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Resumo

Em órbita, os satélites descrevem órbitas Keplerianas em torno de um corpo primário. Contudo, por

vezes, pode ser necessário alterar as suas trajetórias e, portanto, transferi-los para outras órbitas. Uma

mudança de trajetória implica uma mudança na velocidade do veículo espacial, controlada acionando

os pequenos propulsores que este possui.

Nesta tese de mestrado, para controlar a direção dos gases de escape dos propulsores, considerá-

mos manobras não-impulsivas e, em particular, transferências low-thrust. Estas transferências implicam

uma taxa constante e bastante longa de combustão dos gases de escape e podem ser iniciadas em

qualquer instante de tempo independentemente da posição do satélite. Estes dois aspetos represen-

tam melhorias significativas relativamente às transferências de Hohmann, que são realizadas essen-

cialmente no apoapsis e periapsis da órbita inicial.

Foi desenvolvido um novo algoritmo para transferências entre duas órbitas Keplerianas no mesmo

plano. Para isso, controlámos as constantes de movimento do problema de Kepler: os vetores momento

angular e Laplace-Runge-Lenz e a energia efetiva do satélite, usando um controlo do tipo bang-bang.

As órbitas inicial e final são Keplerianas e completamente definidas pelos valores destas constantes.

As transferências foram simuladas para órbitas elípticas, circulares e hiperbólicas com momento an-

gular constante e energia efetiva variável, com energia efetiva constante e momento angular variável e

com ambas estas grandezas variáveis. Para além disso, estudámos o caso particular de transferências

entre duas órbitas circulares e usámos o vetor de Laplace-Runge-Lenz para rodar a orientação das

linhas dos apsides.

Palavras-chave: Transferência de órbitas, órbitas Keplerianas, Teoria de Controlo, Controlo

bang-bang, Sistemas Dinâmicos
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Abstract

When on orbit, satellites describe Keplerian orbits around a primary body. However, it may be nec-

essary to change their trajectory and, therefore, transfer them to other orbits. A change in the trajectory

implies a change in spacecraft speed, which is done through the burning of its rocket engines.

In this master thesis, for the maneuvering of the thrusters exhaust direction, we considered non-

impulsive maneuvers and, in particular, low-thrust transfers. These transfers imply a constant and long

burn fires and can be applied at any instant of time regardless of the satellite position. These two

aspects represent significant improvements over Hohmann transfers, which are essentially performed at

the apoapsis and at the periapsis of the initial orbit.

We developed a new algorithm for plane transfers, i.e., a general satellite transfer between two

Keplerian orbits in the same plane. To do this, we controlled the constants of motion of the Kepler

problem: angular momentum and Laplace-Runge-Lenz vectors and effective energy, using a bang-bang

type control. The initial and final orbits are Keplerian and are completely defined by the values of these

constants.

We simulated transfers between elliptical, hyperbolic and circular orbits with constant angular mo-

mentum, with constant effective energy and with both variable angular momentum and effective energy.

Furthermore, we studied a particular case of transfers: between two circular orbits, and used Laplace-

Runge-Lenz vector to rotate the orientation of the lines of apsides.

Keywords: Orbit transfers, Keplerian orbits, Control Theory, Bang-bang Control, Dynamical

Systems
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θ0 = 0. The transfer time is ∆τ = 26.6 (dimensionless). . . . . . . . . . . . . . . . . . . . 51

6.3 Simulation of a transfer with both variable angular momentum and effective energy be-

tween two circular orbits with sf > s0: the initial with Lz0 = 1 and H0 = −0.5 and the final

with Lzf = 1.2909 and Hf = −0.3. The transfer starts at the point (s0, ṡ0) = (1, 0) with
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σ = 1 at the point (sr, ṡr) = (3.4375, 0.3118) with θ = 3.4629 and is turned off when the
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point (sr,−ṡr). The initial and final orbits are represented by the dashed and black lines,

respectively, and the rotated orbit by the orange line. In green (left plot), the phase space

is shown when the control is on, and we confirm that when it is turned off, we remain in

the same orbit but with a different orientation (right plot). . . . . . . . . . . . . . . . . . . . 56

7.4 Simulation of a transfer with constant effective energy (H = −0.5) between two elliptical

orbits: the initial with an effective energy Lz0 = 0.8602 and the final with Lzf = 0.5. The

initial orbit is represented by the dashed line, the transfer by the gray line and the final

orbit by the black one. The transfer starts at the point (s0, ṡ0, θ0) = (0.5,−0.2, 0) and takes
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Glossary

Notation

Greek symbols

α Laplace-Runge-Lenz azimuthal angle in the plane of the orbit. ∆α is this angle variation. (SI unit:

rad)

∆ Variation of a variable when it is followed by a variable. Otherwise, it is a polynomial discriminant.

ε Control parameter. (dimensionless)

φ Control longitude escape angle measured in the reference frame S. (SI unity: rad)

γ Rate of mass lost by the satellite per unit of mass. (SI unity: s−1)

σ Control parameter used to simplify the choice of φ according with the sign taken in the equations of

motion (= ±1, 0). (dimensionless)

θ Position azimuthal angle in the reference frame S. (SI unity: rad)

τ Normalized time variable. (dimensionless)

µ Standard gravitational parameter (= GM ). For the Earth, µ ' 4× 1014m3s−2. (SI unity: m3s−2 )

Latin symbols

~A Laplace-Runge-Lenz vector and A is its magnitude. (dimensionless)
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primary mass. (SI unity: m)

S Reference frame centred at the primary body system.

t Time variable. (SI unity: s)

~urel Velocity vector of the exhaust gases (mass lost by the satellite) measured in the satellite reference

frame and u is its magnitude. (SI unity: ms−1)
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Subscripts
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Superscripts
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Chapter 1

Introduction

In the latter half of the twentieth century, rockets were developed and overcame the gravity force.

Thus, the space exploration era had begun: in 1957, the first human-made object to orbit the Earth,

the satellite Sputnik 1, was launched and the first human space flight occurred in 1961. After that,

many other missions took place and others are still currently in progress, such as the famous Hubble

Space Telescope, launched in 1990. However, it did not always go as expected and some accidents

happened: in 1986 and 2003 the space shuttles Challenger and Columbia, respectively, exploded during

their launch and killed all the members of the crews.

There is still much work to do regarding space exploration and a fundamental part of that is the

application of orbital maneuvers, i.e., the transfer of a spacecraft or satellite between orbits. An example

is a set of GPS satellites in which one of them crashed and it is necessary to replace it, sending another

satellite to its position. This is a problem of high complexity and many new strategies of transfers have

been developed, involving optimization criteria to minimize both the costs and the transfer time. These

optimization criteria lead us to Control Theory and, in particular, to Pontryagin’s Maximum Principle.

To transfer a spacecraft between two orbits, it is necessary to change its velocity, which is done

through the burning of the rocket engines on the spacecraft. To do that we have two types of maneuvers:

impulsive and non-impulsive. The difference between them is that the former consists of instantaneous

burn fires with high-thrust chemical propulsion systems at some chosen points of the orbit, while in the

latter the burn fires are applied during a longer time period. The main example of impulsive maneuvers

is the Hohmann transfers. Low-thrust transfers are examples of non-impulsive control with low energy

consumption. This will be described in detail in Section 1.2.

The main goal of this master thesis is to develop a new algorithm for plane transfers based on the

control and optimization of the constants of motion of the Kepler problem. These constants are angular

momentum and Laplace-Runge-Lenz vectors and energy. This project is an extension of [1], where

2-dimensional transfers with constant angular momentum and with constant effective energy have been

considered. In this thesis, we have extended these techniques to all possible Keplerian orbits, eliminating

convergence problems and situations where non reachable targets exist. The main results of this thesis

are exposed in [3].
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1.1 Motion of a Rocket

Since the main goal of this dissertation is to study the transfer of a spacecraft between two orbits,

we must know that the spacecraft has rocket engines, which are fired when we want to change the

spacecraft velocity (speed and/or direction). These are known as thrusters. At the bottom of the rocket,

there are big thrusters (left picture of Figure 1.1) that expel exhaust gases so that the gravity is overcome

and the rocket takes off. On the sides of the spacecraft, there are small boxes with a set of small thrusters

disposed in different directions (right picture of Figure 1.1). On orbit, we can control the rocket orientation

by boosting the small thrusters.

Figure 1.1: On the left, thrusters at the bottom of the rocket Saturn V. On the right, a rocket stage and
in the zoom are the rocket engines which are boosted to control a spacecraft. Both pictures were taken

from reference [1].

To derive the rocket equation of motion we assume that m is the instantaneous mass of the rocket,

which is moving with velocity ~v relative to an inertial frame. To control the rocket motion we fire a booster

with velocity ~u relative to the rocket. The exhaust gases are expelled at the rate dm
dt with velocity ~v + ~u.

Then, the rocket equation of motion [4] is

~F =
d(m~v)

dt
− (~v + ~u)

dm

dt
, (1.1)

where, in this case, ~F is simply the gravitational force, ~Fg. This expression can easily be simplified into

~Fg = m
d~v

dt
− ~udm

dt
. (1.2)

From here, if we consider that the motion of the rocket is upward and, consequently, the gas exhaust’s

motion is downward, the equation (1.1) is written as

−mg = m
dv

dt
− udm

dt
, (1.3)

where dm
dt = −k and ~u = uẑ. k and u are positive constants. Since m(t) = m0 − kt > 0, equation (1.3)
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can be integrated and we obtain the equation for the rocket speed as a function of time:

v(t) = v(0) + u ln
m0

m0 − kt
− gt, (1.4)

where m0 is the initial mass of the rocket.

At this point, we have the necessary conditions to understand some of the most used orbital maneu-

vers.

1.2 Orbital Maneuvers

Since we are interested in changing the orbit of a satellite, we must recall that the orbital maneu-

vers can be impulsive or non-impulsive. Impulsive maneuvers consist of quasi-instantaneous burn fires

usually with high-thrust chemical propulsion systems, while the non-impulsive ones consist of long burn

fires usually with low-thrust electrical propulsion systems.

Initially, only impulsive maneuvers were carried out, but the situation changed with the appearance

of ionic motors and others. These new technologies are very efficient, with a specific impulse several

times higher than chemical propulsion, but with a smaller force, which implies that to be useful they have

to work for long periods of time, i.e., continuously.

In the following sections, we will present an example of each of these orbital maneuvers (Hohmann

and low-thrust orbit transfers) to understand the impulsive and non-impulsive maneuvers, respectively.

1.2.1 Hohmann Transfer

The Hohmann transfer is a method of performing the transfer of two co-planar circular orbits through

an elliptical orbit, where the energy expenditure is minimized [5]. To do this, it takes two maneuvers in

which boosts are fired, causing changes in the rocket velocity. Each of these maneuvers is impulsive,

i.e., it occurs instantaneously, so that the rocket remains at the same position at the final of the boost.

This idea came from Walter Hohmann in 1925 [6].

The geometry of a Hohmann transfer can be seen in Figure 1.2. Let us suppose that we want to

transfer a satellite in a circular orbit with radius r1 to one with radius r2 > r1, minimizing the expenditure

of energy. We chose a point in the initial orbit and we apply an impulsive and tangential thrust, leading to

a velocity increase ∆~v1. The rocket is now following an elliptical transfer orbit. Then, we chose another

point of this new orbit and we again apply an impulsive thrust. The chosen points must be the periapsis

(r1) and the apoapsis1 (r2) of the transfer orbit, respectively. The rocket velocity is now ∆~v2, changing

the elliptical orbit to a circular one with a larger radius. This process is reversed if we want to change

from an orbit with a radius r2 to another with a radius r1 < r2.

To compute the velocity changes in this transfer, we use the energy conservation equation [4] as

v2

2
− µ

r
= − µ

2α
, (1.5)

1Periapsis and apoapsis are the closest and the farthest points of the orbit to the primary body, respectively.
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Figure 1.2: Geometry of a Hohmann transfer orbit.

where v = |~v| is the absolute value (the speed) of the rocket velocity, α is the semi-major axis of the

conic section and µ = GM , with M being the mass of the primary body and G the gravitational constant.

The left term is related to the specific orbital energy for a Keplerian orbit and the right one with properties

of the conic sections [7].

Using equation (1.5) and subtracting the speeds before and after each thrust in each chosen point,

we obtain the maneuvers’ velocity [4]. As for the first thrust, before the rocket is in a circular orbit with

r = α = r1 and we can write:
v2

1

2
− µ

r1
= − µ

2r1
=⇒ v1 =

√
µ

r1
; (1.6)

after, it is in an elliptical orbit with r = r1 and α = r1+r2
2 , which leads to a new velocity v′1:

v′1 =

[
2µ

r1

(
r2

r1 + r2

)] 1
2

. (1.7)

Therefore, the amount of speed that must be added to the rocket in the first maneuver is given by the

subtraction of equations (1.7) and (1.6):

∆v1 = v′1 − v1 =

[
2µ

r1

(
r2

r1 + r2

)] 1
2

−
(
µ

r1

) 1
2

. (1.8)

For the second thrust, the method is analogous. Before the boost, when the rocket arrives at the apogee

of the elliptical transfer orbit, r = r2 and α = r1+r2
2 ; after this, r = r2 and α = r2. Then, the velocity

change for the second thrust is:

∆v2 =

(
µ

r2

) 1
2

−
[

2µ

r2

(
r1

r1 + r2

)] 1
2

. (1.9)

The total speed change is given by ∆v1 + ∆v2 and the total energy change is proportional to

(|∆v1|+ |∆v2|)2. Since we apply the maneuvers to increase the speed of the spacecraft, the order

of the subtractions (1.8) and (1.9) was chosen such that velocity changes in an outward transfer were
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positive. Also, notice that it takes one-half of the period of the elliptic orbit transfer to complete the

Hohmann transfer, i.e., the time between maneuvers is given by the third Kepler’s law [7]:

∆t = π

√
r3
1

µ
. (1.10)

Although there are other types of transfers with a set of two impulsive thrusts, the main example of

orbit transfer is the bi-elliptic one, with a set of three impulsive thrusts of maneuvers [4], but we will not

study it here.

1.2.2 Low-Thrust Orbit Transfer

Unlike the Hohmann transfers, some maneuvers require small amounts of fuel but they take a con-

siderable amount of time to reach the required high velocity. These transfers are known as low-thrust

and usually have an electrical propulsion system, often using plasma thrusters, such as, for example,

Hall thrusters. Furthermore, while Hohmann transfers have to start at the periapsis or apoapsis of the

initial orbit, this new type of transfer allows us to start at any point in the orbit. Figure 1.3 shows an

example of a low-thrust maneuver, where the trajectory is a spiral until reaching the final orbit.

Figure 1.3: Example of a low-thrust transfer. Picture taken from reference [2].

Let us consider the problem of transfer from a lower to a higher circular orbit, i.e., we want to increase

the semi-major axis a of the orbit and, consequently, the total two-body gravitational energy (per mass

unit) ε = − µ
2a , [7]. Taking the derivative of this equation with respect to time, we obtain

dε

dt
=

µ

2a2

da

dt
. (1.11)

The rate at which the propulsion system performs work (power per mass unit) on the spacecraft is

dε

dt
= ~A · ~v, (1.12)
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where ~A and ~v are the acceleration and the velocity of the vehicle, respectively. Since we are interested

in optimizing this rate, the inner product ~A · ~v must be maximized, implying the alignment of these two

vectors. If we consider low accelerations, the spacecraft orbit remains nearly circular at each point,

resulting in a slow outward spiral trajectory. The vehicle instantaneous velocity is approximated by the

velocity of the circular orbit, vc =
√

µ
a .

If we match equations (1.11) and (1.12), we obtain an equation of motion for the semi-major axis of

the orbit:
da

dt
=

2
√
µ
a

3
2A, (1.13)

which is easily separated in a and t. If, then, we integrate both sides, we have the duration of a transfer:

∆t =

√
µ

A

(
a
− 1

2
0 − a− 1

2

)
. (1.14)

The total speed change is given by the product of the time interval during which thrusters are turned on

with the rocket constant acceleration:

∆v = A(t− t0) =
√
µ
(
a
− 1

2
0 − a− 1

2

)
, (1.15)

which is equal to the difference between the speeds at the initial and final orbits.

Low-thrust transfers have been analyzed during the past decades. In the 1960s spacecrafts that

used solar-electric panels to power an electric engine were studied. These vehicles are called solar-

electric transfer vehicles and have low-thrust levels on the order of hundredths to thousandths of g

(gravitational acceleration). Transfer times are very long and their trajectories have a spiral shape.

In 1967, Dickerson and Smith [8] derived the required conditions for optimal solar-electric powered

flights. They used variational calculus techniques from classical optimization theory and presented

several numerical examples to illustrate the general solar-electric formulation. In 1968, a planetary

orbiter spacecraft propelled by solar-electric panels was proposed by Sauer [9] and it could deliver to

Mars a larger payload than conventional rockets.

In the 1970s, NASA started its Solar Electric Propulsion (SEP) stage program, which is still in effect.

In 1975, Oglevie et al. [10] found that to maintain the optimal path is necessary to point the solar arrays

towards the sun. The goal of the SEP program is to obtain highly efficient orbit transfers as well as

develop "technologies necessary for robotic and human exploration-class solar-electric transportation

systems"2. In 2015, a 12.5-kilowatt (kW) Hall thruster with magnetic shielding was successfully tested

and it was able to operate continuously for years. Currently, NASA is working on SEP technologies

needed to affordably enable human missions to the Moon and Mars in a more economically. Such

technologies are expected to maintain the spacecraft position around the Moon and transfer it to other

orbits. The first crew will be sent to Mars around 2030 [11].

Furthermore, in the late 1980s, ELectric Insertion Transfer Experiment (ELITE) program was devel-

oped by the U.S. Air Force with the aim of building and testing a pioneer of an operational electric orbit

2https://www.nasa.gov/mission_pages/tdm/sep/index.html
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transfer vehicle [12, 13].

The first Moon mission by the European Space Agency (ESA) had an electric propulsion system

which sent SMART-13 to the Moon with just 82 kilograms of Xenon fuel. The mission started in 2003 and

ended three years later with extreme success, testing new communication and navigational techniques.

Besides, it had solar panels which used an advanced type of gallium-arsenide solar cells instead of the

silicon cells used so far.

Other examples of satellites that used electric thrusters are the U.S. Air Force’s Advanced Ex-

tremely High Frequency satellite [14], that used Hall effect thrusters, and the European Space Agency’s

ARTEMIS satellite [15], which used an onboard ion propulsion engine. Besides, in 2015, two all-electric

telecommunication satellites were launched on SpaceX’s Falcon 9 rocket [16].

As we can conclude, electrical propulsion is currently considered a revolutionary technology for the

new generations of satellites and many stakeholders all over the world have been investing in increasing

its competitiveness.

1.2.3 Orbit Plane Change Transfers

So far, we only considered orbit transfers in the same plane. However, this is not very realistic.

Real maneuvers include changes in the orientation of a satellite orbital plane and are therefore one of

the most expensive transfers. This plane change also implies a change in the direction of the velocity

vector, which is found by subtracting the velocity vectors of the orbits. To simplify, assuming that both

orbits have the same speed v and considering the triangle in Figure 1.4, it is possible to demonstrate,

by a geometrical calculation, that the required velocity change, ∆v, is

∆v = 2v sin

(
θ

2

)
. (1.16)

We must emphasize this result because it shows that plane changes are, in fact, very expensive

maneuvers in terms of propellants. For example, if we consider θ = 60◦, the required change in speed is

equal to the current speed, which allows us to conclude that this change can be very large. In this case,

it requires a rocket large enough to launch the payload in the first place, which, in turn, requires a huge

booster [7].

Figure 1.4: Plane change of an initial orbit to another. The orbits are both circular, differing only by their
relative angle.

3https://www.esa.int/Enabling_Support/Operations/SMART-1
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1.3 Optimal Control Theory

It seems logical that, if we want to control a spacecraft, we must know how to control it and also

how to do it optimally to minimize costs and transfer time. For this reason, we need to understand

some topics related to optimal control theory. This theory aims "to determine the control signals that will

cause a process to satisfy the physical constraints and at the same time minimize (or maximize) some

performance criterion" [17] and it can be applied in many different fields, such as biology, hydrology, and

economics.

In 1696, Bernoulli proposed a challenge that became known as the Brachystochrone problem [18]:

considering two points A and B in a vertical plane, what is the curve between these two points for which

a free-falling body takes the shortest time when acted by the gravitational force? One year later he

published his solution, which involves a minimization over a set of curves with some dynamical con-

straints, marking the emergence of optimal control. Although many well-known names in Mathematics

and Physics - in which Euler, Lagrange, Hamilton, among other, are included - have devoted themselves

to improve the formalism of optimal control theory, it was Pontryagin around 1956 who gave the biggest

contribution to this theory through the formulation of the Pontryagin’s Maximum Principle.

1.3.1 Pontryagin’s Maximum Principle

Consider a dynamical system defined by the differential equations

dxi
dt

= fi(~x(t), ~u(t)), i = 1, ..., n, (1.17)

where ~x(t) ∈ Rn and ~u(t) ∈ U is a set of control parameters in a closed and limited domain U ∈ Rm. To

simplify, it will be used the bang-bang control [19], where ~u(t) is a continuous function defined by parts.

We want to find an optimal control ~u(t) and the corresponding path ~x(t) such that the dynamical

system defined by (1.17) evolves to ~x1 at a time t1, according to a given set of initial conditions ~x0, that

minimizes or maximizes the functional

J =

∫ t1

t0

f0(~x(t), ~u(t))dt, (1.18)

where f0 is a control function. A particular case is the minimum time control, where f0 = 1 and J = t1−t0
[20].

Introducing a new variable x0 = J , equations (1.17) and (1.18) can be rewritten as


dx0

dt = f0(~x, ~u)

...

dxn

dt = fn(~x, ~u)

. (1.19)

The initial condition for this new variable is x0(t0) = 0. From here, the phase space of the system (1.19)

has dimension n+ 1 and we assume that x = (x0, ..., xn).
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To construct a Hamiltonian system, we define new variables λ0, λ1, ..., λn, which are the conjugated

momenta, and new differential equations:

dλi
dt

= −
n∑
j=0

λj
∂fi(~x, ~u)

∂xi
, i = 0, ..., n. (1.20)

Since there are solutions of (1.19) globally in time and since equation (1.20) is linear in λi, when a so-

lution ~x(t) and an admissible command ~u(t) are introduced, we can conclude, by the Floquet’s theorem

[20], that the system of equations (1.20) has a unique solution. Therefore, the Pontryagin’s Hamiltonian

is

H(~λ, ~x, ~u) =

n∑
j=0

λjfj(~x, ~u), (1.21)

and the Hamilton’s canonical equations are


dxi

dt = ∂H
∂λi

= fi

dλi

dt = − ∂H
∂xi

= −
∑n
j=0 λj

∂fi
∂xi

, (1.22)

where i = 0, ..., n. The set of equations (1.22) is the combination of (1.20) and (1.21). The Hamiltonian

(1.21) has dimension 2n+ 1.

If system of equations (1.19) has a solution for u(t) ∈ U commands, we can solve equations (1.20)

and obtain the Hamiltonian (1.21). Thus, the Hamiltonian H is parameterized by u(t) and we define a

new function

M(~λ, ~x) = sup
u∈U

H(~λ, ~x, ~u). (1.23)

Pontryagin’s Maximum Principle states that, in order to a control u(t) to be optimal, there must be

functions λ0(t), ..., λn(t) such that: a) the function H(~λ, ~x, ~u) has a maximum at the point u(t), i.e.,

H(~λ, ~x, ~u) = M(~λ, ~x) and b) at the final time t = t1, λ0(t1) ≤ 0 and M (λ(t1), x(t1)) = 0.

When the equations (1.22) are easy to solve, the control is determined by eliminating the time vari-

able from these equations. When that is not possible, we have to resort to other techniques, such as

control of the conservation laws [20]. In Chapter 5, we will apply this control type to the Kepler problem,

simultaneously controlling the energy and the angular momentum vector of a satellite.

1.4 The trajectory optimization problem associated with the low-

thrust propulsion systems

The trajectory optimization problem associated with low-thrust propulsion system has been studied

for many decades in the context of a variety of missions. As a rule, the criteria for optimizing trajectories

are based on decreasing the time or on the expense of the propellant of a transfer and requires the

solution of an ideal control problem that consists of applying variational calculation methods. The first

studies in the field appeared around 1960 ([21, 22] as examples). Edelbaum became known for deriving
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an analytic expression for the maximum inclination between two circular orbits with a constant accel-

eration and fixed transfer time [23]. In the same paper, he also derived an analytic expression for the

total speed variation necessary to perform transfers between certain inclined circular orbits. After almost

more than ten years, Flandro continued Edelbaum’s work for transfers between elliptic orbits [24].

Already in the 70s, Brusch and Vincent found multiple transfers between specific initial and final

orbits, for both optimal and non-optimal transfer trajectories [25].

In his master thesis in 1982, Alfano used two timescales, one faster and one slower, to determine

small changes in orbital elements for a single (high-thrust) and many (low-thrust) revolutions, respec-

tively [26]. Three years later, Wiesel and Alfano separated these timescales into two problems and

recapitulated Edelbaum’s solution over one orbit for the "fast" time scale. They also managed for the first

time the application of optimal control principles to the "slow" timescale problem over the entire transfer

[27].

In 1983, Redding and Breakwell analyzed impulsive and near-impulsive transfers between circular

orbits for prediction of the initial conditions for low-thrust transfers [28]. To do this, they resorted to Law-

den’s “primer vector” theory [29], which provides us with information about the direction of the spacecraft

impulse and exact and optimal solutions for the transfers (Chapter 2 of [30]).

Four years later, Hargraves and Paris [31] used direct methods for trajectory optimization converting

the optimal control problem into a nonlinear control problem. In their PhD thesis, Spencer [32], in 1994,

and Herman [33], one year later, gave more information on this work and, in the 2000s, they met and

wrote a paper on trajectory optimization techniques based upon higher-order collocation for Earth-orbit

transfer problems [34]. The range of thrust accelerations used was from approximately 1 to 10−3 g.

In 1991, Stewart and Melton presented a multi-variable perturbation solution using a fixed steering

law and found a relatively low error when compared with the numerical solution [35]. Also around that

time, Bauer found a near-optimal, low-thrust spiral transfer, where the eccentricity remains near zero

during all the transfer [36]. Two years later, Alfano and Thorne considered optimal control formulation

with polar coordinates for analyzing coplanar circular transfers [37]. However, in the 90s, Kechichian was

probably the one who published more articles in this field: he developed a set of studies for low-thrust

transfers from circular or near circular orbits and even reformulated Edelbaum’s theory for low-thrust

transfers but now using Optimal Control Theory [38, 39, 40, 41, 42].

At the turn of the XXI century, studies about low-thrust trajectories optimization continued to be

developed: Marasch and Hall divided the optimization problem into a set of optimal control subproblems

solved with an indirect optimization technique and with polar coordinates, which simplifies the analysis

of planar and circular trajectories [43]; Ferrier and Epenoy used a dynamical model based on equinoctial

elements in which they applied Pontryagin’s minimum principle [44] and Caillau and Noailles studied the

minimum time of a coplanar transfer of a satellite around the Earth starting from a low and very eccentric

initial orbit until reaching a geostationary terminal one [45]. The maximum thrust available was about

0.3N. A study about the same problem appeared some years later but now intending to maximize the

final mass, or of minimizing the consumption [46, 47].

Colasurdo and Casalino, in 2004, took Edelbaum’s formalism again and extended it to the quasi-
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circular approximation for the spacecraft trajectory [48] and a more accurate extension of the same

subject was pursued by Kluever in 2011 [49].

At the 2005 IEEE Aerospace Conference emerged a paper about designed algorithms for low-thrust

orbit transfers between two orbits using the Q-law [50].

To prove the complexity and the diversity of orbital maneuvers, it was created in 2006 the Global

Trajectory Optimization Competition (GTOC)4, which is already in its 10th edition. This event gathers

"the best aerospace engineers and mathematicians worldwide challenge themselves to solve a “nearly-

impossible” problem of interplanetary trajectory design". World-renowned institutions participated in

this competition, such as ESA Concepts Team, Moscow State University and NASA’s Jet Propulsion

Laboratory (JPL). The last one already won three first places since the first edition. In March 2016 a

paper was released based on the techniques reported in past GTOC editions, where low-thrust missions

neglecting effects of a third body gravitational attraction were the main focus [51].

In 2015 at the Université Nice Sophia Antipol, Helen Clare Henninger, a master student, studied

satellite transfers under the influence of two massive bodies (Earth-Moon system) in the case of low-

thrust propulsion [52]. Also in this year, a group of Italian researchers presented a selection of possible

electric propulsion systems for small satellites based on several requirements [53].

Another relevant contribution to this field is an article published in 2017 in which some numerical

methods based on aerospace problems are discussed and compared [54]. These results may help us

to choose the best method for each simulation in this thesis.

The most important reference for our work is a master dissertation of an Engineering Physics student

from Instituto Superior Técnico in 2017 [1]. In line with what we are going to study, Mariana Fernandes

considered transfers between Keplerian orbits in the same plane through the variation of the constants

of motion of the Kepler problem during the entire transfer. To perform the simulations, she used the

software Mathematica.

In a 2018 paper, we can read about a new dynamic model of a thrusting spacecraft used for com-

puting low-thrust orbit-raising trajectories to the geosynchronous equatorial orbit [55]. To demonstrate

that, some numerical examples corresponding to planar and non-planar orbit-raising scenarios were

presented.

In a private communication to Professor Rui Dilão in 2019, we had access to a paper draft written

by Matthew Swenson and João Fonseca, where they studied a novel method of 2D orbital transfers

defining an eccentricity manifold and using direct collocation over angular momentum and energy space

[56]. This method is valid for closed and open orbits.

Regarding published books related to Optimal Control, the first was published in 1963 by Derek Law-

den [29]. Sixteen years later it was Jean-Pierre Marec’s turn with Optimal Space Trajectories [57]. More

recently, in 2010, Spacecraft Trajectory Optimization by Bruce A. Conway came up with a "collection

variety of both analytical and numerical approaches to trajectory optimization" [30]. Besides, two more

recent contributions of orbits determination and treatment also deserve to be mentioned: the books by

W. E. Wiesel Modern Orbit Determination (2003, second edition 2010) [58] and Modern Astrodynamics

4https://sophia.estec.esa.int/gtoc_portal/

11

https://sophia.estec.esa.int/gtoc_portal/


(2003, second edition 2010) [59].

Nowadays and after almost 70 years, the trajectory optimization problem is a subject still studied

by the scientific community and many techniques using different methods have been implemented and

demonstrate efficient trajectories for most types of problems. Some examples of these techniques use

homotopy [47], shooting methods [50] and collocation methods coupled with linear programming [34].

In this master thesis, we use another numerical integration method, which is 4th order Runge-Kutta,

an iterative method to numerically solve ordinary differential equations that conserve energy and angular

momentum [60].

1.5 Objectives

The goal of our project is to design new strategies for orbit transfers of satellites between two-

dimensional two-body Keplerian orbits, starting at any instant or point in the orbit, based on different

optimization criteria. This will be done by controlling the constants of motion of the Kepler problem,

which are the angular momentum vector ~L, the energy E and the Laplace-Runge-Lenz (LRL) vector ~A.

The latter gives us the orientation and shape of the orbits. Notice that, during the transfer the orbit is

non-Keplerian and the constants of motion stop being invariant. Using this, we will control the low-thrust

propulsion system of the spacecraft in which the intensity and direction of the gases expelled by the

thrusters are chosen and the final Keplerian orbit is reached.

We present three different types of transfers: i) with constant angular momentum, ii) with constant

effective energy and iii) with both variable angular momentum and effective energy. We also study a

particular case: transfers between circular orbits. The third constant of motion (Laplace-Runge-Lenz

vector) is used to rotate the final orbit so that it is in the same orientation as that of the initial orbit.

1.6 Thesis outline

We start Chapter 2 with the 2-dimensional equations of motion of the variable mass Kepler problem,

where we present all the mathematical formalism behind this problem.

In Chapters 3 and 4, we study transfers with constant angular momentum and with constant effective

energy, respectively.

After that, in Chapter 5 we proceed with two methods to obtain transfers with both variable angular

momentum and effective energy: the simplest method is described in Section 5.1, the most efficient in

Section 5.2 and we compare these two methods in Section 5.3.

In Chapter 6, we combine the previous types of transfers to implement a transfer between two circular

orbits, and, finally, in Chapter 7 we present a method to rotate the orientation of the final orbit to match

the initial using the Laplace-Runge-Lenz vector.

In Chapter 8, we discuss the obtained results and present some ideas for future work.

In Appendix A, we present the mathematical formalism used in Chapter 3 when approaching circular

orbits.
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Chapter 2

Control of the Kepler problem with

varying mass

We start this work by presenting the mathematical formalism for the two-dimensional variable mass

Kepler problem. We derive the equations of motion for a Keplerian orbit as well as the constants of

motion of this problem, that cease to be invariant when the transfer begins. At the end of the chapter,

we also derive the expression for the energy cost of a transfer.

2.1 Mathematical Formalism

The spacecraft or satellite motion is approximated by that of a variable mass point, subject to the

gravitational attraction of one primary massive body (the center of gravitational force) with mass M .

We consider that the motion is described in a two-dimensional configuration space with coordinates

(x, y) ∈ R2. As we saw in Section 1.1, the satellite has mass m and it has its own propulsion system

which, when turned on, causes spacecraft to lose mass and gain speed. Therefore, the equation of

motion is given by

m
d2~r

dt2
− dm

dt
~urel = −GmM

r3
~r, (2.1)

where ~r = (x, y) ∈ R2, G is the universal gravitational constant (G = 6.67408 × 10−11m3kg−1s−2) and

~urel = (ux, uy) is the velocity of the mass lost by the satellite measured in its referential frame. If we

assume a satellite with a large mass compared to the mass lost by the propulsion system we make the

approximation
1

m

dm

dt
= γ, (2.2)

where γ < 0 is a constant. Replacing this equation into (2.1) and rewriting it in its two components:

ẍ = −µ x
r3 + γux(t)

ÿ = −µ y
r3 + γuy(t)

, (2.3)
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where µ = GM1 and γ~urel = (γux(t), γuy(t)). So, we eliminate the satellite mass present in equation

(2.1). Initially, the propulsion system is off, ~urel = 0, but when it is turned on we have that

(ux, uy) = (u cosφ, u sinφ) , (2.4)

where φ is the escape angle of the satellite.

The system of equations (2.3) is derived from the time-dependent Lagrangian

L =
1

2

(
ẋ2 + ẏ2

)
+
µ

r
+ γxux + γyuy. (2.5)

Using polar coordinates, (x, y) = (r cos θ, r sin θ), we can rewrite equations (2.3) as:

r̈ = − µ
r2 + rθ̇2 + γux cos θ + γuy sin θ

d
dtLz = −rγux sin θ + rγuy cos θ

, (2.6)

where Lz = r2θ̇ is the angular momentum of the satellite. Here we admit that the movement of the

satellite occurs in the (x, y) plane.

To simplify the parametric dependence of equations (2.6), we introduce new radial and temporal

variables s = r
r0

and τ = ζt, where r0 and ζ are constants to be determined below. Then, by equation

(2.5), the new Lagrangian becomes

L̄ = ζ2r2
0

[
1

2

(
ṡ2 + s2θ̇2

)
+

µ

r3
0ζ

2

1

s
+
γ̄

r0
s (ūx cos θ + ūy sin θ)

]
, (2.7)

where now the dot (˙) denotes the derivative with respect to τ , γ = ζγ̄ and ux,y = ζūx,y. Choosing

ζ2r2
0 = 1 and µ/(r3

0ζ
2) = 1, we obtain ζ = 1/µ and r0 = µ. Introducing the definitions of ux and uy in

equation (2.4), the rescaled radial variable and the control parameter ε = γ̄ū/r0 = µ3γu into equation

(2.7), we finally obtain the control equations

s̈ =
L2

z

s3 −
1
s2 + ε cos (θ − φ)

d
dτLz = −εs sin (θ − φ)

. (2.8)

The satellite is under control only if ε 6= 0 (< 0). Otherwise, equations (2.8) describe the Keplerian

trajectory of the satellite in the two-dimensional rescaled configuration space.

Using the Lagrangian and Hamilton’s equations we obtain the conserved total energy of the satellite

without propulsion control. The Hamiltonian becomes

H =
1

2

(
ẋ2 + ẏ2

)
− µ

r
=

1

2

(
ṡ2 +

L2
z

s2

)
− 1

s
. (2.9)

1Equations (2.3) are valid in the limit m/M → 0. Otherwise, (x, y) are the coordinates of the secondary body relative to the
centre of mass of the two-body system with varying mass, and µ = µ(t) = G(M +m(t)).
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When the control is turned on (ε 6= 0), the new Hamiltonian is

H =
1

2

(
ṡ2 +

L2
z

s2

)
− 1

s
− εs cos (θ − φ) (2.10)

and we can use (2.9) and (2.8) to find:

dH

dτ
= ε

[
ṡ cos (θ − φ)− sθ̇ sin (θ − φ)

]
. (2.11)

From here, we conclude that the energy is not conserved.

The third constant of motion is the Laplace-Runge-Lenz (LRL) vector [61]. This vector describes the

shape and the orientation of an orbit and is defined mathematically by the formula2

~A = ~̇s× ~L− ~s

s
, (2.12)

which corresponds to

~A =
(

˙̄yLz −
x̄

s

)
x̂−

(
˙̄xLz −

ȳ

s

)
ŷ =

=
[(
ṡ sin θ + sθ̇ cos θ

)
Lz − cos θ

]
x̂−

[(
ṡ cos θ − sθ̇ sin θ

)
Lz + sin θ

]
ŷ,

(2.13)

for an orbit on the xy plane, where ~s = (x̄, ȳ) = (x, y)/r0 and x̂ and ŷ are the usual Cartesian versors.

In most transfers, the final orbit has a different orientation than the initial one. Thus, the rotation

between the two orbits is another parameter that we intend to analyze and this is done using the LRL

vector. In Chapter 7 we find a detailed analysis of the process to obtain orbits with the same orientation.

In this thesis, we only consider transfers between orbits with positive angular momentum (Lz > 0).

Thus, the trajectories are counterclockwise in the configuration space and clockwise in the phase space.

The case Lz < 0 can be solved by a different choice (orientation) of the Cartesian reference frame and

Lz = 0 correspond to collision trajectories.

The energy has a local minimum for the circular orbit, which corresponds to the fixed point (s∗, ṡ =

Lz2, 0). This implies that the regions with energies below this minimum value are inaccessible. There-

fore, H ∈ [H(s∗),+∞]. While points with H < 0 and H = 0 correspond to elliptical and parabolic orbits,

respectively, points with H > 0 correspond to hyperbolic escape trajectories. In this work, we consider

transfers between elliptical, circular (a particular case of elliptical orbits), and hyperbolic orbits.

According to reference [1], there is a critical value for ε, εlim = − 4
27 . If ε ≤ εlim, the orbits in phase

space are always open, so we consider ε > εlim and, for the simulations, we choose ε = −0.1, just like

the one chosen in that reference. As ε increases, transfers take longer to be completed.

As a starting point of our project, we test the idea of controlling the trajectory of the transfer by actu-

ating directly on the energy and the angular momentum. We consider transfers between two Keplerian

orbits with i) constant angular momentum and variable effective energy, ii) constant effective energy and

variable angular momentum, and iii) effective energy and angular momentum both variable.

2Note that here we defined this vector per mass unit and now it is dimensionless.
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When the desired final orbit is reached, i.e., when both energy and angular momentum are again

constant, it is possible to perform a rotation on the LRL vector until it reaches the orientation of the initial

orbit. This is discussed in Chapter 7.

Throughout this project, we use the 4th order Runge-Kutta numerical integration method built-in ND-

Solve of Mathematica- version 12.2. In addition, we resort to the WhenEvent[event, action] 3 command

to impose control conditions. This command simplifies the writing and reading of the program since it

specifies an action when the event is detected in NDSolve.

2.2 Energy cost (or expenditure) of a transfer

This section is dedicated to the study of the energy cost of a transfer between two Keplerian orbits.

In Orbital Mechanics, the energy cost of a transfer is equal to the work done by the control force.

Under these conditions, by equation (2.2), we obtain its expression

Ecost =

∫ ∆τ

0

dm

dt
~urel · d~r =

∫ ∆τ

0

γm(t)~urel · ~vdt. (2.14)

Then, by equations (2.3) and (2.4), the energy cost is written as

Ecost = m(0)γu

∫ ∆τ

0

eγt (ẋ cosφ+ ẏ sinφ) dt, (2.15)

where ∆τ is the transfer time and m(0) is the satellite mass at the initial time of the transfer.

Using polar coordinates this expression is rewritten as

Ecost = m(0)ε

∫ ∆τ

0

eγt
[
ṡ cos (θ − φ)− sθ̇ sin (θ − φ)

]
dt, (2.16)

We will not make calculations of this energy expenditure for any transfer simulation since it depends

on the initial satellite mass and the gamma parameter. Since the gamma parameter is given by the

satellite manufacturer and in our project we are considering a general satellite, we find it unreasonable

to calculate the energy cost. However, we think it would be an asset for those who read our work if we

deduced this expression for the energy expenditure, equation (2.16).

3https://reference.wolfram.com/language/ref/WhenEvent.html
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Chapter 3

Transfers with constant angular

momentum

In this section, we are going to study transfers between Keplerian orbits with a constant angular

moment, but different effective energies. In other words, the satellite is initially in an orbit with a certain

angular momentum Lz0 and a certain effective energy H0 and we need to transfer it to another orbit with

the same angular momentum Lzf = Lz0 but with a different effective energy Hf . Transfers start at time

τ = 0, with effective energy H0, and stop when the final effective energy Hf is reached. These transfers

are carried out under very specific control conditions, which are presented below.

3.1 Control choices

Since the angular momentum must be constant throughout the transfers (dLz/dτ = 0), by the second

equation of (2.8), we must impose that sin (θ − φ) = 0 and we obtain two control conditions: φ = θ or

φ = θ ± π, i.e., when the propulsion system is turned on (ε 6= 0) its orientation follows one of these

conditions. The system of equations (2.8) and equation (2.11) are rewritten as:


s̈ =

L2
z

s3 −
1
s2 + εσ

φ̇ = θ̇ = Lz

s2

Ḣ = εσṡ

, (3.1)

where ε = −0.1 is a fixed value and cos (θ − φ) is replaced by σ, which can take the values −1, 1 or also

0 when the control parameter is off for sake of simplification, according to each imposed condition.

There are two types of transfers: i) Hf > H0 and ii) Hf < H0. To the first case, dH/dτ > 0, from the

last equation of (3.1) we have that if ṡ > 0 implies that σ = −1 and if ṡ ≤ 0, σ = 1. However, according

to the orbital phase space, these conditions are sufficient only for the first case (Hf > H0). When the

effective energy decreases along with the transfer, we must be careful with the orbit geometry. First, we

have to calculate the fixed points corresponding to each control parameter σ = 0 and ±1. To do that, we
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make a variable change in the first equation of (3.1) such that ṡ = y and, therefore, the fixed points are

given by solving

ẏ = 0⇒ L2
z

s3
− 1

s2
+ σε = 0, (3.2)

in order to s. Based on Figure 4.3 from reference [20], we classify the fixed points depending on σ value

and the results are summarized in Table 3.1.

σ fixed point fixed point classification

0 s∗0 = L2
z

stable
center type

1 s∗1
stable and center type

center type

−1
s∗−1 and s∗−2 s∗−1: stable
(Lz ≤ 1.1) s∗−2: unstable and saddle-type

Table 3.1: Fixed points stability to constant angular momentum transfers depending on the control
parameter value.

When σ = 0 there is one fixed point which coincides with circular orbit with radius s∗0 = L2
z and, con-

sequently, with the minimum effective energy, H0 = H(s∗0, 0) = −1/(2L2
z). This fixed point is Lyapunov

stable and center type. When σ = 1 equation (3.2) has three solutions but only one is real, s∗1, and

corresponds to a fixed point which is also Lyapunov stable and center type. The case where σ = −1 is

more complicated because it depends on the chosen ε and Lz values. In this work, as ε = −0.1, there

are always three solutions depending on the Lz value:

• if Lz > Lzlim = 1.1033, only one of the solutions is real but negative, which implies that there are

no fixed points;

• if Lz ≤ Lzlim = 1.1033, the three solutions are real but only two are positive and correspond to the

fixed points, s∗−1 and s∗−2, where s∗−2 > s∗−1. s∗−1 is Lyapunov stable and center type and s∗−2 is

unstable and saddle type.

In Figure 3.1 we present the phase space trajectories to each σ value, where we choose Lz = 1.

For the case where σ = −1 we also choose Lz = 1.3 to understand the geometry of the orbits when

Lz < Lzlim and Lz > Lzlim.

After studying the phase spaces for each value of the control parameter and verifying that there

are no fixed points when σ = −1 and Lz > Lzlim, we conclude that using this control value transfers

would be limited by a certain angular momentum value: Lz ≤ Lzlim. As we intend to obtain transfers

regardless of the final angular momentum value, we have to ignore this control parameter and, through

the last equation of system (3.1), make the control choices: σ = 1 if ṡ > 0 and σ = 0 if ṡ ≤ 0. Thus, the

control conditions are chosen for the two possible cases of transfers with constant angular momentum

and are summarized in Table 3.2.

Despite that, if we look closely at the orbital phase spaces overlapping with σ = 0 and σ = 1, we find

that in the region between the fixed points there must be a specific choice of the control condition when

H0 > Hf . This region is represented in Figure 3.2 and it is problematic when we want the satellite final
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orbit to be circular. If we choose a point with ṡ < 0 and, therefore, σ = 0, and follow the direction of the

arrows, eventually we will arrive at ṡ = 0. In the next instant, due to the conditions described in Table

3.2, ṡ would be positive and, therefore, σ = 1. However, if we follow the direction of the arrows, this

does not happen and we continue with ṡ < 0. In this region, the solution to this problem is to leave the

control off when ṡ = 0. The satellite will remain in the same orbit (with σ = 0) and the control will only

be switched on again when that orbit intersects another orbit with σ = 1 and that leads us to the desired

effective energy. The intersection between the orbits with σ = 0 with σ = 1 occurs when

s = si =
L2
z

2εs2
a

− 1

εsa
+

1

2εL2
z

+ L2
z, (3.3)

1 2 3 4 5
s

-1.0

-0.5

0.5

1.0

s


σ=0

s0
* 1 2 3 4 5

s
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s


σ=1

s1
*

1 2 3 4 5
s
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
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s-1
*

s-2
*
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0.5
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s

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Figure 3.1: Orbital phase space for each σ value with a constant angular momentum Lz = 1. In the
second figure from the bottom line, we show the phase space for a constant angular moment Lz = 1.3,
since we observe a difference between the phase spaces for Lz ≤ Lzlim and Lz > Lzlim. The dashed

vertical orange lines highlight the fixed points positions.
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ṡ ≤ 0 ṡ > 0

Ḣ > 0 σ = 1 σ = −1

Ḣ < 0 σ = 0 σ = 1

Table 3.2: Final control conditions for transfers with constant angular momentum.

where sa is the s value when ṡ = 0 and σ remains off. All calculations performed until we obtain this

expression are described in Appendix A.

s

s


s1
*

s0
*

Figure 3.2: Orbital phase space for control parameters σ = 1 (orange) and σ = 0 (black) with a constant
angular momentum Lz = 1. The vertical dashed lines highlight the fixed points positions.

3.2 Simulations

Transfers with constant angular momentum can be circular, elliptical, or hyperbolic. Some examples

of transfers involving these conic orbits are summarized in Table 3.3, where ∆τ is the dimensionless

transfer time.

Let us consider the first example in Table 3.3: a transfer between two elliptical orbits with initial and

final effective energies of H0 = −0.1972 and Hf = −0.25, respectively. The angular momentum is

purposely chosen as Lz = 1.3 > Lzlim to prove that with the two controls parameters described in

Table 3.2 it is possible to obtain transfers with decreasing effective energy for angular momentum values

greater than the limit value that we would have if we used the control parameter σ = −1. This is the main

reason why we start the examples in case ii). This transfer starts at the point (s0, ṡ0 = 4, 0) with θ0 = 0

and takes a normalized time transfer ∆τ = 14.8 (dimensionless) to reach the final effective energy. In

the first two plots of Figure 3.3 are represented the phase space and the configuration space of the

satellite trajectory. We observe an orientation change between the initial and final orbits but this problem

will be solved in Chapter 7 using the Laplace-Runge-Lenz vector. In the graphics of the second line of
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case Lz orbit geometry initial conditions Hf ∆τ

ii) 1.3 elliptic to elliptic

s0 = 4

−0.25 14.8
ṡ0 = 0
θ0 = 0

H0 = −0.1972

ii) 0.6 elliptic to elliptic

s0 = 1.3

−0.8 9.8
ṡ0 = −0.2
θ0 = π

2
H0 = −0.6427

i) 1.4 circular to hyperbolic

s0 = 1.96

0.2 11.7
ṡ0 = 0
θ0 = 3π

2
H0 = −0.2551

i) 0.8 hyperbolic to hyperbolic

s0 = 0.3022

0.5 2.4
ṡ0 = −0.1
θ0 = π

2
H0 = 0.2

ii) 1 hyperbolic to circular

s0 = 0.4589

−0.5 45.8
ṡ0 = −0.1
θ0 = π
H0 = 0.2

Table 3.3: Examples of transfers with constant angular momentum. Note that all quantities are dimen-
sionless, except the polar angle θ0 which is measured in radians.

this figure, we see the polar angle variation as well as the control choice variation that is made using the

data from Table 3.3. In the last line of this figure, we prove that angular momentum remains constant

during all the transfer and we conclude that in fact we can obtain transfers without the control parameter

σ = −1 and ensuring that transfers occur regardless of the chosen Lz value. However, until Hf the

control parameter remains zero during almost the entire transfer and, consequently, this increases the

transfer time. The bright spot is that, by equation (2.16), this problem will not affect the energy cost since

when σ = 0, ε is also zero and this will not contribute to the integral of this equation.

The second example in Table 3.3 is a transfer between two elliptical orbits with decreasing effective

energy. We choose a constant angular momentum Lz = 0.6 and initial and final effective energies

H0 = 0.6427 and Hf = −0.8, respectively. The transfer starts at (s0, ṡ0 = 1.3,−0.2) with θ0 = π/2 and

is depicted in Figure 3.4. In the first two plots of this figure are represented the phase space trajectory

and the configuration space, where we also observe a final orbit orientation change. In the four graphs

below that figure, we see the polar angle variation as well as the control choice variation following the

data in Table 3.3. As expected, the angular momentum of the orbit remains constant throughout the

transfer which takes a normalized time ∆τ = 5.8 to be completed. Note that, in the last plot, effective

energy decreases by step levels. This is due to the fact that we only use σ = 0 and σ = 1. In fact, with

these control choices, transfers end up being slower but only then do we guarantee that they happen for

whatever the angular momentum value.

The last three examples of Table 3.3 are intended to reinforce that this model is also valid when

considering open orbits (hyperbolic trajectories), i.e., with H > 0.

In Figure 3.5 is depicted a transfer with Lz = 1.4 between a circular orbit with H0 = −0.2551 and a
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hyperbolic orbit with Hf = 0.2. The transfer initial point is (s0, ṡ0 = 1.96, 0) with θ0 = 3π/2. The control

choice parameter follows (central plot on the left of Figure 3.5) the conditions summarized in Table 3.2

in only two steps, so the orbit effective energy increases monotonically until Hf is reached, as can be

observed on the last plot of Figure 3.5. The normalized transfer time is ∆τ = 11.7.

It is also possible to simulate transfers between two hyperbolic orbits. An example of this is shown in

Figure 3.6, where the constant angular momentum is Lz = 0.8 and the initial and final effective energies

are H0 = 0.2 and Hf = 0.5, respectively. The transfer start at the point (s0, ṡ0 = 0.3022,−0.1) with θ0 =

π/2. In the first plot of the second line of this figure, the control choice parameter follows the conditions

summarized in Table 3.2 in only one step and the orbit effective energy increases monotonically until Hf

is reached. The transfer takes a normalized time ∆τ = 2.4 to be completed.

The last example is the most complex: a transfer simulation between an hyperbolic (H0 = 0.2) and

a circular (Hf = −0.5) orbits with Lz = 1 and this is presented in Figure 3.7. The starting point of the

transfer is (s0, ṡ0 = 0.4589,−0.1) with θ0 = π. In the first two plots, we see the satellite orbital phase

space as well as its configuration space. Below these, in the plots of control parameter variation and

of effective energy variation, there are levels that correspond to the control being off. Again, it is a

consequence of choosing the control parameter indicated in Table 3.2 for the case where the effective

energy decreases. Furthermore, for the satellite to reach a final circular orbit, we have to impose a

particular condition: when s∗1 < s < s∗0 and ṡ = 0, we keep the value of s (which we call sa = 0.9887);

in the next instant, when ṡ > 0, we do not turn on the control as it would be supposed and the satellite

remains in a Keplerian orbit. The control is only switched on again when s reaches the value indicated by

equation (3.3), which corresponds to the intersection with the orbit with σ = 1, which leads the satellite

directly into the circular orbit. The normalized time of this transfer is 45.8.
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Figure 3.3: Simulation of a transfer with constant angular momentum (Lz = 1.3) between two elliptical
orbits: the initial with an effective energy (H0 = −0.1972) and the final with (Hf = −0.25). The initial orbit
is represented by the dashed line, the transfer by the red line and the final orbit by the black one. The

transfer starts at the point (s0, ṡ0, θ0) = (4, 0, 0) and takes ∆τ = 14.8 to be completed.
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Figure 3.4: Simulation of a transfer with constant angular momentum (Lz = 0.6) between two elliptical
orbits: the initial with an effective energy (H0 = −0.6427) and the final with (Hf = −0.8). The initial
orbit is represented by the dashed line, the transfer by the red line and the final orbit by the black one.
The transfer starts at the point (s0, ṡ0, θ0) = (1.3,−0.2, π/2) and takes a normalized time ∆τ = 9.8 to be

completed.

24



0 1 2 3 4 5 6 7

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

s


Phase space trajectory

(Control space)

s

-10 -5 0 5 10
-10

-5

0

5

10

y

Configuration space

x

0 5 10 15 20 25 30 35

-1.0

-0.5

0.0

0.5

1.0

σ

Control parameter variation

τ

0 5 10 15 20 25 30 35

5

6

7

8

9

θ

Polar angle variation

τ

0 5 10 15 20 25 30 35

0.0

0.5

1.0

1.5

2.0

2.5

Lz

Angular momentum variation

τ

0 5 10 15 20 25 30 35

-0.2

-0.1

0.0

0.1

0.2

H

Effective energy variation

τ

Figure 3.5: Simulation of a transfer with constant angular momentum (Lz = 1.4) between circular and
hyperbolic orbits: the initial with an effective energy (H0 = −0.2551) and the final with (Hf = 0.2). The
initial orbit is represented by the dashed line, the transfer by the red line and the final orbit by the black
one. The transfer starts at the point (s0, ṡ0, θ0) = (1.96, 0, 3π/2) and takes a normalized time ∆τ = 11.7

to be completed.
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Figure 3.6: Simulation of a transfer with constant angular momentum (Lz = 0.8) between two hyperbolic
orbits: the initial with an effective energy (H0 = 0.2) and the final with (Hf = 0.5). The initial orbit is
represented by the dashed line, the transfer by the red line and the final orbit by the black one. The
transfer starts at the point (s0, ṡ0, θ0) = (0.3022,−0.1, π/2) and takes a normalized time ∆τ = 2.4 to be

completed.
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Figure 3.7: Simulation of a transfer with constant angular momentum (Lz = 1) between hyperbolic and
circular orbits: the initial with an effective energy (H0 = 0.2) and the final with (Hf = −0.5). The transfer
starts at the point (s0, ṡ0) = (0.4589,−0.1) with θ0 = π and its time is 45.8 (dimensionless). The initial
orbit is represented by the dashed line, the transfer by the red line and the final orbit by the black one.
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Chapter 4

Transfers with constant effective

energy

We now consider transfers with constant effective energy, which start at time τ = 0 with angular

momentum Lz0 and stop when the final angular momentum value Lzf is reached. We also consider that

the initial and final values of angular momentum have the same sign (in this case, the plus sign) so that

during a transfer the value of the angular momentum is never zero.

4.1 Control choices

If we equal the equation (2.11) to zero we have the control condition corresponding to energy con-

servation (Ḣ = 0) which is given by

φ = θ − arctan
ṡ

sθ̇
, (4.1)

where θ̇ = Lz

s2 . From here, we can obtain the expressions for sin (θ − φ) and cos (θ − φ) which are given

by 
sin (θ − φ) = sṡ√

s2ṡ2+L2
z

cos (θ − φ) = |Lz|√
s2ṡ2+L2

z

, (4.2)

and rewrite the equations of motion (2.8):
s̈ =

L2
z

s3 −
1
s2 + εσσc

|Lz|√
L2

z+s2ṡ2

d|Lz|
dt = −εσσc s2ṡ√

L2
z+s2ṡ2

, (4.3)

where σc = 1 and σ can take the values ±1 or also 0 when the control parameter is off for sake of

simplification, according to each imposed condition.

If Lz0 > Lzf , we must have H ≥ −1/(2L2
z0), and if Lz0 < Lzf , then H ≥ −1/(2L2

zf ). This will be

better understood in Chapter 6. Therefore, we can consider two types of transfers: i) Lz0 > Lzf and
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ii) Lz0 < Lzf . Similar to transfers of the previous chapter, the case i) has no problems and the control

conditions are

Lz0 > Lzf :


if ṡ < 0 ∧ Lz0 > Lzf ⇒ σ = 1

if ṡ ≥ 0 ∧ Lz0 > Lzf ⇒ σ = −1

otherwise ⇒ σ = 0

. (4.4)

For the ii) case, it is necessary to analyze the geometry of the orbits.

To calculate the fixed points, we have to write the expression of s̈ as a function of H, because we are

considering transfers with constant effective energy. To do this, we solve the expression (2.9) in order to

L2
z and substitute it in the first of equation (4.3):

s̈ = − 1

s2
+

2Hs2 + 2s− ṡ2s2

s3
+ σε

Lz√
L2
z + s2ṡ2

. (4.5)

Then, we do a variable transformation, ṡ = y, and the fixed points are given by solving

ẏ = 0⇒ − 1

s2
+

2Hs2 + 2s

s3
+ σε = 0, (4.6)

in order to s, where ṡ = 0, according to each σ value.

When the control parameter is turned off, the fixed point is (s∗0, ṡ) = (− 1
2H , 0). When σ = ±1, there

are two solutions to each case but only one corresponds to a fixed point, depending on the chosen

H value. These fixed points are called s∗1 and s∗−1 according to the σ value. All the fixed points are

Lyapunov stable of center type [20].

However, to s∗−1, there is a limitation in the effective energy values. If H2 < |ε|, the s∗ values are

complex and there are no fixed points. Again, similar to what was done in the previous chapter, to

overcome this obstacle and since we intend to obtain transfers regardless of the final effective energy

value, we ignore the control parameter σ = −1. Thus, by the last equation of system (4.3), we choose

the control conditions: σ = 1 if ṡ > 0 and σ = 0 if ṡ ≤ 0.

s

s


σ=0

s0
*

s

s


σ=1

s1
*

Figure 4.1: Orbital phase space for each σ value with a constant effective energy H = −0.5. The
dashed vertical orange lines highlight the fixed points positions.
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We continue our analysis through the orbital phase space associated with each chosen value of the

control parameter. These are represented in Figure 4.1 for a certain effective energy: H = −0.5. Once

the chosen value is negative the orbits are always closed.

If we overlap the orbital phase spaces with σ = 0 and σ = 1, we find a problematic region between

the fixed points (s∗1 ≤ s ≤ s∗0), which prevents us from transferring the satellite to a circular orbit. This

region is depicted in Figure 4.2. If we choose a point with ṡ < 0 and, therefore, σ = 0, and follow the

direction of the arrows, eventually we will arrive at ṡ = 0. In the next instant, due to the conditions

described above, ṡ would be positive and, therefore, σ = 1. However, if we follow the direction of the

arrows, this does not happen and we continue with ṡ < 0.

s

s


s1
*

s0
*

Figure 4.2: Orbital phase space for control parameters σ = 1 (orange) and σ = 0 (gray) with a constant
effective energy H = −0.5. The dashed vertical gray lines highlight the fixed points positions.

Therefore, we have to implement a new strategy for transfers with H < 0 and Lz0 < Lzf : firstly, we

transfer the satellite to an almost circular orbit with constant energy (until s∗1 ≤ s ≤ s∗0 and ṡ = 0) and then

we make a sequence of three transfers: 1) with increasing energy and constant angular momentum, 2)

with constant energy and decreasing angular momentum and 3) with decreasing energy and constant

angular momentum. Under these conditions, all the transfers have stable bounded orbits.

So, the control conditions to transfers with Lz0 < Lzf are

H > 0, Lz0 < Lzf :

 if ṡ > 0 ∧ Lz0 < Lzf ⇒ σ = 1

otherwise ⇒ σ = 0

H < 0, Lz0 < Lzf :


if ṡ > 0 ∧ Lz0 < Lzf ⇒ σ = 1

if ṡ = 0 ∧ s ∈ [s∗1, s
∗
0] ∧ Lz0 < Lzf ⇒ σc = 0

otherwise ⇒ σ = 0

(4.7)
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4.2 Simulations

Such as transfers with constant angular momentum, transfers with constant effective energy can

also be circular, elliptical, or hyperbolic and we can find some examples of these transfers in Table 4.1.

However, since the effective energy remains constant during all the transfer, the satellite can only be

transferred between closed orbits (H < 0) or transfers between open orbits (H > 0).

In Figure 4.3 we show the result of a transfer simulation between two hyperbolic orbits with a de-

crease of the angular momentum (Lz0 = 0.7969 and Lzf = 0.2) and constant effective energy (H = 0.2).

The main characteristics of this transfer are shown in the first example of Table 4.1. The phase space

trajectory and the configuration space are represented in the first two plots in Figure 4.3. At the bottom

of this figure, we can see the obtained control parameter variation, the plot of the decreasing angular

momentum until it reaches the value of Lzf and the plot of the effective energy that remains constant

during all the transfer time. The transfer takes a normalized time ∆τ = 3.0 to be completed.

Now we analyze a transfer between a circular and an elliptical orbits with a decrease of the angular

momentum and constant effective energy (H = −0.5). The angular momentum of the initial and final

orbits are Lz0 = 1 and Lzf = 0.4, respectively. In Table 4.1 we summarize the initial and final conditions

of this transfer as well as the respective transfer time. The simulation transfer is depicted in Figure 4.4.

In the first two plots are represented the phase space trajectory and the configuration space, where we

can observe a change in orientation between the initial and final orbits. At the bottom of this figure, we

can see the control parameter variation obtained, which varies several times until reaching the desired

value Lzf . Of course that the effective energy remains constant during the ∆τ = 15.0 of the transfer.

In Figure 4.5, we show a transfer with constant effective energy H0 = −0.2 and ε = −0.1, between

Keplerian orbits with angular momenta Lz0 = 0.6 and Lzf = 1. Since H ≥ −1/(2L2
zf ) = −0.5, the final

orbit is accessible. The trajectories in phase and configuration spaces are represented in the first two

case H orbit geometry initial conditions Lzf ∆τ

i) 0.2 hyperbolic to hyperbolic

s0 = 0.3

0.2 3.0
ṡ0 = 0
θ0 = 0

Lz0 = 0.7969

i) −0.5 circular to elliptic

s0 = 1

0.4 15.0
ṡ0 = 0
θ0 = 0
Lz0 = 1

ii) 0.2 elliptic to elliptic

s0 = 0.1878

1 2.9
ṡ0 = −0.2
θ0 = π
Lz0 = 0.6

ii) −0.5 elliptic to circular

s0 = 0.4013

1 48.8
ṡ0 = −0.1
θ0 = 0

Lz0 = 0.8

Table 4.1: Examples of transfers with constant effective energy. All the quantities are dimensionless,
except the θ0 which is measured in radians.
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plots. The transfer starts at (s0, ṡ0) = (0.1878,−0.2) of the initial orbit and with an angle θ0 = π. In

the plots below these, we present the control parameter, the polar angle, the angular momentum, and

effective energy variations. The control parameter follows the conditions described in equation (4.7) in

only one step level with σ = 1, allowing the angular momentum to increase monotonically until Lzf is

reached.

In Figure 4.6, we simulate the transfer of a satellite starting in an initial elliptic orbit with angular

momentum Lz0 = 0.8 to the circular orbit with radius s = 1 and effective energy H = −0.5 (angular

momentum Lzf = 1). The initial conditions of the transfer are (s0, ṡ0) = (0.4013,−0.1), and θ0 = 0. In

this figure are presented trajectories of phase and configuration spaces as well as the control parameter,

angular momentum, and effective energy variations. This example is more complex than the others

presented because the circular orbit is not directly reachable. We had to implement the strategy defined

at the end of Section 4.1. First of all, we transfer the satellite to an almost circular orbit with constant

effective energy, and when s∗1 < s < s∗0 and ṡ = 0 are reached, we start a transfer with increasing

effective energy and constant angular momentum (similar to those studied in the previous chapter) until

a value relatively close to H is reached, which in this case was H = −0.4. When this happens, a

transfer with constant effective energy and decreasing angular momentum is started and it ends when

Lzf is reached. After this, the satellite is transferred with decreasing effective energy and constant

angular momentum until the circular orbit by the method described in the last example of Section 3.2.

The normalized total time of this transfer is ∆τ = 48.8.
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Figure 4.3: Simulation of a transfer with constant effective energy (H = 0.2) between two hyperbolic
orbits: the initial with an angular momentum (Lz0 = 0.7969) and the final with (Lzf = 0.2). The initial orbit
is represented by the dashed line, the transfer by the blue line and the final orbit by the black one. The
transfer starts at the point (s0, ṡ0) = (0.3,−0.1) with θ0 = 0. The normalized transfer time is ∆τ = 3.0.
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Figure 4.4: Simulation of a transfer with constant effective energy (H = −0.5) and between circular and
elliptical orbits: the initial with an angular momentum (Lz0 = 1) and the final with (Lzf = 0.4). The initial
orbit is represented by the dashed line, the transfer by the blue line and the final orbit by the black one.

The transfer starts at the point (s0, ṡ0) = (1, 0) with θ0 = 0. The normalized transfer time is 15.0.
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Figure 4.5: Simulation of a transfer with constant effective energy (H = −0.2) and between two elliptical
orbits: the initial with an effective energy (Lz0 = 0.6) and the final with (Lzf = 1). The initial orbit is
represented by the dashed line, the transfer by the blue line and the final orbit by the black one. The

transfer starts at the point (s0, ṡ0) = (0.1878, 0.2) with θ0 = π. The normalized transfer time is 2.9.
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Figure 4.6: Simulation of a transfer between elliptic and circular Keplerian orbits with H = −0.5. The
initial and final angular momenta are Lz0 = 0.8 and Lzf = 1, respectively. The transfer starts at the point
(s0, ṡ0) = (0.4013,−0.1) and θ0 = 0. The initial orbit is represented by the dashed line, constant effective
energy transfers by blue lines, constant angular momentum transfers by red lines and the final orbit by

the black line. The normalized transfer time is ∆τ = 48.8.
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Chapter 5

Transfers with both variable angular

momentum and effective energy

Now we consider transfers with both variable angular momentum and effective energy. We want to

make a transfer between an orbit with Lz0 and H0 and another with Lzf and Hf . Thus, we can have four

cases: i) H0 < Hf and L0 < Lf , ii) H0 > Hf and L0 < Lf , iii) H0 < Hf and L0 > Lf and iv) H0 > Hf

and L0 > Lf .

There are two different ways to obtain these transfers. The first consists of grouping transfers with

constant effective energy with transfers with constant angular momentum exactly as described in the

previous chapters; the second is obtained through conservation laws. These two methods are explained

in detail in Sections 5.1 and 5.2.

Lz

H

i) H0<Hf and L0<Lf

Lz

H

ii) H0>Hf and L0<Lf

Lz

H

iii) H0<Hf and L0>Lf

Lz

H

iv) H0>Hf and L0>Lf

Lz

H

Lz

H

Lz

H

Lz

H

Figure 5.1: Scheme to better understand the order of transfers with effective energy and angular mo-
mentum both variable.
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5.1 First case of transfers with both variable H and Lz

For the first case, we combine transfers with constant angular momentum and transfers with constant

effective energy. Therefore, for each one of the four cases mentioned above, we can have two ways of

making this, which is schematically represented in Figure 5.1:

a) making a transfer with constant Lz followed by a transfer with constant H (top);

b) making a transfer with constant H followed by a transfer with constant Lz (bottom).

Simulations

Using the control conditions mentioned above, we obtained some simulation transfers between cir-

cular, elliptical, and hyperbolic orbits to each one of the four possible cases - i) to iv) - and with the two

possible transfer combinations - a) and b). These results are summarized in Table 5.1.

Note cases i) and iv), where both angular momentum and effective energy increase or decrease, and

when the transfer involves a circular orbit, there only is a way to implement the transfer. When H0 < Hf

and Lz0 < Lzf , case i), we were unable to transfer the satellite to a circular orbit by first implementing a

transfer with constant effective energy followed by another with constant angular momentum because in

the first the minimum energy value (circular orbit) is exceeded. The problem in case iv) is similar to this:

when H0 > Hf and Lz0 > Lzf , if the satellite is in a circular orbit and we want to transfer it to any other

orbit, it will only be possible if we first implement a transfer with constant H followed by another with

constant Lz. Otherwise, the minimum energy value will be exceeded and this is not physically possible.

This will be discussed in detail in Chapter 6.

In the examples presented, the final orbit orientation is once again different from the initial orbit. The

technique described in Chapter 7 to rotate the final orbit can also be used in this case.

Figure 5.2 shows an example of a transfer simulation with both increasing effective energy and

angular momentum: a transfer between elliptical and hyperbolic orbits. The initial and final conditions

are referenced in the first example in Table 5.1. First, we apply for a constant effective energy transfer

and then another with constant angular momentum. However, in the same figure, on the plot of the

effective energy variation, we observe two transfers with constant angular momentum (red lines) and

another two with constant effective energy (blue lines). This is due to the fact that the satellite enters

the problematic region studied in Chapter 4. To solve this, we implement the strategy described in

that chapter to the circular orbits (which includes three more types of transfers) but we stop it when

the desired angular momentum value Lzf is reached. Only after that the transfer with constant Lz

begins and takes ∆τ = 38.5 (normalized time). In fact, in this particular case, the first transfer takes a

normalized time ∆τ = 17.1 and includes an initial transfer with constant H until ṡ = 0 and s∗1 < s < s∗0

be reached, another with constant Lz up to a chosen value close to H0 (in this case H = −0.2) followed

by another one with constant H until the final value Lzf . Therefore, the total normalized transfer time is

∆τ = 55.6.

In Figure 5.3 we present another example of a transfer simulation with H0 < Hf and Lz0 > Lzf

between two hyperbolic Keplerian orbits. Once again, the initial and final conditions of this transfer
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are summarized in the first example of case iii) in Table 5.1. Here, we choose to represent the point

a) mentioned at the beginning of this section: a transfer with constant angular momentum followed

by a transfer with constant effective energy, which takes a normalized time ∆τ = 4.5 and ∆τ = 0.5,

respectively, to be completed.

case orbit geometry initial conditions final conditions ∆τ

i) elliptic to hyperbolic

s0 = 1.1857

Lzf = 1.5 ∆τb = 24.7
ṡ0 = −0.25 Hf = 0.1 ∆τa = 8.9
θ0 = 0

H0 = −0.3
Lz0 = 1.2

i) elliptic to circular

s0 = 0.8

Lzf = 1.2909 b) inaccessible
ṡ0 = −0.5 Hf = −0.3 ∆τa = 52.5
θ0 = 0

H0 = −0.3438
Lz0 = 1

ii) hyperbolic to circular

s0 = 0.1878

Lzf = 1 ∆τb = 61.1
ṡ0 = −0.2 Hf = −0.5 ∆τa = 76.7
θ0 = π
H0 = 0.2

Lz0 = 0.6231

ii) elliptic to elliptic

s0 = 0.4445

Lzf = 1.1 ∆τb = 37.5
ṡ0 = 0 Hf = −0.4 ∆τa = 44.0
θ0 = 0

H0 = −0.2
Lz0 = 0.9

iii) hyperbolic to hyperbolic

s0 = 0.4772

Lzf = 0.7 ∆τb = 7.07
ṡ0 = 0 Hf = 0.6 ∆τa = 5.0

θ0 = 3π/2
H0 = 0.1
Lz0 = 1

iii) circular to elliptic

s0 = 2.25

Lzf = 0.9 ∆τb = 8.95
ṡ0 = 0 Hf = −0.1 ∆τa = 7.1
θ0 = 0

H0 = −0.2222
Lz0 = 1.5

iv) hyperbolic to hyperbolic

s0 = 0.4148

Lzf = 0.8 ∆τb = 4.4
ṡ0 = −0.1 Hf = 0.2 ∆τa = 3.2
θ0 = 0
H0 = 0.5
Lz0 = 1

iv) circular to elliptic

s0 = 1

Lzf = 0.8 ∆τb = 8.5
ṡ0 = 0 Hf = −0.7 a) inaccessible
θ0 = 0

H0 = −0.5
Lz0 = 1

Table 5.1: Examples of transfers with both varying angular momentum and effective energy.
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Figure 5.2: Simulation of a transfer with both varying angular momentum and effective energy between
elliptical and hyperbolic orbits: the initial one with Lz0 = 1.2 and H0 = −0.3 and the final with Lzf = 1.5
and Hf = 0.1. The initial orbit is represented by the dashed line, the first transfer (with constant H)
by the blue line, the second transfer (with constant Lz) by the red line and the final orbit by the black
one. The transfer starts at the point (s0, ṡ0, θ0) = (1.1857,−0.25, 0). The normalized transfer time is

∆τ = 55.6.
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Figure 5.3: Simulation of a transfer with both varying angular momentum and effective energy between
two hyperbolic orbits: the initial one with Lz0 = 1 and H0 = 0.1 and the final with Lzf = 0.7 and Hf = 0.6.
The initial orbit is represented by the dashed line, the first transfer (with constant H) by the blue line, the
second transfer (with constant Lz) by the red line and the final orbit by the black one. The transfer starts

at the point (s0, ṡ0, θ0) = (0.4772, 0, 3π/2). The normalized transfer time is ∆τ = 5.0.
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5.2 Second case of transfers with both variable H and Lz

Although we have already obtained transfers with both variable angular momentum and effective

energy, there is a second hypothesis to compute them, using control conditions given by the conservation

laws.

Looking at the plots of H(Lz) - Figure 5.1 - of any of the transfers we are considering, we see this is

represented by a straight segment with a slope k. So, we can write

dH

dLz
=

Hf −H0

Lzf − Lz0
= k, (5.1)

where k is a constant that can be positive or negative according to the case we are analyzing. k > 0 if

Lz and H increase or decrease; k < 0 if one increases and the other decreases. Therefore, this new

equation is the other condition that will help us to implement these transfers.

We know that the equations that describe these transfers are given by (2.8) and (2.11):


s̈ =

L2
z

s3 −
1
s2 + εσ cos (θ − φ)

L̇z = −εσs sin (θ − φ)

Ḣ = εσ
[
ṡ cos (θ − φ)− sθ̇ sin (θ − φ)

]
,

(5.2)

If we replace the last two equations of (5.2) in (5.1), we obtain

tan (θ − φ) =
ṡ

sθ̇ − ks
⇒


sin (θ − φ) = ṡ

[ṡ2+(sθ̇−ks)2]
1
2

cos (θ − φ) = sθ̇−ks

[ṡ2+(sθ̇−ks)2]
1
2

, (5.3)

and if we still replace these equations in (5.2) we have the final equations to use in transfer simulations:



s̈ =
L2

z

s3 −
1
s2 + εσ sθ̇−ks

[ṡ2+(sθ̇−ks)2]
1
2

L̇z = −εσs ṡ

[ṡ2+(sθ̇−ks)2]
1
2

Ḣ = −εσs ṡk

[ṡ2+(sθ̇−ks)2]
1
2

= kL̇z

θ̇ = Lz

s2

(5.4)

Note that these transfers have both varying effective energy and angular momentum and for each

one of the four possible cases it is still necessary to impose other conditions: i) when sṡ > 0 implies

σ = 1 and sṡ < 0, σ = 1, and ii) when sṡ > 0 implies σ = −1 and sṡ < 0, σ = 1.

We present two examples of this type of transfers, one for the case i) - Figure 5.4 - and another for ii) -

Figure 5.5. However, we have not yet been able to obtain transfer simulations for any values of H and Lz

because there are still problematic regions (close to the fixed points). This may imply a different choice

of control parameters, but we leave our suggestion for possible future work on this subject. Besides, we

also call for the study of these transfers when one of the quantities (H or Lz) increases, and the other
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decreases. This type of transfers may be important since, as we will see next, they are more efficient

than those studied in the previous section.
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Figure 5.4: Simulation of a transfer with angular momentum and effective energy, both varying, between
two elliptical orbits: the initial with Lz0 = 0.8 and H0 = −0.6 and the final with Lzf = 1 and Hf = −0.4.
The initial orbit is represented by the dashed line, the transfer (with both variable H and Lz) by the red
line and the final orbit by the black one. The transfer starts at the point (s0, ṡ0, θ0) = (0.4395, 0, 0) and its

normalized time is ∆τ = 3.9.
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Figure 5.5: Simulation of a transfer with angular momentum and effective energy both variable between
a circular and an elliptical orbits: the initial with Lz0 = 1 and H0 = −0.5 and the final with Lzf = 0.8 and
Hf = −0.6. The initial orbit is represented by the dashed line, the first transfer (with both variable H and
Lz) by the blue line, the second transfer (with constant H) by the red line and the final orbit by the black

one. The transfer starts at the point (s0, ṡ0, θ0) = (1, 0, 0) and its normalized time is ∆τ = 6.2.
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5.3 Comparison between the two techniques

This section aims to prove that the method used in Section 5.2 is more efficient than that of Section

5.1 and this is obvious and predictable: while in the former we use two transfers until the desired end-

point is reached, in the latter we only use one transfer, obtaining the control conditions directly through

conservation laws.

To simplify, for the method implemented in Section 5.2 we call it method c), since at the beginning of

Section 5.1 we implement the simulations using transfers with constant angular momentum followed by

transfers with constant effective energy and vice-versa and we called them methods a) and b), respec-

tively.

In Table 5.2 we present the main characteristics of two simulations examples of transfers, each one

performed with methods a), b) and c). The first is a transfer with both increasing effective energy and

angular momentum, and the second with both these parameters decreasing. Comparing transfer times,

∆τa,b > ∆τb, we conclude that, in fact, method c) is the most efficient.

However, note that method c) is not yet fully operational but we predicted that it will continue to be

more efficient than methods a) and b).

initial conditions final conditions ∆τ

Lz0 = 0.8

Hf = −0.4
∆τa = 15.9H0 = −0.6 Lzf = 1
∆τb = 31.8s0 = 0.4319
∆τc = 3.9ṡ0 = 0

θ0 = 0
Lz0 = 0.85

Hf = −0.6920
∆τa = 18.7H0 = −0.6388 Lzf = 0.8
∆τb = 11.6s0 = 0
∆τc = 1.3ṡ0 = 0

θ0 = 0

Table 5.2: Results of the simulation of two transfers with both varying effective energy and angular
momentum, each one implemented by the methods a) and b).
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Chapter 6

Transfers between two circular orbits

In this chapter, we are going to obtain transfers between two circular orbits combining the transfers

studied previously.

In Figure 6.1 are represented schematically all types of transfers carried out until now:

1. transfer with constant angular momentum (Chapter 3);

2. transfer with constant effective energy (Chapter 4);

3. transfer with varying angular momentum and varying effective energy (Chapter 5);

and also the method of transfers between two circular orbits that we are studying in this chapter, depicted

by the orange line.

inaccessible region

H(s*)

1

2

3 s0
*

s
f

*

Lz

H

Figure 6.1: Effective energy diagram as a function of the angular momentum of the various transfers
simulated in this project. 1) Transfer with constant angular momentum; 2) transfer with constant effective
energy; 3) transfer with both varying effective energy and angular momentum. The solid black line
corresponds to all possible circular orbits and in the region below that line, transfers cannot be simulated
because the energy of a circular orbit is the minimum allowed in Keplerian orbits. In orange, we depicted

the path to obtain transfers between two circular orbits.

Still in Figure 6.1 all the possible circular orbits are represented by the solid black line, which coin-

cides with the fixed point (s, ṡ) = (s∗0, 0) and the angular momentum and effective energy expressions are
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Lz(s
∗
0, 0) =

√
s∗0 and H(s∗0) = −1/(2s∗0), respectively. Since the black line corresponds to circular orbits

and since they have the possible minimum energy, the gray region is not accessible and it is impossible

to simulate transfers there. This way, it is now possible to understand why for transfers with constant

effective energy it is necessary that H ≥ −1/(2L2
z0) if Lz0 > Lzf and H ≥ −1/(2L2

zf ) if Lzf > Lz0.

From here, we conclude that, to obtain transfers between two circular orbits, both effective energy and

angular momentum must increase or decrease simultaneously as the radius of the final orbit increases

or decreases relative to the initial one, respectively.

Considering the two orange points represented in the figure as the initial and final points of a transfer

between two circular orbits, we can see that the most effective way to obtain the endpoint would be to

follow the trajectory of the continuous black line that joins the two points. However, this is not possible

with using the numerical method of integration Runge-Kutta 4th order because it does not allow us to

obtain such an exact result.

Through the scheme represented in Figure 6.1, we conclude that the order of transfers to be imple-

mented is:

i) a constant effective energy transfer followed by a constant angular momentum transfer if s0 > sf ;

ii) a constant angular momentum transfer followed by a constant effective energy transfer if sf > s0.

Note that in the latter case, when we apply for transfers with constant effective energy, we implement the

strategy described in Chapter 4 and, therefore, it is not just a transfer to constant H but three different

transfers interchanged between transfers with constant H and transfers with constant Lz.

In Figure 6.2 we present an example of a transfer simulation between two circular orbits through the

implementation of method i) where s0 > sf . The initial orbit is characterized by Lz0 = 1 and H0 = −0.5

and the final one by Lzf = 0.9 and Hf = −0.6173. The transfer starts at the point (s0, ṡ0 = 1, 0) with

θ0 = 0 and it takes a normalized time ∆τ = 26.6 to be completed.

As an example of method ii) we present the simulation of Figure 6.3. The transfer begins in an

orbit with Lz0 = 1 and H0 = −0.5 and finishes in another with Lzf = 1.2909 and Hf = −0.3 where

sf > s0. The starting point of the transfer is (s0, ṡ0 = 1, 0) with θ0 = 0. The normalized transfer time is

71.6, where 17.1 were occupied in the transfer at constant angular momentum and the rest 54.5 in the

transfer at constant effective energy (which also implies two transfers with constant angular momentum,

as explained at the end of section 4.1).

In both figures, the control parameter variation σ has a different definition depending on the type of

transfer, following the control choices of Chapter 3 during the constant angular momentum transfer (red

line) and of Chapter 4 during the constant effective energy transfer (blue line).
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Figure 6.2: Simulation of a transfer with both variable angular momentum and effective energy between
two circular orbits s0 > sf : the initial with Lz0 = 1 and H0 = −0.5 and the final with Lzf = 0.9 and
Hf = −0.6173. The initial orbit is represented by the dashed line, the first transfer (with constant H)
by the blue line, the second (with constant Lz) by the red line and the final orbit by the black one. The
transfer starts at the point (s0, ṡ0) = (1, 0) with θ0 = 0. The transfer time is ∆τ = 26.6 (dimensionless).
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Figure 6.3: Simulation of a transfer with both variable angular momentum and effective energy between
two circular orbits with sf > s0: the initial with Lz0 = 1 and H0 = −0.5 and the final with Lzf = 1.2909
and Hf = −0.3. The transfer starts at the point (s0, ṡ0) = (1, 0) with θ0 = 0 and its time is ∆τ = 71.6
(dimensionless). The initial orbit is represented by the dashed line, the first transfer (with constant H) by

the blue line, the second (with constant Lz) by the red line and the final orbit by the black one.
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Chapter 7

Final orbit rotation through the

Laplace-Runge-Lenz vector

As described by the examples given in the previous chapters, after a transfer, the final orbit rotates

relative to the initial one. This is true both for transfers with constant angular momentum as well as for

transfers with constant effective energy.

In this chapter, we create a strategy to rotate the final orbit until it is in the initial orbit orientation. For

this, we resort to the third constant of motion of the Kepler problem - the Laplace-Runge-Lenz vector

(LRL).

7.1 Method description of rotating an orbit

Since it is a constant of motion of the Kepler problem, the LRL vector is invariant for any point in a

certain orbit and it is calculated using the equation (2.13). This way, we can calculate the LRL vectors

for the initial and final orbits and the scalar product of these two vectors allows us to discover the angle

of rotation ∆α between the orbits:

∆α = arccos

 Ax0Axf +Ay0Ayf(
A2
x0 +A2

y0

) 1
2
(
A2
xf +A2

yf

) 1
2

, (7.1)

where Ax0 and Ay0 are the components of the LRL vector relative to the initial orbit, and Axf and Ayf

are also the components of the LRL vector but relative to the final orbit.

Since we want the final orbit to have the same orientation as the initial one, we have to rotate the final

orbit by an angle −∆α. The control is done as described in Section 2.3.5 of reference [1]: depending

on the case we are considering, we use transfers with constant angular momentum or transfers with

constant effective energy and we turn the control on with σ = 1 at a point (sr, ṡr) of the final orbit

and turn it off when (sr,−ṡr) is reached. The phase space is invariant under rotations but we reach a

Keplerian orbit defined by the same angular momentum and energy as the initial one with a different
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orientation, which means that the orbit precesses in configuration space but rarely at the desired angle

−∆α. Then, for the orbits to have the same orientation, it is necessary to find the initial angle θr that

satisfies these conditions. This method can be applied for the rotation of elliptic and hyperbolic Keplerian

orbits.

To a better understand of the orbital phase space, we have to consider two cases: i) ṡr > 0 and ii)

ṡr < 0. For each one of these cases, we present a detailed example of the method used to rotate the

final orbit.

7.2 When ṡr > 0

Based on Chapter 3, we consider a transfer simulation with constant angular momentum (Lz = 1)

which starts at point (s0, ṡ0) = (0.8, 0.1) with θ0 = 0 and H0 = −0.4638. When the transfer ends,

the effective energy is Hf = −0.2, the normalized transfer time is ∆τ = 9.8 and the rotation angle is

1.2667 = 72.5778◦. This simulation is depicted in Figure 7.1 and each of the LRL vectors is represented

in the respective orbit.
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Figure 7.1: Simulation of a transfer with constant angular momentum (Lz = 1) between two elliptical
orbits: the initial with an effective energy H0 = −0.4638 and the final with Hf = 0.2. The initial orbit is
represented by the dashed line, the transfer by the gray line and the final orbit by the black one. The
transfer starts at the point(s0, ṡ0, θ0) = (0.8, 0.1, 0) and takes 9.8 (dimensionless) to be completed. The
final orbit rotates an angle ∆α = 1.2667 = 72.5778◦ relative to the initial one. The LRL vectors of the

initial and final orbits are represented in black and gray, respectively.

Since we want to rotate the final orbit by an angle −∆α, we have to align the final LRL vector with

the first one. To do that, we turn the control on with σ = 1 at the point where the final effective energy

is reached, (sr, ṡr), and turn it off at (sr,−ṡr). Note that, in this case, ṡr > 0 = 0.3118 and sr = 3.4375,

and we can find the simulation corresponding to this case in Figure 7.2: the initial point is represented

by green and the final by orange. During this process, the angular momentum remains constant but

the effective energy does not: when the control is turned on, it starts to decrease and when it reaches
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Figure 7.2: Simulation of the implemented method to rotate an orbit. The control is turned on with σ = 1
at the point (sr, ṡr) = (3.4375, 0.3118) with θ = 3.4629 and is turned off when the point (s, ṡ) = (sr,−ṡr) is
reached. The angular momentum and effective energy remain constant and are Lz = 1 and H = −0.2,
respectively. The green line corresponds to the orbit change while the control parameter is on and the
orange one to the final orbit already rotated. This corresponds to a rotation angle of ∆α = 0.3001 =

17.1941◦. On the left plot, the black and orange orbits coincide.

ṡ = 0 it starts to increase until the Hf value. On the left plot, in the orbital phase space trajectory,

the satellite describes the same closed orbit (black line) before the control is on and after the control

is again turned off. Thus, it is proven that the phase space is invariant according to rotations. On the

right, we verify a rotation of the final orbit (the orange one) in configuration space, which means that its

orientation changes continuously when we implement this control method. However, the rotation angle,

∆α = 0.3001 = 17.1941◦, is not sufficient to align the LRL vectors (orange and black).

To solve this problem, we have to manipulate the initial polar angle θr that leads to a rotation of the

final orbit with the desired angle −∆α. When we find the value of θr that satisfies this condition, we start

the orbit rotation itself. Then, in the end, both orbits have the same orientation.

For the example that we are considering, θr = 2.8575. Through Figure 7.3, we can verify that both

LRL vectors of the rotated and of the initial orbits have the same orientation. Thus, the process is

complete and we obtain a transfer with constant angular momentum and where the initial and final orbits

have the same orientation, using the constants of motion of the Kepler problem.

Note that, with this method, it is not possible to measure the time it takes to obtain an orbit with the

desired orientation. We are only able to discover one condition (in this case the initial polar angle) for

this to happen. We can only know, for any θr, how long it takes from the moment we start to rotate the

orbit until it has the desired orientation. This value is constant and independent of the θr value. In this

case, it corresponds to 4.0.
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Figure 7.3: Rotation of an orbit resulting from a transfer with constant angular momentum (Lz = 1).
The rotation is also done with constant angular momentum. The initial conditions are (sr, ṡr, θr) =
(3.4375, 0.3118, 2.8575) and it takes a normalized time ∆τ = 4.0 to reach the point (sr,−ṡr). The initial
and final orbits are represented by the dashed and black lines, respectively, and the rotated orbit by the
orange line. In green (left plot), the phase space is shown when the control is on, and we confirm that

when it is turned off, we remain in the same orbit but with a different orientation (right plot).

7.3 When ṡr < 0

In this example, we consider a transfer with constant effective energy (H = −0.5) starting at the point

(s0, ṡ0) = (0.5,−0.2) with θ0 = 0 and Lz0 = 0.8602 and ending when Lzf = 0.5 is reached. We use

the control choices described in Chapter 4 and this transfer simulation is presented in Figure 7.4. The

normalized transfer time is 5.96588 and the final orbit rotates an angle ∆α = 0.2558 = 14.6589◦ relative

to the initial one.

After the transfer, we verify that we need to rotate the final orbit by an angle −∆α = −0.2558 =

−14.6589◦. Letting the effective energy invariant, we turn on the control with σ = 1 at the point where the

final angular momentum is reached, at (sr, ṡr), and turn it off at point (sr,−ṡr). The angular momentum

is the same in both points but when the control is turned on ceases to be constant: it decreases until

ṡ = 0 and then increases again to Lzf . In this case, sr = 1.1194 and ṡr < 0 = −0.7663 with θr = 3.9021.

This is presented in Figure 7.5. On the left plot, the green and orange points correspond to the positions

where the control is turned on and off, respectively. The orange and black lines overlap meaning that

the satellite remains in the same orbit (with the same angular momentum and effective energy). Again,

we prove that the phase space is invariant according to rotations. On the right plot, in configuration

space, the final orbit (the orange line) rotates relatively to the black one. Again, this rotation angle

∆α = 0.1436 = 8.2264◦ is not sufficient to align the LRL vectors (orange and black).
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Figure 7.4: Simulation of a transfer with constant effective energy (H = −0.5) between two elliptical
orbits: the initial with an effective energy Lz0 = 0.8602 and the final with Lzf = 0.5. The initial orbit is
represented by the dashed line, the transfer by the gray line and the final orbit by the black one. The
transfer starts at the point (s0, ṡ0, θ0) = (0.5,−0.2, 0) and takes a normalized time ∆τ = 5.9 (dimension-
less) to be completed. The final orbit rotates an angle ∆α = 0.25585 = 14.6589◦ relative to the initial

one. The LRL vectors of the initial and final orbits are represented in black and gray, respectively.
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Figure 7.5: Simulation of the implemented method to rotate an orbit. The control is turned on the
control with σ = 1 at the point (sr, ṡr) = (1.1194,−0.7663) with θr = 3.9021 and is turned off when the
point (s, ṡ) = (sr,−ṡr) is reached. The effective energy remains constant (H = −0.5). The green line
corresponds to the orbit trajectory change while control parameter is on and the orange one to the final
orbit already rotated. This corresponds to a rotation angle of ∆α = 0.1436 = 8.2264◦. On the left plot,
the green and orange points at the point where the control is turned on and off, respectively. The black

and orange orbits coincide.
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Similar to what was done in the previous example, we have to manipulate the initial polar angle θr

which leads to a rotation of the final orbit with the desired angle−∆α. Thus, we find an angle θr = 3.8265

and, by Figure 7.6, the orbits have the same orientation.

0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

s


Phase space trajectory

(Control space)

s

-2 -1 0 1 2
-2

-1

0

1

2

y

Configuration space

x

Figure 7.6: Rotation of an orbit resulting from a transfer with constant effective energy (H = −0.5).
The rotation is also done with constant effective energy. The initial conditions are (sr, ṡr, θr) =
(1.1194, 0.7663, 3.8265) and it takes a normalized time ∆τ = 1.7 to reach the point (sr,−ṡr). The ini-
tial and final orbits are represented by the dashed and black lines, respectively, and the rotated orbit by
the orange line. In green (left plot), the phase space is shown when the control is on, and it is confirmed

that when it is turned off, we remain in the same orbit but with a different orientation (right plot).
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Chapter 8

Conclusions

The main goal of this master thesis was to develop a control strategy to be applied in satellites’ low-

thrust transfers between two-dimensional Keplerian orbits through conservation laws. The starting point

of this project was Mariana Fernandes 2017 master thesis [1], where transfers with constant angular

momentum, transfers with constant effective energy, and a particular case of transfers with both variable

angular momentum and effective energy were studied. Based on this work, we simplified the Mathe-

matica code for the transfers mentioned above and we deepened the study of these for any value of the

effective energy and angular momentum. For each transfer, we used different control choices depending

on its phases space. We used a bang-bang control, where the parameter control, σ, could only be ±1

or 0 (which the latter corresponds to the control being turned off).

We started our work by presenting the mathematical formalism of the two-dimensional variable mass

Kepler problem in Chapter 2. We assumed that the thrusters exhaust gases intensity were constant and

we obtained the equations of motion for this problem, which has three constants of motion: the angular

momentum vector, the effective energy, and the Laplace-Runge-Lenz vector, where the latter is used to

control the final orbit orientation. However, during transfers, they are no longer constants. This means

that, initially, the satellite is in an initial orbit with a certain angular momentum, effective energy, and

LRL vector. When the control is turned on, one or two of these constants (depending on the type of

transfer we are considering) are no longer constant and the satellite moves to another orbit. When the

desired value is reached, the control turns off and we have the three constants of motion again but now

with different values according to the final orbit. Also in Chapter 2, we derived the energy expenditure

equation for a transfer. However, we did not think it would make sense to calculate the energy cost

involved in each transfer simulation since, by equation (2.16), it depends on the initial satellite mass and

the gamma parameter, which is given by the satellite manufacturer and we were considering a general

satellite and not a specific one.

The following chapters were dedicated to the various types of transfers. We started by studying

transfers with constant angular momentum, which were explained in Chapter 3. In Table 3.2 we sum-

marize the control choices made for the two possible cases of these transfers: H0 < Hf and Hf < H0.

When Hf < H0 and after analyzing the phases space trajectories, we were able to obtain more general
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transfers for any angular momentum value by choosing different control parameters from those used in

[1]. We combined only σ = 1 with the control off (σ = 0). The great advantage of not using the solution

of σ = −1 is that the orbits with σ = 1 are always stable and we can obtain transfers for any angular

momentum value.

In Chapter 4 we studied transfers with constant effective energy and, in order to guarantee the

stability of the orbits, we again only chose the control parameters σ = 1 and σ = 0 when Lzf > Lz0. The

control choices are summarized in equations (4.4) and (4.7).

In both types of transfers, due to the orbital phase spaces, it was not possible to reach directly the

circular orbit. To solve this, we implemented a new strategy that is discussed in the final of Sections 3.1

and 4.1.

We proceeded with our study in Chapter 5 by simulating transfers with both variable effective energy

and angular momentum. Firstly, in Section 5.1, we analyzed a particular case of this type of transfers:

a simpler case that consists of combining transfers with constant angular momentum with transfers with

constant effective energy, as discussed earlier. Then, in Section 5.2, we implemented a more efficient

way to obtain these transfers using only conservation laws of effective energy and angular momentum.

However, this method is not yet totally completed because some problems related to the regions near

the fixed points were not being solved. We encourage anyone who wants to study this topic to explore

this method as it is more efficient than the first one since both angular momentum and effective energy

vary simultaneously. This was also discussed in Section 5.3.

To prove the effectiveness of the method used, in all chapters mentioned so far, we presented some

examples of transfers between elliptical, circular, or hyperbolic orbits. Besides, another very important

aspect is the fact that we can start transfers at any point in the orbit.

After this, we simulated in Chapter 6 a particular type of transfers: between two circular orbits.

We obtained it using a method schematically depicted in Figure 6.1 by the orange lines. This method

resulted from joining the previous transfers (with constant angular momentum and with constant effective

energy). Note that the most efficient way to obtain these transfers would be to follow the black line that

joins the initial and final points in Figure 6.1. However, we were using a method of numerical integration

(Runge-Kutta 4th order) that did not allow us to obtain this trajectory exactly. Another possibility to

consider in future work in this field is to simulate these transfers by implementing the second (and more

efficient) method studied in Chapter 5.

Finally, we used the third constant of motion of the Kepler problem: the LRL vector. When we

simulated transfers with constant effective energy and with constant angular momentum we verified

that the final orbit had rotated relative to the initial one. So, using the LRL vector, we implemented an

algorithm to rotate the final orbit. This is covered in Chapter 7.

In addition to the suggestions mentioned above, we propose two more topics that we consider crucial

for the development of the field of orbital transfers using low-thrust satellites:

• the simulation of a real transfer, using known thrust parameters. However, this may take a long

time to run on a "normal" computer.

• the implementation of a similar strategy to three-dimensional transfers. We have already started
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to take a look at this case and perhaps the best approach will be to consider that transfers should

occur along an orbit contained in the sphere that contains the initial orbit. Therefore, the initial

orbit must always be circular. If not, we use the 2-dimensional transfers described in this project

to transform the initial orbit into a circular one. Likely, the most complicated task will be to find the

transfer stop condition when the satellite reaches the desired angular momentum value.
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Appendix A

Circular orbits approaching

Throughout the development of this project, we encountered some difficulties in obtaining transfers

to circular orbits. After analyzing the phases space for each case, we are faced with the existence of a

problematic region that did not respect our control choices and that coincided with the region near the

circular orbits. In this appendix, we show the calculations that were made so that we can implement the

new control choices in that region and, thus, obtain final circular orbits.

A.1 Transfers with constant angular momentum and decreasing

effective energy

In Chapter 3 we analyzed transfers with constant angular momentum with i)Hf > H0 and ii)Hf < H0

and presented the control choices to each case (Table 3.2). However, in the second case we found that

there was a problematic region when s∗1 < s < s∗0 and that did not allow us to obtain circular orbits.

To solve this problem, we carefully analyzed the orbits phase space with σ = 0 and σ = 1. In Figure

A.1 we find an example of a simulation for a circular orbit. When s∗1 < s < s∗0 and ṡ = 0 we keep the s

value and call it sa. When ṡ > 0, the control should go to 1 but now we will keep it off and the satellite

remains in the same Keplerian orbit. When intercepting the orbit with σ = 1 (red line) with the effective

energy corresponding to that of the circular orbit, we turn the control back on and turn it off when ṡ is

zero again. At that time, the satellite will be in the circular orbit.

To implement this strategy we need to calculate the value of the coordinate si. To do this, we have to

solve some orbit equations.

The first step is to find the orbit equation with σ = 1 that connects sb to s∗0 (green line of Figure A.1).

At the fixed point (s∗0, 0) = (L2
z, 0), using equation (2.10), we know that the effective energy is given by

Hε
s∗0

= − 1

2L2
z

− εL2
z. (A.1)

This effective energy value is constant at any point in the orbit and, therefore, we can equate this to a
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Figure A.1: Phase spaces with σ = 0 and σ = 1 in the approach to circular orbits.

general expression:

− 1

2L2
z

− εL2
z =

1

2

(
ṡ2 +

L2
z

s2

)
− 1

s
− εs. (A.2)

Solving it in order to ṡ we obtain:

ṡ = ±
(
− 1

L2
z

− 2εL2
z −

L2
z

s2
+

2

s
+ 2εs

) 1
2

, (A.3)

where we only consider the positive value since we are analyzing the part with ṡ > 0 of the orbit. This

equation has three zeros but one of them is negative and, therefore, is neglected. So, when ṡ = 0, its

solutions are: s∗0 = L2
z and sb =

1−(1−8εL4
z)

1
2

8εL2
z

.

Next, we have to find the orbit equation with σ = 0 that connects sb to sc. When s = sb, the effective

energy corresponding to the orbit with σ = 0 is

H0
sb

= −1 + (1− 8εL4
z)

1
2 + 4εL4

z

4L2
z

. (A.4)

Equating this to the general expression of effective energy given by equation (2.10) and solving it in

order to ṡ, we obtain two solutions. As we are only considering the negative part of the orbit, we choose

the minus sign. From here, when ṡ = 0 we obtain two solutions: sb and sc, as expected. The expression

for sc is very long and we are not going to write it. Furthermore, it will not be necessary for what we are

studying.

Finally, we just need to get the expression for an orbit with σ = 0 crossing ṡ = 0 when s = sa

with s∗1 < sa < s∗0 (problematic region) and s∗0 < sa < sc. The procedure is similar to what was done

previously for the other two orbits. If we equate the expressions of the effective energy at the point (sa, 0)
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with the effective energy of the orbit with σ = 0, we obtain

1

2

L2
z

s2
a

− 1

sa
=

1

2

(
ṡ2 +

L2
z

s2

)
− 1

s
. (A.5)

The intersection between the orbit with σ = 0 that leaves sa and the orbit with σ = 1 that reaches the

fixed point s∗0 (red orbit) is given by joining equations (A.3) and (A.5). So, the s intersection coordinate is

si =
L2
z

2εs2
a

− 1

εsa
+

1

2εL2
z

+ L2
z. (A.6)

Using this expression, we are ready to simulate transfers to a final circular orbit.
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