output — 256 being the found number of units to be the best

balance between computing time and reconstruction results. The decoder consisted of an LSTM layer

with the ReLU activation function and with a 2D array with shape (number of timesteps, 256) as its

output, followed by a time distributed layer so that the output of the autoencoder had the same shape as

the original input. Moreover, between the encoder and decoder a repeat vector layer is required, so that

the input of the decoder has the required shape for the decoder’s LSTM layer (a 2D array rather than a

vector).

The autoencoder model is hence as described in Fig. 3.26, considering a number of timesteps of 10,

and a total number of features of 19.

Figure 3.26: Layers of the Autoencoder, as summarized by R

The LSTM layers expect a 2D array per sample as the input, so the input comprised of a batch of

samples must be a 3D array. For the first layer of the autoencoder, this array — the input data — had

dimensions of (batch size, number of timesteps, number of features). This meant that the run-to-failure

sequences had to be organised in an array in the form (sample, time cycle, feature), which is to say in

this case (sequence, flight, feature).

Not all sequences in the dataset were used to train the autoencoder, as the dataset was divided

into 3 groups — train, validation, and test sets — with ratios of 70% – 15% – 15% of the total data,

respectively. During training, the autoencoder would only see the train set, and in fact, only a number of

initial flights per sequence, as these were the ones assumed healthy. The choice for this number took

into account a few major factors:

• It would be important to have a high number of flights with which to train so that the model would

better learn the peculiarities in some of the features, however the number could not be too high

otherwise the training might become too influenced by degraded flights;
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• This number sets the dimensions of the input of the autoencoder, so it also sets the minimum

allowed length of a run-to-failure sequence — smaller lengths would not be accepted by the model

— so setting too high a value may deem too many sequences unusable;

• Finally, and for the same reason as the last point, in a real life application, when wanting to learn of

the health of an aircraft, this number also dictates the minimum allowable number of flights used to

gauge that health — so too high a value means personnel have to wait until the aircraft of interest

has fulfilled those many flights.

With all this being set, the autoencoder model was then compiled and trained with the Mean Squared

Error as the loss function, and the Adam optimiser, on 1000 epochs.

It was then tasked with reconstructing the sequences of the train, validation, and test sets. When

reconstructing the original data, the shape of the input to the autoencoder must be the same as the

same as the shape of the data it was trained on, e.g. if it was trained on sequences of 10 flights, it is

necessary to reconstruct each sequence of the total data every 10 flights and gather the total results. If

this were to be done by simply reconstructing the first 10 flights, then the next 10 and so on, the results

would be disjointed and have no continuity, because the algorithm does not know that the second set of

10 is related to the first set of 10.

This is worked around by introducing a sliding window: the autoencoder reconstructs the first set

of 10, then instead of jumping 10 flights to the next set, it jumps a smaller amount so that there are

common flights in every set. The results for flights that have been reconstructed more than once are

then averaged out.

3.5 Data Post-Processing

After obtaining the reconstructions of the train, validation, and test sets, the reconstruction errors through-

out each sequence can then be computed. Considering a time series Z = [z1, z2, ..., zt, ..., zL] for a se-

quence u with length L (where zt is the vector of the features at time t), and considering its reconstruction

Z ′ = [z′1, z
′
2, ..., z

′
t, ..., z

′
L], this error e(u)t is given by:

e
(u)
t = ||z(u)t − z′(u)t ||. (3.8)

Alternatively, a squared error can be considered so that larger reconstruction error later results in a

much smaller health index:

e
(u)
t = ||z(u)t − z′(u)t ||2, (3.9)

and both versions were tested, the best being chosen via a validation set.

Either of these error measurements would be normalised so as to obtain a health index h
(u)
t , as

mentioned before:
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h
(u)
t =

e
(u)
M − e(u)t

e
(u)
M − e(u)m

, (3.1)

where e(u)M and e(u)m correspond to the maximum and minimum occurring errors in the reconstruction of

sequence u.

From calculating this health index throughout the length of the sequence, for all sequences, resulted

the degradation curves H(u). Moreover, further processing of these curves would allow for the creation

of three possible scenarios for the curve matching phase:

1. The curves were used as-is with no further processing;

2. A moving average was performed on the curves as they were originally very noisy, and

3. A linear regression with the original curves as the target, and the original features as the estimators

was used in order to create more consistent curves for the matching phase.

Once again, here the best results of a validation set dictated which of these scenarios to use on the

test set.

Finally, the similarity between test curves and train curves was computed and an estimation of the

RUL for each test sequence was made, as described in Section 3.1 - Algorithm Overview.
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Chapter 4

Results

Following the methodology presented in the preceding chapter, the model was tested and various char-

acteristics of it were still tuned to allow for better results. To summarise the flow of the algorithm in

order to have an understanding of its adjustable aspects, the following list of steps that the model follows

should be considered:

1. Gather a dataset from the available data (the run-to-failure sequences of flight summaries);

2. Divide the total data into train, validation, and test sets;

3. Define the Autoencoder, and train it with only the few initial flights from each sequence of the train

set;

4. Reconstruct the full sequences of the train, validation, and test sets;

5. Compute the reconstruction error of these sequences and normalise it, to turn it into a degradation

curve for each sequence;

6. Compare each curve from the validation set, to each curve from the train set, while varying the

several parameters which needed to be configured, and estimate the RUL for each configuration,

then choose the configuration with the best results;

7. Apply the obtained configuration to the test set and obtain the final RUL estimations.

The first obstacle in the procurement of adequate results manifested itself in Step 4 of this list, as

the reconstruction of the various features of the sequences was found to be unsatisfying. This was

attributed to how noisy the features seemed to be which made it more difficult for the autoencoder to find

patterns in their behaviours, thus decreasing performance. The consequence of this problem was that

the reconstruction error would not only stem from abnormalities in the data due to system degradation,

but also simply from model inadequacy, thus deeming the results unreliable.

In an attempt to mitigate this issue, it was found that rearranging the data so that each cycle corre-

sponded to a day rather than a flight (by averaging all flights for each day) was beneficial in the sense
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that it made each feature more predictable, hence easier to learn and reconstruct. This also allowed

for lesser computing time, as now each sequence was both easier to learn, and shorter, hence faster to

reconstruct. By virtue of this, features which the autoencoder was having difficulties reconstructing were

now being reconstructed to near perfection whenever their behaviour corresponded to a non anomalous

one. Fig. 4.1 shows an example of a feature benefiting from this change.

(a) (b)

Figure 4.1: Examples of the reconstruction of the RUDS AVIDIF feature in a sequence with the time
cycle set as a single flight (left) and set as a day (right)

Figure 4.2: Example of near perfect reconstruction of one of the features which highly depend on which
P-ACEs are engaged in each day

This means that henceforth all mentions to time cycles, including the RUL estimates, are no longer

in flights, rather in days. As an addendum on this matter, it is of worthy note that the features to

which this change was most favourable were also the features whose behaviours depend on which

P-ACEs are used in a flight, due to these being switched mostly on a per-day basis. As such, these
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features now showed a much more predictable behaviour, hence no longer was there need to keep the

ELACE ENG variable, as the autoencoder was reconstructing these features perfectly adequately, as

shown in Fig. 4.2.

The results may now be presented, and due to further difficulties in obtaining satisfactory RUL esti-

mates, two sets of results were obtained (referred to as Base Results, and System-Wide-Peak-Filtered

Results), as will show the following sections.

4.1 Base Results

As discussed before, prior to obtaining results on the test set, the validation set must be used to tune

the parameters which are possible to vary, all of which pertaining to the stage where degradation curves

are compared to each other. For convenience, these parameters are summarised here:

• Section 3.1 - Algorithm Overview introduced the parameters λ, α, and tmax, concerning the scale

of the similarity between curves, the minimum similarity taken into account for the weighed average

on the RUL estimation, and the maximum considered time-lag between two curves, respectively;

• Section 3.5 - Data Post-Processing introduced the reconstruction error which is used as a measure

of health at time t, which can be taken as either the norm of the difference between the vectors

of features and feature reconstruction (Eq. (3.8)), or it can be taken as the square of said norm

(Eq. (3.9));

• Finally, Section 3.5 - Data Post-Processing also introduced the different ways in which the degra-

dation curves can be further processed given the fact that they are very noisy: they can be used

as-is (with no further processing), a Moving Average can be done on them, or the curves to use

can be instead the result of a linear regression with the target curves as the original ones.

This meant that the algorithm was run with the validation set for every possible configuration with λ,

α and tmax going through sets of values within a certain range. Each configuration was then evaluated

and chosen based on the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) performance

metrics as:

MAE =
1

n

n∑
u=1

|R̂(u) −R(u)| (4.1)

and

RMSE =

√√√√ 1

n

n∑
u=1

(R̂(u) −R(u))2, (4.2)

where n is the number of sequences in the set, and R̂(u) and R(u) are the estimate and actual RULs for

sequence u, respectively.
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The number of False Positives and False Negatives in the estimates were also taken into account.

A False Positive in this context was defined as the model underestimating the RUL by under 15 days,

while a False Negative meant that the model overestimated the RUL by over 15 days. These two metrics

were used to choose between configurations which might have similar MAE and RMSE, and moreover,

preference was given to configurations which showed the least possible amount of False Positives, and

only if this still was not enough to differentiate, the False Negatives were used. This was because it was

understood that if the model must fail, then it was preferable for this to be a False Negative rather than

a False Positive, given that in a real life application, a low RUL prediction should always be an indicative

of degradation in the system, so as to not alarm the maintenance personnel of an issue which does not

exist.

Given this, the best configuration found for the validation set was with the Degradation Curves

smoothed with a Moving Average, e(u)t = ||z(u)t − z′(u)t ||2, λ = 0.0005, α = 0.74, and tmax = 50. This

corresponded to the estimates for the validation set presented in Fig. 4.3:

Figure 4.3: Actual and estimated RUL for the validation set, in ascending order of the actual RUL

And in turn, when the model was run with the chosen parameters on the test set, this corresponded

to the results presented in Fig. 4.4:
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Figure 4.4: Actual and estimated RUL for the test set, in ascending order of the actual RUL

4.2 System-Wide-Peak-Filtered Results

As discussed before, the phenomenon here referred to as system-wide peaks comes in detriment to the

data, and features were selected so it had the least possible impact to the dataset, and hence to the

results. As will be discussed in Chapter 5 - Result Discussion, this was still not enough, so further action

was taken against these occurrences.

Flights corresponding to these peaks were therefore removed from the dataset via a cutoff on the

FLAP TIMEFRACTION feature (which had been discarded from the dataset in the feature selection

phase): flights which had too high a value for this feature were considered to be part of the outliers

which form the peaks, and the cutoff was set to 0.15.

It should be noted that the reason this had not been done before, and furthermore the reason for

which it is not a perfect solution, was that of the thirteen aircraft comprising the fleet, most displaying

these peaks at some point or another of their useful life, only in six did the peak phenomenon display

itself in the Flap or Slap subsystems, where either the FLAP TIMEFRACTION or SLAT TIMEFRACTION

variables could be good candidates for setting a clear cutoff. For the rest of the fleet, these Flap and Slat

features display good behaviours, and no good cutoff was found for any other feature, as these varied

significantly not only across aircraft, but also within a single aircraft’s lifecycle, so removing these flights

would have led to removing also other flights which were not part of the problem.

With these matters present, the best configuration for the validation set was found to be with the

Degradation Curves smoothed with a Moving Average, e(u)t = ||z(u)t − z′(u)t ||2, λ = 0.0005, α = 0.95, and

tmax = 50. This corresponded to the estimates for the validation set presented in Fig. 4.5:

59



Figure 4.5: Actual and estimated RUL for the validation set, in ascending order of the actual RUL

And in turn, this configuration yielded the following results corresponding to the test set, presented

in Fig. 4.6:

Figure 4.6: Actual and estimated RUL for the test set, in ascending order of the actual RUL
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Chapter 5

Result Discussion

Having obtained the predictions of the Remaining Useful Life of the test set, the interest lies in under-

standing the reasons for which the model outputted a certain RUL estimate and not another. When the

prediction was accurate, the algorithm should understand why the system failed, thence showing that in

the features corresponding to the failed subsystem; in the case of a False Positive, there should be some

basis for the algorithm to predict a shorter RUL than its actual value; and finally, for a False Negative, it

interests to know why the model did not see any anomalies and thus overestimated the RUL of a sample

sequence.

This is the analysis made in the following sections, where the effort is allocated towards discussing

each of these three points, for both the results from Section 4.1 - Base Results, and from Section 4.2 -

System-Wide-Peak-Filtered Results.

After this, a conclusion on the validity and generalisability of the results is presented.

5.1 Base Result Validation/Analysis

The Base Results, as shown in Section 4.1 - Base Results, and whose accuracy may be gauged via

Table 5.2 and Table 5.1, showcased a model which was neither very accurate on the validation set, and

even less so on the test set, so it is interesting to assess whether or not there is validity in any of these

predictions.

The performance metrics ensuing the predictions follow in Table 5.1:

Table 5.1: Performance metrics on the RUL estimations from the base results

MAE 25.39

RMSE 31.19

Number of False Positives 5

Number of False Negatives 7

and Table 5.2 shows the obtained RUL estimations:
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Table 5.2: Results of the base approach (RUL estimates rounded to the unit)

Sequence

Number (from

Fig. 4.4)

RUL Estimate

(days)

Actual RUL

(days)

1 31 0
2 10 1
3 5 4
4 84 4
5 32 8
6 57 11
7 43 11
8 0 19
9 10 23

10 14 27
11 10 29
12 78 34
13 45 41
14 167 41
15 18 58
16 58 61
17 37 68
18 105 90
19 10 134
20 189 174

5.1.1 True Positive Example

The chosen sequence to represent the True Positive case was sequence number 16, for being the

most accurate on a high actual RUL value. The sequence corresponded to a fault on MAU1, and was

originally 198 days long, and after being truncated, the model was only shown the first 137 days. The

Degradation Curve computed by the model corresponding to this run-to-failure sequence is presented

in Fig. 5.1, which shows somewhat of a decreasing trend, and is also marked by two sudden drops in

health. The first drop can be related to the features pertaining to the number of important messages in

the Electrical, Elevator, and Rudder subsystems (i.e. high values on the ELECSYS MSG, ELEV MSG,

and RUD MSG features, respectively, of which it is of worthy note that the value on the ELECSYS MSG

feature corresponded to this feature’s highest achieved value in the entire dataset). On the other hand,

the second drastic health drop corresponded to high values on the ELEV MSG and RUD MSG features

in that day.
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Figure 5.1: Degradation Curve for the sequence in analysis

In addition to these characteristics, inspection of the reconstructions of the sequence’s features show

that the autoencoder reasonably reconstructed features independent from the Electrical subsystem,

such as aileron features (see Fig. 5.2a), yet had difficulties following the evolution of features highly

dependent on the Electrical subsystem, such as rudder features (see Fig. 5.2b).

(a) (b)

Figure 5.2: AIL AVDIF L (left) and RUDS AVDIF (right) features, in blue, and their respective
reconstructions, in red

This seems to indicate the model recognised the anomaly and estimated based on it.
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5.1.2 False Positive Example

The most prominent case of a False Positive in Table 5.2 pertains to sequence number 19, which was

originally 158 days long, while the model was only shown the first 24 days. The fault the sequence

corresponds to pertains to FCM1. The corresponding Degradation Curve is shown in Fig. 5.3.

Figure 5.3: Degradation Curve for the sequence in analysis

The two visible sudden drops in health were concluded to stem from high values on the ELEV MSG

and RUD MSG features (see Fig. 5.4a).

(a) (b)

Figure 5.4: RUD MSG (left) and ELEV AVFC (right) features, in blue, and their respective
reconstructions, in red
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Moreover, the only feature showing a particularly poor reconstruction was ELEV AVFC, indicating

that the model identified its behaviour as an abnormal one. However, when inspecting maintenance

reports in the period which encompasses the sequence and around the time the model estimated there

would be a fault, no justification was found for this performance of the algorithm. There were two ac-

counts of a current peak causing many Electrical systems in the aircraft to generate many CMC mes-

sages, yet no complaints or reports on the Elevator subsystem.

It seems, then, to be concludable that in this case the model failed to identify anomalies in the system,

and its RUL estimate was both inaccurate, and with no connection to the real operation of the specific

aircraft.

5.1.3 False Negative Example

As representative of the False Negatives in this set of results, sequence number 4 from Table 5.2 was

chosen, corresponding to a fault on the flaps, originally 17 days long, the model being only provided with

the first 13 days.

The respective Degradation Curve is shown in Fig. 5.5, whose health drops correspond to a high

count of rudder related CMC messages (see Fig. 5.6a). Besides these drops, no degradation trend is

visible in this curve.

Figure 5.5: Degradation Curve for the sequence in analysis

Furthermore, when inspecting the Flap feature and its respective reconstruction (Fig. 5.6b), it is

visible that the reconstruction is reasonable, and does not display an acknowledgement from the model

that there is a flap anomaly. Reconstructions of other features were equally without trouble.
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(a) (b)

Figure 5.6: RUD MSG (left) and FLAP AV EXTSPD (right) features, in blue, and their respective
reconstructions, in red

In this case, the inaccurate RUL estimation seems to then stem from inadequate or insufficiently

descriptive features for the flaps, as the model was not able to associate the existing features’ behaviours

to anomalies, and moreover, the low values present in FLAP AV EXTSPD’s normalised plot in Fig. 5.6b

suggest that this behaviour was indeed not anomalous, so this feature failed to translate the degradation

of the flap subsystem, in this case.

It is also possible that degradation only began much closer to the day of the fault, in which case it

would simply not be possible for the model to accurately predict the RUL, with the length of sequence it

was given.

5.2 System-Wide-Peak-Filtered Result Validation/Analysis

The system-wide-peak-filtered results show a substantial improvement to the base results, confirming

the assertion that the system-wide peaks were not consequential to system degradation (at least not

Flight Control System degradation, yet perhaps some other system not in study in this work).

The performance metrics ensuing from these predictions follow in Table 5.3:

Table 5.3: Performance metrics on the RUL estimations from the system-wide-peak-filtered results

MAE 20.04

RMSE 27.97

Number of False Positives 2

Number of False Negatives 7

and the results are presented in the Table 5.4, for reading convenience:
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Table 5.4: Results of the system-wide-peak-filtered approach (RUL estimates rounded to the unit)

Sequence

Number (from

Fig. 4.6)

RUL Estimate

(days)

Actual RUL

(days)

1 55 0
2 2 1
3 3 4
4 4 4
5 105 8
6 7 11
7 11 11
8 22 19
9 19 23

10 46 27
11 16 29
12 9 34
13 34 41
14 44 41
15 144 55
16 97 61
17 118 68
18 105 90
19 153 134
20 35 174

With the exception of sequences number 1 and 5 from Table 5.4, it is visible that the model was quite

accurate predicting RULs up to the 9th entry, that is to say, up to an actual RUL of 23 days. From there,

a decrease in general accuracy is visible, showing it is easier for the model to predict failures the closest

they are to happening.

5.2.1 True Positive Example

The sequence consisting of a True Positive prediction which seems to raise most interest was sequence

number 14 from Table 5.4, for being the most accurate outside of the first nine entries of that table. The

sequence at hand corresponds to a fault in one of the rudder pedals and it is 119 days long, while the

model was only provided with the first 78 days worth of data.

Fig. 5.7 represents the corresponding degradation curve which the model computed.
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Figure 5.7: Degradation Curve for the sequence in analysis

Despite there not being a clear degradation trend, rather only a very slight one if any, the most

prominent characteristic of that curve is the sudden drop in health at the 43rd day, which then goes

back up. After inspection of the reconstructed features, it was concluded that this drop stems from an

appearance of a high count of important rudder related messages on that same day (which is to say

a high value on the RUD MSG feature), as visible in Fig. 5.8a. This high count was also visible in the

feature pertaining to messages from the Electrical System, although not quite as dramatically.

(a) (b)

Figure 5.8: RUD MSG (left) and RUDS AVDIF (right) features, in blue, and their respective
reconstructions, in red

Moreover, despite generally good reconstructions in most features in the sequence, the RUDS AVDIF
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feature’s reconstruction (see Fig. 5.8b) was remarkably always lower in value than its original plot, seem-

ingly indicating that the model took issue with it, indicating a possibly anomalous behaviour. This is in

spite of the original features values not being that high, although in inspecting other sequences, it is

visible that the normalised plots for RUDS AVDIF rarely go above the value 0.3. While this is not enough

to justify an underestimation of the values in the plot at hand (which were mostly below 0.3 as well), it

should also be kept in mind that the autoencoder does not simply learn the patterns of each feature,

rather also relationships between features. It is possible that, given the plots for the other features, it

expected lower values in this one.

5.2.2 False Positive Example

Sequence number 20 from Table 5.4 shows the most evident example of the model underestimating the

RUL in the test set. The sequence in question was originally 203 days long, yet it was truncated so that

the model only saw the first 29 days. The fault it pertains to took place in the ailerons.

The simplest explanation for the prediction to be so far from reality here would evidently be that an

actual RUL of 174 days is too large and many a thing could happen to the system between the last

point in the sequence the model has access to and the day of the fault, which could change the value

of the prediction. However, and granted what has been stated before regarding preference towards

False Negatives as opposed to False Positives, it cannot be ignored that the algorithm identified what

it interpreted as an abnormal behaviour in the sequence’s features, otherwise the predicted RUL might

have not been so low a value.

For this reason, it is of interest to look for such abnormal behaviours and see if they might have had

any impact in the operation of the corresponding aircraft.

The degradation curve computed by the model is presented in Fig. 5.9.

Figure 5.9: Degradation Curve for the sequence in analysis
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Alike the Degradation Curve from the True Positive case, a sudden drop in health is visible, this time

at the 10th day of the sequence. Once more, this was found to be due to a high count of important CMC

messages in that day, in this instance concerning the Aileron, Elevator, and Electrical subsystems. It

is possible that these high counts may have tipped the model into underestimating the time till the next

failure.

(a) (b)

Figure 5.10: AIL AVDIF L (left) and ROLL CW MINVAR (right) features, in blue, and their respective
reconstructions, in red

In addition, inspection of the reconstructed features along with their original plots (see Fig. 5.10)

revealed that the model reconstructed most features with quality, except for AIL AVDIF L and

ROLL CW MINVAR, where both reconstructions fall short in value compared to the originals, seemingly

already indicating problems with the Aileron subsystem, and possibly the Spoiler subsystem as well (re-

call that one of the Multifunction Spoilers’ purposes is to aid in roll, thence responding to the movements

on the control wheel), as well as problems with the Electrical and Elevator subsystems, identified from

the CMC messages.

This is supported by the inspection of the maintenance reports in the period between the first point of

the given sequence to the model, and the day it predicted there would be failure, plus 15 days for some

margin of error. In fact, the reports show both Aileron cable complaints close to this period, and even

a fault on MAU1 a mere 4 days after the predicted RUL, which was, however, labelled as a transitory

condition, yet still caused a delay in the respective flight.

5.2.3 False Negative Example

The chosen sequence to represent the False Negative example was sequence number 5 from Table 5.4,

with an actual RUL of 8 days, yet a predicted RUL of 105 days. This was the most extreme disparity

within False Negative result instances, so an analysis was made to assess the cause of this. The
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sequence and an original length of 34 days, of which the algorithm was only shown the first 26.

The sequence represents a fault in the aileron cables and the corresponding Degradation Curve is

shown in Fig. 5.11.

Figure 5.11: Degradation Curve for the sequence in analysis

The particularity of this curve which becomes evident is that the health of the system seems to be

generally increasing over time, rather than decreasing.

(a) (b)

Figure 5.12: AIL AVDIF L (left) and AIL AVDIF R (right) features, in blue, and their respective
reconstructions, in red

Inspection of the feature reconstructions revealed that the features which were not being recon-

structed up to par were the AIL AVDIF ones (see Fig. 5.12), however, no degradation trend was visible
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in either of the original plots. In fact, the sequence which came before this one, chronologically, shows

that these two features had in fact been on a degrading (increasing, in this case) trend which however

did not carry over to the sequence being analysed, as shown in Fig. 5.13.

Figure 5.13: Plot of the AIL AVDIF R feature (blue) for the sequence immediately chronologically
anterior to the one being analysed, along with its reconstruction (red)

Unlike the current sequence, the one shown in Fig. 5.13 displays a clear upward trend on the original

feature, as well as a visible increasing difficulty for the model to accurately reconstruct it. This suggests

that perhaps if the two sequences were to form only one sequence, it might be beneficial in predicting

this fault in the Aileron subsystem. However, between them lies a multifunction spoiler fault.

5.3 Conclusions on the Model

Having analysed the RUL predictions of each set of results, it is possible to assert that filtering the

system-wide peaks from the dataset — even if only partially — resulted in a substantial improvement

on the accuracy of the model. Should these groups of outliers be present in the training data, they

would be a great influence in the training of the autoencoder, hence perturbing the reconstructions of

the sequences, causing worse results. On the other hand, should these peaks be present in a sequence,

they would cause an overwhelmingly large error, thus affecting the shape of the Degradation Curve. In

fact, the most prominent difference between curves from the Basic Results and curves from the System-

Wide-Peak-Filtered Results is that sudden drops in health are more common, and far more prominent in

the former set of predictions, than they are on the latter. This is exemplified in Fig. 5.14.

72



(a) (b)

Figure 5.14: Degradation curves for the same sequence, for the model with system-wide peaks (left)
and partially without system-wide peaks (right)

Another touched on subject in this chapter was the possible inadequacy of the features in represent-

ing the degradation of their respective subsystem, and thus the degradation of the overall Flight Control

System. While it has been shown that certain behaviours in the feature plots seem to directly relate

to some oncoming faults, in truth many other faults may not show in the gathered features, which later

results in an inaccurate prediction of the RUL. As also discussed before, there is additionally the problem

of feature behaviour relating to faults, yet not soon enough that this may be caught by the algorithm in

time. As an example, the FLAP MIN EXTSPD feature represented in Fig. 3.20a could be taken into

account. That plot clearly showed lower flap extend speeds very close to the vertical lines denoting the

flap faults, and in that particular case, these points were visible 2 days before the fault. However, this is

not always the case, and in fact, it is the exception: most times, this behavioural anomaly is only visible

in the day of the fault, which as interesting as it might be from a diagnostics perspective, has no utility

from a prognostics point of view.

Another posing issue possibly hindering the performance of the model was the overall quality of the

data, both concerning the sensor readings, and the failure dates which were used to split the lifecycle

of each aircraft. On the subject of the sensor readings, they are quite noisy, and so were the features

obtained from them. While this was partly addressed by averaging all the flight summaries in each day,

the issue was not completely extinguished, and the consequence are equally noisy Degradation Curves,

as all figures showcasing them show. Another problem follows from there being so many possible feature

behaviours for a single feature, as is the case with AIL AVDIF L and AIL AVDIF R, which may cause

difficulties in the training of the autoencoder, as it is not possible to know what behaviour is normal, and

what is anomalous. Additionally, sometimes certain values or behaviour evolutions seemingly lead to

a fault, yet the same values do not lead to a fault at some other period of the life of that aircraft, or on

73



some other aircraft.

As for problems with the failure data, they stem from two sources. On the one hand, the reports

from which the faults were gathered display a certain issuing date and issuing time, but these are only

accurate if the report was input in the system at the exact flight the issue took place, which is usually

not the case. When switching from flights to days as the definition of cycle, this issue becomes moot

however, as the reports could be with pinpoint accuracy, and still in the model it was assumed that the

fault took place at the end of the day, which is to say after the last flight of the day. Despite this, the most

pressing matter concerning fault data is still likely the subjectivity involved in reading and adding the

reports of faults which were not FLT CTRL NO DISPATCH. As already discussed, there were too many

reports, and a first approach was to add only reports which mentioned the replacement of a component.

Simply that already adds a certain level of interpretation required: should all of these reports be added as

faults regardless of whether or not the features show changes in their behaviours accordingly?; should

scheduled inspection actions that also require replacements be added as well? And this is all beside

the fact that after reviewing all these reports, abnormal behaviours were still searched for in the features

so as to further look for other reports which, while not mentioning replacements, might have caused that

change. This also adds subjectivity, as it depends on the eye of who is looking at the feature plots.

And finally, likely the major issue with this approach, was that too many subsystems which were

mostly independent from each other were being modelled together. There were too many failure modes,

so even if the algorithm might be able to predict a fault on the Electrical System for instance, that was no

guarantee that it is capable of predicting a fault on the Aileron System. This would have been of interest

to explore, by separating all systems and analysing them one by one, with only faults and features

pertaining to the respective system, and perhaps the Electrical System being modelled together with

each of the subsystems which depend on it. However, the lack of failure data, which had already been

an issue with all the systems together, would now completely impede such study: there was no single

system with enough failures to create an entire dataset of them, and the only system coming close to

that possibility was the Electrical System, which would invariably require the analysis of features from

more subsystems along with it anyway.

To conclude, it seems that most obstacles revolved around the lack of failure data, which is evidently

good for Portugália Airlines, but it hindered the model. The obtained results from the validation sets

and the test sets being so different from one another and the almost sporadic estimates on some of

the samples seem to imply that these predictions stand for themselves and do not guarantee that the

model would perform with the same overall quality on another test set. Still, the analysis done on the

second set of results suggests that there is validity in the model’s interpretation in what is an abnormal

behaviour, so a RUL estimation corresponding to a small value, while not necessarily meaning there is

an imminent fault, may be an indicative that the aircraft may benefit from a brief inspection.
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Chapter 6

Conclusion

The ultimate objective of this work was to provide a solution in failure prediction on the Flight Control

System to allow for a better maintenance strategy beyond scheduled preventive maintenance, and run-

to-failure maintenance, and in that front, being able to predict a few faults is still better than not predicting

any, so a solution which was not prone to outputting False Positives was pursued, so that whenever a

small RUL was predicted, the action should be to inspect the feature reconstructions and if possible

identify the source of the problem, or to directly inspect the aircraft.

The following sections detail this work’s achievements, obtained when procuring this solution, along

with any future work which might be in order.

6.1 Achievements

This work arrived at the objective of predicting the Remaining Useful Life of a set of test sequences of

flights, with reasonable accuracy in predictions of up to 20 days, and granted that the number of flights

to assess is great enough so as to give the model enough data points to make its prediction.

Additionally, many statistics to gauge the Flight Control System’s health were created, for each of its

many subsystems, and many of them proving to directly relate to faults or system degradation. While

features such as AIL AVDIF may have too much variability from many factors to conclude on the sub-

system’s degradation, they may still be useful to assess the performance of the controls, and to cross

check complaints with (features measuring forces may equally be useful for cross checking with com-

plaints from the pilots). Other features such as ROLL CW MINVAR and SPOILS MINVAR were proven

to relate to some faults, and seeing as sometimes a maintenance intervention worsens their respective

behaviours, it may be practical to keep updated plots of each to catch any such changes in behaviour al-

most as soon as they happen. This is also valid for many other features, as many were seen correlating

to some faults, even if only one or two.

Finally, these features allowed the identification of problems in either the recording system, or some

software glitch, which, while not problematic in the aircraft’s operations, may be a hindrance in further

analysis of aircraft flight data.
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6.2 Future Work

As has been discussed before, the main problem faced in this project was lack of failure data. It is

in every way interesting to pick the algorithm back up in some years time, when more FLT CTRL NO

DISPATCH faults have been accumulated, to train and test it again, with faults exclusively from that

source. Additionally, as discussed before, performing separate analyses on the different subsystems in

separate is also a route worth committing to with enough failure data. Should this be done, it would be

possible to directly infer which system was at fault when a certain RUL is estimated.

Alternatively, a more in depth analysis and gathering of the maintenance reports could also better

the performance of the model, although this would be quite manifestly time consuming.

Additionally, in order to also try to circumvent the lack of failure data, the model could be trained with

all available data (i.e. not only this work’s train set, but also test and validation sets), then it could be

implemented in Portugália Airline’s environment to see how close its predictions are to future faults on

the Flight Controls System.

Finally, implementation of the feature gathering routines in Portugália Airlines’ environment could

prove to be beneficial for the reasons already mentioned in the above section, and even if not for their

predictive capabilities, then for their troubleshooting ones. As has already been shown, many features

do relate to faults, and some of them only show signs of anomaly much too close to the day of the fault

for their predictive capabilities to be of any worth. Many a time, troubleshooting the Flight Control System

is not as simple as reading an error code and cross checking it with the maintenance manuals. Perhaps

with the aid of these variables, troubleshooting becomes easier and hence more efficient, therefore

avoiding, or otherwise minimising, flight delays. The program would then not only work as a Predictive

Maintenance solution, but also a Health Monitoring one.
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Appendix A

List of Created Sensor Features

The following are the sensor features which were created for the analysis of the Flight Control System.

A.1 Electrical System

By inspection of the many flights of the various aircraft, it was possible to conclude that, for each

subsystem with dedicated ACEs, the number of engaged ACE channels at a time is mostly the same,

and exceptions seem to happen very sporadically and many times at the very beginning of the flight (in

the taxi-out phase). While this may be simply due to the AGS software’s mis-categorisation of the flight

phase (i.e. maybe the taxi-out phase actually started some seconds before or after the software’s

acknowledgement), it could also be due to a delay in engaging the ACEs. Moreover, when these

exceptions did not happen in the taxi-out phase it could be due to some other problem in the electrical

system. So the features created concerning this are variables which count how many times the number

of engaged ACE channels in each subsystem is not the respective usual value:

• FSACE: Number of times that the number of engaged FS-ACE channels is not 6 in a flight

(starting from the Taxi-Out flight phase);

• HSACE: Number of times that the number of engaged HS-ACE channels is not 1;

• ELACE: Number of times that the number of engaged P-ACE elevator channels is not 4;

• RDACE: Number of times that the number of engaged P-ACE rudder channels is not 2.

Furthermore, with the exception of the Flap/Slat subsystem where all the possible FS-ACE channels

are engaged at the same time, there are spare channels in every subsystem. So, for each flight, only a

portion of the total number of ACE channels is used, and upon inspection of all flights it was possible to

conclude that the groups of engaged/disengaged ACE channels are typically well defined and are

interchanged each day. To exemplify, there are eight FCM channels for the elevator P-ACEs,

corresponding to 1A, 1B, 2A, 2B, 3A, 3B, 4A and 4B, however only four are used each flight, and there
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are only two possible combinations: in a single flight, either channels 1A, 2B, 3A and 4B are used, or

channels 1B, 2A, 3B and 4A, with exceptions happening extremely sporadically.

Additionally, it was found that the accuracy of some sensor readings depends on which group of

channels is used for each subsystem, and because of this, it was thought useful to know which

channels are most active in each flight:

• ELACE ENG: Which group of P-ACE elevator channels is engaged in the flight;

• HSACE ENG: Which HS-ACE channel is engaged in the flight;

• RDACE ENG which group of P-ACE rudder channels is engaged in the flight.

A.2 Ailerons

The aileron subsystem has two torque tubes, each having three bellcranks connected to position

sensors, so that there are six readings total for the control wheel position. It was thought that the level

of disparity between these readings might correlate to faults in the Flight Control system, so features

were created to account for that:

• ROLL CW AVVAR: Average variance between all of the control wheel roll position sensor

readings;

• ROLL CW MAXVAR: Maximum variance between all of the control wheel roll position sensor

readings;

• ROLL CW MINVAR: Minimum variance between all of the control wheel roll position sensor

readings.

Embraer provides a table of correspondence between control wheel input and aileron surface

deflection, so it was possible to assess how close, or how far, the real deflections were from the

theoretical ones, given the pilots’ input. The average, minimum, and maximum differences recorded in

each flight were then taken as features:

• AIL AVDIF L: Average difference between theoretical and actual left aileron deflection given

control wheel input;

• AIL AVDIF R: Average difference between theoretical and actual right aileron deflection given

control wheel input;

• AIL MAXDIF L: Maximum difference between theoretical and actual left aileron deflection given

control wheel input;

• AIL MAXDIF R: Maximum difference between theoretical and actual right aileron deflection given

control wheel input;
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• AIL MINDIF L: Minimum difference between theoretical and actual left aileron deflection given

control wheel input;

• AIL MINDIF R: Minimum difference between theoretical and actual right aileron deflection given

control wheel input;

Finally, the following features were created to try and see if there might be a correlation between

possible looseness or stiffness of the control wheel (even if only noticeable in the data) and system

degradation:

• AIL AVFC: Average force applied to the control wheel;

• AIL MAXFC: Maximum force applied to the control wheel;

• AIL MINFC: Minimum force applied to the control wheel.

A.3 Rudder

There are two sensor readings for the rudder pedal position. Once again, it was thought that the

evolving difference between the two readings might correlate to degradation, so the following features

were created:

• RUD PDL AVDIF: Average difference between rudder pedal left and right position sensor

readings;

• RUD PDL MAXDIF: Maximum difference between rudder pedal left and right position sensor

readings;

• RUD PDL MINDIF: Minimum difference between rudder pedal left and right position sensor

readings.

While there is not a table of correspondence between pedal input and rudder surface deflection, like

there was for the control wheel and the ailerons, it was still possible to evaluate the system on an

input/output basis. A group of flights considered “healthy” for each aircraft was taken and a linear

regression was applied to create a theoretical model of the behaviour of this control surface. As such,

and much like the ailerons, features were created to compare this theoretical deflection with the actual

deflection, given pilots’ pedal positions at every instant of the flight.

• RUD AVDIF: Average difference between theoretical and actual rudder surface position;

• RUD MAXVDIF: Maximum difference between theoretical and actual rudder surface position;

• RUD MINDIF: Minimum difference between theoretical and actual rudder surface position.

The rudder surface can be moved by either the upper or the lower PCU, each having its own position

sensor, all the while the rudder being considered a rigid body. In that sense, the difference between the

two sensor readings was also studied via the following features:
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• RUDS AVDIF: Average difference between upper and lower rudder sensors;

• RUDS MAXDIF: Maximum difference between upper and lower rudder sensors;

• RUDS MINDIF: Minimum difference between upper and lower rudder sensors.

Finally, the necessary force exerted on the pedals was also studied:

• RUD PDL AVFC: Average force applied to the rudder pedals;

• RUD PDL MAXFC: Maximum force applied to the rudder pedals;

• RUD PDL MINFC: Minimum force applied to the rudder pedals.

A.4 Elevator

There are two available readings for control column position: one for the pilot, and one for the copilot.

While both the control columns are mechanically connected, this means that both sensors should read

similar values, so the difference between the two was taken as a feature, to allow further study:

• PITCH POS AVDIF: Average difference between position readings of pilot and copilot control

columns;

• PITCH POS MAXDIF: Maximum difference between position readings of pilot and copilot control

columns;

• PITCH POS MINDIF: Minimum difference between position readings of pilot and copilot control

columns.

Like the rudder, given the fact that there is not a table available with control column position versus

elevator surface deflection provided by Embraer, a set of flights considered “healthy” was used to

compute a linear regression model to take as theoretical input/output relationship. With this, a set of

features comparing the theoretical surface deflection with the real surface deflection, given pilot input,

was created:

• ELEV AVDIF L Average difference between theoretical and actual left elevator deflection given

pilot input;

• ELEV AVDIF R Average difference between theoretical and actual right elevator deflection given

pilot input;

• ELEV MAXDIF L Maximum difference between theoretical and actual left elevator deflection

given pilot input;

• ELEV MAXDIF R Maximum difference between theoretical and actual right elevator deflection

given pilot input;
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• ELEV MINDIF L Minimum difference between theoretical and actual left elevator deflection given

pilot input;

• ELEV MINDIF R Minimum difference between theoretical and actual right elevator deflection

given pilot input.

Each elevator surface can be controlled by either of two PCUs (inboard or outboard PCU), so there are

two position sensors per elevator surface. Both of the sensors are connected to different P-ACEs,

which in turn connect to different FCMs, so a possible difference between the two readings could

correlate to degradation or a fault within this circuit. As such, features were created to account for that:

• ELEVS AVDIF L: Average difference between elevator left inboard and outboard sensor readings;

• ELEVS AVDIF R: Average difference between elevator right inboard and outboard sensor

readings;

• ELEVS MAXDIF L: Maximum difference between elevator left inboard and outboard sensor

readings;

• ELEVS MAXDIF R: Maximum difference between elevator right inboard and outboard sensor

readings;

• ELEVS MINDIF L: Minimum difference between elevator left inboard and outboard sensor

readings;

• ELEVS MINDIF R: Minimum difference between elevator right inboard and outboard sensor

readings.

Finally, the average and maximum force applied to the control column in each flight were taken to find

correlations between system degradation and possible looseness or stiffness of the control.

• ELEV AVFC: Average force applied to the control column;

• ELEV MAXFC: Maximum force applied to the control column;

• ELEV MINFC: Minimum force applied to the control column.

A.5 Flaps

Like the ailerons, Embraer provided a table of correspondence between pilot input on the controls, and

surface deflection. Furthermore, the values for both flap deflection and Slat/Flap Lever position are

discrete. As such, the flaps would always be reported by the software to eventually arrive at the exact

theoretical deflection, so a direct measure of either delay, or speed to arrive at that deflection could be

computed:

• FLAP AV EXTSPD: Average flap mean angular extend speed;
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• FLAP MAX EXTSPD: Average flap maximum angular extend speed;

• FLAP MIN EXTSPD: Average flap minimum angular extend speed;

• FLAP AV RETSPD: Average flap mean angular retract speed;

• FLAP MAX RETSPD: Average flap maximum angular retract speed;

• FLAP MIN RETSPD: Average flap minimum angular retract speed.

However, characteristics of some flights made it so the above-mentioned features were prone to

missing values, so an extra feature was created, which was impervious to this:

• FLAP TIMEFRACTION: Fraction of total time in a flight where the flaps are reported to be in the

wrong deflection, given lever input, considering an ideal flap response with no delay, and

disregarding the climb and the cruise flight phases, where the flaps are not used.

A.6 Spoilers and Speed Brakes

There are three possible readings for the speed brake lever position, so it was thought useful to gauge

the disparity level between them, so features accounting for the variance between these readings were

created:

• SPD BRK AVVAR: Average variance between all of the speed break lever position indicators;

• SPD BRK MAXVAR: Maximum variance between all of the speed break lever position indicators;

• SPD BRK MINVAR: Minimum variance between all of the speed break lever position indicators;

For the Spoilers and Speed Brakes, once again an empirical model for pilot input versus surface

deflection was obtained from flights assumed healthy. Given the lever position, throughout the flight, the

deflections were calculated based on this model, and the average, maximum and minimum differences

between these values and the actual recorded ones were stored:

• SPOIL AVDIF: Average difference between theoretical and actual spoiler surfaces positions;

• SPOIL MAXDIF: Maximum difference between theoretical and actual spoiler surfaces positions;

• SPOIL MINDIF: Minimum difference between theoretical and actual spoiler surfaces positions.

Furthermore, in order to study the possible correlation between the disparity of all six position readings

for the multifunction spoilers when the speed brake lever is used (which should result in a symmetrical

and equal deflection in all spoilers), the following features were also created:

• SPOIL AVVAR: Average variance between all of multifunction spoiler position readings;

• SPOIL MAXVAR: Maximum variance between all of multifunction spoiler position readings;

• SPOIL MINVAR: Minimum variance between all of multifunction spoiler position readings;
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A.7 Slats

Akin to the flaps, there is a correspondence between the flap/slat lever position and the slat surface

deflection. The Slat subsystem was given the same treatment as the Flap subsystem, as they are both

quite similar:

• SLAT AV EXTSPD: Average slat mean angular extend speed;

• SLAT MAX EXTSPD: Average slat maximum angular extend speed;

• SLAT MIN EXTSPD: Average slat minimum angular extend speed;

• SLAT AV RETSPD: Average slat mean angular retract speed;

• SLAT MAX RETSPD: Average slat maximum angular retract speed;

• SLAT MIN RETSPD: Average slat minimum angular retract speed;

• SLAT TIMEFRACTION: Fraction of total time in a flight where the slats are reported to be in the

wrong deflection, given lever input, considering an ideal slat response with no delay, and

disregarding the climb and the cruise flight phases, where the slats are not used.
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Appendix B

Feature Selection/Feature Plot Visual

Inspection — Exhaustive List

The total created features amounted to 75, yet of these only a selection would later be used in the

algorithm, since there were many which would only add to the run time of the algorithm and nothing

more. This selection should be made based on correlation to the faults. This was done via a visual

inspection of the plots of each feature throughout time (i.e. the dates of the flights) to assess their

usefulness in predicting impending faults. This section covers that analysis.

It should be noted that in testing it was found that some sensor readings were susceptible to dramatic

outliers both due to the rapid command movements in the taxi-out phase, and the inherent noise the

signal carries. In these cases, the respective features which represented an average were found to be

more useful when they were used as a median, so they were changed.

The following shows the most prominent plot examples for each feature type, and is an exhaustive list

of the reasoning behind the discarding/keeping of all created features, which includes both what has

been said in the main text and the rest of the features which had not been addressed there.
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B.1 Electrical System

(a) (b) (c)

Figure B.1: Plots for the ELACE (left), RDACE (centre), and FSACE (right) features on a single aircraft

ELACE is, for most aircraft, very sparse, presenting mostly values of zero, and with outliers which do

not seem to have any correlation to the faults. In fact, for aircraft where this feature is not so sparse, the

distributions of the points seem to bear little to no information about fault imminence. As presented in

Fig. B.1a, there start being more ELACE occurrences mid 2019, and this behaviour continues for at

least a year, with no reported issues, which seems to indicate this is not a good candidate for

prognostics analysis.

RDACE mostly presents a distribution similar to ELACE, which is not unexpected given that both of

these features pertain to P-ACEs. As such, this feature carries the same characteristics as ELACE.

FSACE, like ELACE, is very sparse and its occurrences seem to have no correlation to faults on either

the Electrical, Flap, or Slat subsystems. However, and as shown in Fig. B.1c, it carries a characteristic

which will henceforth be referred to as “system-wide peaks”. In this figure, one of these very distinct

peaks is visible in the last quarter of 2019 — these are phenomena of anomalous behaviour which,

when present at a given period, show in many other features, across multiple subsystems. These

abnormalities will be discussed later in this section when analysing the features directly pertaining to

the Flap and Slat subsystems.

HSACE was found to always be a constant of zero, therefore carrying no information for the algorithm.

All of these characteristics dictated that these features be discarded, as they were not worth the

additional computing time required for having them.

As for the ELACE ENG, HSACE ENG, and RDACE ENG features, their initial function was not to point

to system degradation (as they only show which groups of ACEs were chosen for the specific flights),

but rather to aid the algorithm in identifying and better dealing with changes in behaviour which are not

necessarily due to an impending fault, and instead are due to this change in ACEs, as is shown in

Fig. B.2a, where the ELACE ENG value is represented by the colour of each point in the plot. This

would be advantageous since the measurement of health will be taken from the error of the AE in

reconstructing the data it is given. Of these, only ELACE ENG was kept, as RDACE ENG largely
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coincides with it, and HSACE ENG pertains to the horizontal stabiliser, for which no features were

created.

(a) Example of feature dependency
on the ELACE ENG variable

(b) Plot for the ELECSYS MSG
feature for a given aircraft

(c) Example of a fault on the Electrical
System’s influence on features
belonging to other subsystems

Figure B.2: Plots representing some characteristics of the Electrical System

Finally, the ELECSYS MSG feature shows that its distribution might be related to certain faults not

limited to the electrical system. In Fig. B.2b, for example, the relatively high incidence of outliers around

the first half of 2019 is concurrent with the high fault frequency in the same period. In fact, apart from

two other outliers, this period ends with a fault, and respective maintenance action, on MAU1.

Given these examples across many aircraft, this feature was kept. It should be noted that it was

decided all features regarding the FHDB messages were to be kept, given the importance of these

messages and how many of them dictated the actions of the maintenance team.

Furthermore, while this means that there was only one feature directly representative of the Electrical

System’s degradation state, this should not be taken as a sign of its unimportance. In fact, the most

common source of faults in the dataset is precisely this subsystem, so it should be handled as such —

and despite this apparent issue, it is in truth not being belittled. Verily, being as global a system as it is,

it affects all others, and hence many anomalies in the behaviours of features belonging to other

systems (such as the Rudder, or Elevators) can be traced back to faults in the Electrical System. An

example of this is given by Fig. B.2c, in the first quarter of 2018, where an unusual amount of force

seems to be needed to move the elevator control column in some flights; this issue eventually ends

after a fault and its respective corrective action on FCM1 — an Electrical System component. As a final

note on this matter, although it might seem so, the described behaviour in Fig. B.2c is not a

system-wide peak, as it is exclusive to this feature at this period for the given aircraft.
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B.2 Ailerons

(a) (b) (c)

Figure B.3: Plots for the ROLL CW MINVAR (left), ROLL CW AVVAR (centre), and
ROLL CW MAXVAR (right) features on a single aircraft

Of the three ROLL CW xxVAR features (presented in Fig. B.3 for a specific aircraft), only

ROLL CW MINVAR was kept, for two reasons. The first being its clarity in possible fault correlation,

which is visible in Fig. B.3a as a behaviour change by the second half of 2018 extending to the first

quarter of 2019, which worsens by the end of 2018, and eventually ends at an FCM4 fault. The second

reason was for this feature generally being, of the three, the one least affected by system-wide peaks

(as will be shown later in this section that these peaks come in detriment to the data, rather than

improvement).

(a) (b) (c)

Figure B.4: Plots for the AIL MINDIF R (left), AIL AVDIF R (centre), and AIL MAXDIF R (right) features
on a single aircraft

Regarding the set of features presented in Fig. B.4, along with their left side counterparts, only

AIL AVDIF R and AIL AVDIF L were kept, seeing as they presented the greatest variability with which

coming visible behaviour changes after maintenance actions. Fault correlation with these features has

already been discussed in the paragraphs accompanying ?? and ??, in Section 3.3.2 - Lifecycle

Splitting so this is not repeated here. An additional reason these features were chosen over the rest

was their imperviousness to system-wide peaks.
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(a) (b) (c)

Figure B.5: Plots for the AIL MINFC (left), AIL AVFC (centre), and AIL MAXFC (right) features on a
single aircraft

Finally, for the aileron force features (Fig. B.5), both AIL MINFC and AIL AVFC display seasonal

behaviours which are only disrupted by maintenance actions on the system (see ?? for an example of

such disruptions). According to these two features, generally, more force is required to move the aileron

controls in the winter season, and conversely, less is required during the summer season.

As for AIL MAXFC, it is the only aileron force feature independent from season, and it is also in fact the

one where the majority of complaints on control stiffness is visible, as discussed before, in

Section 3.3.2 - Lifecycle Splitting. For this reason, it was the only one which was kept.

B.3 Elevators

(a) (b) (c)

Figure B.6: Plots for the PITCH POS MINDIF (left), PITCH POS AVDIF (centre), and
PITCH POS MAXDIF (right) features on a single aircraft

PITCH POS AVDIF, PITCH POS MAXDIF, and PITCH POS MINDIF (see Fig. B.6) all have quite

stable behaviours which only change following a modification to the elevator control columns, most

commonly during maintenance checks. Moreover, they present no visible correlations to elevator faults

and all share the same general plot characteristics, so they were all discarded.
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(a) (b) (c)

Figure B.7: Plots for the ELEVS AVDIF L (left), ELEVS AVDIF R (centre), and ELEVS MAXDIF L
(right) features on a single aircraft

The ELEVS AVDIF features have been identified as correlating to some faults in the dataset. The plots

presented in Fig. B.7a and Fig. B.7b show an interesting example regarding this. Specifically, for the

right-side elevator surface, Fig. B.7b, it shows that the difference between readings of the inboard and

outboard sensors is seldom greater than 0.1o in magnitude, and when it is, the same happens for the

left-side elevator sensors. However, this is not the case for the period starting from the end of 2018,

where it is visible for the right side an increase in sensor reading discrepancy, which only ends after a

fault in the elevator subsystem, which was acted upon by replacing the right inboard elevator sensor.

Moreover, on the left side variable, an increase in discrepancy is also visible by the end of 2019, and it

would not be illegitimate to think that there might be an impending fault concerning either of the left side

sensors, however by this time the data is considerably more scarce due to there being less flights.

Given this, both ELEVS AVDIF L and ELEVS AVDIF R were kept in the dataset.

Regarding the ELEVS MAXDIF L and ELEVS MAXDIF R features (ELEVS MAXDIF L being

represented in Fig. B.7c for a specific aircraft), they are both random with unchanging behaviour across

all aircraft safe for the system-wide peaks, which means they do not carry any additional information, so

they were discarded.

The ELEVS MINDIF features were both found to be a constant of zero in all aircraft, so they were also

removed from the dataset.
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(a) (b) (c)

Figure B.8: Plots for the ELEV AVDIF R (left), ELEV MAXDIF R (centre), and ELEV MINDIF R (right)
features on a single aircraft

All of the features represented in Fig. B.8, along with their left side counterparts, act fairly randomly in

most aircraft, and no evident correlations to faults of the elevator or the electrical systems are visible.

These features were therefore all discarded.

(a) (b) (c)

Figure B.9: Plots for the ELEV MINFC (left), ELEV AVFC (centre), and ELEV MAXFC (right) features
on a single aircraft

Finally, regarding the elevator force features, both ELEV MINFC (Fig. B.9a) and ELEV MAXFC

(Fig. B.9c) seem to carry no meaningful information regarding faults or system degradation, despite

there being some behaviour changes. For instance, in Fig. B.9c, there are clear differing distributions:

one starting at the last quarter of 2017 and ending around the first quarter of 2018, and the other being

the rest of the scatter plot — no reason was found for any of these behaviour changes in the

maintenance reports (possibly the FCM3 fault marked the end of the abnormal behaviour, but it is not

certain), and this happens in all other aircraft. In fact, ELEV MAXFC is for the majority of aircraft

random and these behaviour changes are very rare, yet when they exist, no source was found.

As for ELEV AVFC, Fig. B.9b shows not only the previously mentioned fault correlation to the FCM3,

but also an increasing trend throughout 2018 ending in December of 2018 where some elevator

components were found with physical damage, and were hence replaced (in the plot, this fault is

marked as an Aileron fault, however there was also this one in the same day).
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In conclusion, only ELEV AVFC was kept, as it showed in some aircraft both degradation and

correlation to faults on the Elevator and Electrical Systems.

B.4 Rudder

(a) (b)

Figure B.10: Plots for the RUD PDL AVDIF (left), and RUD PDL MAXDIF (right) features on a single
aircraft

Concerning the features pertaining to the difference between the two pedal readings (see Fig. B.10), all

of them were discarded. Both RUD PDL AVDIF and RUD PDL MAXDIF are mostly random, and

RUD PDL MINDIF is a constant of zero.

(a) (b)

Figure B.11: Plots for the RUDS AVDIF (left), and RUDS MAXDIF (right) features on a single aircraft

As for the rudder surface sensors reading disparity features (Fig. B.11), RUDS AVDIF was kept for its

most evident apparent correlation to rudder faults. For instance, in Fig. B.11a, an increasing trend from

the last quarter of 2017 and extending towards the middle of 2018, seems to have led to, or at least

was corrected after, successive faults on the rudder, followed by a rudder PCU replacement. Another

example on the same plot would be the behaviour acquired after the maintenance check on the last

quarter of 2018, comprised of relatively high values on the feature, closely followed by a fault of a

P-ACE. What seems to compromise the usefulness of this feature, however, is the fact that not long
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after, it assumes values quite higher than those before the aforementioned faults, yet no other issues

were reported. Still, it was kept. As for RUDS MAXDIF, it seemed to bear no more information than its

average counterpart; RUDS MINDIF was always zero.

(a) (b) (c)

Figure B.12: Plots for the RUD MINDIF (left), RUD AVDIF (centre), and RUD MAXDIF (right) features
on a single aircraft

Regarding the rudder features accounting for its input/output relationship (see Fig. B.12), only

RUD AVDIF was kept, as it displayed the greatest apparent correlation to rudder faults, the most

flagrant example in the datset being represented in Fig. B.12b, where the first faults in the studied

period (rudder faults) seem to stem from the high values of this feature.

(a) (b) (c)

Figure B.13: Plots for the RUD PDL MINFC (left), RUD PDL AVFC (centre), and RUD PDL MAXFC
(right) features on a single aircraft

Finally, none of the rudder pedal force features was kept, as none of them were found to strongly relate

to any rudder faults, neither was there any complaint on the rudder pedal stiffness to note on the

maintenance reports.

B.5 Flaps/Slats

The flap and slat subsystems are here discussed together as their respective feature analyses are the

same regarding fault correlation (flap feature plot characteristics leading to flap faults are the same as
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slat feature plot characteristics leading to slat faults, and in fact flap feature plots are generally quite

similar to their slat equivalents).

(a) (b) (c)

Figure B.14: Plots for the FLAP MIN EXTSPD (left), FLAP AV EXTSPD (centre), and
FLAP MAX EXTSPD (right) features on a single aircraft

Of the features regarding the speed of the flaps to arrive at their correct deflection (Fig. B.14), it was

found that the retract and extend feature plots were very similar to each other in shape, differing only in

scale. Of all of them, FLAP MIN EXTSPD was chosen to represent this system characteristic for two

major reasons. On one side, for its clarity in fault correlation, visible in the two flap faults in 2017 in

Fig. B.14a with their respective outliers in the plot, indicating the speeds were found to be lower than

normal, which is consistent with the fact that most of the system messages found on reports for these

kinds of fault mentioned “surface jammed” or “underspeed”. On the other side, the number of possible

normal values for this feature was remarkably lower than for the other two features (the apparent three

horizontal lines that are formed by the plot points versus the more evident scatter on the other plots) —

this would make this feature’s healthy state easier for the autoencoder to learn.

Analogously, the chosen feature for the slats was SLAT MIN EXTSPD.

As mentioned before, these speed features were found to be prone to missing values, and initially this

was thought to be due to very short flights — such as rejected take-offs, — where the flaps and slats

are barely used, if at all. However this was found not to be the case, which prompted individual

inspection of the flights which were causing the issue. These flight raw data files, along with the

discrete nature of the flap sensor readings, provided a glance at the nature of the aforementioned

system-wide peaks.

Indeed, it was found that for these troublesome flights, the sensors were reading both flaps and slats to

move irrespective of the flap/slat lever position: the lever could show to stay in position, yet the flap and

slat surfaces would move, and it was not possible to calculate a speed of arrival at the theoretical

deflection, because there was no means to compute that deflection without lever movement — hence

the missing value. So when circumventing this issue by creating the FLAP TIMEFRACTION and

SLAT TIMEFRACTION features, the following was found, as shown in Fig. B.15:

The problematic flights belonged to the outliers which represent the system-wide peaks. This figure
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(a) (b) (c)

Figure B.15: Plots for the FLAP TIMEFRACTION (left), ELEV MAXDIF R (centre), and
SPD BRK AVVAR (right) features on a single aircraft

shows plots representing features for three distinct subsystems, all having this anomaly, and in truth it

affected all of the subsystems.

This discovery helped shedding light on the credibility of these data points: if something as critical as

the control surfaces moving on their own were happening, across multiple systems, no aircraft would be

flying in any way, shape, or form. In fact, it would have been something the pilots would be aware of,

from the very beginning of the flight — in the taxi-out phase, where the controls are tested and the

surfaces are checked for movement.

Along with the fact that no reports show any such critical complaints around these periods, and in

addition the fact that this seemed to happen at around the same period for all aircraft (see Fig. B.16),

this lead to the conclusion that the issue was not in any of the studied systems, and should instead be

either a recording, or a software concern.

Figure B.16: Plot for the AIL MAXDIF R feature for all aircraft, each color representing one aircraft;
most system-wide peaks appear at around the same periods

Due to this, it was concluded that system-wide peaks are not representative of the system’s health, and

that faults happening seemingly connected to them was largely coincidental, as supported by the fact
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that the vast majority of peaks either is not preceding any fault, or is preceding a fault that is not

remotely as critical as this event would be, were it a true fault (for instance, Fig. B.15’s peak at the

beginning of 2019 seemingly relating to a rudder fault, yet it is known that this fault was exclusive to the

rudder).

This is the reason features exhibiting this characteristic were avoided whenever possible, as it was

understood the peaks were polluting the data. The same reasoning lead to the discarding of the

FLAP TIMEFRACTION and SLAT TIMEFRACTION features, with the missing values on the flap and

slat speed features being replaced with the mean of the respective features.

B.6 Spoilers and Air Brakes

(a) (b) (c)

Figure B.17: Plots for the SPD BRK MINVAR (left), SPD BRK AVVAR (centre), and
SPD BRK MAXVAR (right) features on a single aircraft

The three SPD BRK features are illustrated in Fig. B.17, and of them SPD BRK MINVAR most

evidently showed correlation to multifunction spoiler faults: as exemplified in Fig. B.17a, the first half of

2018 displays a high frequency of higher values than usual, followed by several FCM faults, and finally

a multifunction spoiler fault (marked “MFS” in the plot legend). Moreover, SPD BRK AVVAR might have

also been a choice, however it displays in some aircraft a single outlier several orders of magnitude

greater in value than the rest of the plot — likely connected to the system wide peaks — so it was not

used.
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(a) (b) (c)

Figure B.18: Plots for the SPOIL MINDIF (left), SPOIL AVDIF (centre), and SPOIL MAXDIF (right)
features on a single aircraft

SPOIL AVDIF, SPOIL MAXDIF and SPOIL MINDIF (see Fig. B.18) all share the same problem, which

is that they rely on pilot input to be able to be calculated. The speed brake subsystem can be either

controlled by the pilots, or the auto-pilot, and information about which of these is the agent on the

position of the surfaces is given by the AGS variable SPD BRK, which is 0 when the agent is the

auto-pilot, and 1 when it is either of the pilots. The issue arises from the fact that it is not unusual that in

a flight the SPD BRK variable is always 0, meaning there was no instant where the pilots took control of

this subsystem. As such, for these cases, a difference between expected and actual surface deflections

cannot be calculated, which then translates into missing values on these three features. The frequency

of these can be seen at the top of the plot for SPOIL MINDIF (Fig. B.18a), and at the bottom of the plot

for SPOIL MAXDIF (Fig. B.18c) for they turn into +∞ and −∞ for these features, respectively. As

visible, these cases are quite numerous. In fact, almost 50% of all flights carry this characteristic.

Given this, and the fact that no obvious visual correlation to spoiler faults was found in any of these

features in any aircraft, they were all discarded.

(a) (b) (c)

Figure B.19: Plots for the SPOILS MINVAR (left), SPOILS AVVAR (centre), and SPOILS MAXVAR
(right) features on a single aircraft

Of the spoiler sensor reading variance features (Fig. B.19), SPOILS MINVAR was the one quite notably

most representative of fault imminence, for all aircraft. Fig. B.19a shows quite an illustrative example on
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the matter, where a sudden increase in the values for this feature leads to multiple spoiler faults a few

months later, the fault being corrected by the replacement of a PCU. For this reason, it was the only

one kept.
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