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ABSTRACT 

 

Bioenergy has been proven to have great potential as a substitute for fossil fuels and help reach the 

European Union’s environmental goals. However, to be a sustainable alternative, it needs to be 

economically viable. Thus, an efficient and well-designed supply chain is required.  

Most research works from literature assume the technologies used to convert biomass into bioenergy 

as stable and the process immediately productive as planned after installation. However, there is still a 

lot of uncertainty inherent to them and their conversion efficiency’s, given they haven’t reached maturity. 

It is of great importance that this uncertainty is considered and incorporated in the design process, so 

the problem becomes more realistic and results are more reliable. 

The learning curve theory is the approach used to represent the technology’s evolution over time due to 

learning and the conversion efficiency’s uncertainty associated to it. It uses the accumulated production 

as measure of experience of the technologies and then calculates its impact on costs. Afterwards, to 

test the effects of this approach, it is incorporated in a Mixed-Integer Linear Programming model that 

supports decisions concerning biorefineries installation sites and process technologies, biomass 

collection sites, biomass and product’s flows and transportation modes, while minimizing costs.  

The model’s application to the Portuguese context suggests that considering the conversion efficiency’s 

evolution uncertainty using learning curves reduces the total production costs of the supply chain, 

despite increasing the total costs. This model represents reality more accurately and makes the biomass 

supply chain more flexible for any future scenario. 

 

Keywords: Biomass Supply Chain, Optimisation, Technology Uncertainty, Learning Curves 
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RESUMO 

 

A bioenergia tem mostrado um tremendo potencial como substituto aos combustíveis fósseis e ajudado 

a atingir os objetivos ambientais da União Europeia. Contudo, para ser sustentável, precisa de ser 

viável economicamente. Então, uma cadeia de abastecimento bem projetada é necessária.  

Na literatura, a maioria assume que as tecnologias usadas para converter biomassa em bioenergia são 

estáveis e imediatamente produtivas após a instalação. No entanto, têm uma incerteza associada, pois 

ainda não atingiram um estado de maturidade. É importante que esta incerteza seja considerada no 

processo de planeamento das cadeias de abastecimento da biomassa para que o problema seja mais 

realístico e os resultados mais fiáveis.  

A teoria das curvas de aprendizagem é usada para representar a evolução das tecnologias no tempo 

devido a ganhos de experiência e para representar a incerteza na eficiência de conversão associada a 

esta evolução. Esta usa a produção acumulada como medida de experiência e depois calcula o seu 

impacto nos custos. Para testar e avaliar os efeitos deste método, é incorporada num modelo de 

otimização estocástico linear que apoia decisões sobre instalação de biorrefinarias, processos 

tecnológicos, locais de recolha de biomassa, transporte, fluxos de biomassa e biocombustíveis, 

enquanto minimiza os custos. 

A aplicação deste modelo ao contexto Português sugere que considerar a incerteza na evolução da 

eficiência de conversão reduz os custos totais de produção desta cadeia, apesar de aumentar os totais. 

Este é um modelo que representa melhor a realidade e torna a cadeia de abastecimento da biomassa 

mais flexível a qualquer cenário. 

 

Palavras-chave: Cadeia de Abastecimento da Biomassa, Otimização, Incerteza da Tecnologia, Curvas 

de Aprendizagem 
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1– INTRODUCTION 

1.1-  Problem Context and Motivation 

Bioenergy – the energy that results from transforming biomass (Paulo et al., 2015) - is considered a 

renewable source of energy, given the release of carbon dioxide during its transformation to energy is 

compensated by its absorption during its lifetime (Bórawski et al., 2019a). Compared to the typical 

energy sources, such as fossil fuels, it helps us to reduce our ecological footprint and become more 

environmentally friendly. Not to mention that opting for this alternative source of energy goes towards 

the EU objectives of increasing the consumption of energy from renewable sources and to become a 

low-carbon, secure and competitive economy.  

Biomass has been proven to be an alternative to fossil fuel’s sources with great environmental potential, 

however, it isn’t yet a competitive one. Even with a lot of environmental benefits, the biomass resources 

are limited, causing debates regarding their usage, and the expansion of bioenergy systems is 

dependent on political and legislative issues, besides the development of the technology and processes 

to make the bioenergy production more efficient. Therefore, improvements in the design of the biomass 

supply chain are important to enhance these weaknesses. 

The design of a supply chain network is a challenging process and this one is no exception. The 

characteristics and properties of biomass and all the processes it has to go through until it becomes 

bioenergy, make this a complex process with a lot of uncertainties involved (Paulo et al., 2015). Thus, 

improving the performance of biomass transformation into bioenergy imposes the inclusion of all these 

uncertainties, as accurately as possible, in the optimization models used in the design of the biomass 

supply chain to optimize it and reduce their impact in the decision process. Literature on this matter has 

been growing through the years, but it can be verified a poor consideration and underrepresentation of 

the uncertainty of the technological processes’ developments, which is an uncertainty of great 

importance. This is supported by the fact that we have become more and more dependent on technology 

to achieve high levels of efficiency and reduce costs, and by the fact that, given it has not reached a 

mature stage and it is still developing, changes and improvements in the process will affect different 

things, with one being its conversion efficiency. Being able to predict what the conversion efficiency will 

be in the future will help in making more realistic decisions regarding the type and dimension of the 

technology used and the design of the biorefinery facilities. This will help to reduce waste, inefficient 

production costs and environmental implications (De Meyer et al., 2014), a development that would 

contribute to help bioenergy have an economically viable production and gain leverage as an alternative 

to fossil fuels by becoming a sustainable one.  

 

1.2-  Problem Statement  

With this context, the problem being tackled in this master thesis can now be stated. Objectively, this 

thesis addresses the lack and inaccurate representation of the biomass technology’s conversion 

efficiency within the biomass supply chain’s optimization model. Since the choice of conversion 
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technology is part of a design decision of the biomass SC, how the conversion efficiency is represented 

has influence in the whole planning of the SC, the biorefinery’s process and other related decisions, not 

to mention on costs.  

As it was said before, the technological processes have not reached maturity and are always developing, 

so the conversion efficiency must be handled as an uncertainty. Given it has not, the planning and 

process decisions have not been based on the most realistic data and the costs not accurately 

estimated. 

 

1.3-  Dissertation’s Objectives and Research Questions  

This context and problem statement motivate the present study. Ultimately, research will be done aiming 

to incorporate a mathematical formulation into a stochastic optimization model used to design the 

biomass SC. This, after finding a mathematical formulation that realistically represents the developments 

of the technologies used in the biomass SC through time and relates them with their conversion 

efficiency evolution and increase.  

Secondary research goals include: 

 To characterize the biomass supply chain to shed lights on some concepts and on its structure 

to build a solid knowledge basis on the matter and understand the whole picture; 

 To review previous research on the field to understand how uncertainty has been addressed, 

with a focus on technology development uncertainty, and how that might be useful to support 

main research goal of this thesis;  

 To identify potential research gaps in literature on representing the technology development 

uncertainty; 

 To contribute to the existing literature by using the knowledge from the evolution of conversion 

technologies from real integrated biorefineries to propose a mathematical formulation capable 

to capture this evolutive process. 

 To produce recommendations for the biomass supply chain’s planning decisions. 

 

In order to accomplish these objectives, we propose to answer to the following research questions: 

 How can we use official information about the installation and operation of biorefineries in 

Europe and European Union to outline the evolution of the conversion efficiency of the installed 

technologies? 

 How can the evolution of this conversion efficiency be quantitatively described?  

 How can this evolution be mathematically incorporated into design and planning models for the 

biorefineries supply chain? 
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1.4- Dissertation’s Methodology 

In order to achieve the objectives stated in the previous section, the proposed methodology of the 

present master thesis is presented in Figure 3: 

 
Figure 1- General Overview of Future Work 

 

The developments of the master thesis include, generically, these 7 steps. At the end of them, a 

stochastic optimization SC model having incorporated an adequate and representative mathematical 

formulation of the technologies evolution through time will be obtained. 

1. Problem Context and Background – This step seeks to introduce the context of sustainability in 

the EU, the biomass SC structure and its uncertainties. It is an overview that starts to introduce 

the possible challenges of the biomass SC design and how they might difficult the process of 

reaching the EU sustainable objectives. 

2. Literature Review – The goal of the literature review is to demonstrate the state-of-art of biomass 

SC planning and design. An overview on the typical solution approaches and problems enable 

a theoretical foundation to present many optimization models available in literature that include 

uncertainty and the methods they use to represent it. It also enables to collect information 

focusing on the conversion efficiency uncertainty of the biorefineries conversion technologies 

and how literature has been modelling it. A brief overview on the learning curve theory and its 

applications is also made. 

3. Problem Definition– After having some context and state of art on the biomass SC modelling, 

the problem that was found with the research done is defined and stated. Also, the case-study 

analysed in this thesis is here briefly presented. 

4. Data Collection and Definition of Assumptions – In order to obtain relevant and substantial data 

to enable the conversion efficiency modelling, extensive research and collection of data is made 

and, when necessary, treated. In situations of shortage of data, assumptions are made. 

5. Model Formulation - Considering the problem definition and the relevant models in the literature, 

the characteristics of the conversion efficiency’s evolution mathematical representation and 

optimization model are selected and developed.  

6. Case-study Presentation – The case study to which the model will be applied is described. The 

necessary data to do it is presented and the assumptions made are duly explained. 

7. Model Implementation, Results and Analysis – The stochastic optimization model having 

included the conversion efficiency’s evolution uncertainty is validated by being applied to the 

case-study in question. Then it is compared with the results of the corresponding deterministic 

optimization model and an uncertainty analysis is made. Afterwards, these results are analysed 

and discussed, and some conclusions are obtained. 
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Model 
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Results and 
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1.5- Dissertation’s Structure 

To achieve these goals, the dissertation project’s structure is fragmented into five key chapters: 

 Chapter 1 – Introduction: This is the present chapter, which introduces and motivates the 

focus of this study, highlights the main objectives and outlines the project structure. 

 Chapter 2 – Background on Biomass Supply Chain: Presents the European Union role on 

becoming a sustainable economy and provides an overview on the biomass supply chain. In 

this last, all its stages are specified, the planning decisions by level of decision-making are 

reviewed, and its related uncertainties are detailed. 

 Chapter 3 – State of Art: The third chapter seeks to review the existing literature on approaches 

to incorporate uncertainty in the optimization models and, more specifically, the conversion 

efficiency’s uncertainty of biomass conversion technologies and how it has been modelled. At 

last, the learning curve theory is reviewed, focusing on how it has been applied to technologies. 

 Chapter 4 – Problem Definition and Methodological Approach: First, resumes the main 

findings of research so far, then states and defines the problem in question. After, explains the 

methodological approach of this study and then briefly describes the case-study addressed. 

 Chapter 5 – Conversion Efficiency & Learning Curves-Data Collection and Analysis: The 

fifth chapter presents the process of research and all the main references used to obtain data 

for the construction of the conversion efficiency’s evolution mathematical representation and 

learning curve model. Then details all the limitations and assumptions made and finally, the 

resultant data that will incorporate the present thesis database is treated and presented.  

 Chapter 6 – Model Formulation: This chapter presents the learning curve and the stochastic 

optimization model with the conversion efficiency’s uncertainty mathematically incorporated. 

The model is be adapted from the one by Paulo et al. 2020 and its characteristics are described. 

 Chapter 7 – Case-Study: IN this chapter Portugal is presented in the context of biofuels and 

the data inputs of the optimization model are described 

 Chapter 8 – Model Implementation, Results and Analysis: The implementation and 

computational experiments performed with the proposed model and solution approach are 

described. Also, the main conclusions and limitations of the study will be stated and 

recommendations will be presented. 

 Chapter 9 – Conclusion & Future Developments: This chapter will expose the most relevant 

features and conclusions of this master’s dissertation and mention future stages of development 

and opportunities for future research. 
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2– BACKGROUND ON BIOMASS SUPPLY CHAIN 

With the development of technology and increasing worldwide industrialization, the need to use energy 

has been increasing over the years. Adding the clear evidence of climate change, the usage of fossil 

fuels stopped being a viable option and the goal has been investing in sustainable energy sources. 

Measures to fight usage of non-renewable sources by the EU are presented in this section, as well as 

the reasons why biomass is a valid alternative. Afterwards, the biomass supply chain is explained in 

detail and the decisions that need to be made in each echelon are described. Finally, the uncertainties 

inherent to all stages of the supply chain are presented and related with the decision levels. 

 

2.1– EU role in a bio economy 

The concern of being an economy that consumes secure, safe, competitive and, most importantly, 

sustainable energy has been continuously present in the European Union. Even though with a slow 

process, the EU has been trying to transition from a fossil-input-based economy to a bio-based economy 

(Vandermeulen et al., 2012b). 

The first European Energy Directives on the liberalisation of the energy markets were launched in 1996. 

Only until the late 2000s other pieces of energy market legislation were adopted, but with its focus 

gradually turning from energy market liberalization into energy market integration (European Parliament, 

2017a). These include the three European Commission’s energy packages created in order to have 

compatible market arrangements in (almost) all EU countries (Glachant and Ruester, 2014) and going 

towards the objective of establishing an internal energy market between Member States. The first and 

second energy packages, adopted in 1996 and 2003 respectively, had directives on the internal market 

for electricity and gas that have a primarily focus on liberalization and market structure. The third, and 

most recent package, adopted in 2009, had the goal to open up the gas and electricity markets in the 

EU, increase investments in infrastructure and cross-border trade. All this with the objective of achieving 

the ‘Europe 2020 Strategy’ goals (20% share of energy consumption from renewable sources and 10% 

minimum target for share of biofuels in transport sector by all Member States) with an energy supply 

that was secure, competitive and sustainable (European Parliament, 2017a). To support a single energy 

market in Europe, this package developed European-wide Network Codes, that are rules and obligations 

in respect to access and usage of the European networks. In addition, it created the European Network 

for Transmission Systems Operators as well, to make all transmission system operators to cooperate, 

develop rules for network operation, and prepare 10-year network development plans. Also, the Agency 

for Cooperation of Energy Regulators was established to have a central role in the development of EU-

wide network and market rules. It was responsible for enhancing the coordination between National 

Energy Regulatory Authorities and cross-border trade (Glachant and Ruester, 2014). Besides focusing 

on liberalisation and market structure (the main focuses of the first and second energy packages), the 

third also has the focus on market access and diversified sources of energy, effective retail markets 

(unbundling) and wholesale market integration. In addition to these regulations on the internal energy 
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market, there are also EU regulations regarding energy such as infrastructure investment, energy 

efficiency, emission trading, market and price transparency and renewable energy (European 

Parliament, 2017a). 

On top of the third energy package, on 25th February 2015, the Energy Union Framework Strategy to 

transition to a low-carbon, secure and competitive economy was published. It is composed by five 

relating pillars that reinforce one another: the first is supply security, the second a fully-integrated internal 

energy market, the third energy efficiency, the fourth is climate action and reduction of greenhouse 

gases and the fifth is research and innovation in low carbon technologies (European Parliament, 2017a). 

Moreover, in 2016, the Clean Energy Package, known as ‘Winter Package’, presented a set of legislative 

measures that would define the European energy and climate policies for the following years (Ringel 

and Knodt, 2018). They were constructed aiming to lead the energy transition by focusing on energy 

efficiency, emissions mitigation, providing fair deals for consumers and have global leadership on 

renewable energies, the targets of the EU’s 2030 climate and energy framework (Fischer, 2014). The 

package uses measures of the third energy package and proposes new ones. By the time the second 

report of The State of Energy Union (a series of Commission reports and initiatives) was published in 

2017, the conclusions were that the EU had been making good progresses relatively to the Energy 

Union objectives. By 2015 the greenhouse emissions were 22% below the 1990 level and 16% of the 

total energy consumed by the EU was renewable (European Parliament, 2017a). For instance, even 

though the sources of the primary energy used in the EU energy market for electricity generation are 

still mostly conventional (fossil and nuclear fuels, coal and oil), their share of renewables has been 

increasing (wind, solar and hydro energy, biomass and geothermal power). The first game changers 

were some large companies that have large energy generating units and that split their energy sources 

into fossil and renewable instead of being exclusively fossil-based companies. This was possible due to 

the changes in energy and climate policies. 

In 2017, the countries with highest shares of electricity generated from renewable energy sources in 

gross electricity consumption were Austria (72.2%), Sweden (65.9%) and Denmark (60.4%) whereas 

Malta (6.6%), Hungary (7.5%) and Luxemburg (8.1%) were the one with the lowest shares. The highest 

shares of renewable energy sources in heating and cooling were in Sweden (69.1%), Finland (54.8%), 

and Latvia (54.6%). Netherlands (5.9%), Ireland (6.9%), and Luxemburg (8.1%) had the lowest shares. 

Finally, in transport, Sweden (38.6%), Finland (18.8%) and Austria (9.7%) had the highest shares of 

renewable energy sources used, meanwhile Estonia (0.4%), Croatia (1.2%) and Greece (1.8%) had the 

lowest shares (Bórawski et al., 2019b). 

 

2.2– Biomass Supply Chain  

2.2.1- Biomass 

Biomass is the biodegradable fraction of agricultural material such as products, waste and residues of 

biological origin, forestry and related industries (fisheries and aquaculture) and the biodegradable 

fraction of industrial and municipal waste (European Parliament, 2009).  
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One can classify biomass in three categories for each of the main two characteristics – origin and quality. 

Regarding origin, we have natural (from natural ecosystems), residual (from all human activities), and 

energy crops (plants created to produce energy). Regarding quality, there is primary/high quality (from 

direct conversion of solar into chemical energy by photosynthesis), secondary (farming and forestry 

residues after primary biomass manipulation) and tertiary biomass (bio-degradable waste from human, 

animal, industrial and municipal origins) (Gold and Seuring, 2011). 

Being a renewable resource, biomass offers opportunities to the ecological footprint of the fossil-input-

based economy by being secure and environmentally friendly, besides ensuring energy diversity 

(Vandermeulen et al., 2012a). Also, it is very likely to be the only viable alternative to fossil sources in 

the production of transportation fuels and chemicals. This is supported by the fact that it is the only 

source with rare richness in carbon given the plant biomass used to produce biofuels and bioproducts 

uses carbon dioxide while growing. This compensates its release into the atmosphere in the conversion 

process (Naik et al., 2010). 

 

2.2.2- Biofuels 

Biofuels are biodegradable, often locally available, accessible, a reliable fuel obtained from renewable 

sources (Vasudevan et al., 2005). Also, besides not having negative impacts on engines (Smuga-Kogut, 

2015), blending them with the conventional fuels by up to 7% does not require engine modifications 

(Marelli et al., 2015). 

Biofuels are firstly categorized into primary and secondary biofuels. The first ones are used in an 

unprocessed form directly as fuels, such as fuelwood, pellets, wood chips, etc., obtained from 

agricultural or other recycled sources. The second ones are modified primary fuels resulting from 

processed biomass to power vehicles or for industrial applications (Nigam and Singh, 2011), that can 

be in the form of gas (biogas, syngas, hydrogen, biomethane), solid (lignin, charcoal) or liquid 

(bioethanol, biodiesel, FT-fuels, bio-oil) (Cherubini, 2010). Furthermore, as it is defined in the literature, 

biofuels from secondary sources are divided into the following generations, depending on their raw 

material and technological processes used in their conversion process:  

1. First generation biofuels need a simple process (conventional technologies) to obtain the final 

fuel product (Nigam and Singh, 2011), even if with low yield (Dutta et al., 2014). They are 

produced from raw materials, in competition with food and feed industries, such as seeds, grains 

or sugars, vegetable oil or animal fats (Nigam and Singh, 2011). Also, they are characterized 

for being able to be blended with petroleum-based fuels, combusted in existing combustion 

engines and distributed by existing infrastructures or to be used in existing alternative vehicle 

technology or natural gas vehicles (Naik et al., 2010). 

The existing conflict with food supply for the use of biomass and agricultural land made some 

concerns arise: the increase of food and biofuel production cost and consequent increase of 

their prices. This, consequently, aggravates the food crises (Leong et al., 2018) and the lands 

destined to produce food are used to produce biofuel as well, making their availability to be 

dependent on soil fertility and availability (Cherubini, 2010). Also, concerns on environmental 
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issues and carbon balances, due to the cost inefficient emission-abatement technology used in 

the production of biodiesel, limit the production of first generation biofuels (Naik et al., 2010). 

2. All these concerns were the reason why the second-generation biofuels were developed. Their 

process of conversion can be through a biological or a thermochemical process. The first one 

is used only to produce a few biofuels, like butanol and bioethanol, whereas the other ones, 

such as methanol, biodiesel, refined Fischer-Tropsch liquids and dimethyl ether are produced 

thermochemically (Nigam and Singh, 2011). 

The feedstock of these biofuels is mainly lignocellulosic materials. These can be residues from 

agriculture, forestry or industry (Leong et al., 2018), but also dedicated feedstock, such as 

grasses or trees planted specifically for energy purposes. Thus, allowing a higher production 

per unit land area and land use efficiency than the first generation ones (Nigam and Singh, 

2011). This, besides the fact that these fuels have lower feedstock prices, gives them advantage 

over the first-generation ones. However, even though some of the biomass plants oils have 

similar properties to edible oils thus making unnecessary major modifications on equipment and 

process flow, they might need an addition pre-treatment due to higher concentration of free fatty 

acid, which is costly (Dutta et al., 2014). Also, being able to grow these plants on lower quality 

soils does not stop the need to have regular irrigation, heavy fertilization and good management 

practices to obtain high conversion rates (Lam and Lee, 2012). Moreover, they will still need 

land to be planted on, thus competition with food production still exists, even if lower. All of these 

were reasons for further research on a more sustainable alternative. 

3. Third generation biofuels feedstock focuses on using algae to produce biofuel. It is 

advantageous due to having no impact on food supply, to being a feedstock easy to cultivate 

and by being able to convert almost all the energy from the feedstock into different varieties 

useful products (Adeniyi et al., 2018). However, they have limitations regarding ecological 

footprint, economic performance, dependency on climate conditions (need of sunlight to 

develop), and geographical location (latitude). Leong et al. 2018 say that these biofuels annual 

productivity is really high, given microalgae would just need from 1 to 3% of total cropping area 

to meet 50% demand of U.S. transport fuels whereas (i.e. oil palm would need 24% of total 

cropping area to satisfy the same transport fuel demand). However, Dutta et al. 2014 believe 

they have low lipid content that makes the requirement of energy consumption to increase, thus 

being insufficient to replace fossil fuels. The fact that there are different opinions in the scientific 

community makes it difficult to conclude the reasons why fourth generation biofuels were 

created. 

4. The fourth generation of biofuels uses genetically modified algae as a feedstock to the biofuel 

production, such as microalgae, macroalgae and cyanobacteria (Abdullah et al., 2019) and has 

great potential as a source to a sustainable and clean energy (Lu et al., 2011). The believed 

difference from the third generation is that the genetic modification engineering is a promising 

alternative to increase the lipid content and biomass yield of algae (Singh and Gu, 2010), thus 



 

9 

capturing more carbon dioxide and increasing the production rate. The drawback is that they 

require a high investment (Dutta et al., 2014). 

Through the use of optimization and improvements in conversion technologies, second and third 

generation biofuels production can be more attractive, but, overall, the perfect biofuel might be a 

combination of some or all generations (Dutta et al., 2014). 

By investing in the production of biofuels, the greenhouse gas emissions and pollutants from electricity 

generation decrease, because even though there is a carbon dioxide release when the biofuel is burnt, 

the same amount is absorbed while the plants are growing (Bórawski et al., 2019a). The amount of fossil 

fuels used decreases as well, given the usage of renewable energies reduces petroleum’s importance, 

and also, they are responsible for energy security and have essential meaning in innovations (Bórawski 

et al., 2019a). Basically, conventional fuel, which affects human life, would be ideally replaced for 

biofuels, which contribute to climate restoration (Schmidt Rivera et al., 2018) and consequent 

improvement of living conditions. Not to mention their combustible potential compared with the fossil 

fuels besides its renewability for incessant applications (Leong et al., 2018). This replacement also helps 

in the improvement of the organic fuel economy and increases the sustainable development, as well as 

the level of employment in the green economy (Panwar et al., 2011). 

 

2.2.3- Supply Chain’s Structure  

Typically, a supply chain network is formed with the supplier, manufacturer, distribution centres, and 

customers. Its management aims to integrate all these business functions so that the products are 

distributed correctly at the right place and time, according with the expected quality, quantity and service 

level and in a way that the total costs are minimized  (Hong et al., 2016). Biomass supply chain differs 

from traditional supply chains, since it integrates the process of harvesting and collection, pre-treatment, 

integrated biorefinery, product distribution and logistics (Hong et al., 2016). A more visual structure of 

the biomass SC can be seen below in Figure 2. Each echelon is hereafter further explained. 

 

 

Figure 2 - Biomass Supply Chain 

 

Biomass Supply 

This stage focuses in a renewable, consistent and regular supply of feedstock from agriculture 

(dedicated crops and residues), forestry, industries (residues) and households (municipal waste) and 
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aquaculture (algae and seaweeds) (Cherubini, 2010). Therefore, its main activities are the harvesting 

scheduling, allocation of feedstock and decentralisation of pre-treatment activities. 

There are some concerns in this stage relatively to the availability and supply of raw biomass. Climate 

change and weather conditions can result in an inconsistent and even shortage of biomass supply, and 

composition of the raw material, due to the fluctuation of chemical and physical properties of biomass 

(Cundiff et al., 1997). Thus, supply chain efficiency, careful inventory planning and proper harvesting 

scheduling are extremely important. They ensure the quantity and quality of the raw biomass are within 

the specification limit when transported to the biorefineries (Hong et al., 2016). 

Pre-Processing/Storage 

This echelon focuses on converting dense biomass into less dense or more useful segments, known as 

platforms or precursors (Fernando et al., 2006), to reduce handling, storage and transportation costs 

through different types of pre-treatment (Hong et al., 2016). Also, reducing moisture content enhances 

the efficiency degree of combustion and gasification processes (Gold and Seuring, 2011).  

Having the right raw material composition is also a concern to be dealt in this echelon of the biomass 

SC. Thus, by having the pre-treatment activity closer to the biomass collection site than the biorefinery, 

the desired raw material specification, before going to the processing facility, might be easier to maintain 

(Hong et al., 2016). Moreover, the right conversion technology must be chosen, since it influences 

decisions such as type of pre-treatment needed, choice of raw biomass material and costs (Hong et al., 

2016). 

Integrated Biorefinery 

This echelon of the supply chain encloses the facility where the biomass is converted into valuable 

products (food, feed, materials and chemicals) and energy in an integrated manner (Parisi, 2020). This 

is done through several technological processes that can be divided into four groups: thermochemical, 

biochemical, mechanical/physical and chemical (Cherubini, 2010).  

Some important decisions to be made in this stage are the determination of facility location, the sizing 

and capacity, the conversion technologies and its configuration. The fact that there are conversion 

technologies both in the pre-treatment and in the biorefinery, gives them a lot of importance when 

structuring the biomass supply chain. When selecting them to the biorefineries, it is also necessary to 

have in mind the type of feedstock of the pre-treated biomass, the product requirement, the capital and 

operational costs portion they will have in the total costs of the supply chain (Hong et al., 2016).  

Products/Market 

The products of a biorefinery can be divided into two main groups: material and chemical products 

(biomaterials), which are not used for energy generation, and energy products (bioenergy), used for 

their energy content to provide electricity, heat or transportation service (Cherubini, 2010). 

Regarding biomaterials, the biochemicals can be used in many industry applications such as nutrition, 

food and beverages, pharmaceuticals, fertilizers, biodegradable plastics, fibres, adhesives, etc. Some 

examples are chemicals such as fine chemicals, building blocks and bulk chemicals, organic acids like 
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succinic, lactic, itaconic and other sugar derivatives, polymers and resins and fertilizers (Cherubini, 

2010). Also, they have a lot of attention in the industry, especially the high value products for 

pharmaceutical and cosmetics industry (Hong et al., 2016). The material products are biomaterials such 

as wood pallets, paper rand cellulose and food and animal feed (Cherubini, 2010), also known as 

primary biofuels by Nigam and Singh 2011. 

Regarding bioenergy, as a renewable source of energy, holds a lot of potential to compete with fossil 

fuels (Hong et al., 2016) and it can be in the form of electricity and heat or secondary biofuels, such as 

biodiesel (produced from vegetable oils), bioethanol (derived from wastes and renewable sources of 

feedstock), biogas (produced from various types of agriculture substrates) (Bórawski et al., 2019a), 

among others mentioned above in section 2.2.2. 

Relatively to product distribution, bioenergy as heat and electricity is transferred to the end user via 

electricity grid and as solid, liquid, or gaseous biofuels and biochemicals is distributed through the 

existing transportations (land, water, air).  

Important decisions to be made at this stage are the products that are going to be produced and their 

quantities according to the demand of the customers. 

Logistics 

This part of the supply chain integrates all components by arranging the transportation and storage 

among and in each component of the supply chain. In the transportation perspective, the decisions 

made are regarding transportation schedule, routes, network, and mode, considering the type, 

characteristics, and amount of biomass materials or bioproducts. As for an inventory perspective, 

planning includes choosing a proper storage system (location and capacity) having in mind holding costs 

and storage risk of each type of biomass and bioproducts (Hong et al., 2016). 

 

2.2.4 – Supply Chain’s Decisions 

Table 1 sums up the decision variables of each decision level – strategic, tactical and operational -  in 

the biomass supply chain, that have to be made to ensure the delivery of the finished products through 

the supply chain effectively and efficiently (Awudu and Zhang, 2012). The strategic level consists in 

long-term decisions, in line with the organizations overall objectives (Sharma et al., 2013), that should 

be made at the beginning of planning the production and usually are investment intensive. In this case, 

they are relative to the design of the biomass supply chain network. It can be in terms of the sourcing 

and procurement of biomass, its allocation to the production facilities (De Meyer et al., 2014), type of 

feedstock, dimension and type of the technology used in the conversion process, capacity and location 

of all facilities (supply, collection, pre-treatment, processing and distribution sites) and final product type 

and quantity (Ghaderi et al., 2016). The tactical level is based on medium-term decisions (6 months-1 

year) that go in line with the objectives of the strategic level. They concentrate on the fleet management 

(transportation mode, routing, scheduling, and shipment size), inventory planning decisions as location, 

quantity, and quality, and production decisions, such as scheduling (Awudu and Zhang, 2012) and 

selection of collection and pre-treatment methods (De Meyer et al., 2014). Lastly, the operational level 



 

12 

focuses on short-term decisions (weekly/daily/hourly) that ensure a continuous operation of the supply 

chain processes in a timely and cost effective manner (Awudu and Zhang, 2012). Those include detailed 

inventory, production, and transportation management decisions (Sharma et al., 2013). 

 

Table 1 -  Main decision variables considered at each decision-making level in supply chain management, adapted 
from (Sharma et al., 2013), (Awudu and Zhang, 2012), (De Meyer et al., 2014), (Ghaderi et al., 2016). 

Decision Level Strategic Tactical Operational 

Decision Variables Facility: 

 -Location 

 -Capacity/size 

 -Technology/Type 

Inventory planning: 

 -Location 

 -Quantity 

 -Quality 

 -Safety stocks 

 -How much to harvest 

 -When to harvest 

Inventory planning: 

 -Daily inventory control 

 Biomass: 

 -Type 

 -Sourcing 

 -Allocation between 

facilities 

Production Planning: 

 -Production Scheduling 

 -Collection and pre-

treatment methods 

Production Planning: 

 -Detailed production 

scheduling 

 Final product: 

 -Product types 

 -Products quantity 

Fleet management: 

 -Transport mode 

 -Shipment size 

 -Routing 

 -Scheduling 

Fleet management: 

 -Vehicle planning 

 -Scheduling 

 

2.2.5 Uncertainties  

Given the nature of the supply chain in question, the uncertainties are inherent to all stages of the supply 

chain and can be grouped in raw material supply, transportation and logistics, production and operation, 

demand and price, among other uncertainties (Awudu and Zhang, 2012). 

 The raw material supply uncertainty is caused mostly by the raw material yield, type and 

quality, transportation lead time and harvesting delays at biomass source (Awudu and Zhang, 

2012). Also, the raw material seasonal supply and widely dispersed geographic distribution 

cause a difficult collection, storage and transportation (Paulo et al., 2015). Their properties, such 

as moisture content and low energetic density, constraint storage and transportation as well and 

the selection of the processing technology (Paulo et al., 2015). Plus, with the unpredictable 

weather and natural or human disasters as well as variable acquisition cost (Espinoza Pérez et 

al., 2017) affecting the raw material supply, these are all reasons causing its uncertainty. 

 The uncertainty in transportation and logistics is basically caused by everything that causes 

cost and time inefficiencies, such as delays, inventory levels, transportation and storage costs, 

delivery constrains and demand variability (Awudu and Zhang, 2012). 

 The uncertainty in production and operation difficults the production of the planned quantity 

and it is caused by problems in the raw materials supply, production yields, machine breakdown, 
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lead time constraints, inventory decisions (Awudu and Zhang, 2012), non-mature conversion 

technologies, their availability and the conversion operation cost (Espinoza Pérez et al., 2017). 

 Not knowing when the quantity or the timing of the demand will vary causes demand 

uncertainties. Price uncertainty appears with possible price changes. Both are related with raw 

material cost, tax subsidies and governmental polices (Awudu and Zhang, 2012). 

 Other type of uncertainties are related with sustainability, taxes or governmental and regulatory 

policies (Awudu and Zhang, 2012). 

With the uncertainties being unknown, the values of important parameters considered in the decision 

making of the supply chain management will influence a range of the decisions as stated in Table 1. 

Starting with the raw material supply uncertainty, its geographic distribution will affect strategic decisions 

in terms of choosing the facility locations. Its characteristics and quality will influence the type of 

conversion technology used in the pre-treatment facilities and biorefineries, as well as guide the sourcing 

activity. Therefore, the best suppliers will be chosen for the specific type of raw material, and the best 

type of products to offer to costumers. Regarding tactical decisions, the uncertain raw material 

characteristics, and seasonal supply will affect transportation modes, shipment sizes, and general 

scheduling of the fleet, as well as inventory decisions and safety stocks, production and collection and 

treatment methods. Since these are affected, operational decisions regarding short-term decisions in 

fleet management, inventory and production planning will also be affected. Uncertainty in the 

transportation and logistics will affect the tactical and operational decisions regarding the transportation 

mode, scheduling, and shipment sizes in fleet management. Also, inventory quantity and location in the 

supply chain to reduce the effects of the uncertainty. With the production and operation being uncertain, 

the production scheduling decisions in the tactical and operational level will be affected, as well as the 

levels of inventory in order to compensate failures of planned production quantities. Fleet management 

in the tactical and operational levels might also be affected given the varying quantities of final product 

produced. Lastly, uncertainties in the customer demand and product price will influence the type and 

amount of products to offer and their feedstock type in the strategic level. How much and when to collect 

it as well, inventory levels and safety stocks to respond to variations in the demand, the production 

scheduling and fleet management decisions, in the tactical level. The daily inventory control and fleet 

scheduling will have effects in the operational level. These effects of the different types of uncertainties 

hereabove listed in the decision levels are summarized in table 2. 
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Table 2- Effects of the uncertainties of the biomass supply chain, by decision level. 

Decision Level/ 

Uncertainties 

Strategic Tactical Operational 

Raw Materials Supply -Facility location 

-Types of Technology used 

in facilities 

-Sourcing 

-Product types 

-Inventory quantity 

-Safety stocks 

-When to harvest 

-How much to harvest 

-Collection and pre-treatment 

methods 

-Transportation mode 

-Shipment size 

-Fleet scheduling 

-Daily inventory control 

-Daily production 

scheduling 

-Daily fleet scheduling 

Transportation and 

Logistics 

- -Inventory positioning 

-Safety stocks 

-Transportation mode 

-Shipment size 

-Routing 

-Fleet scheduling 

-Daily inventory control 

-Daily fleet scheduling 

-Vehicle planning 

Production and Operation 

 

- -Production scheduling 

-Levels of inventory 

-Safety stocks 

-Fleet scheduling 

-Daily production 

scheduling 

-Daily inventory control 

-Fleet scheduling 

Demand and Price -Biomass type 

-Product types 

-Product quantity 

-Inventory level 

-Safety stock 

-How much to harvest 

-When to harvest 

-Production scheduling 

-Shipment size 

-Routing 

-Fleet scheduling 

-Daily inventory control 

-Daily fleet scheduling 

 

2.3– Chapter conclusions 

This chapter demonstrated that the existing uncertainties in the supply chain design have different 

effects in the decision process. Also, the fact that they exist through the echelons of the supply chain 

increases their impact across the downstream and upstream levels, being necessary to address them 

in order to optimize the supply chain. Since bioenergy isn’t yet competitive comparing with fossil fuels 

(Paulo et al., 2015), aiming for it to become a sustainable competitive alternative to their production, 

different methods can be used to incorporate the uncertainties in the design of the supply chain of 

biofuels and help making more realistic decisions. Those will be discussed in the following chapter.  
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3- STATE OF ART 

The present chapter presents a review of the existing literature regarding biomass supply chain 

optimization under uncertainty and uncertainty representation methods. This information is of high 

importance since it enables to understand the status quo of research developments and findings through 

the years, as well as to acquire the knowledge necessary for proposing new research developments.  

First, is presented a literature review on how the biomass’s supply chain has been optimized and how 

the uncertainties have been incorporated in the design and optimization of the supply chain. Afterwards, 

a focus on the technology uncertainty is made by explaining how literature has been modelling the 

conversion factor of the conversion technologies used in biorefineries, followed by some conclusions for 

further research. Furthermore, section is dedicated to learning curves, their related concepts, and 

proven adequacy to model technological developments. Last, but not the least, the conclusions of the 

chapter will be stated. 

 

3.1- Biomass Supply Chain Optimization under Uncertainty 

The main obstacles of increasing the biomass usage in energy supply are the costs of the supply chain 

and the used conversion technologies (Rentizelas et al., 2009). The uncertainties inherent to each 

biomass SC’s echelons (Awudu and Zhang, 2012) are an obstacle as well, given they affect the decision 

making process (Kazemzadeh and Hu, 2013). This means that deterministic assumptions about 

parameters used in the optimization models would lead to an infeasible supply chain design or a 

suboptimal solution (Bairamzadeh et al., 2018). Accordingly, uncertainty has been considered in the 

design phase of the biomass SC. This enables to obtain optimal solutions through models that are closer 

to reality and to improve its economic, environmental and social performance and efficiency (Ghaderi et 

al., 2016).  

Table 3, inspired by the study made by Ghaderi et al. 2016 and complemented with further research on 

scientific publications’ databases, summarizes the biomass supply chain related studies in which 

uncertainty is considered. All the research papers and documents found were analysed under several 

aspects presented in the following sections, which are: Solution Approach, Objectives, Decision Level, 

Uncertainties, and Uncertainty Representation Method. 

 

3.1.1- Solution Approach 

In this field of research, the optimization approach is the solution approach that is most used. Also 

referred as a mathematical programming model, it is used to represent real situations and obtain the 

optimal outcome of the decisions variables that will optimize an objective function whilst respecting some 

restrictions imposed by constraints (De Meyer et al., 2014). The types of mathematical programming 

present in research papers are linear programming (LP), used by Cundiff et al. 1997, Awudu and Zhang 

2013, Bhavna Sharma et al. 2013, Azadeh et al. 2014 and Rezaei et al. 2019, integer programming (IP), 

mixed integer linear programming (MILP), seen in the majority of the studies presented in the Table 3, 
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mixed integer non-linear programming (MINLP), mixed integer quadratic programming (MIQP), used by 

Arabi et al. 2019, non-linear programming (NLP) and mixed integer linear fractional programming 

(MILFP), proposed by Tong et al. 2014c.  

 

3.1.2- Objective(s) 

Some studies focus on one objective (one objective function), others in more than one, thus being multi-

objective mathematical programming models (more than one objective function) (Espinoza Pérez et al., 

2017). The objectives vary between economic, social, environmental, political, or technological. The 

majority of the articles focus on economic objectives, such as to minimize total costs of the supply chain, 

maximize profit, minimize the risk of investment, maximize net present value, or maximize annual 

income, and the minimization of maximum relative regret, as done by Ghelichi et al. 2018. The 

environmental focus usually is the minimization of environmental impact of Green House Gas (GHG), 

as by (Giarola et al., 2013), (Bairamzadeh et al., 2016), (Santibañez-Aguilar et al., 2016), (Babazadeh 

et al., 2017), (Osmani and Zhang, 2017), (Gao and You, 2017) and (Ghelichi et al., 2018). It can also 

be the maximization of carbon absorption, as in the case of Arabi et al. 2019. Focusing on social 

objectives, Osmani and Zhang 2017 and Bairamzadeh et al. 2016 try to maximize the number of jobs 

opportunities and Yılmaz Balaman and Selim 2016 the total service level.  

 

3.1.3- Decision Level 

The decisions suggested by the solution approach can be in the strategic, tactical, or operational levels 

of planning, as already presented in section 2.2.4. Based on research, most studies focus on strategic 

or/and tactical decisions, but especially on strategic decisions regarding the number of facilities, their 

location and capacity. Sourcing, biomass allocation and technology used are also being optimized in 

some studies, but not as frequently. 

 

3.1.4- Considered Uncertainties  

Bearing in mind the uncertainties exposed in section 2.2.5, Figure 3 shows the percentage of papers of 

Table 3 in which each of them is considered. 

 

  

Figure 3- Considered uncertainties in literature, in percentage. 
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The most common uncertainty in the optimization models when designing the supply chain is the 

uncertainty in the feedstock supply, as by Gebreslassie et al., 2012, which can be regarded to biomass 

and raw material availability (Kazemzadeh and Hu, 2013), geographical distribution (Tong et al., 2014a), 

feedstock yield (Sharma et al., 2019), characteristics (moisture content) or weather conditions (Cundiff 

et al., 1997). This uncertainty appears in 76% of the articles listed in Table 3 and represents a continuous 

concern, since it is present in articles from 1997 until the present time.  

Demand uncertainty is the second uncertainty most found, being considered in 61% of the articles, 

followed by a 39% in price uncertainty, which can be relative to feedstock (Giarola et al., 2012), product’s 

prices (Kim et al., 2011) or both (Mas et al., 2010).  

The inclusion of variations in costs (32%) incurred in terms of transportation, operation or production is 

done by Kazemzadeh and Hu 2013, Mohseni et al. 2016, Yılmaz Balaman and Selim 2016, Babazadeh 

et al. 2017, Babazadeh 2018 and Rezaei et al. 2019 and in terms of carbon costs by Giarola et al. 2012 

and Giarola et al. 2013. The costs variability considered by Walther et al. 2012, Tong et al. 2014b, Tong 

et al. 2014a and Li and Hu, 2014 were regarding technology investment costs (main equipment, auxiliary 

and processing costs), an uncertainty really tied with the technology uncertainty due to its advancement 

and progress and included in the models of 8 articles of Table 3 (21%). Besides the capital costs, Tong 

et al. 2014a and Li and Hu 2014 consider the conversion rate as uncertain, defending that it is due to 

non-mature technologies. Sharing the same opinion, Paulo et al. 2017 and Marufuzzaman et al. 2014 

also have it in consideration, as well as Gao and You 2017 and Bairamzadeh et al. 2018, who defend it 

is an uncertainty also caused by the fact that different technologies and different feedstocks have 

different conversion efficiencies, thus different production quantities.  

In lower percentages (8%), we have the inclusion of the production yield uncertainty by Azadeh and 

Vafa Arani 2016, Awudu and Zhang 2013 and Kim et al. 2011, and environmental parameters. This last 

by Babazadeh et al. 2017 and Rezaei et al. 2019, such as the carbon dioxide emissions of the processes 

through the supply chain, and by Bairamzadeh et al. 2016, with unit environmental impact coefficient in 

the environmental objective function. Finally, other uncertainties (5%) were considered by (Liu et al., 

2017) and (Bhavna Sharma et al., 2013). The first paper considers facility disruptions such as failures 

(e.g. natural disasters), man-made failures, or transportation delay as uncertain and the second the 

number of harvesting workdays due to weather conditions, since they also affect the production. 

  

3.1.5- Uncertainty representation method 

The most common methods used to represent the uncertainties in the design of the supply chain are 

stochastic programming, robust optimization, and fuzzy programming, which are briefly presented 

hereafter. 

 

Stochastic programming  

This method includes multi-stage approach, being the most used the two-stage. The first-stage variables 

represent  independent decisions, made before the realization of the uncertain parameters (Tong et al., 

2014b) and included at the strategic level (McLean and Li, 2013) (“here and now” decisions). However, 
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the second-stage variables represent dependent ones, made only after the realization of the uncertain 

parameters (Tong et al., 2014b) and included in the tactical or operational level (McLean and Li, 2013) 

(“wait and see” decisions). Thus, realization is usually known only after making decisions about the 

supply chain network. Liu et al. 2017 proposed a three-stage stochastic programming method for the 

design of the biomass supply chain and Xie and Huang 2018 a multi-stage one for the biofuel supply 

chain. The remaining studies adopted a two-stage stochastic programming method. 

Another approach is the scenario-based stochastic programming, used by Mas et al. 2010, Bhavna 

Sharma et al. 2013, Azadeh and Vafa Arani 2016 and Santibañez-Aguilar et al. 2016, which main idea 

is to tackle only a finite number of uncertain realizations, where each realization is a scenario and has 

its own probability assigned (Tong et al., 2014b).  

Since the two-stage approach is an intractable infinite-dimensional optimization problem, is usually used 

along with the scenario-based approach to transform the problem into a tractable one over a finite-

dimensional space while still achieving reasonable results (McLean and Li, 2013). The objective function 

in this cases has two parts: one regarding the impact of first-stage variables and other regarding the 

impact of each second-stage variables in each scenario, considering its probability (Tong et al., 2014b). 

This strategy is implemented by Cundiff et al. 1997, Kim et al. 2011, Dal-Mas et al. 2011, Chen and Fan 

2012, Gebreslassie et al. 2012, Giarola et al. 2012, Walther et al. 2012, Kostin et al. 2012, Giarola et al. 

2013, Awudu and Zhang 2013, Kazemzadeh and Hu 2013, Osmani and Zhang 2013, Tong et al. 2014b, 

Marufuzzaman et al. 2014, Azadeh et al. 2014, Li and Hu 2014, Gonela et al. 2015, Paulo et al. 2017, 

Osmani and Zhang 2017, Gao and You 2017, Ghelichi et al. 2018, Arabi et al. 2019 and Sharma et al. 

2019.  

Moreover, since having a large number of possible realizations of each uncertain factor in the scenario 

formulation increases drastically its size (McLean and Li, 2013), some solution strategies were 

implemented in some studies to reduce the computational complexity of the problem and difficulty in the 

generation of feasible solutions (Paulo et al., 2017). Those are benders decomposition used by Awudu 

and Zhang 2013  and Osmani and Zhang 2017, L-shaped method by Gebreslassie et al. 2012 and Gao 

and You 2017, Lagrangian relaxation by Chen and Fan 2012, a combination of these last two methods 

by (Marufuzzaman et al., 2014), or other different scenario reduction methods in Paulo et al. 2017 firstly 

proposed by Heitsch and Römisch 2003 and Karuppiah et al. 2010. 

 

Robust Optimization 

The idea behind this method is to choose the solution that is able to cope better with the various 

realizations of uncertain parameters (Tong et al., 2014c) within a specified uncertainty set (Babazadeh, 

2018), to guarantee feasibility. Comparing to stochastic programming, where decisions are made 

anticipating that recourse actions take place with the revelation of uncertain parameters over a pre-

specified scenario tree with discrete probabilities for each scenario (Grossmann et al., 2016), robust 

optimization addresses the “worst-case uncertainty realization” (McLean and Li, 2013). This means that, 

even though it doesn’t face the computational complexity of the problem, the results obtained will be 

more conservative (Grossmann et al., 2016) and not necessarily optimal. In order to create a trade-off 
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between conservatism and performance, the approach used by (Bertsimas and Sim 2004) was adopted 

by Tong et al. 2014c and Mohseni et al. 2016 to design a robust supply chain of hydrocarbon biofuel 

and microalgae, respectively, in which a budget parameter is used to control the degree of conservatism 

of the solution, since it represents the maximal number of uncertain parameters that are allowed to reach 

their worst case. This budget parameter is also used by Babazadeh 2018 in the model formulation used 

to design a biomass-to-energy supply chain system. Azadeh et al. 2014 and Azadeh and Vafa Arani 

2016 not only developed a stochastic programming model, but later reformulated it into robust 

programming in order to make it more robust. In both of this studies and in the one made by Rezaei et 

al. 2019, scenario analysis is integrated in the robust optimization model, having design variables being 

decided before stochastic parameter’s realization and control variables after its realization. Bairamzadeh 

et al., 2016 and Babazadeh et al., 2017 developed a possibilistic programming approach to better deal 

with the ambiguity of the considered uncertain parameters, given their little historical data, and 

Bairamzadeh et al., 2018 proposed an hybrid robust optimization model to attain multiple types of 

uncertainty in the design of lignocellulosic biofuel supply chain.  

 

Fuzzy Programming 

When there is unreliable or lack of information about the uncertainties and historical data, it’s difficult to 

obtain the probability distribution for the stochastic programming approach to obtain good results and 

be efficient. The fuzzy programming method provides the alternative of representing the uncertainty 

values using fuzzy logic. This can be quite subjective and dependent on user’s preferences, but reduces 

computational complexity and it’s appropriate when there’s little information about the uncertainties, 

once it can handle the design of the supply chain in an efficient, flexible and realistic way (Yılmaz 

Balaman and Selim, 2015). The most common type of fuzzy programming are flexibility programming, 

that treats the constraints as a fuzzy set and allows violations in them, and possibilistic programming, 

that deals with fuzzy constraints and uncertain coefficients on objective functions. In this last one, 

membership functions for each fuzzy coefficient and constraint are developed in order to be possible to 

transform the fuzzy model into a linear programming model and find the optimal solution (Yılmaz 

Balaman and Selim, 2016). Tong et al. 2014a used this approach to design the advanced hydrocarbon 

biofuel supply chain integrated with existing petroleum refineries. In it, the fuzzy/with uncertainty 

constraints are reformulated to include a possibility, necessity and credibility measure, depending on 

the preference of the decision maker, with an associated confidence level. If he is optimistic, possibility 

measure will be the most appropriate and if he is pessimistic, then necessity will give the measurement 

of the worst case of that event. Credibility, being defined as the average of the possibility and necessity 

of the fuzzy event, is the most appropriate measure when the confidence level is 0.5. Yılmaz Balaman 

and Selim 2015 and Yılmaz Balaman and Selim 2016 also proposed the same approach for the design 

and management of the biomass to energy supply chains.
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Table 3- Review of biomass supply chain network design and planning considering uncertainty. 

Publication Objective Decision Level Solution 

Approach 

Uncertainty Representation Method Considered Uncertainties 

  Strategic Tactical    

(Cundiff et al., 1997) Ec CF SS LP MP, 2S Stochastic programming Feedstock supply 

(Mas et al., 2010) Ec (MO) LF, CF   MILP SB Stochastic Programming Feedstock and product price 

(Kim et al., 2011) Ec LF, NF, 

CF 

SS MILP 2S, SB Stochastic Programming Production yield, product price, demand, 

feedstock supply 

(Dal-Mas et al., 2011) Ec (MO) LF, CF, R MILP SB Stochastic Programming Feedstock and product price 

(Chen and Fan, 2012) Ec LF, CF, 

BA  

PS, R MILP 2S, SB Stochastic Programming + SReduction Feedstock supply, demand 

(Gebreslassie et al., 2012) Ec (MO) LF, NF, 

CF, TT  

PS, R MILP MP, 2S, SB Stochastic Programming + SReduction Feedstock supply, demand 

(Giarola et al., 2012) Ec  CF, TT, 

TB  

 MILP MP, 2S, SB Stochastic Programming Feedstock price, carbon cost 

(Walther et al., 2012) Ec LF, CF, TT   MILP MP, 2S, SB Stochastic Programming Feedstock supply, technology, demand 

(Kostin et al., 2012) Ec CF  PS MILP 2S, SB Stochastic Programming Demand 

(Giarola et al., 2013) Ec, En (MO) NF, CF, 

TT, TB  

SS MILP MP, 2S, SB Stochastic Programming Feedstock price, carbon cost 

 

(Awudu and Zhang, 2013) Ec PQ  HQ LP 2S, SB Stochastic Programming + SReduction Product price and demand 

(Kazemzadeh and Hu, 2013) Ec (MO) LF, CF  SS MILP 2S, SB Stochastic Programming Product price, feedstock supply, costs 

(Osmani and Zhang, 2013) Ec LF, CF, 

BS  

SS, HQ MILP 2S, SB Stochastic Programming Feedstock supply, feedstock and product 

price, demand 

(Bhavna Sharma et al., 

2013) 

Ec NF  SS, HQ, 

IL 

LP MP, SB Stochastic Programming Number of harvesting workdays  

(Tong et al., 2014b) Ec NF, CF, 

TT  

R, HQ, 

SS, TM 

MILP 

 

MP, 2S, SB Stochastic Programming Feedstock supply, demand, technology 

(Tong et al., 2014a) Ec LF, CF, 

NF  

HQ, HS, 

IL, PS, SS 

MILP MP Fuzzy Possibilistic Programming Feedstock supply, demand, technology 

(Tong et al., 2014c) Ec NF, CF, 

LF, TT  

HQ, PS, 

SS, TM, R 

MILFP Robust Optimization Feedstock supply, demand 

(Azadeh et al., 2014) Ec (MO) LF, CF, 

BS, PQ  

SS, IL LP MP, SB Stochastic Programming Feedstock supply, product price and 

demand 

(Marufuzzaman et al., 2014) Ec, En (MO) LF PS, IL,TM MILP 2S, SB Stochastic Programming Feedstock supply, technology 

(Li and Hu, 2014) Ec LF, CF  SS MILP 2S, SB Stochastic Programming Feedstock supply, technology, product’s 

price 

(Gonela et al., 2015) Ec CF, LF, 

TB  

TM MILP 2S, SB Stochastic Programming Product price and demand, feedstock 

supply 



 

21 

(Yılmaz Balaman and Selim, 

2015) 

Ec (MO) NF, LF, 

CF, BS  

PS MILP Fuzzy Possibilistic Programming Feedstock supply 

(Bairamzadeh et al., 2016) Ec, So, En 

(MO) 

BA, LF, 

CF, TT  

IL, SS, PS MILP MP Robust Optimization Feedstock and product price, 

environmental factors, demand 

(Azadeh and Vafa Arani, 

2016) 

Ec  PQ, BA, 

LF, CF  

IL, SS MILP MP, SB Stochastic Programming + Robust 

Optimization 

Production yield, feedstock supply and 

price, product price, demand 

(Mohseni et al., 2016) Ec LF, CF SS, PS, IL MILP Robust Optimization Feedstock supply, costs, demand  

(Santibañez-Aguilar et al., 

2016) 

Ec, En (MO) BS, BA, 

PT, CF, 

TT 

 MILP MP, SB Stochastic Programming Feedstock price 

(Yılmaz Balaman and Selim, 

2016) 

Ec, So (MO) LF, CF PS, R, 

SS, TM, 

IL 

MILP MP Fuzzy Possibilistic Programming Feedstock supply, costs 

(Babazadeh et al., 2017) Ec, En (MO) NF, LF, 

CF  

PS, IL, 

SS, TM, R 

MILP Robust Optimization Feedstock supply, demand, costs, 

environmental factors 

(Paulo et al., 2017) Ec LF, CF, TT  IL, TM, R, 

SS, PS 

 

MILP 2S, SB Stochastic Programming + SReduction Feedstock supply, technology  

(Osmani and Zhang, 2017) Ec, En, So 

(MO) 

BS, LF, 

CF, TT  

HS, SS, 

PS 

MILP MP, 2S, SB Stochastic Programming + SReduction Feedstock supply, product price and 

demand 

(Liu et al., 2017) Ec LF, BS IL, SS MILP MP, 3S Stochastic Programming Feedstock supply, facility disruptions  

(Gao and You, 2017) Ec, So (MO) BS, CF, 

LF, TT 

TM, PS, 

R, TM, 

SS, IL 

MILP MP, 2S, SB Stochastic Programming + SReduction Feedstock supply, demand, technology 

(Ghelichi et al., 2018) Ec, En (MO) NF, LF, 

CF 

SS, TM, R MILP MP, 2S, SB Stochastic Programming Demand, feedstock supply 

(Bairamzadeh et al., 2018) 

 

Ec LF, CF, TT HQ, PS, 

IL, SS 

MILP MP Robust Optimization Technology, feedstock supply, demand 

(Babazadeh, 2018) Ec NF, LF, 

CF  

SS, IL, PS MILP MP Robust Optimization Feedstock supply, demand, costs  

(Xie and Huang, 2018) Ec LF, CF  PS, TM MILP MP, SB Stochastic Programming + SReduction Demand 

(Arabi et al., 2019) Ec, En (MO) LF, CF, TT  IL, TM MIQP MP, 2S, SB Stochastic Programming Product price and demand  

(Sharma et al., 2019) Ec BS, LF, 

NF, CF  

 MILP 2S, SB Stochastic Programming 

 

Feedstock supply 

(Rezaei et al., 2019) Ec NF, LF, 

CF  

 LP SB Robust Optimization Demand, feedstock supply, costs, 

environmental factors 

Ec: Economic; So: social; En: environmental; MO: multi-objective; LF: location of facility; CF: capacity of facility; NF: number of facility; TB: type of biomass; BA: biomass allocation; 
BS: biomass sourcing; PQ: product quantities; PT: product type; TT: type of production technology; SS: shipment size; R: routing; TM: transportation mode; PS: production 
scheduling; IL: inventory levels; HQ: harvesting quantities; HS: harvesting scheduling; MP: Multi-period; 2S: Two-stage; 3S: Three-stage; MS: Multi-stage; SB: Scenario-based; 
SReduction: Scenario reduction
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From this literature review, it can be concluded that, for the optimization of the design of the biomass 

SC, the MILP formulation is the most used. Economic objectives are the main focus, even though 

environmental ones have been gaining their importance, and, when incorporating the uncertainties in 

the design process, stochastic programming is the most common approach. Most decisions being made 

in the papers are regarding the strategic level and the most common uncertainties are product demand 

and feedstock supply, being the last one a possible consequence of the first, since it is important to have 

both uncertainties in mind when making decisions at a strategic level.  

 

3.2- Modelling the Conversion Efficiency’s Uncertainty 

Another important uncertainty to have in mind when making strategic level decisions is the uncertainty 

inherent to the conversion technologies. Its importance is sustained by the fact that, since technology 

has not reached a mature stage and it is still developing, changes and improvements in them will have 

different impacts in the supply chain (Marufuzzaman et al., 2014). However, even though in many of the 

papers presented in Table 3 decisions regarding the technology type were made, most fail to consider 

technology related uncertainties and its development stages (maturity), time to have it operating at full 

capacity (learning) and even adequacy to local conditions (biomass type, availability, among others).  

Only 8 articles consider technology related uncertainties (21%), from which 6 do it by incorporating the 

technology conversion efficiency as an uncertain parameter in their stochastic modelling framework: 

 In (Li and Hu, 2014), there are two uncertain conversion ratios with a probabilistic distribution: 

biomass to bio-oil and bio-oil to biofuel, both assumed to follow a normal distribution with an 

average conversion ratio of 0.63 and 0.20 on weight basis, respectively. The first one was based 

on the experimental results from Iowa State University and the second one on a reported 

conversion ratio for slurry gasification found in literature, given the lack of experimental data. 

For the scenario generation, the moment matching method was employed. The method 

generates a set of discrete probabilistic scenarios, with its distribution properties consistent with 

the pre-specified statistical properties, such as mean or variance, that a decision maker 

considered relevant (Høyland and Wallace, 2001). 

 In (Marufuzzaman et al., 2014), a conversion rate of sludge to biocrude and biocrude to biodiesel 

are considered, but it is only investigated the impact of the technology used to transform sludge 

into biocrude on production and costs. Using a scenario-based approach, five different 

scenarios were defined with associated probabilities of occurrence, as shown in table 4: the 

highest probability was assigned to the scenario with the conversion rate obtained in previous 

studies conducted at a laboratory in a small scale (0.26), due to being the most likely rate. The 

other scenarios were obtained by varying the rate 0.02 points up and down and attributing this 

variation a probability of 10%, and by varying the rate 0.06 points up and down with a probability 

of 5%, since a higher variation is less likely to happen.  
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Table 4- Scenario definitions and probability of occurrence under technology uncertainty (Marufuzzaman 
et al., 2014) 

Scenario Explanation Probability 

1 1 ton of sludge generates 0.20 tons of biocrude 0.05 

2 1 ton of sludge generates 0.24 tons of biocrude 0.10 

3 1 ton of sludge generates 0.26 tons of biocrude 0.70 

4 1 ton of sludge generates 0.28 tons of biocrude 0.10 

5 1 ton of sludge generates 0.32 tons of biocrude 0.05 

 

 Paulo et al. 2017 model the conversion ratios of the technology used to produce bioethanol, 

phenols, electricity, and heat and the technology to produce biofuels and waxes. These are 

modelled according to literature and inspired by the scenario definitions and probability of 

occurrence under technology uncertainty done by Marufuzzaman et al. 2014, presented in Table 

4. 

 Gao and You 2017 tackle the conversion efficiency uncertainty by considering different types of 

conversion ratios in their model depending on biomass feedstock type, type of technology and 

type of product, to account for different production yields. The type of technology used is 

associated with the conversion process and they have their own historical data, used to obtain 

the conversion factor’s values of each. A scenario-based approach is also used in this study, 

but the technology uncertainty was not the motivation behind it. Thus, the probability of each 

scenario is not obtained having in consideration the probability of occurrence of each conversion 

factor. 

 Bairamzadeh et al. 2018 express the imprecision of the conversion rates as a set of probabilistic 

scenarios of their possible values depending on the type of biomass feedstock and technology 

used and based on historical data about improvements of conversion technologies through time. 

The values used for the conversion rates were the ones presented below in Table 5, and the 

probability of selecting each scenario is equal. 

 

Table 5- Conversion rates of biomass feedstocks through each technology type under different scenarios 
(gallon/tonne) (Bairamzadeh et al., 2018) 

b Biomass Conversion rate of biomass feedstock type b through technology type q to bioethanol under 

scenario s (𝜽𝒃,𝒒,𝒔
𝒃𝒆𝒍 ) 

Low yield scenario (s=1) High yield scenario (s=2) 

Thermochemical Biochemical Thermochemical Biochemical 

1 Corn 

Stover 

65 65 72 

 

75 

2 Wheat 

Straw 

65 55 72 60 

3 Barley 

Straw 

75 69 82 75 

4 Rice 

Straw 

70 77 66 72 
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 In (Tong et al., 2014a) the conversion rate as an uncertain parameter is treated as a fuzzy 

member. Therefore, three values are used to characterize it: the most pessimistic, most possible 

and most optimistic. The most possible value is obtained by assumptions based on historical 

data of the upgrading facility and the general yields of crude oil, and the most pessimistic and 

most optimistic are set to be 10% less and 10% greater than the most possible one, respectively. 

These three are then included in the conversion constraints, along with the confidence level and 

the decision maker attitude.  

 

These studies, with their model’s results, proved the impact this uncertainty can have in the optimization 

of the supply chain. Even in not accurately, considering technology uncertainty at the design stage 

helped the models to achieve higher profit results. Plus, it is verified that this uncertainty has influence 

on decisions such as type of technology or dimension. Having this in mind and the fact that only 6/39 

articles treat the conversion ratio/conversion efficiency as an uncertainty in their model, it is clear the 

little consideration it has in the literature. For the scenario generation, the method or reference used to 

obtain the probability of each realization of the technology’s conversion efficiency it’s not well defined. 

However, the moment matching method employed by Li and Hu 2014, by being based on statistical 

properties of the historical data found about technology developments, seems to have potential on 

describing them and interesting for further research. Moreover, even though the 6 articles try to model 

it, the conversion ratios’ values used are only based on the past and not on the future. They were 

obtained by approximation from historical data, based on experimental results at a small scale in 

laboratories, or even inspired by the conversion ratios of the technology used in the fossil fuels 

conversion facilities. Even if sometimes those approximations consider technology improvements, they 

were the ones already achieved in the past up to the present and not the possible ones in the future. 

Thus, maturity and learning are still miss represented and they shouldn’t so as decisions at a design 

stage are more realistic and accurate. This research gap is the focus of the present research. 

 

3.3- Learning Curves 

When the lack of consideration of technology maturity and learning in the optimization models is in 

question, a possible solution approach that can easily be remembered is the one regarding exactly 

technology learning and its mathematical correlation with costs. That is the learning curve approach. 

 

3.3.1– The Learning Concept 

One of the first authors to describe the learning concept was (Wright, 1936). In his paper, he explains 

the factors that possibly make the cost of airplane’s manufacture to decrease as the quantity produced 

increases. One of those factors is the labour cost, which he acknowledges one of the reasons it 

decreases is the practice gained by the workforce as the production quantities increase, which, 

consequently, makes the workforce and worktime production requirements of each unit to reduce. 

Therefore, a negative correlation between learning and costs was empirically observed and the 
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graphical representation of his findings is currently referred to as learning curve (Weiss et al., 2010). 

Based on this subject, Arrow 1971 introduced the notion that technical change as a function of learning, 

comes from experience, gained with multiple attempts and during the activity. Over time, the concept of 

learning was extended from its original conception of being referred only to the productivity of labour: 

the modelling of the costs in function of cumulative production started to include all production costs 

(Conley, 1970), to be constructed for a wide range of products, technologies, and processes (Weiss et 

al., 2010), including learning, scale and other factors, and applied both to single companies and entire 

industries (Dutton and Thomas, 1984). The curves representing this broader concept of learning can be 

referred to as experience curves (Samadi, 2018). However, given the concepts of both curves come 

from the same idea, they are often grouped in literature under the general category of learning curves. 

Independently of being a product, technology or process, improvements in performance, productivity 

and/or reductions in their related production costs (material costs, labour costs, technology costs or 

others) usually happen due to accumulation of experience gained from different processes (Wiesenthal 

et al., 2012). The “learning by doing”, that helps obtaining the needed experience, as more units are 

produced, to be able to make improvements and increase efficiency in the production process  (Arrow, 

1971), learning by researching, which is the knowledge obtained through research and development  

(Cohen and Levinthal, 1989), the “learning by using” the final product/technology, on the demand side, 

allowing the experience obtained to make its operation more efficient  (Rosenberg, 1982), and others, 

such as learning by scaling (Sahal, 1985) and learning by copying (Sagar and van der Zwaan, 2006).  

 

3.3.2– Types of Learning Curves 

As mentioned before, a learning curve describes the relationship between costs, the dependent variable 

as a measure of learning and improvement, and the experience, the independent variable usually 

represented by a cumulative measure of production or use (Nemet, 2006). In this relationship, the costs 

decline at a constant rate – learning rate - each time the cumulative production doubles (Weiss et al., 

2010). 

There are different types of learning curves depending on the number of cost reduction factors: 

 The one-factor-learning curve (OFLC), that relates the variations of the costs over time with only 

one factor as the independent variable, the accumulated learning, usually represented by 

accumulated production (Sagar and van der Zwaan, 2006). This type of learning curve benefits 

from being relatively easy to access the necessary data to plot them, since volumes of 

production usually are well documented, and for simplifying cost dynamics. However, by 

aggregating the costs in its formulation, considers they are all subject to reductions when only 

some experience learning and in different ways (Sagar and van der Zwaan, 2006). Moreover, 

by having only experience as the independent variable, the OFLC doesn’t consider other types 

of cost reduction drivers that have been found to be relevant in influencing costs developments 

(Samadi, 2018).  

 The multi-factor-learning curve, that was constructed to compensate the OFLC’s flaws and 

properly considers the impact of different and relevant cost reduction drivers (Samadi, 2018). 
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The most popular is the two-factor-learning curve and differentiates, in its formulation, two of 

the most important learning factors: the learning-by-doing and learning-by-searching 

(Wiesenthal et al., 2012). Even though the differentiation of the drivers seems appealing and 

more realistic, the effects of learning through research and development are difficult to quantify 

and are drivers of cost variations that show levels of interdependence, making it hard to 

distinguish the effects of each (Samadi, 2018) and consider them isolated from one another.  

Independently of the type of learning curve, it’s clear the difficulty that is obtaining the most appropriate 

learning rate, because it significantly varies across different studies and it is dependent on historical 

data that is often limited. Moreover, they might be different in different geographical areas due to specific 

factors that make the learning process to have different developments (Sagar and van der Zwaan, 

2006). When applied to technology, the fact that the characteristics of different plants can vary due to 

different technologies used, their size and type of feedstock used, the learning rates are different as 

well, due to different learning processes (Samadi, 2018). Also, technology is always in development. 

So, even though it is important to rightly treat the historical data so the technology forecast reflects its 

past progress, it should be also expected for future developments to be a little bit different from past 

ones (Jamasb and Kohler, 2007). Therefore, it is important to be careful when treating the data in order 

to produce a representative learning rate.  

 

3.3.3- Application 

The learning curve approach has multiple purposes, but in the 1990s, started to treat technology 

dynamically and it has become a widely used method to project mostly technological changes (Nemet, 

2006). Based on the concept, every time a unit of some specific technology is produced, some learning 

is accumulated causing a cheaper production of the next unit of the same technology. Therefore, 

considering the learning and experience is essential to understand and predict future costs variations of 

technology and how these are related to technology developments (Wiesenthal et al., 2012).  

The first application of learning curves, between 1930s and 1960s, were mainly oriented for production, 

as in (Wright, 1936). In 1970s and 1980s, they started to be also used in business management (Towill, 

1985), strategy and organization research and, since 1990, they have attracted interest for technology 

analysis and, particularly, for energy technologies (Jamasb and Kohler, 2007). The literature review 

done by Samadi 2018 proves this by presenting numerous studies with empirical observations of 

experience curves and corresponding learning rates for electricity generation technologies. Some of 

those were about renewable energy power plants (onshore wind, offshore wind, solar PV, solar thermal 

and biomass power plants), from which he concludes, with statistical support from literature, that most 

technologies using renewable energy sources have a strong negative correlation between experience 

and costs, nuclear power plants and fossil fuels power plants (coal and natural gas power plants). He 

also observed, in literature, that experience curves for this type of technology are modelled at an industry 

level, where the independent variable is the cumulative experience of all companies and the dependent 

the average cost or market price. The cumulative experience can be considered as the technology’s 

cumulative capacity, cumulative number of plants or cumulative electricity generation built, and the type 
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of cost considered depends on if a technology itself or just a part of it is being investigated. This is also 

verified by Weiss et al. 2010 that analyses the application of learning curves for energy demand 

technologies and by Rubin et al. 2004 for environmental technology. However, even though technology 

learning is widely associated with costs variations, it is important to refer that this process affects other 

aspects of the technology that can also benefit from learning, such as reliability, safety features, 

conversion efficiency, among others (Wiesenthal et al., 2012). 

 

3.4- Chapter conclusions 

This chapter demonstrated that, even if uncertainties have been considered and included in the supply 

chain design by the literature, there are still some of them underrepresented and continue to have a big 

impact on the supply chain optimization. One of those, and an important one, is the technology related 

uncertainty, more specifically, the conversion efficiency uncertainty, which is lacking a correct 

consideration of maturity and learning in its modulation. The learning curve approach was proved to be 

commonly used to represent technological developments due to learning and experience and, mostly 

regarded energy technologies. Thus, it has great potential to correctly cover this gap. 
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4- PROBLEM DEFINITION AND METHODOLOGICAL APPROACH 

Based on the background on the research topic of biorefinery’s SCs and information and findings 

obtained from literature review, the current chapter is destined to define the problem that will be tackled 

in the present master thesis. First, in section 4.1, the main findings of research will be resumed. Then 

section 4.2 will expose this thesis proposed solution approach, followed by section 4.3 explaining the 

methodology to do it. Finally, some conclusions and the next steps will be clarified in section 4.4. 

 

4.1– Main Literature Review Findings 

There are four main findings obtained through the research done so far: 

First, the European Union has been trying to transition from a fossil-input-based economy to a bio-based 

economy and, in order to do it, created the European Commission’s energy packages aiming to achieve 

the ‘Europe 2020 Strategy’ goals of increasing the share of energy consumption from renewable sources 

and the utilization of biofuels. 

Second, even with biomass being a good renewable source to produce biofuels, the biofuel supply chain 

isn’t yet competitive comparing with fossil fuels. Also, it is subject to several uncertainties that should be 

considered from scratch, this is to say, from its design process, aiming to reduce their impacts and 

obtain a truly optimized supply chain. 

Third, one of those uncertainties, and an important one, that is lacking representation in literature is the 

technology development and performance uncertainty that arises with the fact that technology is still in 

development and hasn’t reached maturity. So, despite one technology may be more attractive to install 

today, in a few years another may become more attractive. The few studies that considered this 

uncertainty incorporated the conversion efficiency uncertainty of the conversion technologies in their 

optimization models. However, they failed to correctly consider the effects of learning and maturity of 

the technology by using values based only on historical data and not on possible future developments. 

Fourth, the concepts of maturity and learning of technology are really tied with the learning curve 

approach and technologies using renewable energy sources have been proven to have a strong 

negative correlation between experience and costs. Also, technology learning affects many aspects of 

a technology besides costs, including the conversion efficiency. Thus, it is difficult to obtain the 

respective learning curve and learning rate of energy generation technologies, because the learning 

process is different for each technology depending on type, feedstock, size, or others. Even so, the 

learning curve approach has potential as a good mathematical formulation to represent the future 

developments of the technologies used to generate energy from biomass in terms of their conversion 

efficiency ratio and its impact on costs. 

  

4.2- Problem Statement 

The studies in literature regarding optimization models that realistically include uncertainties to design 

the biomass SC have been increasing, but with a default. As stated before, literature review enabled to 
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find that the technology uncertainty of the biorefinery’s conversion technologies has not been modelled 

to correspond to reality as more accurately as possible. This uncertainty exists, because technology 

continues to develop as result of many important factors, such as learning with experience, research, 

and development, or others, that have not been rightly considered. This development can be measured 

in terms of the technological process’s efficiency, thus, its development and evolution are dismissed 

when the conversion efficiency is included in the optimization models as a known, constant and in the 

present time period value. Instead, it should be included as a dynamic value that it is uncertain and can 

vary in the future. It should be included as an uncertainty.  

Having this said, the research problem to be tackled in this master thesis is the formal and 

mathematical representation of technology evolution and its impact using the conversion 

efficiency and learning curves, as literature showed potential in these to represent technological 

developments. With a mathematical representation of this dynamic development of technological 

processes, one can prove that it affects their performance and feedstock/product conversion, while the 

investment costs might be uncertain as well. By doing this and then incorporating it in a biomass SC 

stochastic optimization model, the model becomes more accurate, and its results are more realistic. It 

would help planners and decision makers to take more informed design decisions regarding biomass 

conversion technologies and potentially reduce costs, which would help leverage biomass and reduce 

the fossil fuel’ consumption. This is also important given the choice of the conversion technology 

influences the whole process and many other decisions in an integrated biorefinery that must be planned 

ahead. Furthermore, besides representing a research gap, this problem is highly relevant since this 

supply chain is evolving and expanding, while there is no maturity in the technologies used. 

With the literature reviewed being from various countries, it can be said that the problem stated in this 

section it is general to all countries. However, the solution approach proposed will only be tested by 

being applied to the Portuguese case. Thus, the necessary data as an input to the model will be based 

on the Portugal’s reality. The input data will be obtained from old studies and publications and updated 

with the help of the competent entities. In cases of lack of information, first, information from countries 

within the EU is used, given the context is similar to the Portuguese and, last case scenario, information 

from countries outside the EU is used.  

 

4.3– Thesis Methodological Approach 

After having stated the problem and the solution approach, the methodology on how to do it has to be 

clear.  

 First, data collection on biorefineries is made. All their specifications are analysed with the 

objective of reaching conclusions on technology developments and conversion efficiency 

evolution. These conclusions will then help to predict the conversion efficiency of the 

technologies and appropriate parameters of the learning curve formulation for each technology. 

This is presented in chapter 5. 
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 Second, the mathematical formulation of the learning curves to be included in the stochastic 

optimization model by Paulo et al., 2020 is presented in chapter 6. The learning curves are 

adapted to each technology and how they incorporate the conversion efficiency evolution and 

represent its impact on costs is shown. In the same chapter, the Paulo et al. 2020’s adapted 

stochastic optimization model is explained and complemented with the explanation of how the 

conversion efficiency uncertainty is included and the integration of the learning curve theory. 

The model is constructed to be fed by the: i) amount of available biomass, ii) biomass acquisition 

cost, iii) biomass conversion efficiency over time, iv) production costs of each technology, v) 

product’s demand in each market, vi) transportation costs regarding the different transportation 

modes, vii) distances between the sites of the biomass collection, integrated biorefineris and 

markets and viii) annualized investment costs of integrated biorefineries, and determine the: 

1) collected quantities of biomass at each production site, 2) biomass flows across each supply 

chain entity, 3) product’s production quantities, 4) location of the installed biorefineries, 5) 

capacity of installed biorefineries and 6) technology to implement in each installed biorefinery, 

so as to optimize an economical objective function.  

 Finally, the model is implemented to test the adequacy of the conversion efficiency’s evolution 

representation through the use of learning curves. It will use data from the case study and then 

results are obtained and discussed. The case study and the remaining data necessary to run 

the model are presented and explained in chapter 7. The process of validation of the model is 

after explained and, finally, the results of the model are obtained. This can be found in chapter 

8. 

 

4.4– Conclusions 

To tackle the lack of representation of technology evolution and the conversion efficiency uncertainty of 

the conversion technologies, learning curves for each technology will be constructed. The objective will 

be representing the developments of the technology through time and the consequent impacts, given it 

appears to be an adequate approach to do so. This approach will then be tested in a two-stage 

stochastic optimization model and its results will be evaluated to reach conclusions on how this will affect 

the design of the biomass SC. Given Portugal has great potential in the treatment of biomass and 

production of bioenergy, it is the chosen case study to the present thesis. Therefore, the necessary data 

to the models will be Portugal related.
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5- CONVERSION EFFICIENCY & LEARNING CURVES - DATA COLLECTION AND ANALYSIS  

This chapter introduces the data collection and data treatment procedures required to obtain valuable 

inputs for the representation of the conversion efficiency uncertainty and learning curve’s formulation of 

the biomass conversion technologies.  

This chapter will be organized as follows: first, the data collection process is presented and, after, is 

described. Since the required data is not always available, all assumptions made from the available data 

gathered are explained and data is treated when necessary. The chapter ends with some conclusions 

being stated. 

 

5.1- Data Collection Process 

The learning curve’s theory will be applied to conversion technologies used in biorefineries and then 

used to represent the impact of their conversion efficiency uncertainty in a biomass SC optimization 

model. Therefore, the present chapter is focused on finding information regarding biorefineries and their 

used technological processes and specifications. Constructing the model and having its inputs based 

on real information about existent biorefineries, will make it more realistic. 

The data collection process to do so is represented in Figure 4. 

 

 
Figure 4- Data Collection Process 

 

 First, the scope of research had to be defined to guide it and restrict the available data to the 

necessary. This was regarding the geographical limits of research for the existent biorefineries, the 

type of biorefineries to be considered, and the type of products they produced.  

 Then, research was made only focused on mapping the biorefineries that met the scope of 

research. First, official sites of organizations that are concerned with a sustainable energy 

production were the target of research. Those were the European Commission’s website and the 

International Energy Agency (IEA) website. To help obtaining data more objectively, the research 

was complemented and extended to public articles and studies on this matter in public platforms, 

such as Google and Google Scholar, with key words. 

 Finally, once the biorefineries were mapped, their specifications needed to be collected. 

Considering the focus on the technology’s conversion efficiency uncertainty of the present thesis 

and the mathematical formulation of the learning curve theory, research was done aiming to collect 

information, over time, mostly about production, investment and installation costs, type of biofuels 

Definition of the Scope 
of Research

• Geographic limit of 
search

• Type of biorefineries
• Type of products

Mapping of Integrated 
Biorefineries

• European 
Comission's Site

• EUROSTAT's site
• IEA
• Studies on integrated 

biorefineries

Research for the 
Integrated Biorefinries' 
Specifications

• Products
• Feedstock
• Tecnology
• Costs

Final 

Biorefineries 
Database 



 

32 

produced and their production quantities, type of biomass used and biomass feedstock quantities, 

type of biomass conversion technologies, their conversion efficiencies and learning rates. 

The following sections will explain each of these steps in detail. 

 

5.2- Scope of Research 

This section summarizes some important definitions made to simplify the research process. To this end, 

several considerations must be outlined: 

 The scope of data to collect is Europe/European Union since it keeps a geographical proximity 

with Portugal while ensuring to have a wider ground to collect data. Also, all countries are 

focused on goals towards a sustainable economy, which also underlines the chance to have 

more biorefineries to collect data from.  

 It is important to have the concept of biorefinery well defined and in line with the objective of 

study of the present thesis. This way, from all the data available about biorefineries, research 

can be done objectively and focused on the relevant ones. Therefore, the definition used in this 

thesis is the one employed by de Jong et al., 2012 and by BIC, 2017 to define an integrated 

biorefinery: “a facility that does the sustainable processing of biomass into a spectrum of 

marketable products (food, feed, material, chemicals) and energy (fuels, power, heat), using a 

wide variety of conversion technologies in an integrated manner”. Only facilities that 

corresponded to this definition were considered. 

 Only integrated biorefineries that produce biofuels as one of their products were considered. 

 Data should be collected from a reliable source that would help reduce the amount of information 

to collect on biorefineries while ensuring that standard information is obtained, guaranteeing 

that it would not be needed to identify and analyse different and multiple sources of highly 

probable unreliable information. 

 

5.3- Mapping Integrated Biorefineries in the EU 

The research for integrated biorefineries in the EU for this thesis biorefineries’ database was made on 

Google and Google Scholar mostly using the key words “Integrated Biorefineries EU” and “Biofuels 

Production EU.” After an extensive research was done, the following sources were found: 

 Scientific Information Systems and Databases report by Parisi 2020: The report consists 

on the description of the distribution of the bio-based industry in the European Union. It also 

refers a link to an online interactive visualisation platform 

(https://datam.jrc.ec.europa.eu/datam/mashup/BIOBASED_INDUSTRY/index.html) that 

allows the user to navigate in the report’s database by applying filters to all the available 

information as desired (for a visual picture of the interactive dashboard, see Figure 5). The 

database contains facilities using biomass that are represented with IDs of the type 

CuntryNumber (e.g.: Ire8). It doesn’t share their names or owners, but does share, for each, its 

definition of biorefinery, country, coordinates, feedstock class and origin, status, range of 

https://datam.jrc.ec.europa.eu/datam/mashup/BIOBASED_INDUSTRY/index.html
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capacity of production, product class and category, type of plant, among others. Although this 

is valuable information that will help to construct the integrated biorefinery’s database for the 

present thesis, the information is still general and not quite exactly the needed. Thus, this EU’s 

database was only used as a starting point of the existent biorefineries of the EU and to guide 

the rest of the research. This could be done, given it is a publication made by the Joint Research 

Centre (JRC), the European Commission’s science and knowledge service, thus as a reliable 

source.  

 

 

Figure 5- Content of the interactive database of the report by (Parisi, 2020) 

  

 “Mapping European Biorefineries” report by BIC, 2017: is a list of the European commercial 

biorefineries in 2017 published by the Bio-based Industries Consortium and the Nova Institute 

of the European Biorefineries. This list has the name of 224 production plants and their 

respective country. This list is one of the references of the EU’s report, thus it was assumed 

trustworthy. Also, was used to complement the lack of names of the biorefineries of the EU’s 

database by crossing the information of the countries of the first and the coordinates (after 

searched in Google Maps) of the second. 

 A list of commercial biorefineries included in the BioRefineries Blog (“EUROPEAN 

ADVANCED BIOREFINERIES AT COMMERCIAL SCALE,” n.d.): this blog is dedicated to 

biorefineries and related concepts, such as advanced biofuels, events or others and was also 

referenced in the EU’s report by Parisi, 2020. The list mentioned is a list of the advanced 

biorefineries at a commercial scale in Europe that was created in 2015 and deeply updated in 

2018. Also, uses the same concept and definition of integrated biorefinery of this thesis. For 

each biorefinery, shares its location, responsible company, feedstocks, products, feedstock 

category, technology/technological process, production capacity, start-up date, status, and a 

link to a website or news. Once again, this list and this blog were used to complement the lack 

of names of the biorefineries of the EU’s database by crossing their information of the location 

of the biorefineries with the coordinates (after searched in Google Maps) of the EU’s database. 

Also, to specify the specific amount of production of each facility (the EU’s database only shares 
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a range), the type of biofuel and the conversion technology used (also not specified by the 

database). 

 A list of bioenergy plants provided by the ETIP (European Technology Innovation 

Platform) (“Production Facilities,” n.d.): ETIP is a platform dedicated to bioenergy and the 

bioenergy industry that shares this list, along with a map, to provide an overview of production 

facilities of biofuels and intermediate bioenergy carriers. The list of the bioenergy plants shares 

information of the owners of each, their names, and location. Also, extra information about 

production quantities and processed quantities. This list was used, as well, to try to correspond 

its biorefineries’ locations to the coordinates of the EU’s database to assign a name to each 

biorefinery’s ID. In the cases of success, the list was also used to complement the database 

with the specific amount of production of each facility, type of biofuels produced, the amount, 

and type of feedstock processed. 

 Google Maps Results: the rest of the sources used to incorporate the database constructed 

by (Parisi, 2020) were also reviewed in detail. However, without success in finding more 

possible correspondent biorefineries. After reaching the author of that report and database for 

collaboration, due to confidentiality of the EU’s data it was not possible to obtain additional 

information. So, another approach was made. It consisted in searching the coordinates available 

in the EU’s database in Google Maps and, in the cases of success, obtaining the localization of 

an industrial facility with a name or site associated to it. If the information available online 

matched the information available in the EU’s database (e.g.: the product belonged to the 

product category of that biorefinery in the database), that biorefinery and respective information 

were included in this thesis database. 

 

5.3.1– Assumptions and Limitations in the Biorefinery’s Mapping Process 

The EU’s database constructed by Parisi, 2020, has available information about 2362 biorefineries. 

However, not all of them are relevant to include in the database of this thesis. Thus, by allowing to 

choose filters and having in mind the scope of research previously defined, this number was reduced to 

99 integrated biorefineries. The filters applied were the following: 

 There are filters that can be applied to obtain only the biorefineries that go in line with the user’s 

definition of integrated biorefineries. There are three definition filters options:  

1. The “Multiple Product Categories” biorefineries, that produce products of different 

categories (e.g. 1 chemical product and 1 biofuel),  

2. The “Multiple Products” biorefineries, facilities that produce products from different 

categories and/or different products from the same category (eg: 2 different chemical 

products),  

3. The “Product-Energy Integration” biorefineries, which integrate the production of 

products and energy (biofuels or other type of energy generated from biomass).  
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From these, the “Product-Energy Integration” and the “Multiple Product Categories” filters 

were chosen (see Figure 6). The “Multiple Products” filter was not used, since it incorporated 

biorefineries that only produce one product category. It was verified, in the database, that all 

facilities that produce biofuels also produce other product category. Plus, the “Multiple Product 

Categories” filter covers the production of products from different categories. Therefore, the 

“Multiple Products” filter was not relevant for the present research.  

 

 

Figure 6- Product-Energy Integration and Multiple Product Categories filters applied and the remaining 
number of facilities 

 

 The filter “Integrated Production” was also applied, given that it is dedicated to guarantee an 

integrated production in the biorefineries, which goes in line with the definition of integrated 

biorefinery of this thesis (see Figure 7).  

 Another filter used was one regarding the scale of the biorefineries, named “Type of Plant.” The 

pilot and R&D ones were dismissed since they were not the focus of the present research. Only 

the integrated biorefineries at a commercial scale were considered (see Figure 7), because it 

is in this phase that this study is considering to still be happening technology developments and 

efficiency increase due to gained experience. 

 Last but not the least, from the product classes available, two filters were applied to guaranty 

that the biorefineries collected for the database produce biofuels. The two filters were 

“biomethane” and “liquid biofuels” as they are the only products, from the available, that are 

included in the scope of the present research. 

 

<

>  
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Figure 7- Integrated Production, Commercial scale and production of Biofuels (liquid and gas) filters 
applied 

 

Furthermore, as mentioned before, the EU’s biorefineries’ database constructed by Parisi, 2020 had ID 

codes for each biorefinery. Therefore, in the attempt to find the names of the 99 integrated biorefineries 

of the database or the company who run them, a search for each one of them in Google Maps was 

made by using the available coordinates in the database. However, there were some challenges in this 

method: 

 Sometimes, it led to random localizations. In those cases, a search for biorefineries, in that 

area, that matched the data from the database (feedstock class, product type, etc) was made. 

When this was not successful, it was assumed the coordinates in question were a localization 

error and that biorefinery was discarded (~36% of the biorefineries).  

 Other times, the localizations were not random and the name of the biorefinery/company that 

owned it was found. However, there was not an official site or any information about them. 

Those were also considered as errors (~13% of the biorefineries).  

 At last, sometimes there were similar coordinates in the EU’s database and the exact 

biorefinery/company they were associated to was inconclusive. There were 3 integrated 

biorefineries in France that had the coordinates in the same industrial place. After deep 

analysis, it was concluded they were three different plants with an integrated production 

between them 3 and a fourth one that produced bioethanol with the biomass outputs of the first 

3. Thus, they were considered as only one integrated biorefinery. Also, other 3 in Sweden had 

very close coordinates, and since it was not possible to find information about 2 of them, they 

were considered as one integrated biorefinery as well. 

After all these assumptions were made, the 99 were reduced to 50 integrated biorefineries with known 

names/owner companies and available information about their activity. These biorefineries and their 

specifications can be found in Appendix A.  

 

5.4- Integrated Biorefineries’ Specifications and Assumptions 

Once the biorefineries were mapped, the focus was on collecting all information available about them 

that made sense to the present study. In terms of conversion efficiency, to study its evolution in 
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integrated biorefineries at a commercial scale, information is needed, over the time, either about the 

biorefinery’s conversion efficiency or quantities of production and feedstock quantities. The 

technological processes used for the conversion of biomass into biofuels as well, and the types of 

biomass and biofuels. Regarding the learning curves, given they relate costs to experience, the focus 

was on finding any information about costs and learning rates, for each technology of conversion. Also, 

over the time. 

Collecting all this information was an extensive process that was based on retrieving any useful 

information from the first 4 sources presented in sub-chapter 5.3 (EU’s database and the 3 lists of 

biorefineries that also had their specifications). The fifth source, Google Maps, was not used to search 

for any of the information needed presented in the last paragraph. However, Google was. Once the 

coordinates of the EU’s database were searched on Google Maps’ and the location result was validated, 

the biorefinery/owner company in question was extensively searched for any websites or news that 

shared valuable information for this thesis. After being able to map 50 integrated biorefineries in the EU, 

this process was done for each of them. Moreover, Google was also used to find the remaining 

information mostly about costs and learning rates that could not be found in most of the cases, as will 

be later presented (see Table 9 in Appendix A for the 50 biorefineries mapped and section 5.4 for the 

final ones that are in this thesis database). 

The challenges, assumptions, and the findings of research are presented in the following sub-sections 

and, when necessary, data is treated. 

 

5.4.1– Product 

Type of Biofuels 

From the 50 biorefineries mapped, the type of biofuels produced that were found were: biodiesel, 

bioethanol, Naphta (biochemical), biomethanol, biomethane and biogas. The most common biofuel 

produced is biodiesel (60% of the biorefineries) and then bioethanol (38% of the biorefineries). The 

remaining 2% were biorefineries from which it could be found some information (feedstock, feedstock 

quantities or process), except the type of biofuel produced. Regarding the other types of biofuels, one 

of the biorefineries that produces biodiesel also produces biomethanol and another the biochemical 

Naphta. The biomethane is produced by four biorefineries that produce bioethanol, from which only one 

produces biogas as well.  Given these are not substantial samples, the biodiesel and bioethanol are 

considered to be the main biofuels produced and thus, the focus will be on them in his study. However, 

the biomethane produced quantities found will still be used to help reach conclusions on the conversion 

efficiency of the technology used to produce it. At last, by producing biofuels, some co-products are also 

produced. Regarding biodiesel, the most seen co-product being produced is glycerine and regarding 

bioethanol, the most seen are animal feed and cellulose. However, these will not be considered in the 

present study, due to lack of information on their quantities for some of the biorefineries. This decision 

will enable to compare all biorefineries on the same basis and have the focus strictly on the biofuels, 

which are the main focus of the study.  
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Biofuel’s Production Quantities 

Regarding production quantities, 14% of the biorefineries only had information about the product’s types 

and not their quantities. All these biorefineries were discarded. When the biorefineries, besides biofuels, 

produced some co-product or sub-product and their production quantities were not available, those 

sub/co-products were not considered to be produced (see subchapter 5.5 to see the final biorefineries’ 

database). These assumptions regarding production quantities were made, because without them, the 

conversion efficiencies could not be obtained by dividing them by the feedstock quantities. Since the 

values of the conversion efficiencies off these biorefineries were also not available and the quantities 

could not be calculated, the biorefineries were irrelevant to the present study. Finally, when the 

quantities were available in litters, it was used 0.789g/cm3 (Muhaji and Sutjahjo, 2018), 0.88g/cm3 

(Alptekin and Canakci, 2008), 0.00066g/cm3 (“Eco energia do brasil - biogas e biomethano - 

Biometano,” n.d.) and 0.00115g/cm3 (:: “Portal das Energias Renováveis ::,” n.d.) as the densities of 

bioethanol, biodiesel, biomethane and biogas, respectively, to convert them into tons. In the cases the 

biomethane produced was given in GWh, the equivalent tons of oil were obtained through the site 

(“Gigawatt hours to tons of oil equivalent (GWh to TOE) - Conversion calculator, formula, and table 

(chart),” n.d.)  

 

5.4.2– Feedstock 

Types of Biomass 

In general, the usual types of biomass used are cereals, seeds, corn, animal fats, sugar and waste. The 

cereals, corn and sugar are the most used to produce bioethanol. The seeds and animal fats are 

mainly used to produce biodiesel, but before they are processed into vegetable oils. Only one of the 

biorefineries had as input not the crude biomass, but these vegetable oils. Due to the shortage of data, 

there won’t be a differentiation between the types of feedstock of each biofuel and, for technological 

learning, they will be considered as only one type used to produce each. Moreover, it was verified that 

biorefineries that produced biochemicals, biomethanol and biomethane besides bioethanol and 

biodiesel, used the same respective feedstock of these last two. All this information regarding the types 

of biomass that are used in each biorefinery could be found in 92% of the 50 mapped.  

 
Biomass’s Collected Quantities 

In terms of feedstock quantities, it could only be found information about 25 mapped biorefineries out of 

the 50. The cases where the quantities of feedstock were not available and it was checked there was 

also none information about conversion efficiencies, were discarded, since they could not be helpful in 

the development of the present research (see subchapter 5.5 to see the final biorefineries’ database). 

For one integrated biorefinery (Fin13 in Table 9 in Appendix A) it could not be found the quantity of the 

non-biofuels products, thus the amount of feedstock known is assumed to be used entirely in the 

production of the biofuels. At last, when the available information was about daily processing quantities, 

to obtain the annual processing quantities it was considered that the biorefinery worked 5 days a week 

and 52 weeks per year. 
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5.4.3– Technological Conversion Process/Technology 

Technological Conversion Process 

The technological process (here also named as technology) that the biomass has to go through to 

transform into a biofuel has many stages. However, the mapped biorefineries were classified, similarly 

as how literature normally classifies, according to the stage of the process were the conversion to biofuel 

effectively happens. Having this said, out of the 50 biorefineries, it was only possible to find information 

about the conversion process used in 35 of them (~70%). From these, 18 used the fermentation process 

to convert the feedstock into bioethanol, from which one uses it to convert into biomethane as well. 

Other 9 used the transesterification process and 2 the esterification, to obtain biodiesel. Also, the 

processes of anaerobic digestion, to obtain biomethane, the hydrotreatment, combustion and the 

transesterification and esterification together, to obtain biodiesel, were used by only one biorefinery 

each. When information about the conversion process of a biorefinery was not available, the process 

assumed to be used was the most used by the others to produce the type of biofuel in question. Thus, 

the transesterification process as the conversion process into biodiesel and the fermentation process 

when bioethanol was the product. 

After discarding the mapped biorefineries that had no information about feedstock or biofuel quantities, 

the remaining, from the initial 50, are 13 integrated biorefineries that use the fermentation process, 7 

that use the transesterification process, 1 the esterification and 1 the Anaerobic Digestion (see 

subchapter 5.5  to see the final biorefineries’ database). With only 1 biorefinery with data available, from 

these last two processes is impossible to reach any conclusions regarding efficiency or learning with 

experience. Given the transesterification and fermentation processes are the ones with more 

information available, even if not abundant, they will be the only ones considered for the remaining 

research.  

 
Technological Process’ Conversion Efficiency 

When talking about efficiency, it is important to have defined what that efficiency is referring to. For 

instance, efficiency its commonly related to energy, thus being defined as the amount of energy required 

to produce a certain amount of an useful output or services (Patterson, 1996). Since in this thesis, the 

concept under study regards the biomass conversion process, its efficiency herein defined as the 

percentage of input that is turned into a useful biofuel output by an energy conversion technological 

process, or, as literature also refers it, by an energy conversion technology. It encompasses the whole 

process, the actors in it and all the stages that the biomass needs to go through until it becomes a 

biofuel. However, it is usually recognized only by the stage of the process where the conversion 

effectively happens (e.g. Fermentation, Transesterification, etc).  

In terms of collected data, only 3 integrated biorefineries mapped had information about their processes’ 

conversion efficiencies (Ger207, Ger208 and Ita10 in Table 9 in APPENDIX A) and they were used to 

obtain the products production or feedstock processed quantities that were not clear. The technology’s 

conversion efficiencies of the remaining integrated biorefineries, were calculated by dividing only the 
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biofuel quantity by the respective feedstock quantity. The co-products quantities were not considered in 

the calculation due to not always being available and to normalize the efficiencies amongst all 

biorefineries. Therefore, the conversion efficiency will be the efficiency of converting biomass into 

biofuel, specifically. 

To reach conclusions on the evolution of the conversion efficiencies of the two technologies being 

considered in the present research, an analysis was made. This analysis was done per technology and, 

due to shortage of data, the differences in both processes when producing different biofuels from 

different types of biomass had to be discarded. This was only valid for the biorefineries that received 

crude biomass. Thus, the transesterification process, used to produce biodiesel from both animal fats 

and seeds, was considered as one entity, as well as the fermentation process, used to produce both 

bioethanol and biomethane from sugars, corn and cereals, was also considered. Also, it was not 

possible to have sufficient data to make an analysis on this evolution, over time, for each biorefinery. 

Therefore, the final integrated biorefineries of this thesis biorefineries’ database had to be used together, 

per technology, and compared to each other. To do this, the year of the beginning of operation and the 

year of the information available on the conversion efficiency/feedstock/product’s quantities of each 

bioreifnery were used. They were used to calculate the difference between the two to obtain the years 

of operation needed to reach their conversion efficiency found with research. Once these were 

calculated to every biorefinery (10 for the fermentation process and 6 for the transesterification process), 

Figures 8 and 9 could be obtained. These figures consist in graphics that show the trend of the 

conversion efficiency with the increase of the years of operation of an integrated biorefinery, for the 

Fermentation and Transesterification process, respectively (see subchapter 5.5 for more information on 

the final biorefineries of the database) 

 

Figure 8– Evolution of the Conversion Efficiency of the Fermentation Process 
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Figure 9- Evolution of the Conversion Efficiency of the Transesterification Process 

 

As it can be verified for both technological processes, in Figures 8 and 9, it is clear the existent growth 

trend over time and, therefore, over the amount of accumulated production carried out by each 

biorefinery over time. By keeping producing over the years, experience is inevitably gained in the 

conversion process. The trends also reflects this experience and learning gained by “doing.” This is the 

reason why the more years pass after a biorefinery installation, the higher the conversion efficiencies 

reported. Moreover, from the available data, it can be concluded that the fermentation process, by 

having a higher slope of the tendency line, has a higher increase of the conversion efficiency with time, 

thus has a faster learning process. However, in the first, approximately, five years, the transesterification 

process shows higher values of conversion efficiency, point from which the fermentation process shows 

higher values (time x at which the tendency lines from both technologies cross). Lastly, it is important to 

refer that by not considering the production of co-products and not including them in the calculus of the 

conversion efficiency’s values, it is natural that their obtained values presented in the figures above are 

a little lower than expected. 

 
Technological Processes’ Learning Rates 

The information regarding technology’s learning rates could only be found in studies and not online 

about the mapped biorefineries. Also, learning rates related to the Portuguese case or the EU couldn’t 

be found. After a deeper research, the study by de Wit et al. 2010 was found. In this study, the learning 

rate considered with the increase of cumulative production for the transesterification process is 10% and 

for the fermentation process 20%. The estimation of the first was made for biodiesel from oil crops from 

seeds and used fats/oils without distinction and based on the study by Berghout 2008. The study applies 

the learning curve theory to the production of biodiesel in the German context, to quantify the 

technological learning over a period of 7 years (1993-2000). The estimation of the second learning rate 

was made for bioethanol from sugar and starch, also without distinction, and based on the studies by 

van den Wall Bake et al. 2009 and Hettinga et al. 2009. Both use the learning curve theory to determine 

whether it is a good method to describe the development of production costs due to experience. The 

first applies it to the Brazilian context over a period of 30 years (1975-2005) and the second to the United 
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States context over the timeframe 1980-2005. Given after extensive research it could not be found more 

recent studies or values, the 10% and 20% learning rates for the transesterification and fermentation 

process, respectively, were used in the present study for the development of the learning curves of each 

technological process. By using this values, this study also considers the transesterification process for 

biodiesel from oil crops and used fats/ oils as one entity, as well as the fermentation process from starch 

and sugar. 

 

5.4.4– Costs 

In general, it is difficult to find information about costs of biorefineries. Out of the 50, only the general 

production costs of 2 biorefineries were found. These were regarded to the total production of all the 

facilities of the company in question. Thus, they could not be associated to a specific biorefinery and to 

a specific process, ending up being irrelevant to the present study. Since the amount of costs data was 

not significant, an extra research was made in order to find more technology production costs. The study 

by de Wit et al. 2010 was the one found with more information available and regarding the two 

technologies. This study presented information on costs from the year 2004, thus to obtain current 

values, an average annual inflation rate of 1.51% was used. Also, the costs were available for the 

production of biodiesel and bioethanol from different types of biomass. However, as said before, since 

in this study the differences between the biomasses will not be considered and the technological 

processes will be seen as one entity, the costs from different biomasses were summed and an average 

cost was obtained for each technology. Therefore, for the fermentation process, the average production 

costs of producing bioethanol from sugars/starch obtained was 318.33€/ton of bioethanol and for a 

capacity of production of 100000ton. For the transesterification process, an average of 198.80€/ton was 

obtained for the production of biodiesel from oil seeds/fats and for a production capacity of 50000ton. 

These costs included operation costs, such as labour and utilities, and maintenance direct costs. 

Moreover, as said before, only the exact process of the transformation to bioethanol and biodiesel is 

being referred. However, these costs include all the other stages of the process (e.g. milling and oil 

extraction). 

 

5.5- Data Collection Results 

After all the research, data treatment, and assumptions, the data collection results on the biorefineries 

in the EU are presented below.  Table 6 resumes the data found for the fermentation and 

transesterification process, both ordered by ascending order of number of years of operation of the 

biorefineries (Year of information – Year of start). 
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Table 6- Data of the final integrated biorefineries resultant from the data collection process, using the fermentation 
process and transesterification process. 

Fermentation Technological Process 

Learning Rate 20% Average Production Cost 318.33€/ton of bioethanol 

Year of 
start 

Year  
of 

Information 

Biorefinery 
ID 

Type of 
Feedstock 

Quantity 
(ton) 

Type of 
Biofuel 

Quantity 
(ton) 

Conversion 
Efficiency 

2017 2018 Fin13 Sugar/Starch 80000.00 Bioethanol 8000.00 0.10 

2018 2020 Net79 Sugar/Starch 100000.00 Biomethane 28750.00 0.29 

2012 2016 Hun1 Sugar/Starch 910000.00 Bioethanol 147543.00 0.16 

2010 2016 Bel1 Sugar/Starch 910385.00 Bioethanol 236700.00 0.26 

2008 2015 Aus1 Sugar/Starch 500000.00 Bioethanol 197250.00 0.39 

2008 2015 FranTot Sugar/Starch 580000.00 Bioethanol 157800.00 0.27 

2011 2019 Ita10 Sugar/Starch 154369.57 Bioethanol 71010.00 0.46 

2012 2020 Ire8 Sugar/Starch 572000.00 Bioethanol 394500.00 0.69 

2005 2020 Ger207 Sugar/Starch 301882.11 
Biomethane+ 

Bioethanol 
271693.90 0.90 

2004 2020 Ger208 Sugar/Starch 150941.06 
Biomethane+

Bioethanol 
135846.95 0.90 

Transesterification Technological Process 

Learning Rate 10% Average Production Cost 198.80€/ton of biodiesel 

Year of 
start 

Year  
of 

Information 

Biorefinery  
ID 

Type of 
Feedstock 

Quantity 
(ton) 

Type of 
Biofuel 

Quantity 
(ton) 

Conversion 
Efficiency 

2007 2007 Rom8 
Seeds/Animal 

fats 
144000.00 Biodiesel 25000.00 0.17 

2008 2009 Lat2 
Seeds/Animal 

fats 
300000.00 Biodiesel 100000.00 0.33 

2009 2015 Bul19 
Seeds/Animal 

fats 
180000.00 Biodiesel 60000.00 0.33 

2010 2018 Cze20 
Seeds/Animal 

fats 
400000.00 Biodiesel 100000.00 0.25 

2006 2020 Ger202 
Seeds/Animal 

fats 
170000.00 Biodiesel 100000.00 0.59 

2000 2020 Ger188 
Seeds/Animal 

fats 
71100.00 Biodiesel 65300.00 0.92 

 

5.6- Chapter conclusions 

The present chapter describes the data collection process of information about the operation of 

integrated biorefineries in the EU to further estimate model inputs from real data. Different sources of 

information were used, including a database from the European Commission’s science and knowledge 

service and public data. However, gathering all the necessary data was difficult and a lot of assumptions 

had to be made. This resulted in a data collection process with little information, for each biorefinery. It 

enabled though to, by comparing all biorefineries with each other, see a growth pattern of the conversion 

efficiency, as the years of operation increase. This proves that, with experience, higher values of 

conversion efficiency can be obtained, which will certainly result in cost reductions. Thus, with the 

remaining information on learning rates and unitary costs found, a learning curve that reflects the costs 

variation of each biorefinery as the conversion efficiency increases can still be obtained.  

In the next chapter, the formulation of the learning curves and the stochastic optimization model that will 

use this collected data as inputs to represent the conversion efficiency’s evolution with experience, will 

be presented, and explained. 
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6- MODEL FORMULATION  

The goal of this chapter is to propose a mathematical formulation of a learning curve that represents the 

technology development and performance through time, due to learning and maturity. Also, how this 

formulation will be adapted and integrated in a stochastic optimization model that will be used to test it 

and the optimization model itself will be here explained. This should leverage the previous knowledge 

present in the literature regarding the evolution of the conversion efficiency of the conversion 

technologies used in integrated biorefineries. 

In section 6.1, assumptions made to the elaboration of the curves, a description of the formulation itself 

and some considerations are made. Section 6.2 presents the stochastic optimization model of the 

biomass SC that will be used to test the adequacy of the learning curve constructed with the collected 

data. The chapter ends with some conclusions in section 6.3. 

 

6.1- Learning Curve’s Mathematical Formulation 

6.1.1-Problem features and main assumptions 

To formally and mathematically represent the technology evolution, the learning curve theory was 

chosen to be used and related with the conversion efficiency of the biorefineries’ conversion 

technologies. Even though it is promising, few studies in literature apply the experience curve theory to 

biomass converting plants. The main reason is related to the variations in these types of plants regarding 

technology’ type, plant size or type of feedstock used, which makes it harder to construct the learning 

curves (Samadi, 2018). However, from the data collection process presented in chapter 5 and resultant 

database for the present thesis, it is possible that another reason for the reduced amount of studies on 

this matter is the shortage of data necessary to the formulation process, especially about costs. 

Furthermore, this study focuses on studying the technology developments of integrated biorefineries 

after they reach a commercial level. In these, once it is installed and operational, technology evolution 

and optimization are most likely to happen due to learning-by-doing. The learning from research and 

development happened mostly when they were at a laboratory or pilot scale, given it is a phase more 

dedicated to investigation, research, and tests. Therefore, having all of this in mind, only the one-factor 

learning curve will be used and the research & development effect in learning will not be considered in 

the learning curve formulation of this thesis. 

Regarding learning system boundaries, these only include the technological process and all of its 

stages. In other words, the learning is considered to occur since the moment that the biomass, after 

arriving to the biorefinery, starts the transformation process until it becomes biofuel. Then, it includes all 

the stages in between, such as the pre-processing of the biomass, conversion stage or others, but also 

all the handling and labour needed in the process.  

At last, each technology/technological process has different characteristics and stages depending on 

what is being processed and what produced. Consequently, their learning rates are also different, which 
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results in different learning curves. Therefore, the experience curves will be constructed for each 

technology when it produces a type of biofuel from a type of biomass. 

 

6.1.2- Mathematical Formulation   

As said before in the subchapter 3.3, a learning curve relates a technology’s specific costs and its 

experience. It expresses that accumulating the use of a technology increases its experience, which 

usually translates in an optimization of the technological process involved. This optimization gives space 

for a technological improvement, usually of an economic nature, that ends up being reflected in cost 

reductions (Ferioli et al., 2009). 

After research in literature of the learning curve model, this relationship and the costs development 

observed with a one-factor learning curve can be described by equation (1): 

 

𝐶𝐶𝑏𝑚𝑝𝑡 = 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓

(
𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡

𝑋𝑏𝑚𝑝
𝑟𝑒𝑓 )−𝜀𝑏𝑚𝑝    (Ferioli et al., 2009)   (1) 

 

With: 

 𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 as the cumulated production of biofuel 𝑝 from biomass 𝑏 by conversion technology 𝑚 

in time period 𝑡 and scenario 𝑠, in tons. 

 𝐶𝐶𝑏𝑚𝑝𝑡 as the unitary cost of production of biofuel 𝑝 from biomass 𝑏 by conversion technology 

𝑚 at time period 𝑡, in €/ton. 

 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓

 and 𝑋𝑏𝑚𝑝
𝑟𝑒𝑓

 as the initial conditions at an arbitrary starting point, respectively, of the cost, 

in €/ton, and cumulated production, in tons, of biofuel 𝑝 from biomass 𝑏 by technology 𝑚. 

 (
𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡

𝑋𝑏𝑚𝑝
𝑟𝑒𝑓 )−𝜀𝑏𝑚𝑝 as the ratio of the current accumulated production product 𝑝 from biomass 𝑏 of 

conversion technology 𝑚 in time period 𝑡 to its initial accumulated production. This factor 

represents the reduction in cost of unit production expansion due to learning-by-doing. 

 𝜀𝑏𝑚𝑝 as a positive learning coefficient of conversion technology 𝑚 when producing 𝑝 from 

biomass 𝑏. 

 

Definition of Costs 

In equation (1), the costs are the dependent variable that vary with the increase of experience. Thus, 

they represent a measure/impact of learning and technological improvement. The choice of the type of 

costs being considered are related with the learning system boundary defined. Depending on what is 

being investigated, the costs dimension is defined. For instance, when entire power plants projects are 

being investigated, usually investment or electricity generation costs are analysed, given they include 

other relevant cost dimensions, as installation or operating and maintenance costs, or others (Samadi, 

2018). Since the learning curves will be constructed by conversion technology, the technology’s 

production costs are the chosen costs dimension for the present analysis.  
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Having this established, the variable 𝐶𝐶𝑏𝑚𝑝𝑡 of equation (1) represents the cost per unit of biofuel 

𝑝 generated by technology 𝑚 from biomass 𝑏 in period 𝑡. Variable 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓

 refers to the initial conditions 

of unitary production cost of technology 𝑚. 

 

Definition of Experience 

In equation (1), the experience is the independent variable and is usually represented by a cumulative 

measure of production or use (Nemet, 2006). An appropriate definition of experience also depends on 

what is being investigated and requires some consideration of where the experience is expected to 

occur. For example, if significant learning is expected to occur in the installation or construction of single 

power plants, the cumulative measure should be in terms of number of plants (Samadi, 2018). In this 

thesis, the developments in the conversion process of the conversion technologies, more specifically, 

the evolution of their conversion efficiency as a consequence of learning-by-doing, is what is being 

investigated. As the concept illustrates, the learning occurs by doing and by producing. Thus, learning 

is expected to occur in the production process. Moreover, while using a certain technology, there are 

two options: there is an external technological development that enables to change some aspects of a 

process, making it more efficient, or experience gained by producing enables to do the process in less 

time. Either way, after the improvements, the amount of product obtained from the same amount of 

feedstock, in the same amount of time, ends up being bigger than before the improvements, which 

reflects on a higher conversion efficiency, in that amount of time. Since the first option is external to the 

process and independent of the operation in a biorefinery, the focus will be on representing the second. 

Thus, the cumulative production quantity is the definition of experience chosen. 

In equation (1), this is represented by variable 𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 which is the cumulative production of biofuel 𝑝 

by technology 𝑡 from biomass 𝑏  in period 𝑡. 

 

Learning Coefficient  

The learning coefficient or elasticity of the learning-by-doing factor 𝜀𝑏𝑚𝑝 of equation (1) defines the slope 

of a power function. It is a measure of the impact the learning-by-doing factor has, in this case, on the 

unitary production costs of a conversion technology 𝑚 producing biofuel 𝑝 from biomass 𝑏, in time period  

𝑡. Also, it can be obtained through the learning rate (Nemet, 2006).  

The learning rate (LR) expresses the experience gained, in this case, by the conversion technologies, 

by being the rate at which their costs decline as their experience doubles (Samadi, 2018). The higher 

the rate, the bigger the decrease in costs for each doubling of experience. This means the gained 

experience is higher and the learning process faster. On contrary, the lower the rate, the smaller the 

decrease, and consequent slower process of learning. However, different technologies producing 

different biofuels from different biomasses, as expected and confirmed with research, have different 

learning processes. Then, the learning rate is dependent of the technology, product and feedstock.  
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Therefore, the rate at which the unitary conversion technology’s cost 𝐶𝐶𝑏𝑚𝑝𝑡 decreases as the 

cumulative production quantity doubles 𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 for each technology 𝑚, biofuel 𝑝 and biomass 𝑏, can 

be defined as: 

 

𝐿𝑅𝑏𝑚𝑝 = 1 − 2−𝜀𝑏𝑚𝑝  (Wiesenthal et al., 2012)  (2) 

 

Alternatively to the LR, the progress ratio (PR) represents the remaining costs after a doubling of 

experience (Samadi, 2018). Thus, the remaining conversion technology unitary costs 𝐶𝐶𝑏𝑚𝑝𝑡 once the 

cumulative production quantity 𝐴𝐶𝑏𝑚𝑝𝑡,  doubles, can be described as: 

 

𝑃𝑅𝑏𝑚𝑝 = 1 − 𝐿𝑅𝑏𝑚𝑝  (Wiesenthal et al., 2012)  (3) 

 

Conversion Efficiency 

As explained before, in this thesis, the concept under study is the conversion efficiency: the percentage 

of input that is turned into a useful output by an energy conversion process. It is also assumed that the 

co-products of the biofuel production will not be considered given the lack of information on their 

quantities in some biorefineries. Thus, the conversion efficiency of a technology 𝑚 producing a biofuel 

𝑝 from biomass 𝑏 in a time period 𝑡 in this study, is defined as the amount of the biomass feedstock 

𝑏𝑓𝑏𝑚𝑡 that is processed and converted only into the amount of biofuel 𝑝𝑞𝑝𝑚𝑡 produced: 

 

µ𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏𝑚𝑝𝑡 =
𝑝𝑞𝑏𝑚𝑝𝑡

𝑏𝑓𝑏𝑚𝑝𝑡
                  (5) 

 

If the cumulative quantities over time of the biomass feedstocks 𝐴𝐶𝑏𝑓𝑏𝑚𝑡 and biofuels 𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 are 

considered instead of their amount in each time period, equation (1) can then be written as: 

 

𝐶𝑏𝑚𝑝𝑡 = 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓

(
∑ µ𝑏𝑚𝑝𝑡.𝑏𝑓𝑏𝑚𝑡𝑡

µ𝑏𝑚𝑝𝑡0 .𝑏𝑓𝑏𝑚𝑡0
)−𝜀𝑏𝑚𝑝      (6) 

 

From equation (5) a relationship between the conversion efficiency and the chosen measure of 

experience – the accumulated conversion technology’s production quantity 𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 – can be obtained. 

Therefore, the higher the values of conversion efficiency, the higher the accumulated production 

quantities obtained. Since this last translates into a higher amount of experience, the first can too and 

also have impact and influence the conversion technology’s cost 𝐶𝐶𝑏𝑚𝑝𝑡 of producing biofuel 𝑝 from 

biomass 𝑏 in time period 𝑡, as shown with equation (6). Moreover, this influence on costs is variable, 

given the conversion efficiency µ𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏𝑚𝑝𝑡  of a technology 𝑚 is time dependent. This was concluded 

from Figures 8 and 9 of chapter 5.4.3 that show that with time passing by and experience being gained 

through the years, the values of the conversion efficiency tend to increase. Thus, the amount in which 

the accumulated production increases in consecutive time periods of equal duration is higher as the 

efficiency of the process increases. This will translate in increasing reductions in costs over time. 
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Concluding, equation (5) is the equation that represents the relationship between conversion efficiency 

and the experience gained and equation (6) - the expression of the learning curve - is the equation that 

will show, over time, the impact of gaining experience with production and, thus, of increasing the 

conversion efficiency in terms of costs. 

 

6.2- Stochastic Optimization Model’s Mathematical Formulation 

6.2.1– Problem Features and Model Construction 

To test if the learning curve formulation presented in section 6.2 is adequate to represent the evolution 

of the conversion technologies and the impact of their future conversion efficiencies on costs, a 

stochastic optimization model will be used. Since the case study, SC and uncertainty in question is the 

same and also, there is the opportunity to work with the authors of the study, the two-stage stochastic 

MILP model constructed by Paulo et al. 2020 for the design of the biomass SC considering the 

uncertainty in the conversion efficiency will be used and adapted to the present study (a compact version 

of the original model of Paulo et al. 2020 can be found in Table 10 in APPENDIX B).  

Just like the original, this thesis stochastic optimization model uses a scenario tree approach, composed 

with nodes and arcs, to handle the uncertainty under study in the context of a two-stage stochastic 

programming model. Each node represents the possible outcome of the conversion efficiency with an 

associated probability of occurrence, the arcs represent the different evolutions it may have, and each 

scenario is represented by the path from the root to a leaf node. In this approach, the decision variables 

are divided into first-stage variables and second-stage variables. The first-stage variables are the ones 

related to decisions being made before the uncertainty is revealed – plant location, capacity and process 

technology - and the second-stage ones correspond to decisions being made after having full 

information on the uncertain parameters – production and processing quantities and transfer flows. 

Furthermore, the model of the present study contributes to the one by Paulo et al. 2020 by accounting 

the impact on costs of the conversion efficiency evolution due to technological developments using the 

learning curve theory. However, the approach to include them in the model whilst still having a linear 

problem was to use them to calculate the production costs of each technology for different levels of 

accumulated production of a certain type of product from a certain type of feedstock. This turns into a 

parameter that feeds the model with personalized production costs for each accumulated production 

level that decrease at the same time as these last increases and thus, illustrating the learning curve 

theory. Finally, while the model by Paulo et al. 2020 includes intermediate processing/storage facilities, 

the model of this study will not since its focus is the biorefineries and their processing technologies. The 

results of this thesis adapted stochastic optimization model will then be compared to a deterministic 

version of it and some conclusions will be reached.  

Having this said, the next subsections are dedicated to present and explain the mention adapted version 

of the model developed by Paulo et al. 2020. Before presenting it, the notation is formally introduced. 

This includes the sets, subsets, parameters and decision variables, with respective notation and 



 

49 

description of each symbol. Then, the objective function is presented and, finally, the constraints are 

introduced. 

 

6.2.2– Sets and Subsets 

The following sets are defined: 

 𝑏, �̄�  ∈  𝐵: Biomass type 

 𝑝  ∈  𝑃: Products 

 𝑖 ∈ 𝐼 : Biomass collection sites 

 𝑘  ∈  𝐾: Integrated biorefinery site 

 𝑣  ∈  𝑉: Market site 

 𝑞  ∈  𝑄: Integrated biorefinery’s conversion capacities 

 𝑚  ∈  𝑀: Integrated biorefinery’s conversion technology 

 𝑟  ∈  𝑅: Biomass transportation mode 

 𝑧  ∈  𝑍: End product’s transportation mode 

 𝑡, �̄�   ∈  𝑇: Time periods 

 𝑠, �̄�  ∈  𝑆: Scenario tree nodes 

 𝑛 ∈ 𝑁: Level of accumulated production in the biorefineries 

Together with the following subsets: 

 𝑊𝑃 = {(𝑚, 𝑝): 𝑚 ∈ 𝑀 ∧  𝑝 ∈ 𝑃} :  Available conversion technology 𝑚 to produce product  𝑝. 

 𝑊𝐵 = {(𝑚, 𝑏): 𝑚 ∈ 𝑀 ∧  𝑏 ∈ 𝐵}: Available conversion technology 𝑚 to process biomass 𝑏. 

 𝑅𝐵 = {(𝑏, 𝑟, 𝑡): 𝑏 ∈ 𝐵 ∧ 𝑟 ∈ 𝑅 ∧ 𝑡 ∈ 𝑇} : Available transportation mode 𝑟 to transport biomass 𝑏 in 

time period 𝑡. 

 𝑍𝑃  =   {(𝑝, 𝑧, 𝑡):  𝑝 ∈ 𝑃 ∧ 𝑧 ∈ 𝑍 ∧ 𝑡 ∈ 𝑇} :  Available transportation mode 𝑧 to transport product 𝑝 

in time period 𝑡. 

 𝐶𝐸𝐵𝑃 = {(𝑏,𝑚, 𝑝, 𝑠, 𝑡): 𝑝 ∈ 𝑃 ∧  𝑏 ∈ 𝐵 ∧ 𝑚 ∈ 𝑀 ∧ 𝑠 ∈ 𝑆  ∧  𝑡 ∈ 𝑇}: Available technology efficiency 

of transforming biomass 𝑏 into product 𝑝 by technology 𝑚. 

 𝐷𝐵 = {(𝑖, 𝑘): 𝑖 ∈  𝐼 ∧  𝑘 ∈ 𝐾}: Maximum distance between biomass collection site 𝑖 and 

biorefinery 𝑘 to acquire biomass. 

 𝑆  =   {(𝑠, 𝑡):  𝑠 ∈ 𝑆  ∧  𝑡 ∈ 𝑇} : Node 𝑠 of the scenario tree in each time period 𝑡. 

 𝐻  =  {(𝑠, �̄�):  𝑠 ∈ 𝑆  ∧  �̄� ∈ 𝑆} : Predecessors �̄� of node 𝑠 in the scenario tree. 

 

6.2.3– Parameters 

The parameters are essential to the model, given they that represent input data to the model. The 

parameters used in this model are presented below, in groups. 

 

Distance Parameters 

 𝐷𝐼𝐾𝑖𝑘 : Distance between biomass collection site 𝑖 and integrated biorefinery site 𝑘 (km). 
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 𝐷𝐾𝑉𝑘𝑣 : Distance between integrated biorefinery 𝑘 and market site 𝑣 (km). 

Cost Parameters 

 𝐶𝐵𝑏𝑖𝑡 : Cost of biomass type 𝑏 ∈  𝐵 at biomass collection site 𝑖 in time period 𝑡 (€/ton). 

 𝐶𝐼𝐵𝑚𝑞𝑡 : Installation cost of an integrated biorefinery facility with conversion technology 𝑚 and 

conversion capacity 𝑞 (€). 

 𝐶𝐹𝐵𝑚𝑞𝑡 : Annual fixed operation costs of an integrated biorefinery facility with conversion 

technology 𝑚, conversion capacity 𝑞, in time period 𝑡 (€). 

 𝐶𝐶𝑏𝑚𝑝𝑛𝑡: Annual variable operation costs of a conversion technology 𝑚 when producing 

product 𝑝 from biomass 𝑏 in time period 𝑡, at a given level of accumulated production 𝑛. 

 𝐶𝑇𝐵𝑏𝑟𝑡 : Biomass 𝑏 transportation costs using transportation mode 𝑟, in time period 𝑡 

(€/km/ton). 

 𝐶𝑇𝑃𝑝𝑧𝑡 : End product 𝑝 transportation costs using transportation mode 𝑧, in time period 𝑡 

(€/km/ton). 

Demand Parameters 

 𝐷𝑃𝑝𝑣𝑡 : Demand of end product 𝑝 at market site 𝑣, in time period 𝑡 (ton). 

Production Parameters 

 𝐶𝐴𝑃𝑚𝑞 : Integrated biorefinery’s conversion capacity 𝑞 with conversion technology 𝑚 (ton). 

 𝐿𝐴𝐶𝑛: Levels 𝑛 of accumulated production. 

 𝑀𝑎𝑥: Value of maximum possible production. 

Resource Parameters 

 𝐵𝐴 𝑏𝑖𝑡 : Amount of available biomass 𝑏 ∈ 𝐵 at biomass collection site 𝑖, in time period 𝑡 (ton) 

Efficiency Parameters 

 µ𝑏𝑚𝑝𝑠𝑡 : Conversion efficiency of transforming biomass 𝑏  ∈  𝐵 into end product 𝑝 by 

conversion technology 𝑚 in scenario 𝑠 and time period 𝑡. 

 𝛹𝑠 : Probability of scenario tree node 𝑠. 

Conversion Parameters 

 𝑃𝑇𝐵𝑚𝑏 :{
1,   if conversion technology 𝑚 is available to process biomass b 

0, otherwise
 

 𝑃𝑇𝑃𝑚𝑝: {
1,   if conversion technology 𝑚 is available to produce end product 𝑝

0, otherwise
 

 

6.2.4– Decision Variables 

The model includes continuous non-negative and binary variables. Both are presented bellow: 

 

Continuous non-negative variables 

 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡 : Flow of biomass 𝑏  ∈  𝐵 from biomass collection site 𝑖 to integrated biorefinery site 

𝑘 with technology 𝑚 using transportation mode 𝑟 for scenario node 𝑠 in time period 𝑡 (ton). 
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 𝐼𝑏𝑘𝑚𝑠𝑡
𝐵  : Total flow of biomass 𝑏 that goes into the integrated biorefinery’s site 𝑘 to technology 𝑚 

in time period 𝑡 ad scenario 𝑠. 

 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡: Production quantity of product 𝑝 by tecchnology 𝑚 from biomass 𝑏 on biorefinery site 

𝑘, in time period 𝑡 and scenario 𝑠 

 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿 : Production quantity of product 𝑝 from biomass 𝑏 by tecchnology 𝑚  on biorefinery 

site 𝑘, correspondent to accumulated production level 𝑛, time period 𝑡 and scenario 𝑠. 

 𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡: Accumulated production quantity of product 𝑝 from biomass 𝑏 from technology 𝑚 

on biorefinery’s site 𝑘, in time period 𝑡 and scenario 𝑠. 

 𝑃𝐹𝑚𝑝𝑘𝑣𝑧𝑠𝑡 : Flow of product 𝑝, obtained by conversion technology 𝑚, from integrated biorefinery 

site 𝑘 to market 𝑣 by transportation mode 𝑧 for scenario node 𝑠 in time period 𝑡 (Mg) 

Binary Variables 

 𝑌𝑘𝑚𝑞𝑡
𝐵  : {

1,   if opens an integrated biorefinery on site k with converson technology m with
processing capacity q, in time period t. If opens, it will not close.

0, otherwise.
 

 𝑂𝑘𝑚𝑞𝑡
𝐵  : {

1, when opens an integrated biorefinery on site k with conversion technology m with
processing capacity q, in time period t. If opens, it will not close.

0, otherwise.
 

 𝑌𝑘𝑚𝑛𝑠𝑡
𝑁  : {

1,   if integrated biorefinery on site k with conversion technology m with
is on level n of accumulated production  in time period t.

and scenario s.
0, otherwise or biorefinery is not installed.

 

 

6.2.5– Objective Function 

This model has an economical focus and seeks to minimize the expected supply chain costs, given, as 

mentioned before, this is important to leverage the biofuels as a sustainable competitive alternative to 

fossil fuels. The expression is given by equation (8): 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡𝑆𝐶  =  ∑𝛹𝑠  

(

 
 
 
 
 
 
 
 

∑ ∑ ∑∑ ∑ ∑𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡𝐶𝐵𝑏𝑖𝑡
𝑡𝑟:( 𝑏,𝑟,𝑡)∈𝑍𝐵𝑚𝑘𝑖:(𝑖,𝑘)∈𝐷𝐵𝑏:(𝑚,𝑏)∈𝑊𝐵

 +                                 (8𝑎)

∑ ∑ ∑ ∑∑∑𝐶𝐶𝑏𝑚𝑝𝑛𝑡𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿

𝑡𝑛𝑘𝑝:(𝑚,𝑝)∈𝑊𝑃𝑚 𝑏(𝑚,𝑏)∈𝑊𝐵

 +                                    (8𝑏)

  ∑ ∑ ∑∑ ∑ ∑𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡𝐷𝐼𝐾𝑖𝑘 𝐶𝑇𝐵𝑏𝑟𝑡
𝑡𝑟:( 𝑏,𝑟,𝑡)∈𝑍𝐵𝑚𝑘𝑖:(𝑖,𝑘)∈𝐷𝐵𝑏:(𝑚,𝑏)∈𝑊𝐵

 +               (8𝑐)

∑ ∑ ∑∑∑ ∑ ∑𝑃𝐹𝑏𝑚𝑝𝑘𝑣𝑧𝑠𝑡 𝐷𝐾𝑉𝑘𝑣 𝐶𝑇𝑃𝑝𝑧𝑡
𝑡𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑣𝑘𝑚𝑝:(𝑚,𝑝)∈𝑊𝑃𝑏:(𝑚,𝑏)∈𝑊𝐵

       (8𝑑)
)

 
 
 
 
 
 
 
 

𝑠

            

+ ∑∑∑∑𝑂𝑘𝑚𝑞𝑡
𝐵

 𝐶𝐼𝐵𝑚𝑞𝑡
𝑡𝑞𝑚𝑘

                                                                      (8𝑒)   

+ ∑∑∑∑𝑌𝑘𝑚𝑞𝑡
𝐵  𝐶𝐹𝐵𝑚𝑞𝑡

𝑡

  

𝑞𝑚𝑘

                                                                    (8𝑓) 

  (8) 

The costs that are being minimized include: 
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 The total biomass acquisition cost (8𝑎), which is calculated with the biomass acquisition 

cost 𝐶𝐵𝑏𝑖𝑡 and the total outflow flow 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡  in period time 𝑡, given it represents the total 

quantities purchased in all suppliers.  

 The total fixed operating costs of the integrated biorefineries(8𝑓) that consider if an 

integrated biorefinery opens (𝑌𝑘𝑚𝑞𝑡
𝐵 ), a fixed costs 𝐶𝐹𝐵𝑚𝑞𝑡 for the integrated biorefineries cannot 

be avoided. These are costs constant over time, in the long run, such as insurance, interests 

and taxes, depreciation, administration expenses, etc. 

 The total variable operating costs of the biorefineries (8𝑏), account for utilities, direct labor, 

production, maintenance direct costs and all costs that vary with the operation (𝐶𝐶𝑏𝑚𝑝𝑛𝑡) and 

are multiplied by the amount of production in the facility 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿 . These costs are calculated 

with the use of learning curves that, as defined in subchapter 6.1, use the accumulated 

production as the definition of experience. Thus, they are dependent on the level of 

accumulated production each facility has reached in each time period and scenario, and 

decrease each time one facility reaches a new level of accumulated production. 

 The annualized investment costs of integrated biorefineries (8e), determined by the 

annualized investment cost 𝐶𝐼𝐵𝑚𝑞𝑡  of a facility with a given technology and conversion capacity, 

multiplied by a binary variable 𝑂𝑘𝑚𝑞𝑡
𝐵 . The binary enables to account this cost only in the time 

period the integrated biorefinery is installed. 

 The transportation costs for biomass (8𝑐), that include all possible movements of biomass 

𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡  transported from the biomass collection sites 𝑖 to integrated biorefinery sites 𝑘 in 

transportation modes 𝑟, multiplied by the distances 𝐷𝐼𝐾𝑖𝑘  and unitary transportation costs 𝐶𝑇𝐵𝑏𝑟𝑡.  

 And finally, the transportation costs for end products(8𝑑), that account the costs of moving 

the products from the integrated biorefinery site 𝑘 to the market 𝑣 by multiplying the unitary 

transportation cost 𝐶𝑇𝑃𝑝𝑧𝑡 by the distance between the two 𝐷𝐾𝑉𝑘𝑣  and the flow of products 

𝑃𝐹𝑏𝑚𝑝𝑘𝑣𝑧𝑠𝑡. 

All, but the fixed and installation costs of the integrated biorefineries facilities(8𝑒 − 8𝑓), are dependent 

of the scenario 𝑠 of the conversion efficiency. This because, the conversion efficiency is an uncertainty 

that affects the amount of product produced in the integrated biorefineries and necessary amount of 

biomass to do it. Consequently, will also affect the biomass’s and end-product’s flows. Since the 

efficiency is dependent of the scenarios in which it is defined, the remaining variables that dependent 

on it, are also dependent of each scenario. 

 

6.2.6– Constraints 

Finally, the constraints of the model are presented. These are divided into the following groups:  

 

 Biomass availability: this constraint guarantees that all biomass flows 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡  that leave a biomass 

collection site 𝑖 cannot exceed the available biomass 𝐵𝐴𝑏𝑖𝑡 on that site. 
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∑ ∑ ∑ 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡 𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑘𝑚:(𝑚,𝑏)∈𝑊𝐵
≤  𝐵𝐴𝑏𝑖𝑡  ∀ 𝑏 ∈ 𝐵  ∧ ∀𝑖 ∈ 𝐼 ∧  ∀𝑡 ∈ 𝑇 ∧  ∀𝑠 ∈ 𝑆    (9) 

 

 Total inflow of integrated biroefineries: this constraint ensures that the amount of biomass 𝐼𝑏𝑘𝑚𝑠𝑡
𝐵  that 

is going to be processed by technology 𝑚 in biorefinery 𝑘 is equal to the amount of biomass 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡 

that arrives to that biorefinery from the various transportation modes and biomass collection sites.  

 

∑ ∑ ∑ 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡 𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑖𝑏:(𝑚,𝑏)∈𝑊𝐵
= ∑ 𝐼𝑏𝑘𝑚𝑠𝑡

𝐵
𝑏:(𝑚,𝑏)∈𝑊𝐵

  ∀ 𝑘 ∈ 𝐾 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑡 ∈ 𝑇 ∧ ∀𝑠 ∈ 𝑆  (10) 

 

 Mass balance between the inflow and outflow of an integrated biorefinery: equation (11) states that 

all flows of biomass 𝐼𝑏𝑘𝑚𝑠𝑡
𝐵  that arrive at the biorefinery site multiplied by the conversion efficiency of 

the technologies that are available to process them, must be equal to the production quantities of all 

products produced on that site. 

 

∑ ∑ 𝐼𝑏𝑘𝑚𝑠𝑡
𝐵 µ𝑏𝑚𝑝𝑠𝑡𝑝:(𝑏,𝑚,𝑝)∈𝐶𝐸𝐵𝑃 =𝑏:(𝑏,𝑚,𝑝)∈𝐶𝐸𝐵𝑃

∑ ∑ 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡𝑝:(𝑚,𝑝)∈𝑊𝑃𝑏:(𝑚,𝑏)∈𝑊𝐵
  ∀𝑚 ∈ 𝑀 ∧ ∀𝑘 ∈ 𝐾 ∧ ∀𝑡 ∈

𝑇 ∧ ∀𝑠 ∈ 𝑆             (11) 

 

 Total outflow of integrated biorefinery: this constraint illustrates that the amount of production quantity 

by a technology 𝑚 in an integrated biorefinery site 𝑘 has to be the same as the sum of all products’ 

flows that are sent from that biorefinery’s site to the markets. 

  

∑ ∑ 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡𝑝:(𝑚,𝑝)∈𝑊𝑃𝑏:(𝑚,𝑏)∈𝑊𝐵
= ∑ ∑ ∑ 𝑃𝐹𝑚𝑝𝑘𝑣𝑧𝑠𝑡𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑣𝑝:(𝑚,𝑝)∈𝑊𝑃

 ∀𝑘 ∈ 𝐾 ∧ ∀𝑚 ∈ 𝑀 ∧  ∀𝑡 ∈

𝑇 ∧ ∀𝑠 ∈ 𝑆  (12) 

 

 Demand satisfaction: This constraint guarantees that the demand is satisfied. Thus, the sum of each 

product produced must be equal or greater than the demand for that product in each market and time 

period. 

 

∑ ∑ ∑ 𝑃𝐹𝑚𝑝𝑘𝑣𝑧𝑠𝑡𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑘𝑚:(𝑚,𝑝)∈𝑊𝑃
  ≥  𝐷𝑃𝑝𝑣𝑡 ∀𝑝 ∈ 𝑃 ∧ ∀𝑣 ∈ 𝑉 ∧ ∀𝑠 ∈ 𝑆 ∧ ∀𝑡 ∈ 𝑇  (13) 

 

The next constraints presented, are the ones that define the installation of the integrated biorefineries. 

These will identify the best locations to install them, their technologies and capacities. 

 

 Number of integrated biorefineries installed: this constraint defines that is only allowed to install one 

biorefinery facility with a given conversion technology 𝑚 with capacity 𝑞, in each time period 𝑡, as 

shown in equation (14). 

 

∑ ∑ 𝑌𝑘𝑚𝑞𝑡
𝐵

𝑞𝑚  ≤  1    ∀𝑘 ∈ 𝐾 ∧ ∀𝑡 ∈ 𝑇  (14) 

   



 

54 

 Production capacities of integrated biorefinery facilities: also, it is important to ensure the production 

of technology 𝑚 cannot exceed its installed production capacity. Thus, the total production quantity 

of technology 𝑚 in biorefinery site  , in period 𝑡 and scenario 𝑠 , must be lower or equal to its capacity 

of production 𝑃𝐵𝐶𝑚𝑞 . This last multiplied by the binary variable 𝑌𝑘𝑚𝑞𝑡
𝐵 ,  that identifies if a given 

technology 𝑚 is installed in a biorefinery on site 𝑘 with capacity of production 𝑞, in time period 𝑡. 

 

∑ ∑ 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡𝑝:(𝑚,𝑝)∈𝑊𝑃𝑏:(𝑚,𝑏)∈𝑊𝐵
 ≤  ∑ 𝑃𝐵𝐶𝑚𝑞𝑞 𝑌𝑘𝑚𝑞𝑡

𝐵     ∀𝑘 ∈ 𝐾 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑠 ∈ 𝑆 ∧ ∀𝑡 ∈ 𝑇  (15) 

 

 Installed facilities remain open: this constraint defines that if a biorefinery opens, then it will not close 

during the project time horizon. This is reasonable to assume, given the costs of installing a 

biorefinery are significant enough to difficult the decision of closing it in the following time periods. 

 

𝑌𝑘𝑚𝑞𝑡
𝐵  ≥  𝑌𝑘𝑚𝑞�̄�

𝐵     ∀𝑘 ∈ 𝐾  ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑞 ∈ 𝑄 ∧ ∀𝑡 ∈ 𝑇  (16) 

 

 When an integrated biorefinery facility opens: the following two constraints identify when a biorefinery 

opens for the first time period (17) and for the subsequent time periods (18). Equation (17) ensures 

that the first time the binary variable  𝑌𝑘𝑚𝑞𝑡
𝐵  is one, that’s the time period when the biorefinery opens. 

Equation (18) ensures that if a biorefinery opens in the previous time period, then it will not open in 

the present time period. 

 

𝑂𝑘𝑚𝑞𝑡
𝐵  =  𝑌𝑘𝑚𝑞𝑡

𝐵     ∀𝑘 ∈ 𝐾  ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑞 ∈ 𝑄 ∧  𝑡 = 1  (17) 

 

𝑂𝑘𝑚𝑞𝑡
𝐵  =  𝑌𝑘𝑚𝑞𝑡

𝐵  − 𝑌𝑘𝑚𝑞𝑡−1
𝐵     ∀𝑘 ∈ 𝐾 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑞 ∈ 𝑄 ∧  𝑡 > 1  (18) 

 

The next constraints are this study contribution to the model developed by Paulo et al. 2020. These are 

constraints that enable the model to consider the impact of the experience and conversion efficiency 

evolution on costs using the learning curve theory. Equations (19-20) focus on the chosen definition of 

experience of the conversion technologies – the accumulated production. Equations (21-22) focus on 

defining the level of total accumulated production 𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 each technology has reached in scenario 

𝑠 and time period 𝑡. Finally, equations (23-24) focus on corresponding the level of accumulated 

production, and thus experience, a technology has reached in time period 𝑡 and scenario 𝑠 to its 

production 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 in the same scenario and time period. 

 

 The accumulated production quantity of biofuels: the next two constraints define the accumulated 

production an installed technology 𝑚 on a biorefinery facility site 𝑘 has in scenario 𝑠 for the initial 

time period (19) and the remaining time periods (20). In equation (19), for the first time period, the 

accumulated production of biofuel 𝑝 from biomass 𝑏 by a technology 𝑚 is the same amount of the 

total production of that product from that biomass. In equation (20), for the remaining time periods, 
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the accumulated production of biofuel 𝑝 from biomass 𝑏 by technology 𝑚 is the total production of 

the present time period 𝑡 and scenario 𝑠, plus the accumulated production of the previous time period 

𝑡 − 1 and predecessor �̄� of scenario node 𝑠. 

 

𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 =  𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈

𝑊𝐵  ∧  ∀ 𝑡 = 1  (19) 

 

𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 =  𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 + 𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘�̄�(𝑡−1) ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀ �̄� ∈ 𝐻 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧

 ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 > 1  (20) 

 

 Number of levels of accumulated production: This constraint ensures that the accumulated 

production of conversion technology 𝑚, in each time period and scenario, belongs to at most one 

level of accumulated production and, consequently, has one associated unitary cost. If the binary is 

zero, either the level accumulated production was not reached or the biorefinery was not installed. 

 

∑ 𝑌𝑘𝑚𝑛𝑠𝑡
𝑁 ≤ 1𝑛  ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑡 ∈ 𝑇  (21) 

 

 Level of accumulated production: the next to constraint defines the level of accumulated production 

a technological process 𝑚 in each biorefinery has reached. Thus, the accumulated production 

𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡  of technology 𝑚 in scenario 𝑠 and time period 𝑡, must be between two consecutive levels 

of accumulated production multiplied by the binary variable 𝑌𝑘𝑚𝑛𝑠𝑡
𝑁 . The binary identifies if the 

technology’s accumulated production is between those two levels of experience. In the cases it is, it 

associates that accumulated production of the technology with the level that has the lower 

accumulated production quantity. 

 

∑ 𝐿𝐴𝐶𝑛𝑛 𝑌𝑘𝑚𝑛𝑠𝑡
𝑁  ≤  𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 ≤ ∑ 𝐿𝐴𝐶𝑛+1𝑛 𝑌𝑘𝑚𝑛𝑠𝑡

𝑁  ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈

𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 𝑇   (22) 

 

 Correspondent level of accumulated production of the total production: The two equations bellow 

correspond the total production of a technology in a time period 𝑡 and scenario 𝑠 to the level of 

accumulated production it enabled the technology to reach in the same time period and scenario. 

This is done using an auxiliary variable of production quantity 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿   that assumes the value of 

the production quantity 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 when the binary 𝑦𝑁𝑘𝑚𝑛𝑠𝑡 is equal to 1 for a technology 𝑚 in level of 

accumulated production 𝑛. This auxiliary variable enables the model to be maintained linear. The 

parameter 𝑀𝑎𝑥 is the maximum value of production that exists for any technology and it has to be 

higher than any possible value for 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡. This way, the parameter will guarantee that the auxiliary 

non-negative variable 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿  will be zero when  𝑦𝑁𝑘𝑚𝑛𝑠𝑡 is zero.   
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𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 − (1 − 𝑦𝑁𝑘𝑚𝑛𝑠𝑡) ∗ 𝑀𝑎𝑥 ≤ 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿 ≤ 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 + (1 − 𝑦𝑁𝑘𝑚𝑛𝑠𝑡) ∗ 𝑀𝑎𝑥   ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑛 ∈

𝑁 ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 𝑇   (23) 

 

∑ 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿

𝑛 ≤ ∑ 𝑦𝑁𝑘𝑚𝑛𝑠𝑡 ∗ 𝑀𝑎𝑥𝑛   ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈

𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 𝑇  (24) 

 

6.3- Chapter Conclusions 

In this chapter, the problem features are presented, and a learning curve model is developed. This 

model is proposed to tackle the lack of consideration of the evolution of the technology conversion factor 

due to the maturation of technology through time and represent the impacts it has. Thus, once the 

specific costs and measure of experience were defined, an equation of a curve that considers this 

evolution was possible to be constructed. Furthermore, an adapted two-stage stochastic MILP 

optimization model for the design of the biomass SC is presented. In order to maintain the problem 

linear, the unitary costs of production of each conversion technology are included in the optimization 

model as a parameter and are calculated for various levels of experience using the learning curve model. 

Then, to include the logic of the learning curve theory, the optimization model uses the defined measure 

of experience – the accumulated production - of the learning curve model as a variable and associates 

it to an accumulated production level that has an assigned unitary cost. This way, in the optimization 

model, by increasing the accumulated production of a technology and thus, its experience, the 

associated unitary production costs will still be decreasing. 

The next step involves applying this model to this thesis case study.
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7- CASE STUDY 

This chapter introduces the case study to which the stochastic optimization model of this thesis will be 

applied. After, the network at study is characterized and the data collection and analysis procedures 

regarding the case study are explained. Finally, some conclusions are made. 

 

7.1- The Portuguese Case 

The energy sector has huge economic and environmental impact, because besides contributing to the 

creation of employment, its effects are positive or negative in the environment depending on the sources. 

As explained in chapter 2.1, the EU is working towards becoming an economy that consumes secure, 

safe, competitive and, most importantly, sustainable energy. It has created regulations, energy 

packages, defined goals, etc., and, at the moment, it has a plan - the 2030 Climate Target Plan - to 

reduce greenhouse emissions to at least 55% below 1990 levels by 2030. In order to meet the targets 

of the plan, all EU Member States needed to submit, by the end of 2019, a 10-year integrated national 

energy and climate plan (NECP) for the period from 2021 to 2030. This plan had to address energy 

efficiency, renewables, GHG emissions reductions, interconnections and research and innovation 

(fernbas, 2019).  

Regarding the Portuguese reality, the “Resolução do Conselho de Ministros nº53/2020” approves the 

National Plan of Energy and Climate 2030 (PNEC 2030) of Portugal. In this plan, besides being defined 

goals of GHG emissions’ reductions, the reduction of the primary energy consumption to improve the 

energy efficiency and increase of electricity interconnections, it was defined the incorporation of 47% 

energy from renewable sources in the final gross energy consumption. This doesn’t seem to be a 

problem given the country has been registering a good progress in its renewable energy objectives. The 

“Resolução do Conselho de Ministros nº53/2020” states that in 2018, around 30.3% of the final 

consumption of energy in Portugal was satisfied using renewable sources. This percentage goes in line 

with the country’s goal to be reached in the year 2020: 31% of renewable sources of energy in the final 

energy consumption and 10% of renewable energy sources in the final consumption of energy in 

transportation – the commitment done with the European Commission. Moreover, in 2017, the 

“Resolução do Conselho de Ministros nº163/2017” considers the existent national potential and 

approves the National Plan for the Promotion of Biorefineries (PNPB). The PNPB enforces the 

valorisation of renewable sources of energy by supporting the use of biomass as an alternative source 

of energy to fossil resources. Also, presents a strategy, for the next years until 2030, to promote 

biorefineries in the national territory, employment and energy independency, to contribute to the 

reduction of GHG’s emissions and to enhance biomasses that haven’t been valued, that are residual or 

with low energetic value. An example is the residual biomasses from forests and agriculture. These have 

great potential since they do not compete with the human and animal food chain and given Portugal has 

considerable potential on the production of those. 
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Even though they are not in this thesis final biorefinery database due to lack of information, Portugal 

has two main biofuel producers that contribute to achieving the objectives stated before: the Sovena 

group and the Prio group. The first has a production unit that consumes oilseeds to obtain biodiesel and 

glycerine and operates in a fully integrated way. Thus, ensures that everything is transformed and 

contribute to a greener energy. Regarding Prio, it has a biodiesel plant located in the Port of Aveiro and 

it was the first company in Portugal to offer biodiesel blends they consider to be reach and that enhance 

the lubrication, efficiency, and engine performance of their diesel. 

Having now a picture of the Portuguese context, it is safe to say the model presented in this thesis is 

adequate and contributes to the country’s objectives and future plans regarding bioenergy and biofuels. 

The model will then be fed with data based on the Portuguese reality, except in cases when data from 

Portugal is insufficient or inexistent. Either way, the model’s inputs are exposed in the next section. 

 

7.2- Case Study’s Data Collection 

This section focuses on the collected data for the optimization model inputs. The most uncertain 

parameters and the assumptions made are also here explained. Moreover, all the sources used, such 

as literature, public information, companies and expert’s data will be identified. 

 

7.2.1- Network Characterization 

A graphical representation of the biomass SC network structure and respective flows is presented in 

Figure 10. The network structure used was similar to the used by Paulo et al. 2020, but without the pre-

processing facilities, as they made the problem more complex and were secondary to the study’s focus 

on biorefineries and their conversion technologies. It contains as nodes biomass collection sites, 

integrated biorefineries, markets and transportation mode. However, some the elements used to define 

the operation of each node, such as types of biomass, technology, and products were adapted according 

to the research done in the present study and the information collected and presented in chapter 5. 

 

 

Figure 10- Supply Chain Structure 
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Regarding the considered SC network: 

 Biomass Collection Sites: These are the geographic places, in Portugal, that are potential 

candidates to biomass collection. 150 out of 278 Portuguese municipalities were considered 

after excluding the ones with the calculated quantities relatively low to be considered as biomass 

production sites. Also, the collection sites are assumed to exist in the headquarters of each. 

Regarding the calculation of biomass availability on each, in chapter 5 it is defined the types of 

biomass considered in this study from the information found with research. Also, the different 

biomass types found for the production of each were considered together as one entity. Thus, 

for the considered category of sugar/starch biomass, quantities of corn/cereals production were 

searched and for seeds/animal fats biomass catergory, quantities of sunflower seeds production 

were searched for each of the considered Portuguese municipalities. From the National 

Statistics Institute of Portugal’s website (“Portal do INE,” n.d.), for each municipality could be 

obtained their total surfaces in acres, the percentage of starch/sugar and seeds/animal fats 

surface occupation from their total area dedicated to agricultural occupation and their 

productivity per acre for each type of biomass. These data are from 2018, however were 

considered updated. From the Direção-geral dos Território’s website, a search made for the 

year 2020 on the land use and occupation in Portugal was found (“Uso e ocupação do solo em 

Portugal continental 1995 a 2018 | DGT,” n.d.). In this report it is possible to find the percentages 

of agricultural occupation of each municipality and the percentage of that dedicated only to the 

production of crops (seeds and grains). The information from these two websites enabled to 

calculate both biomass types availability, in tons, for each municipality. The final biomass 

quantities available can be found in Table 11 in Appendix C and they are assumed to be 

constant over the time horizon of this study. 

 Integrated Biorefinery’s Sites: Different types of biomass can be routed to different integrated 

biorefineries depending on the technologies they have installed. In these, biomass goes through 

many stages until is transformed into biofuel. The two technological conversion processes 

considered are the fermentation and the transesterification processes and they can only process 

starch/sugar to produce bioethanol and animal fats/seeds to produce biodiesel, respectively. 

These conclusions were a result of the research presented in chapter 5 and the available 

information found with it. There are 28 potential sites considered for biorefinery’s plant 

installation that can have either one of the technologies. Some of them are districts and others 

are municipalities. For both options, the installation location of the biorefineries was considered 

in the geographic centre of each.  

 Markets Sites: The market sites considered are the headquarters of each one of the 18 districts 

of Portugal. These locations will receive biofuels from the integrated biorefineries depending on 

the demand of each biofuel. As stated before, the biofuels considered in this study are only 

biodiesel and bioethanol, thus research was done to find their demands in Portugal. Once again, 

the website of the National Statistics Institute of Portugal (“Portal do INE,” n.d.) was consulted 
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and the consumption of gasoline, diesel, and biodiesel were found for each municipality, which 

then enabled to calculate the respective amounts of each district. With the demand of the 

biodiesel being known, to obtain the demand values of bioethanol, the mandatory incorporation 

of 10% of biofuel in the road fuels quantities was used. This percentage was stipulated for the 

years between 2011 and 2020 in terms of Artº 13 from the Portuguese Government’s Decreto-

Lei nº117/2010, of 25th of October of 2010. This percentage has been updated in Portugal, 

however it is the one considered given it goes in line with the mandatory objective the European 

Parliament approved for each member state to reach until the year of 2020 (Directive 

2009/28/CE of the European Parliament). Having the total amount of consumption of fuels and 

biodiesel, the bioethanol consumption was calculated in order for the sum of quantities of 

biodiesel and bioethanol consumption to equal 10% of the fuels consumption. The final biofuels 

demand can be found in Table 19 in Appendix C and they are assumed to be constant over the 

time horizon of this study. 

The distances between biomass collection sites and integrated biorefinery sites can be found in Table 

12 and the distances between integrated biorefinery sites and market sites can be found in Table 13, 

both in Appendix C. These were the same used by Paulo et al. 2020 and are distances by road between 

the headquarters of each municipality or district obtained from the Portuguese organization that 

manages the road infrastructure. 

 

7.2.2- Definition of Scenarios 

The scenario tree approach in the model was used to study possible future situations. Each node 

represents a distinct conversion efficiency of each technology/technological conversion process when 

processing a type of biomass into a type of biofuel.  

The conversion efficiencies are calculated based on the research done in chapter 5. After mapping the 

integrated biorefineries of the EU and finding all possible information on their specifications, it was 

possible to obtain the values of the conversion efficiency of transforming biomass into biofuels (and only 

biofuels) of each. These allowed to obtain two tendency lines: one for the fermentation process (𝑚1) to 

produce bioethanol (𝑝1) (equation (25)) and other for the transesterification (𝑚2)  to produce biodiesel 

(𝑝2) (equation (26)). Also, they were constructed assuming all different types of biomass to produce 

bioethanol as one entity – starch/sugar (𝑏1)– and the same for the different types of biomass used to 

produce biodiesel – seeds/animal fats (𝑏2). Having the equations of the tendency lines for the different 

technologies, it is possible to calculate values of conversion efficiencies that reflect the learning-by-

doing of each technology by increasing over the time horizon of this study and that are based on reality. 

The chosen time horizon of this study is 4 years, represented in 4 time periods, due to being a 

reasonable amount of time for showing a substantial evolution of the conversion efficiency.  

 

𝜇𝑏1𝑚1𝑝1𝑠𝑡
= 0.055𝑡 + 0.0358             (25) 

𝜇𝑏2𝑚2𝑝2𝑠𝑡
= 0.035𝑡 + 0.1351             (26) 
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Even though these equations are constructed based on reality, for the first time period they would result 

in efficiencies of 3.5% and 5.5%. These values are too low for a technology, even if in the first year 

operating and not having a lot of experience. Thus, the scenario node of the first time period for both 

technologies will have the value of t=4 (𝜇𝑏1𝑚1𝑝1𝑠𝑡 = 25.58% and 𝜇𝑏2𝑚2𝑝2𝑠𝑡= 27.51%) and assumed to be 

the normal efficiency a technology has in t=1. The remaining nodes follow the tendency normally: the 

fermentation technology increases its efficiency 5.5% each time period and the transesterification 3.5%.  

Regarding the tree structure, each node turns into two new nodes. One represents the conversion 

efficiency’s increase with experience and following the tendency line. The other, represents the case 

where there is no learning or no attempt to learn, thus the efficiency remains the same. Figure 11 below, 

illustrates the scenario tree structure used in this study’s model, up to a potential time horizon portioned 

in four time intervals. 

 

 

Figure 11- Scenario Tree Structure of the Stochastic Optimization Model 

The probabilities of the nodes were chosen so as the nodes that represent an increase in the efficiency 

are always more likely to happen, given it is the tendency obtained with real data and the time between 

time periods is enough to learning something. Also, consecutive increases in conversion efficiency are 

less likely to happen over time. This because, it is natural that at the beginning of an operation and 

during the adaptation period it is easier to detect opportunities of improvement than after a few years of 

operation. At last, if the conversion efficiency remains the same in two consecutive time periods, in the 

next one, the probability that it will increase is the same as if it had increased in the previous node. This, 

to represent the same increasing opportunity of the conversion efficiency the technology had in the 

previous node. The tree was also constructed to ensure that, the probability of occurrence of the final 

node in the best case scenario (arch from 1 to 8) would still have a higher efficiency than the node, from 

the same predecessor, that represents a static conversion efficiency.  
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The values of conversion efficiencies used in the four time periods for the fermentation process to 

produce bioethanol from sugar/starch and for the transesterification process to produce biodiesel from 

seeds/animal fats are presented on Table 14 of Appendix C. 

 

7.2.3- General Parameters 

Capacity Parameter 

The capacities of production available for each technology were chosen based on the research done on 

the biorefineries specifications presented in chapter 5. From table 6, for the fermentation process can 

be concluded that two possible production capacities that are representative of the collected data are 

q1= 75000 tonnes and q2 = 250000 tonnes. From table 7, for the transesterification process, two 

capacities that are representative of the collected data are q1= 50000 tonne and q2 = 200000 tonnes. 

 

Cost Parameters 

The costs of each parameter were obtained the following way: 

 Biomass cost: These were obtained from the Alqueva’s Agricultural Yearbook of 2019. On it, 

areas, market, potential and economic data for various agriculture products with agricultural 

potential in Alqueva are presented in detail. The costs found for the sugar/starch biomass 

feedstock are the costs of corn of 180 €/tonne in 2018 and actualized, with an average inflation 

rate of 1.51% , of 185.33 €/tonne. The costs found for the seeds/animal fats biomass feedstock 

are the costs of sunflower seeds of 400 €/tonne in 2018 and, with the same inflation rate, of 

411.85 €/tonne. These are assumed equal in each municipality. These costs are summarized 

on Table 17 in Appendix C. 

 Installation Cost: The installation costs used in this study, given lack of data, had to be costs 

found in studies and from outside of Portugal and from the EU. The installation costs used for a 

biorefinery with the fermentation process and 75000 tonnes of production capacity are 

36415463 €. This value was obtained from the study by McAloon et al. 2000 using an average 

inflation rate of 2.17% toupdate the cost for 2020 and then an exchange rate of 0.85 from dollars 

to euros. For a biorefinery using the transesterification process with 50000 tonnes of capacity, 

the installation costs considered are 12164061.2 €. This value comes from the study by Abo El-

Enin et al. 2013 after also using an average inflation rate of 2.17% and an exchange rate of 0.85 

to obtain the costs in euros and for the present year. In order to obtain the costs for the other 

capacities of both conversion technologies, the Williams rule with a power factor of 0,6 was 

used (Max et al., 2003). This rule relates the fixed-capital investment of a process plant with a 

certain capacity to the fixed-capital investments of a similar plant with other capacity by an 

exponential power ratio. These costs are summarized on Table 15 of Appendix C. 

 Fixed Costs: The fixed costs for each technology were obtained in the same studies as the 

installation costs. For the fermentation process with 50000tonnes of capacity, a fixed cost of 

2798404,35€ (McAloon et al., 2000) and for the transesterification process, with 75000 tonnes 

of production capacity, a fixed cost of 1190851 € (Abo El-Enin et al., 2013) are considered. Both 
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were actualized to the current year with an average inflation rate of 2,17% and converted from 

dollars into euros with an exchange rate of 0.85. These costs consider all the costs that are 

fixed in the time horizon of the study, such as administration salaries, operating supplies, 

depreciation, maintenance, etc. These costs are summarized on Table 15 of Appendix C. 

 Variable Costs: These are the costs that vary in the time horizon of the study, thus utilities, 

direct labour, operation costs and direct maintenance costs. Also, they are calculated for each 

level of accumulated production using the learning curve of equation (1) for each technology - 

one using sugar/starch to produce bioethanol (fermentation) and the other using seeds/animal 

fats to produce biodiesel (transesterification). Regarding the parameters of the curves, the 

learning rates 𝐿𝑅𝑏𝑚𝑝 used to calculate the learning coefficients 𝜀𝑏𝑚𝑝 with equation (2) are the 

ones presented in subchapter 5.4.3. The initial accumulated productions of reference 𝑋𝑏𝑚𝑝
𝑟𝑒𝑓

 

considered are 10000 tonnes for both technologies, a quantity that is lower than any production 

of any technology with any capacity and conversion efficiency of t1. Their respective initial 

unitary costs of reference are calculated using equation (1) when replacing the unitary 

production costs and correspondent accumulated production quantities (values found with 

research and presented in subchapter 5.5.4). Therefore, the equation used to calculate the 

production costs for each level 𝑛 of accumulated production of the fermentation process 𝑚1 and 

transesterification process 𝑚2 were, respectively, (27) and (28): 

 

𝐶𝐶𝑏1𝑚1𝑝1𝑛𝑡 = 534,43(
𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡

10000
)−0,3219    (27) 

𝐶𝐶𝑏2𝑚2𝑝2𝑛𝑡 = 282,10(
𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡

10000
)−0,1520    (28) 

 

The levels 𝑛 that will be associated to the calculated costs start at 10000 tonnes - the 

accumulated production of reference - and then increase 25000 tonnes in each level until the 

accumulated production reaches 1025000 tonnes. This is one level higher than the maximum 

accumulated production a biorefinery with the technology that has available the biggest 

production capacity (in this case, 𝑚1 with 𝑞1 =250000 tonnes) can produce in the time horizon 

of this study (4 years). These costs are summarized on Table 16 of Appendix C. 

 Transportation costs: In this study, just like in the one developed by Paulo et al. 2020, only 

the truck is considered as the available transportation mode for both biomasses and biofuels. 

Given costs couldn’t be found in the Portuguese context or in studies for the biomass in 

question, the approach and transportation costs of the study by Hellmann and Verburg 2011 

was used. The transportation costs for lingo-cellulosic crops are used and assumed to be similar 

for different types of biofuel crops and, the handling costs are not considered in the cost-distance 

analysis due to lack of reliable information. Having this said, the considered costs for both 

biomasses are 0.111 €/tonne/km, after being actualized using an average inflation rate of 1.50% 

for the pound an exchange rate of 1.11% from pounds to euros. The transportation costs of 
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biofuels are also considered the same for the different types and are 0.44€/tonne/km, the same 

value used by Paulo et al. 2020. These costs are summarized on Table 18 of Appendix C. 

All costs mentioned above, are assumed to remain constant in the time horizon of this study, thus are 

the same in each time period.  

 

7.3- Chapter Conclusions 

This chapter introduces the case study of this thesis and the necessary data in order to apply the model 

described in chapter 6. After, the network at study is characterized and the scenarios of the model 

defined, the data collection sources, and methods are described. The assumptions made are explained 

and the summarized data is presented in Tables 11, 12, 13, 14, 15, 16, 17, 18 and 19 in Appendix C. 

The next chapter presents the results of the applied model and then a general discussion and an 

uncertainty analysis is made. 
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8- MODEL IMPLEMENTATION, RESULTS AND ANALYSIS 

In this chapter, the implementation of the model explained in chapter 6 and applied to the case study 

presented in chapter 7 is described. The objective of implementing this model is to test the adequacy of 

the learning curves as a representation of the conversion efficiency’s evolution. Thus, the model’s 

construction is validated for a smaller scenario tree with three time periods. The results are compared 

to a deterministic version to reach conclusions on the impacts of the uncertainty representation and an 

uncertainty analysis is done. After, the scenario tree with the four time periods presented in subsection 

7.2.2 is used and both computational and case study results are analysed. Finally, after a general 

discussion and referring the main limitations of the model implementation, recommendations are made.  

 

8.1- Model Implementation 

In order to apply the model to the Portuguese context, the model presented in chapter 6 was 

implemented in GAMS (26.1.0) using CPLEX (12.8.0.0) solver. Data from the case study is initialized 

externally, being inputted trough excel. Also, a CPLEX Parallel MILP Optimizer was used with the intent 

to have increases in speed to reach a solution. All experiments are conducted on an Intel(R) Xeon(R) 

CPU E5-2660 v3 @ 2.60GHz 2.60 GHz (2 processors) with 64,0 GB RAM. Also, with optimality gaps of 

9% and 14% as stopping criteria for the models with three and four time periods, respectively. Based 

on preliminary tests done with the model, these values are considered a reasonable compromise to deal 

with the computational complexity derived from the number of scenario nodes. Table 7 presents the 

computational results and statistics of each model. 

 
Table 7 – Model statistics and computational results. 

Statistics/Model 
Stochastic with 3 time 

periods 

Deterministic with 3 time 

periods 

Stochastic with 4 time 

periods  

# Total no. of variables 83007 11732 176783 

# Binary Variables 21056 672 44476 

# Equations 47209 2437 100773 

# Iterations 14420590 21125 101679237 

Relative Gap 0.09 0.01 0.14 

CPU (s) 21279.125 12.67 189775.735 

 

8.2- Model’s Construction and Uncertainty Representation Validation 

Validating the proposed model before carrying out further analysis is of high importance to ensure its 

accuracy in representing reality, even after having made assumptions in the modelling stages.  

In order to validate the proposed model, many steps are made. First, a deterministic version of the model 

is analysed with a smaller quantity of biomass collection sites, integrated biorefinery sites, and markets 

(30, 30 and 10, respectively). Also, by varying parameters like biomass availability, to test the models 

response. For example, creating situations where the biomass availability increased or decreased in a 

further period of time. Then, the same model with the actual inputs from the case study is tested. Once 
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the deterministic model’s results are validated, the stochastic model is then analysed, following the same 

logic. First with testing data and after with the complete data from the case study. However, if the values 

of Table 7 are compared between the stochastic model with three and four time periods, one can see a 

large difference in their computational dimension, given the number of variables and constraints 

approximately duplicates from the first model to the second. This proves that the increase of scenarios 

in the scenario tree has major implications on the model’s performance and on providing optimality. In 

fact, in the first attempts to run the stochastic model with 4 periods of time and even after efforts were 

made to make it more efficient by using CPLEX options, one of the implications was the high amount of 

time it needed to find an optimized solution. This is why the model with three time periods, thus less 

scenario nodes, is firstly analysed and used for the ultimate validation of the model and testing of the 

adequacy of the learning curve theory to conversion efficiency’s evolution representation. The scenario 

tree is the same from subsection 7.2.2, but only with the first three time periods. Thus, probabilities and 

conversion efficiencies remain the same for each node. The decision of the three time periods was made 

given the tree still has represented the relevant characteristics of the conversion technology evolution 

of the two technologies. These are how much each increase in the first three years of operation, the 

transesterification process starting with a higher efficiency in t=1 and the fermentation process ending, 

in general, with higher efficiencies nodes in t=3 (see Table 14 in Appendix C). 

 

8.2.1- Case study results for stochastic model with three periods of time 

In this subsection, the results of the model are analysed in order to validate the model’s construction 

including the learning curve theory and conversion efficiency’s evolution. The results of the model after 

being applied to the Portuguese context are shown in Figure 12. 

 

SC Network Design 

Regarding the supply chain network design, as Figure 12 shows, five integrated biorefineries are 

installed so as demand can be satisfied. Two are installed with the Fermentation technology with 75000 

tonnes of capacity (the lowest capacity available) in Lisboa and Vila Real. Other two with the same 

technology but with 250000 tonnes of capacity (maximum capacity available), in Évora and Leiria. The 

fifth integrated biorefinery is installed in Montemor-o-Novo with the Transesterification technology and 

50000 tonnes of capacity. These results go in line with what it was expected, given the biroefineries are 

strategically installed considering three factors: 

 Biomass availability quantities: the biorefineries are installed near the areas where there are 

higher quantities of biomass available (Centre and Alentejo Regions). 

 Distances to biomass collection sites: the biorefineries are installed approximately in the centre 

of the areas of greater density of biomass availability of each type. This happens in order to 

respect the maximum distances between biomass collection sites and biorefineries while taking 

advantage of the most biomass collection sites possible.  
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 Demand: given there is a higher volume of population near the capital, thus, higher volumes of 

demand, it is expected to have biorefineries installed near that area. The biorefinery installed 

in Lisboa is only dedicated to satisfy the demand in Lisboa, the district with higher demand. 

The integrated biorefiney in Leiria and Évora, are installed with higher capacities because, 

besides helping to satisfy the Lisboa’s demand, they also produce to satisfy the demands of 

districts near them. The one in Évora focuses more on the demands in the south of Portugal 

and the one in Leiria on the demands of the centre region. Also, the biorefinery installed in Vila 

Real is dedicated to satisfy the demand of the North of Portugal. However, all of these 

biorefineries are dedicated to produce bioethanol. Therefore, the integrated biorefinery of 

Montemor-o-Novo is installed so it can produce biodiesel, as there is demand to be satisfied of 

this product. Since its demand is lower than the demand of bioethanol and it is greater in and 

around Lisboa, only one biorefinery with the smaller technology capacity available is sufficient 

and installed near those areas. 

 

 

Figure 12 – SC design results for the stochastic model with three time periods 

 

Technology’s Conversion Efficiency’s Evolution 

In terms of conversion efficiency’s evolution, the model is constructed to have a variable that saves the 

accumulated production of a biorefinery over the years. Then checks in which level of accumulated 

production it belongs to and, as that level is upgraded, the unitary costs of production decrease. This 

logic happens to all biorefineries installed, however the one installed in Évora with the Fermentation 

process technology will be used as an example to show it. 
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Figure 13 – Conversion Efficiency’s Evolution of Fermentation Technology of Integrated Biorefinery in Évora and 

its impacts on unitary costs 

As it can be seen in Figure 13, the Évora’s integrated biorefinery’s technology starts, in the first time 

period and scenario node, in the level of accumulated production 8, with a correspondent unitary cost 

of 199.94€/ton. By existing production over the time periods, the accumulated production of a technology 

on the third has already grown and, consequently, experience has been gained. Thus, independently of 

the scenario node of the conversion efficiency in that time period, the levels of accumulated production 

increased and, consequently, the unitary costs decreased. Moreover, the scenario nodes that represent 

an increase in the conversion efficiency, have higher accumulated production levels and lower unitary 

costs than the scenario nodes, of the same time period and same predecessor, that maintain the 

conversion efficiency (e.g. scenario node 4 vs 5). This is expected given when there is learning that is 

acquired by producing and that also turns into improvements in efficiency, higher quantities of product 

can be obtained from the same amount of feedstock. Thus, the levels of production have a higher 

increase than in cases where there is just learning by producing. Consequently, the unitary costs have 

also a higher decrease (e.g. reduce the labour required to produce a certain quantity of biofuel vs saving 

in utilities during operation, such as turning off lights). 

 

Costs 

Regarding the costs of SC, the solution of the stochastic model with three periods of time applied to the 

case study with a 0.09 relative gap, had a total cost of 1726658280.96€. Even though this is not the 

minimum cost associated with the optimal solution, it still is a solution and is representative of the optimal 

one. Thus it is possible to analyse each fraction of the total costs, their evolution over time and validate 

the model in terms of costs. 
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As it can be seen in Figure 14, the majority of the costs are regarding biomass acquisition costs and 

production costs, as they are the highest unitary costs considered in the case study. This is expected 

given the corn/cereals and the seeds/animal fats cost are expensive and cost around 200€/ton and 

400€/ton, respectively. Also, even though they decrease over time, the production costs start at 

466.17€/ton and 263.77€/ton of biofuel for the fermentation and the transesterification process, 

respectively. The transportation costs of biomass and biofuels represented a little percentage in the total 

costs, as their unitary costs are very low. The installation costs and the fixed costs are costs that do not 

vary over time and even though the first represents 14% of the total costs, it’s a cost incurred only once.  

 

 

Figure 14- Costs Distribution in the total costs of the SC 

 

In terms of costs evolution over the periods of time, the behaviours of the total costs of each component 

go in line with the expected. The total production costs decrease over time, as it can be verified in Figure 

15 and graph “Production Costs Evolution Over Time”, because as biorefineries are always producing, 

are always learning. In this graph, the costs decrease equally from one period of time to another, given 

the demand is constant over time. Thus, the total production quantities in each period of time are the 

same for every scenario. However, the production costs are different in each time period, scenario and 

biorefinery depending on the technology and capacity installed, its accumulated production and 

conversion efficiency, as it was explained before and can be seen in Figure 13. Also, having a fixed 

minimum demand to be satisfied, it is expected that, in scenarios where exists an increase in the 

conversion efficiency, less biomass needs to be acquired, as it can be seen, for example, in Scenario 

1-2-4 in graph a). This traduces in lower total acquisition costs and biomass transportation costs. In the 

scenario where there is no improvement in the conversion efficiency – Scenario 1-3-7 in graphs a)  and 

c) it is normal that the same amount of biomass has to be acquired, thus the transportation and 

acquisition costs of biomass are similar. Finally, the biofuels transportation costs (graph d) ) don’t have 

a defined pattern as they depend on distances of the biorefineries to the markets. For instance, two 

biorefineries that have the same conversion efficiency evolution over time and satisfy the demand of the 

same market. It can happen that, in one period of time, one satisfies 20% of the demand and the other 

15%, and then, in the following period of time the percentages change. This will have influence on 

distances, thus on transportation costs. 

€1 011 063 407,90 ; 59%
€295 092 501,15 ; 17%

€77 420 672,01 ; 4%

€31 731 767,95 ; 2%

€234 978 347,00 ; 14%

€76 331 061,00 ; 4%

SC Costs

Biomass Acquisition Cost Variable Production Cost Product's Transportation Cost

Biomass's Transportattion Cost Installation Cost Fixed Cost
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Figure 15- Evolutions over time and per scenario of the total costs of each component 

 

8.2.2- Stochastic vs Deterministic Model with three periods of time 

In the last subchapter, the model’s construction was validated. It was proven the results of the case 

study went in line with everything expected to occur when the conversion efficiency’s evolution is 

considered, and the learning-by-doing theory is included in the model. However, one last test is made.  

This study defends that literature has not been rightly considering the conversion efficiency of the 

conversion technologies in biorefineries, given they consider it as static instead of dynamic over time. 

Plus, in the cases it has, it is not in the most accurate way. The consequent problem is that decisions 

will not be based in the most realistic SC optimization models. Also, dynamic conversion efficiencies 

traduce in dynamic unitary production costs, which are most likely to decrease over time due to 

experience. This needs to be represented correctly in the SC optimization models that support the 

biomass SC designs to enhance the biomass as a substitute to fossil fuels and attract attention to the 

integrated biorefineries and biofuels. Having this said, the proposed stochastic optimization model of 

chapter 6 is compared to the deterministic version of it to reach conclusions on the effects of considering 

the conversion efficiency evolution over time.  

Just as in the literature, the deterministic model uses a constant production cost and conversion 

efficiency for each technology. The production costs considered for the fermentation process technology 
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were 198.80€/ton of bioethanol and 318.33€/ton of biodiesel for the transesterification process (de Wit 

et al., 2010). The conversion efficiency used for each technology was obtained by a weighted average 

of the possible efficiencies (Table 14 of Appendix C) of the three time periods of the scenario tree and 

the correspondent scenario’s probabilities. For the fermentation process when producing bioethanol 

from cereals/corn the conversion efficiency is 0.345 and for the transesterification process when 

producing biodiesel from seeds/animal fats is 0.332. The cost results of the deterministic and stochastic 

model are presented in table 8. 

 

Table 8- Costs Results for the Deterministic and Stochastic Optimization Models 

 

Objective 

Function 

(M €) 

Total 

Biomass 

Acquisition 

Cost (M €) 

Total 

Production 

Costs 

(M €) 

Total 

Fixed 

Costs 

(M €) 

Total Biomass 

Transportation 

Costs 

(M €) 

Total 

Biofuels 

Transportation 

Costs (M €) 

Total 

Installation 

Costs 

(M €) 

Deterministic 

Model 
1,721  861 502 68 32 61 199 

Stochastic 

Model 
1,727 1,011 295 76 32 77 235 

 

After applying the deterministic model to the case study in question, four biorefineries are advised to 

open (Pombal, Lisboa, Santarém, Vila Real). This justifies immediately the lower fixed costs and 

installation costs, as the stochastic model considers these costs for 5 integrated biorefineries. All the 

other cost’s components are dependent of the conversion efficiency.  

 In the deterministic model, having a constant conversion efficiency that is an average of the 

dynamic conversion efficiencies of three time periods of the stochastic model, makes it higher 

than this last one at least in the first time period. While lower conversion efficiencies need a lot 

more biomass to compensate, higher conversion efficiencies do not need so much biomass to 

turn into product. This then gives the deterministic model advantage by saving money with 

biomass acquisition costs. 

 On the other side, the stochastic model has scenarios, that are more likely to happen, with 

increasing conversion efficiencies that end up being greater than the deterministic model’s over 

time. This behaviour compensates the lower conversion efficiency of the stochastic model in 

first period of time by reducing over time both biomass quantities needed for production and 

kilometers travelled to acquire it. All this justifies the biomass transportation costs being, 

approximately, the same in the two models.  

 Regarding biofuel’s transportation costs, they vary depending on where the biorefineries are 

installed and its distances to the market sites, thus they are more complex to compare.  

 Last but not the least, the total production costs of the stochastic model are lower than the 

deterministic’s given they decrease with learning, which happens in all scenario’s paths. Even 

if this decrease doesn’t traduce directly in conversion efficiency. With this not being considered 

in the deterministic model, the production costs component is much higher, as the unitary 

production costs are high for these types of products. 
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Finally, as expected, the value of the objective function of the deterministic model is lower than the 

stochastic model as it optimizes only one scenario, while this last considers the costs of 4 scenarios of 

possible conversion efficiency’s evolution. However, it is clear the impact of considering the conversion 

efficiency uncertainty and using the learning curves to measure its impact, as the production costs 

decrease by 41% in the stochastic model. 

 

8.2.3- Uncertainty Analysis 

The efficiency’s evolution tendency line was obtained from real biorefineries’ data. However, the 

shortage of data available, besides forcing to make assumptions, only allowed to construct the tendency 

lines, for both technologies, based on a few biorefineries. This motivates an uncertainty analysis to 

assess how the solutions provided by the model are likely to change due to variations of the conversion 

efficiency input parameter – the uncertainty included in the model.  

By varying the slopes of the tendency lines obtained with research, they automatically have impact on 

the conversion efficiencies used as inputs to the model. Given the tendency lines represent the 

evolutions over time of the technology’s conversion efficiencies, increasing their slopes will result in 

higher conversion efficiencies over time. On the contrary, decreasing the slopes will result in lower 

conversion efficiencies. A ± 5% and ± 5% variation of the tendency line’s slope of the fermentation and 

transesterification technology, respectively, is introduced. Figure 16 represents the impacts of these 

variations on the SC total costs, obtained by running the stochastic optimization models with three 

periods of time, with a relative gap of 9% and the conversion efficiency calculated with the variations. 

 

Figure 16 – Impact on total costs of varying the slope of the tendency lines of the Fermentation and 
Transesterification process 

It is expected that higher conversion efficiencies over time, thus faster learning, result in greater 

reductions of the unitary production costs and contribute to lower total costs of the SC. From the graph 

a)  of Figure 16, it can be seen that having a 5% increase in the increment, of each period of time, of 

the original inputs of the conversion efficiencies, results in a -2.9% decrease in total costs. On the other 

side, having a 5% reduction in the increment of the conversion efficiencies, in each time period, results 

in an increase in the total costs of 2.9%. 

These costs behaviours are not the same for the transesterification process (graph b) ), given for the 

two scenario variations of the tendency line’s slope of this technology, the total costs decrease. 
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Increasing the tendency line’s slope by 5% results in a cost decrease of 0.7% and reducing the tendency 

line’s slope by 5%, results in a 1% total costs decrease. However, these reductions are not happening 

as consequence of the slopes variations due to the low demand of the biodiesel in Portugal. The installed 

biorefineries with the transesterification technology of both scenarios do not operate at its maximum 

capacity and they don’t even upgrade their level of production in the time horizon of this study. Thus 

they don’t reduce costs significantly to have influence in the total SC costs. These cost reductions are 

then associated to a possible solution given by the model as result of the 9% relative gap. 

 

8.3- Case Study Results 

After validating the stochastic model’s construction, in subchapter 8.2.2, and the effects of considering 

the conversion efficiencies evolution of the technologies over time, in subchapter 8.2.3, the model is 

applied with the four time periods, to the Portuguese context. By considering four periods of time, this 

model helps making long term decisions given the results information are available for a larger horizon 

of time. The model also makes recommendations on biorefinery’s installation sites and technologies, 

considering the biomass availability and demand, with the objective of minimizing the cost of the national 

supply chain of biomass. This specific model, reached a relative gap of 14% due to the mathematical 

complexity of solving a problem with a great number of scenarios. Thus, does not give the optimal 

solution. However, once the model is already validated, this a possible solution.  Figure 17 represents 

the supply chain design of this model.  

 

Figure 17 - SC design results for the stochastic model with four time periods 

Four biorefineries are openned in time period 1. One in Beja with the fermentation technology with 75000 

tonnes of bioethanol of capacity. One in Santarém and another in Vila Real, both installed with 
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fermentation technologies with capacities to produce 250000 tonnes. Finally, one in Évora with the 

transesterification technology with production capacity of 50000 tonnes of biodiesel. Then, in the second 

time period, a biorefinery with the fermentation process with 75000 tonnes of capacity is installed in 

Coimbra. 

All biorefineries are installed strategically in places near the biomass collection sites that serve them 

(see Figure 17), as well as near the demand focuses (Centre and then the biorefineries in the oposite 

points of the country to satisfy the demand in those areas – see Figure 18). The SC costs result was 

2 135 217 851.58 €, with more than a half being biomass acquisition costs. 

 

Figure 18 – Distribution of Demand Satisfaction of the installed Integrated Biorefineries, per market site. 

 

8.4- General Discussion, Limitations and Recommendations 

8.4.1- General Discussion 

The lack of data on the technologies of the biorefineries associates a certain degree of uncertainty to 

the method used in this thesis to obtain the conversion efficiency’s evolution over time - the tendency 

lines of the conversion efficiencies’ of each technology that produces biofuels. However, is undeniable 

that, effectively, the few existent data show that this efficiency tends to increase over time, thus, as 

experience is gained. This, inevitably has impact on costs and the best proven method to represent the 

impacts of this evolution over time is in fact the learning curve theory. The implementation of the 

proposed model and application to the Portuguese case study proved this with favourable results, as 

the production costs are lower than the deterministic models that do not consider these aspects (section 

8.2.2). Nevertheless, there is margin of improvement. First, it would be ideal to invest more in data 

collection so the tendency line can be more solid. Then, even though it was kept in mind, without it being 

the focus of this study, there is certainly opportunities to optimize and make the proposed model more 

efficient, as it takes too long to obtain results for a scenario tree with three, but specifically, with four 

time periods, as in this last case, the is a higher number of scenarios. 
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8.4.2- Limitations 

Implementing this model had a certain degree of difficulty. It is a fact that increasing the number of 

scenario nodes allows the decision maker to obtain results regarding a larger horizon of time and make 

a decision with more information about the future. However, the scenario based approach increases 

significantly the computational complexity of the model. Thus, to obtain results and possible solutions in 

a reasonable amount of time, higher relative gaps have to be assumed. Validating the model with relative 

gaps between 9-14% wasn’t a problem. Even though they don’t represent the optimal solution, the 

solutions obtained with the model go in line with what it was expected – correctly representing the 

increase of conversion efficiency allows to obtain lower supply chain costs. However, this is not the most 

advisable when making decisions of strategic nature.   

Moreover, there was a great lack of data on biorefineries, their technologies, biomass and production 

quantities. Thus, the data found with research in order to construct a tendency line for the evolution of 

the conversion efficiency, were very few and sensible to new data that might appear. Also, the only data 

considered was regarding the first generation biofuels, as it was the available information publicly. 

However, it is starting to be outdated as efforts are being made in Portugal and in the EU to increase 

the use of advanced biofuels from residual biomass.  

Finally, due to this shortage of data, the production of by products, the competition for soils to produce 

biomass for human vs food, the importation of biomass and the production of biofuels to be exported 

were not considered. The available information did not allow to consider these aspects correctly.  

 

8.4.3- Recommendations 

From the previous discussion, it can be concluded that: 

 The model is validated it enables to obtain lower values of the objective function. Thus, besides 

the reality being represented more accurately, the model helps the biomass and the biofuels 

on becoming more attractive in terms of costs. 

 The higher the number of scenarios and time periods, the closer to reality the model is and the 

longer the planning horizon covered to make decisions. However, this requires a higher 

computational effort. Thus, attempts to increase the efficiency of the model or the usage of 

decomposition methods might help in its resolution. 

 The lack of data is always a disadvantage, thus any new information that can be found and 

integrated it is always beneficial towards a robust solution. Therefore, more structured database 

would be helpful at the EU level.
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9- CONCLUSION & FUTURE DEVELOPMENTS 

The concern of being an economy that consumes secure, safe, competitive and, most importantly, 

sustainable energy has been continuously present in the European Union. It has been fully dedicated 

to transition from a fossil-input-based economy into a bio-based one and has been launching energy 

directives, goals and regulations so as the member states get as maximum as evolved possible. It is in 

this context that the biomass appears as a good alternative to fossil fuels in the attempted to increase 

the use of energy from renewable sources. However, it still needs to become a sustainable and 

competitive alternative. Therefore, improvements in its design of the supply chain need to be made. 

In this study, the biomass SC and its design decisions, mostly regarding process technologies, are 

studied. A general overview on bioenergy, biomass, and its supply chain stages was is followed by a 

state of art on biomass supply chain optimization and uncertainty modulation. Having understood the 

lack of representation of the biomass technology’s conversion efficiency uncertainty within the biomass 

SC optimization models and that researchers have been dealing with it poorly, this master thesis is 

introduced. After exploring the literature and finding potential on the learning curve theory to represent 

technological developments, this study proposes to develop a mathematical representation of 

technology evolution and its impacts using the conversion efficiency and learning curves. Then, it adapts 

the stochastic model developed by Paulo et al. 2020 to include it and test its adequacy by applying it to 

the Portuguese context with the objective of minimizing the cost of the national supply chain of biomass. 

Prior to the development of the mathematical representation of the conversion technologies evolution, 

an extensive research is done on integrated biorefineries of the EU in order to obtain more data and 

from countries similar to Portugal. 

We can now provide the answers to the proposed research questions. 

“How can we use official information about the installation and operation of biorefineries in 

Europe and European Union to outline the evolution of the conversion efficiency of the installed 

technologies?” 

After being able to find values of efficiencies or production and biomass processing quantities, the 

method to use this information was to use the date of the data found as a time reference of the 

conversion efficiency of that moment. Then, having the installation date of the biorefinery and 

technology, the difference between the two dates was assumed years of experience associated with 

that conversion efficiency. Applying this logic for all mapped biorefineries, turns them into an increasing 

tendency of the conversion efficiency due to experience. 

“How can the concept of learning curves be used for quantitatively describe the evolution of 

these conversion efficiency? What other variables can be used to outline these curves?” 

The learning curve theory depends on two important parameters, the experience parameter and the 

costs parameter and the key is to have them well defined. In this study, the experience is expected to 

occur in the conversion technologies as they keep on producing. Thus, the accumulated production was 
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the indicated experience parameter. With this last being mathematically related with the conversion 

efficiency, as one evolves, the other does too while also having impacts on costs. 

“How can we incorporate these learning curves into design and planning models for the 

biorefineries supply chain”? 

Implementing the learning curve theory and the conversion efficiency’s evolution has its steps. First, the 

tendency line representing this last is of extremely importance in the creation of the scenario tree of the 

model. This tree dictates how the uncertainty behaves in the model. Then, with the objective of keeping 

the model linear, the learning curves are implemented through levels of experience that have associated 

costs calculated by them. These costs are in a decreasing order as experience is gained and are 

“activated” depending on the accumulated production quantities and thus, on the conversion efficiencies. 

The final proposed MILP two-stage stochastic model, used to test the incorporation of the learning 

curves, considers all these aspects and then from the i) amount of available biomass, ii) biomass 

acquisition cost, iii) biomass conversion efficiency over time, iv) production costs of each technology, v) 

product’s demand in each market, vi) transportation costs regarding the different transportation modes, 

vii) distances between the sites of the biomass collection, integrated biorefineries and markets and viii) 

annualized investment costs of integrated biorefineries, determines the: 1) collected quantities of 

biomass at each production site, 2) biomass flows across each supply chain entity, 3) product’s 

production quantities, 4) location of the installed biorefineries, 5) capacity of installed biorefineries and 

6) technology to implement in each installed biorefinery, so as to optimize an economical objective 

function. Moreover, the model was constructed to be generalized enough so it could be applied to any 

case study. 

Finally, the results of the model are tested for a smaller scenario tree, due to high computational 

complexity with a higher number of scenarios. In terms of SC network, conversion efficiency and cost 

evolution and comparison with an equivalent deterministic model, the results of the stochastic model 

are favourable and go in line with what it was expected, thus enabling to run the model for a more 

complete case study. Lastly, the lack of data throughout the study was overcome by several 

assumptions. The main one, the tendency line constructed for the conversion efficiency’s evolution, it is 

submitted to a sensibility analysis. The others, already identified as limitations of the model, are 

suggested for future work, so they can be overcome. 

Further suggestions can also be identified. Regarding the mathematical model, it can be interesting to 

dedicate in its further optimization or applying decomposition methods so its performance can be more 

efficient. Moreover, the proposed model assumes the demand as deterministic and does not consider 

importations and exportations and the production of co-product in the integrated biorefineries due to lack 

of data.  In the future, it may be appropriate to consider the demand as stochastic and these factors in 

the model. Finally, the learning curves used in this study only consider one factor – the learning-by-

doing factor - and it may be interesting to deepen research so as to find sufficient information on other 

existent factors, such as learning with research and development.
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APPENDIX A. LIST OF INTEGRATED BIOREFINERIES THAT HAD ANY AVAILABLE INFORMATION. 

Table 9- Integrated biorefinerys of the EU’s database with available information about feedstock and product quantities, technology and production 

BIOREFINERY'S NAME CODE FEEDSTOCK QUANTITY (t/y) 
BIOFUEL PRODUCTION 

(t/y) 
TECHNOLOGY 

CONVERSION 
EFFICIENCY 

PRODUCTION 
COSTS (€) 

Pischelsdorf Biorefinery 
(Company-AGRANA Bioethanol 
GmbH) 

Aus1 
250000 grain (wheat), 500000 

cereals (bioethanol) 

185500 wheat starch, 197250 
bioethanol, 175000 animal 
feed, 100000 biogenic CO2 

Fermentation - - 

BioWanze S.A. (CropEnergies) Bel1 
910385 grains of sugar beet and 

wheat 
236700 bioethanol Fermentation - - 

Oleon Bel2 Oilseeds, recycle vegetable oil 
Petrochemicals, 100000 

biodiesel 
- - - 

Bioro Bel3 Vegetable oil 352000 Biodiesel FAME - - - 

Aalst Plant - SYRAL Belgium N.V 
(tereos) 

Bel7 Cereals, sugar beat Bioethanol, alcohol, sugars Fermentation - - 

Astra Bioplant Bul19 
180000 seeds, 72000VEGETABLE 

OIL (biofuel) 
60000 Biodiesel Transesterification - - 

PREOL a.s. Cze20 
400000 raw rapeseed, 160000 

rapeseed oil 

Rapeseed oil methyl ester 
100 000 (biodiesel), 10000 

distilled glycerine 
Transesterification - - 

Daka ecoMotion Den3 51282,05 animal fat 50000 biodiesel Esterification - - 

Biodiesel Paldiski Est1 Rapeseed oil 100000 biodiesel Esterification - - 

Koskenkorva plant - altia Fin1 210000 barley - - - - 

UPM Lappeenranta Biorefinery Fin5 Crude tall oil 
Biodiesel, 130000  bionaphta 

(biochemical) 
Hydrotreatment - - 

Närpiö Etanolix Plant Fin12 Waste, industrial by-products 1104,6 bioethanol 
Fermentation + 
Dehydratation 

- - 

Cellunolix Ethanol Plant (NEOT) 
produtor - St1 and SOK (NEB) 
construtor 

Fin13 80000 sawdust 8000 bioethanol, animal feed Fermentation - - 

Cristal Union sugar beet refinery, 
Chamtor wheat processing, 
Soliance biorefinery 

Fra1 

580000 sugar beet and wheat 157800  bioethanol Fermentation - - Fra4 

Fra60 

Lestrem starch biorefinery - 
Roquette Frère SA unit 

Fra10 7000 ton wheat, maize, potatoes Starch, bioethanol fermentation - - 

Nesle Plant - tereos Fra168 Cereals, sugar beat Bioethanol, alcohol, sugars Fermentation - - 

Biopetrol Rostock GmbH Ger17 - 200000 biodiesel - - - 
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Akzo nobel chemicals gmbh 
(Oleon Emmerich) 

Ger110 - Biodiesel, 60000 fatty acids - - - 

KFS Biodiesel GmbH & Co. KG Ger178 Vegetable oils, animal fats, waste 
50000 biodiesel, 4500 

glycerol 
- - - 

Kfs Biodiesel Kassel Gmbh & Co. 
Kg 

Ger184 Vegetable oils, animal fats, waste 
50000 biodiesel, 5000 

glycerol 
- - - 

KFS Biodiesel Köln GmbH Ger186 Vegetable oils, animal fats, waste 
120000 biodiesel, 12000 
glycerol, 5000 fatty acids 

- - - 

ecomotion gmbh - REMONDIS 
lippe plant 

Ger188 
vegetable oil, waste, 71100 

animal fats 
65300 biodiesel, bioheating 

oil, chemicals, 5800 glicerina 
Transesterification - - 

BKK Biodiesel GmbH Ger198 - 
4000 biodiesel, rape cake, 

glycerin 
- - - 

ecoMotion GmbH plant Ger202 170000 rapeseeds 
100000 biodiesel, 20000 

gliceryn 
Transesterification - - 

Cargill Deutschland GmbH - Barby 
Plant 

Ger206 Wheat 50000 bioethanol Fermentation - - 

Verbio Diesel Schwedt GmbH & 
Co. KG (NUW) 

Ger200 rapeseed oil, vegetable oils 250000 biodiesel Transesterification - 
General production 
costs of all products 

Verbio Ethanol Schwedt GmbH & 
Co. KG 

Ger207 Grain, corn; straw 
260000 bioethanol; 11693,90 

biomethane 
Fermentation 

0,9 for Bioethanol 
and Biomethane 

productions 

General production 
costs of all products 

Verbio Ethanol Zörbig GmbH & 
Co. KG 

Ger208 Grain, corn, straw 
130000 bioethanol; 5846,95 

biomethane 
Fermentation 

0,9 for Bioethanol 
and Biomethane 

productions 

General production 
costs of all products 

Borregaard Deutschland GmbH Ger228 Sugars (wood), fibers 15780 bioethanol, cellullose Fermentation - 
General production 
costs of all products. 

Hungrana Bioeconomy Company Hun1 910000 sugar, corn 
147543 bioethanol, 105000 

glucose, 61500 starch, 
305000 HFCS 

Fermentation - - 

ClonBio Group Ire8 572000 corn 
394500 bioethanol, 350000 
animal feed, 15000 corn oil 

Fermentation - - 

Caviro Extra Ita10 385000 waste grape 
7920 biomethane, 17825 
biogas, 71010 bioethanol 

Anaerobic Digestion 
(biomethane) Fermentation 

(bioethanol) 

0,46 for Bioethanol 
Production 

- 

Dp Lubrificanti S.r.l. Ita62 Vegetable Oils 155520 biodiesel - - - 

Ravena biodiesel plant (Novaol) Ita72 Vegetable oils 198000 biodiesel Transesterification - - 

Oil.B S.r.l. Ita73 - 200000 biodiesel - - - 

Eco Fox S.r.l. Ita74 Vegetable oils, animal fat, oil 200000 biodiesel Transesterification - - 

Saluzzo Plant (Tereos) Ita80 Cereals, sugar beat Bioethanol, alcohol, sugars Fermentation - - 

BioVenta Lat2 300000 rapeseeds 100000 biodiesel - - - 

Sas van Gent Plant (Cargill/Royal 
Nedalco/bioro) 

Net1 Wheat Bioethanol Fermentation - - 
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Biopetrol Industries AG Net6 Rapeseed oil 
400000 biodiesel, 60000 

glycerine 
- - - 

Biodiesel Amesterdam Net9 Waste oils, fats 150000 biodiesel 
Esterification + 

Transesterification 
- - 

COSUN beet company - Suiker 
Unie Vierverlaten 

Net79 100000 sugar beet residues 
28750 biomethane, 

bioethanol, animal feed 
Fermentation - - 

Biodiesel plant (greenline 
industries and ULEROm) 

Rom8 
144000 rapeseeds, sunflower 

seeds 
25000 biodiesel - - - 

MEROCO Inc Svk8 Vegetable oils, animal fats 
100000 biodiesel, 13000 

glycerine 
Transesterification - - 

Abengoa Bioenergy San Roque 
S.A. 

Spa8 205000 vegetable oil 196517 biodiesel Transesterification - - 

Bio Oils - La Rabida plant Spa23 Vegetable oils (rapeseed oil) 500000 biodiesel Transesterification - - 

SunPine Swe1 Crude tall oil 100000 biodiesel Combustion (bio-oil) - - 

Perstorp Oxo AB Swe3 Rapeseed 160000 biodiesel - - - 

SEKAB Biofuels&Chemicals AB, 
Domsjö Pulp Mill 

Swe6 

Wood chips 14000 bioethanol Fermentation - - Swe15 

Swe37 

Södra Cell Mönsterås Swe43 Pine oil 
6300000 biomethanol, 

biodiesel 
- - - 
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APPENDIX B. COMPACT TWO-STAGE STOCHASTIC OPTIMIZATION MODEL FORMULATION FOR 

THE BIOMASS SC DESGIN BY Paulo et al. 2020 

Table 10 - Compact model notation, parameters and decision variables. 

Notation Description Notation Description 

Sets    

𝑏, �̄�  ∈  𝐵 Biomass type 𝑞  ∈  𝑄 Integrated biorefinery’s conversion capacities 

𝑝  ∈  𝑃 Products 𝑛  ∈  𝑁 Pre-processing technologies 

𝑖  ∈  𝐼 Biomass collection site 𝑚  ∈  𝑀 Integrated biorefinery conversion technologies 

𝑗  ∈  𝐽 Biomass pre-processing/storage site 𝑟  ∈  𝑅 Biomass transportation mode 

𝑘  ∈  𝐾 Integrated biorefinery site 𝑧  ∈  𝑍 End product’s transportation modes 

𝑣  ∈  𝑉 Market site 𝑡, �̄� ∈  𝑇 Time periods 

𝑐𝑠  ∈  𝐶𝑆 Storage capacities 𝑠, �̄� ∈  𝑆 Scenario tree nodes 

𝑐𝑝  ∈  𝐶𝑃 Pre-processing capacities   

Subsets    

𝐵  = 𝐵𝑖  ∪ 𝐵𝑗 
The biomass is divided into collected biomass ( �̄�  Bi  B) and 

pre-processed biomass (b  Bj   B) 

𝑊𝑆 = {(�̄�, 𝑛, 𝑏): �̄� ∈ 𝐵𝑖 ∧ 𝑛 ∈ 𝑁 ∧ 𝑏 ∈ 𝐵} 
Available pre-processing technology 𝑛 to process biomass �̄� into 

biomass 𝑏. 

𝑊𝑝 = {(𝑛, 𝑏): 𝑛 ∈ 𝑁 ∧  𝑏 ∈ 𝐵} Available pre-processing technology 𝑛 to produce biomass 𝑏. 

𝑊𝐵 = {(𝑚, 𝑝): 𝑚 ∈ 𝑀 ∧  𝑝 ∈ 𝑃} Available conversion technology 𝑚 to produce product 𝑝. 

𝑍𝐵 = {(𝑏, 𝑟, 𝑡): 𝑏 ∈ 𝐵 ∧ 𝑟 ∈ 𝑅 ∧ 𝑡 ∈ 𝑇} 
Available transportation mode 𝑟 to transport biomass b in time 

period 𝑡. 

𝑍𝑃  =   {(𝑝, 𝑧, 𝑡):  𝑝 ∈ 𝑃 ∧ 𝑧 ∈ 𝑍 ∧ 𝑡 ∈ 𝑇} 
Available transportation mode 𝑧 to transport product 𝑝 in time 

period 𝑡. 

𝑆  =  {(𝑠, 𝑡):  𝑠 ∈ 𝑆  ∧  𝑡 ∈ 𝑇} Nodes 𝑠 of the scenario tree in time period 𝑡. 

𝐻  =  {(𝑠, �̄�):  𝑠 ∈ 𝑆  ∧  �̄� ∈ 𝑆} Predecessor �̄� of node 𝑠 in the scenario tree. 

Parameters    

𝐷𝐼𝐾𝑖𝑘 Distance between biomass collection 

site 𝑖 and integrated biorefinery site 𝑘 

(km). 

𝐶𝑇𝑃𝑝𝑧𝑡 End product 𝑝 transportation costs using 

transportation mode 𝑧, in time period 𝑡 (€/km/Mg) 

𝐷𝐼𝐽𝑖𝑗 Distance between biomass collection 

site 𝑖 and pre-processing site 𝑗 (km). 

𝐷𝑃𝑝𝑣𝑡 Demand of end product 𝑝 at market site 𝑣, in time 

period 𝑡 (units of product). 

𝐷𝐽𝐾𝑗𝑘 Distance between pre-processing site 

𝑗 and integrated biorefinery site 𝑘 

(km). 

𝑃𝑃𝐶𝑛𝑐𝑝  Pre-processing capacity 𝑐𝑝 of pre-processing 

technology 𝑛 (Mg). 

𝐷𝐾𝑉𝑘𝑣 Distance between integrated 

biorefinery site 𝑘 and market site 𝑣 

(km). 

𝑃𝑆𝐶𝑛𝑐𝑠 Storage capacity 𝑐𝑠 of pre-processing technology 𝑛 

(Mg). 

𝐶𝐵𝑏𝑖𝑡 Cost of biomass type �̄�  ∈  𝐵𝑖 at 

biomass collection site 𝑖 in time period 

𝑡 (€/Mg). 

𝑃𝐵𝐶𝑚𝑞 Integrated biorefinery’s conversion capacity 𝑞 with 

conversion technology 𝑚 (Mg). 

𝐶𝐼𝑃𝑛𝑐𝑝𝑐𝑠 Installation cost of a pre-

processing/storage facility with pre-

processing technology 𝑛, pre-

processing capacity 𝑐𝑝 and storage 

capacity 𝑐𝑠, (€). 

𝐵𝐴 𝑏𝑖𝑡 Amount of biomass type �̄�   ∈  𝐵𝑖 at biomass 

collection site 𝑖, in time period 𝑡 (Mg). 

𝐶𝐼𝐵𝑚𝑞 Installation cost of an integrated 

biorefinery facility with conversion 

technology 𝑚 and conversion capacity 

𝑞 (€). 

𝐼𝑆𝐿𝑏𝑛𝑗𝑠𝑡 Initial stock level of biomass type 𝑏  ∈  𝐵 in pre-

processing/storage facility 𝑗 with pre-processing 

technology 𝑛, for scenario node 𝑠, in the beginning 

of the time period 𝑡 (Mg). 

𝐶𝐹𝑃𝑛𝑐𝑝𝑐𝑠𝑡 Annual fixed operation costs of a pre-

processing/storage facility with pre-

processing technology 𝑛, pre-

processing capacity 𝑐𝑝 and storage 

capacity 𝑐𝑠, in time period 𝑡 (€). 

𝑃𝑇𝑆𝑛𝑏 

{

1, if pre − processing technology 𝑛 is 
available to process biomass

 �̄�  ∈  𝐵𝑖  into 𝑏 ∈  𝐵
0, otherwise.

 



 

88 

𝐶𝐹𝐵𝑚𝑞𝑡 Annual fixed operation costs of an 

integrated biorefinery facility with 

conversion technology 𝑚, conversion 

capacity 𝑞, at scenario node 𝑠, in time 

period 𝑡 (€).  

𝑃𝑇𝐵𝑚𝑝 

{

1, if conversion technology 𝑚 is 
available to convert biomass
 𝑏 ∈  𝐵 into end product 𝑝

0, otherwise.

 

𝐶𝑉𝑃 𝑏𝑛𝑡 Variable operation costs of pre-

processing biomass �̄�   ∈  𝐵𝑖 with pre-

processing technology 𝑛, in time 

period 𝑡 (€/Mg). 

𝐹𝐶𝑃�̄�𝑛𝑏 Conversion factor of biomass �̄�  ∈  𝐵𝑖 into biomass 

𝑏  ∈  𝐵 with pre-processing technology 𝑛. 

𝐶𝑉𝐵𝑏𝑚𝑡 Variable operation costs of converting 

biomass 𝑏  ∈  𝐵 with conversion 

technology 𝑚, in time period 𝑡 (€/Mg). 

𝐹𝐶𝐵𝑏𝑚𝑝 Conversion factor of biomass 𝑏  ∈  𝐵 into end 

product 𝑝 with conversion technology 𝑚. 

𝐶𝐻𝑃𝑏𝑛𝑡 Storage costs for biomass 𝑏  ∈  𝐵 on 

a pre-processing/storage facility with 

pre-processing technology 𝑛, in time 

period 𝑡 (€/Mg) 

𝛹𝑠 Probability of scenario tree node 𝑠 

𝐶𝐻𝑃𝑏𝑛𝑡 Biomass 𝑏 transportation costs using 

transportation mode 𝑟, in time period 𝑡 

(€/km/Mg). 

  

Decision Variables   

𝐵 𝑏𝑖𝑠𝑡
𝑐  Collected biomass �̄�   ∈  𝐵𝑖 on biomass 

collection site 𝑖 for scenario node 𝑠 in 

time period 𝑡 (Mg). 

𝑈𝑏𝑚𝑘𝑠𝑡
𝐵  Amount of biomass 𝑏  ∈  𝐵 that arrives to 

integrated biorefinery 𝑘 to be processed by 

conversion technology 𝑚 for scenario node 𝑠 in 

time period 𝑡 (Mg). 

𝑋𝑏𝑖𝑛𝑗𝑟𝑠𝑡
𝐴  Flow of biomass �̄�  ∈  𝐵𝑖 from biomass 

collection site 𝑖 to pre-processing 

facility 𝑗 by transportation mode 𝑟 that 

is processed by pre-processing 

technology 𝑛 in scenario 𝑠 in time 

period 𝑡 (Mg). 

 

 

𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆  

{
  
 

  
 
1, if opens a pre − processing facility on 

site j with pre − processing 
 technology n with pre − processing 
capacity cp and storage capacity 
cs in time period t. If opens, it

will not close.
0, otherwise.

 

𝑋 𝑏𝑖𝑘𝑟𝑠𝑡
𝐵  Flow of biomass �̄�  ∈  𝐵𝑖 from biomass 

collection site 𝑖 to integrated 

biorefinery site 𝑘 using transportation 

mode 𝑟 for scenario node 𝑠 in time 

period 𝑡 (Mg). 

 

 

𝑌𝑘𝑚𝑞𝑡
𝐵   

{
 
 

 
 
1, if opens an integrated biorefinery on 

site k with conversion technology
m with pre − processing capacity
q, in time period t. If opens, it

wil not close.
0, otherwise.

 

𝑋𝑗𝑛𝑘𝑏𝑟𝑠𝑡
𝐶  Flow of biomass 𝑏  ∈  𝐵, obtained with 

pre-processing technology 𝑛, from 

pre-processing site 𝑗 to integrated 

biorefinery site 𝑘 using transportation 

mode 𝑟 for scenario 𝑠 in time period 𝑡 

(Mg). 

 

 

𝑂𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆  

{
 
 
 

  
 
1, when opens an pre − processing 

facility on site j with 
pre − processing technology n,
 pre − processing capacity cp and
storage capacity cs in time period t.

If opes, it will not close 
0, otherwise.

 

𝑋𝑘𝑚𝑝𝑣𝑧𝑠𝑡
𝑃  Flow of product 𝑝, obtained by 

conversion technology 𝑚, from 

integrated biorefinery site 𝑘 to market 

𝑣 by transporation mode 𝑧 for scenario 

node 𝑠 in time period 𝑡 (Mg). 

 

 

𝑂𝑘𝑚𝑞𝑡
𝐵  

{
 
 

 
 
1,when opens an integrated biorefinery 

on site k with conversion 
technology m with pre − processing

capacity q, in time period t.
If opens, it will not close.

0, otherwise.

 

𝐻𝑏𝑛𝑗𝑠𝑡 

 

Stock of biomass 𝑏  ∈  𝐵 obtained by 

pre-processing technology 𝑛 in 

intermediate facility site 𝑗 for scenario 

node 𝑠 in time period 𝑡 (Mg). 
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Objective Function 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡𝑆  =  ∑ 𝛹𝑠  

(

 
 
 
 
 
 
 
 

∑ ∑ ∑ 𝐵 𝑏𝑖𝑠𝑡
𝐶  𝐶𝐵 𝑏𝑖𝑡𝑡𝑖�̄�∈𝐵𝑖

 +                                                                

∑ ∑ ∑ ∑ ∑ ∑ 𝑋𝑏𝑖𝑛𝑗𝑟𝑠𝑡
𝐴  𝐶𝑉𝑃𝑏𝑛𝑡𝑡𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑗𝑛𝑖  �̄�∈𝐵𝑖

 +                       

 ∑ ∑ ∑ ∑ 𝐻𝑏𝑛𝑗𝑠𝑡 𝐶𝐻𝑃𝑏𝑛𝑡𝑡𝑗  +𝑛:(𝑛,𝑏)∈𝑊𝑝𝑏∈𝐵                                        

∑ ∑ ∑ ∑ 𝑈𝑏𝑚𝑘𝑠𝑡
𝐵  𝐶𝑉𝐵𝑏𝑚𝑡𝑡𝑘𝑚𝑏∈𝐵  +                                                 

∑ ∑ ∑ ∑ ∑ ∑ 𝑋 𝑏𝑖𝑛𝑗𝑟𝑠𝑡
𝐴  𝐷𝐼𝐽𝑖𝑗 𝐶𝑇𝐵𝑏𝑟𝑡𝑡𝑟:( �̄�,𝑟,𝑡)∈𝑍𝐵𝑗𝑛𝑖 �̄�∈𝐵𝑖

 +            

 ∑ ∑ ∑ ∑ ∑ 𝑋 𝑏𝑖𝑘𝑟𝑠𝑡
𝐵  𝐷𝐼𝐾𝑖𝑘 𝐶𝑇𝐵𝑏𝑟𝑡𝑡𝑟:( 𝑏,𝑟,𝑡)∈𝑍𝐵𝑘𝑖�̄�∈𝐵𝑖

 +                 

∑ ∑ ∑ ∑ ∑ ∑ 𝑋𝑗𝑛𝑘𝑏𝑟𝑠𝑡
𝐶  𝐷𝐽𝐾𝑗𝑘 𝐶𝑇𝐵𝑏𝑟𝑡 + 𝑡𝑟:( 𝑏,𝑟,𝑡)∈𝑍𝐵𝑏∈𝐵𝑘𝑛:(𝑛,𝑏)∈𝑊𝑝𝑗

∑ ∑ ∑ ∑ ∑ ∑ 𝑋𝑘𝑚𝑝𝑣𝑧𝑠𝑡
𝑃  𝐷𝐾𝑉𝑘𝑣 𝐶𝑇𝑃𝑝𝑧𝑡𝑡𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑣𝑝𝑚:(𝑚,𝑝)∈𝑊𝐵𝑘    )

 
 
 
 
 
 
 
 

𝑠     + ∑ ∑ ∑ ∑ ∑ 𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆  𝐶𝐼𝑃𝑛𝑐𝑝𝑐𝑠𝑡𝑡𝑐𝑠𝑐𝑝𝑛𝑗  +

 ∑ ∑ ∑ ∑ 𝑌𝑘𝑚𝑞𝑡
𝐵  𝐶𝐼𝐵𝑚𝑞𝑡𝑡𝑞𝑚𝑘  + ∑ ∑ ∑ ∑ ∑ 𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡

𝑆  𝐶𝐹𝑃𝑛𝑐𝑝𝑐𝑠𝑡𝑡𝑐𝑠𝑐𝑝𝑛𝑗        + ∑ ∑ ∑ ∑ 𝑌𝑘𝑚𝑞𝑡
𝐵  𝐶𝐹𝐵𝑚𝑞𝑡𝑡   𝑞𝑚𝑘                                                       

Constraints 

 𝐵𝑏𝑖𝑠𝑡
𝐶  ≤  𝐵𝐴𝑏𝑖𝑡  ∀ �̄� ∈ 𝐵𝑖  ∧ ∀𝑖 ∈ 𝐼 ∧  ∀𝑡 ∈ 𝑇 ∧ ∀𝑠 ∈ 𝑆      

 𝐵𝑏𝑖𝑠𝑡
𝐶 = ∑ ∑ ∑ 𝑋𝑏𝑖𝑛𝑗𝑟𝑠𝑡

𝐴 + ∑ ∑ 𝑋𝑏𝑖𝑘𝑟𝑠𝑡
𝐵  ∀�̄� ∈ 𝐵𝑖  ∧ ∀𝑖 ∈ 𝐼  ∧ ∀𝑡 ∈ 𝑇 ∧ ∀𝑠 ∈ 𝑆𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑘𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑗𝑛  

 ∑ 𝐼𝑆𝐿𝑏𝑛𝑗𝑠𝑡𝑏∈𝐵 +∑ ∑ ∑ 𝑋𝑏𝑖𝑛𝑗𝑟𝑠𝑡
𝐴

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑖𝑏∈𝑩
𝑏:(𝑛,𝑏)∈𝑊𝑃

 𝐹𝐶𝑃�̄�𝑛𝑏   =  ∑ 𝐻𝑏𝑛𝑗𝑠𝑡𝑏∈𝐵
𝑏:(�̄�,𝑛,𝑏)∈𝑊𝑆

 +

∑ ∑ ∑ 𝑋𝑗𝑛𝑘𝑏𝑟𝑠𝑡
𝐶

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑏∈𝐵
𝑏:(�̄�,𝑛,𝑏):𝑊𝑆

𝑘  ∀�̄� ∈ 𝐵𝑖 ∧ ∀𝑛 ∈ 𝑁 ∧ ∀𝑗 ∈ 𝐽 ∧ ∀𝑠 ∈ 𝑆 ∧ 𝑡 = 1 

 ∑ 𝐻𝑏𝑛𝑗𝑠𝑡−1𝑏∈𝐵
𝑏:(�̄�,𝑛,𝑏)∈𝑊𝑆

 + ∑ ∑ ∑ 𝑋𝑏𝑖𝑛𝑗𝑟𝑠𝑡
𝐴

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑖𝑏∈𝐵
𝑏:(𝑛,𝑏)∈𝑊𝑃

 𝐹𝐶𝑃�̄�𝑛𝑏   =  ∑ 𝐻𝑏𝑛𝑗𝑠𝑡𝑏∈𝐵
𝑏:(�̄�,𝑛,𝑏)∈𝑊𝑆

 +

∑ ∑ ∑ 𝑋𝑗𝑛𝑘𝑏𝑟𝑠𝑡
𝐶

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑏∈𝐵
𝑏:(�̄�,𝑛,𝑏)∈𝑊𝑆

𝑘  ∀ �̄� ∈ 𝐵𝑖  ∧ ∀𝑛 ∈ 𝑁  ∧ ∀𝑗 ∈ 𝐽  ∧ ∀𝑠 ∈ 𝑆 ∧  𝑡 > 1  

 ∑ ∑ 𝑋𝑏𝑖𝑘𝑟𝑠𝑡
𝐵

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑖 + ∑ ∑ ∑ 𝑋𝑗𝑛𝑘𝑏𝑟𝑠𝑡
𝐶

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑛:(𝑛,𝑏)∈𝑊𝑝𝑗 = ∑ 𝑈𝑏𝑚𝑘𝑠𝑡
𝐵

𝑚 ∀�̄� ∈ 𝐵𝑖 ∧ ∀𝑘 ∈ 𝐾 ∧ ∀𝑡 ∈       𝑇 ∧ ∀𝑠 ∈ 𝑆  

 ∑ ∑ ∑ 𝑋𝑗𝑛𝑘𝑏𝑟𝑠𝑡
𝐶

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑛:(𝑛,𝑏)∈𝑊𝑝𝑗  =  ∑ 𝑈𝑏𝑚𝑘𝑠𝑡
𝐵

𝑚     ∀𝑏 ∈ 𝐵𝑗  ∧ ∀𝑘 ∈ 𝐾  ∧ ∀𝑡 ∈ 𝑇 ∧ ∀𝑠 ∈ 𝑆  

 ∑ 𝐹𝐶𝐵𝑏𝑚𝑝𝑏∈𝐵 𝑈𝑏𝑚𝑘𝑠𝑡
𝐵 = ∑ ∑ 𝑋𝑘𝑚𝑝𝑣𝑧𝑠𝑡 

𝑃
𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑣 ∀𝑚 ∈ 𝑀 ∧  ∀𝑘 ∈ 𝐾 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀𝑡 ∈ 𝑇 ∧ ∀𝑠 ∈ 𝑆 ∧ (𝑚, 𝑝) ∈

𝑊𝑃  

 ∑ ∑ ∑ 𝑋𝑘𝑚𝑝𝑣𝑧𝑠𝑡
𝑃

𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑚:(𝑚,𝑝)∈𝑊𝐵𝑘  ≥  𝐷𝑃𝑝𝑣𝑡    ∀𝑝 ∈ 𝑃  ∧ ∀𝑣 ∈ 𝑉 ∧  ∀𝑠 ∈ 𝑆 ∧ ∀𝑡 ∈ 𝑇  

 ∑ ∑ ∑ 𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆

𝑐𝑠𝑐𝑝𝑛  ≤  1    ∀𝑗 ∈ 𝐽 ∧ ∀𝑡 ∈ 𝑇 

 ∑ ∑ 𝑌𝑘𝑚𝑞𝑡
𝐵

𝑞𝑚  ≤  1    ∀𝑘 ∈ 𝐾 ∧ ∀𝑡 ∈ 𝑇 

 ∑ ∑ ∑ 𝑋𝑏𝑖𝑛𝑗𝑟𝑠𝑡
𝐴

𝑟:(𝑏,𝑟,𝑡)∈𝑍𝐵𝑖�̄�∈𝐵𝑖  ≤  ∑ ∑ 𝑃𝑃𝐶𝑛𝑐𝑝𝑐𝑠𝑐𝑝  𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆     ∀𝑗 ∈ 𝐽 ∧ ∀𝑛 ∈ 𝑁 ∧ ∀𝑠 ∈ 𝑆 ∧ ∀𝑡 

 ∑ 𝐻𝑏𝑛𝑗𝑠𝑡  ≤ ∑ ∑ 𝑃𝑆𝐶𝑛𝑐𝑠𝑐𝑠𝑐𝑝𝑏∈𝐵
𝑏:(𝑛,𝑏)∈𝑊𝑃

 𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆     ∀𝑗 ∈ 𝐽 ∧ ∀𝑛 ∈ 𝑁 ∧ ∀𝑠 ∈ 𝑆 ∧ ∀𝑡 ∈ 𝑇 

 ∑ 𝑈𝑏𝑚𝑘𝑠𝑡
𝐵

𝑏∈𝐵  ≤  ∑ 𝑃𝐵𝐶𝑚𝑞𝑞 𝑌𝑘𝑚𝑞𝑡
𝐵     ∀𝑘 ∈ 𝐾 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑠 ∈ 𝑆 ∧ ∀𝑡 ∈ 𝑇  

 𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆  ≥  𝑌𝑗𝑛𝑐𝑝𝑐𝑠�̄�

𝑆     ∀𝑗 ∈ 𝐽 ∧ ∀𝑛 ∈ 𝑁 ∧ ∀𝑐𝑝 ∈ 𝐶𝑃 ∧ ∀𝑐𝑠 ∈ 𝐶𝑆 ∧ ∀𝑡 ∈ 𝑇  

 𝑌𝑘𝑚𝑞𝑡
𝐵  ≥ 𝑌𝑘𝑚𝑞�̄�

𝐵     ∀𝑘 ∈ 𝐾  ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑞 ∈ 𝑄 ∧ ∀𝑡 ∈ 𝑇   

 𝑂𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆  =  𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡

𝑆     ∀𝑗 ∈ 𝐽 ∧ ∀𝑛 ∈ 𝑁 ∧ ∀𝑐𝑝 ∈ 𝐶𝑃 ∧ ∀𝑐𝑠 ∈ 𝐶𝑆 ∧  𝑡 = 1 

 𝑂𝑗𝑛𝑐𝑝𝑐𝑠𝑡
𝑆  =  𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡

𝑆  − 𝑌𝑗𝑛𝑐𝑝𝑐𝑠𝑡−1
𝑆     ∀𝑗 ∈ 𝐽 ∧ ∀𝑛 ∈ 𝑁 ∧ ∀𝑐𝑝 ∈ 𝐶𝑃 ∧ ∀𝑐𝑠 ∈ 𝐶𝑆 ∧  𝑡 > 1  

 𝑂𝑘𝑚𝑞𝑡
𝐵  =  𝑌𝑘𝑚𝑞𝑡

𝐵     ∀𝑘 ∈ 𝐾  ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑞 ∈ 𝑄 ∧  𝑡 = 1 

 𝑂𝑘𝑚𝑞𝑡
𝐵  =  𝑌𝑘𝑚𝑞𝑡

𝐵  − 𝑌𝑘𝑚𝑞𝑡−1
𝐵     ∀𝑘 ∈ 𝐾 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑞 ∈ 𝑄 ∧  𝑡 > 1  
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APPENDIX C. CASE STUDY  

Table 11 – Seeds and Corn/Cereals availability per Portuguese Municipality, in tonnes (Parameter 𝐵𝐴𝑏𝑖𝑡). 

Municipalities Seeds production (tonnes) Corn/Cereals Production (tonne) 

Abrantes 78,32 22548,098 

Águeda 36,74 10577,594 

Alandroal 613,94 17063,904 

Albergaria-a-Velha 31,91 9186,262 

Alcácer do Sal 1696,81 47161,564 

Alcanena 39,54 11382,053 

Alcobaça 82,00 23607,109 

Alcochete 450,62 9826,838 

Alenquer 94,46 27194,285 

Alfândega da Fé 0,00 14233,287 

Alijó 0,00 13156,783 

Aljustrel 2247,57 62469,439 

Almeida 104,07 29960,333 

Almeirim 711,98 19788,821 

Almodôvar 469,34 13045,055 

Alpiarça 467,49 12993,403 

Alter do Chão 750,96 20872,216 

Alvaiázere 32,24 9282,278 

Alvito 549,32 15267,784 

Amarante 0,00 8619,914 

Anadia 43,52 12530,034 

Ansião 35,38 10185,171 

Armamar 0,00 7927,149 

Arraiolos 773,53 21499,676 

Arronches 355,97 9893,782 

Arruda dos Vinhos 37,02 10658,256 

Aveiro 39,70 11428,168 

Avis 1256,82 34932,297 

Azambuja 841,92 23400,557 

Barcelos 0,00 16751,025 

Barrancos 349,31 9708,892 

Beja 5620,42 156215,155 

Belmonte 36,88 10615,979 

Benavente 1081,37 30055,945 

Bombarral 43,35 12480,659 

Borba 711,77 19783,056 

Bragança 0,00 51883,084 

Cadaval 54,30 15633,451 

Caldas da Rainha 79,39 22856,179 

Campo Maior 1211,86 33682,564 

Cantanhede 78,53 22608,778 

Carrazeda de Ansiães 0,00 7988,002 

Cartaxo 775,40 21551,663 

Castelo Branco 157,61 45374,147 

Castelo de Vide 299,69 8329,769 

Castro Daire 41,54 11958,515 

Castro Verde 2791,58 77589,803 

Celorico da Beira 49,67 14299,381 

Chamusca 843,97 23457,365 

Chaves 0,00 16912,858 

Coimbra 64,17 18474,324 

Condeixa-a-Nova 27,86 8020,772 

Coruche 1262,22 35082,441 
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Covilhã 111,63 32136,300 

Crato 450,34 12516,821 

Cuba 551,61 15331,614 

Elvas 2023,52 56242,053 

Estarreja 33,59 9669,337 

Estremoz 1065,65 29618,981 

Évora 4189,67 116448,641 

Ferreira do Alentejo 3177,74 88322,714 

Ferreira do Zêzere 38,25 11011,715 

Figueira da Foz 76,16 21924,522 

Figueira de Castelo Rodrigo 157,91 45461,171 

Fronteira 796,85 22147,942 

Fundão 140,68 40500,068 

Golegã 413,36 11489,134 

Gouveia 60,40 17387,497 

Grândola 498,34 13851,022 

Guarda 143,07 41188,372 

Idanha-a-Nova 284,56 81922,116 

Leiria 113,53 32685,209 

Loulé 0,00 18193,041 

Loures 587,11 12803,368 

Lourinhã 69,89 20120,260 

Mação 43,83 12619,161 

Macedo de Cavaleiros 0,00 30908,714 

Mafra 1582,33 34506,610 

Mangualde 44,05 12682,155 

Mêda 88,82 25570,065 

Mértola 2681,49 74529,958 

Miranda do Douro 0,00 21538,043 

Mirandela 0,00 29132,371 

Mogadouro 0,00 33628,048 

Monforte 871,62 24226,113 

Montalegre 0,00 12567,911 

Montemor-o-Novo 1394,87 38769,223 

Montemor-o-Velho 71,09 20466,779 

Montijo 1223,86 26689,251 

Mora 502,24 13959,461 

Moura 3072,22 85389,849 

Mourão 577,90 16062,158 

Nisa 651,27 18101,548 

Óbidos 43,95 12653,182 

Odemira 1946,53 54102,147 

Oleiros 27,53 7926,744 

Oliveira do Hospital 47,12 13564,804 

Ourém 83,72 24101,069 

Ourique 750,41 20856,966 

Palmela 2523,49 55030,737 

Penamacor 61,78 17784,757 

Pinhel 97,35 28024,983 

Pombal 125,77 36208,287 

Ponte de Lima 0,00 9161,144 

Ponte de Sor 506,65 14081,945 

Portalegre 505,85 14059,766 

Portel 679,93 18898,019 

Porto de Mós 52,61 15144,434 

Proença-a-Nova 43,33 12474,664 

Redondo 766,39 21301,109 

Reguengos de Monsaraz 962,37 26748,165 

Rio Maior 565,72 15723,771 
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Sabugal 90,16 25955,757 

Salvaterra de Magos 781,89 21731,889 

Santarém 2708,73 75287,071 

Santiago do Cacém 1198,83 33320,646 

São João da Pesqueira 0,00 17992,951 

São Pedro do Sul 38,24 11009,191 

Sátão 40,57 11680,354 

Seia 47,75 13745,793 

Serpa 3543,95 98501,324 

Sertã 48,96 14094,099 

Setúbal 441,05 9618,186 

Silves 0,00 16201,185 

Sines 421,66 11719,616 

Sintra 1120,68 24439,245 

Soure 53,25 15331,260 

Sousel 1369,32 38059,118 

Tábua 40,14 11555,996 

Tavira 0,00 14459,950 

Tomar 70,56 20313,659 

Tondela 74,58 21471,630 

Torre de Moncorvo 0,00 15205,925 

Torres Novas 128,22 36912,892 

Torres Vedras 126,42 36395,217 

Trancoso 72,63 20910,575 

Vagos 33,13 9539,090 

Valpaços 0,00 24259,587 

Viana do Alentejo 816,50 22693,858 

Viana do Castelo 0,00 9125,958 

Vidigueira 1014,85 28206,999 

Vila Flor 0,00 11751,359 

Vila Franca de Xira 1726,32 37646,694 

Vila Nova de Foz Côa 0,00 17602,060 

Vila Real 0,00 10836,038 

Vila Velha de Ródão 36,15 10408,489 

Vila Viçosa 404,15 11233,076 

Vimioso 0,00 13776,472 

Vinhais 0,00 19874,175 

Viseu 101,88 29331,026 
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Table 12 – Distances between Biomass Collection Site and Integrated Biorefinery Site, in km. (Parameter 𝐷𝐼𝐾𝑖𝑘) 
Integrated Biorefiney  

Site 
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Abrantes 170,1 202,8 281,4 364,0 86,1 349,9 115,0 126,8 331,8 125,4 178,2 82,0 141,9 254,8 115,0 90,0 33,2 83,7 227,8 64,8 54,0 153,4 229,5 300,9 258,00 288,30 59,20 195,70 
Águeda 22,6 352,3 126 260,2 183,7 207,9 45,1 283,2 473 164,9 147,9 110,1 240,3 404,3 256,1 84,7 189,6 219,2 72,4 177,8 120,2 268,3 356,6 145,6 181,8 146,3 167,6 74,9 

Alandroal 294,2 112,7 405,4 434,4 156,5 441,4 239,1 51,8 251,7 195,8 248,6 206 178,3 164,6 81,5 214,1 91,6 78,1 351,8 155,1 178 148,3 187,6 425 328,3 393,1 128,8 303,2 
Albergaria-a-Velha 19,7 367,5 112,5 250,5 198,9 198,2 60,3 298,4 488,2 174,9 138,2 125,4 255,5 419,5 271,4 100 204,8 234,4 59 193 135,5 283,6 371,8 132,1 172,1 136,6 182,8 65,2 

Alcácer do Sal 297,6 85,2 412,1 505,2 227,2 481 246,1 67,9 194,9 266,5 319,4 186,4 88,7 137,2 45,9 212,3 132,2 165,2 358,5 117,1 214,6 50,7 69,5 431,7 399,1 419,4 199,6 326,7 
Alcanena 157,2 213 267,6 396,2 130,3 348,5 109,6 147 333,7 169,6 222,5 46,9 105,7 265 116,8 69,8 84,4 131,3 214,1 31,2 91,5 130,6 217,3 287,2 290,1 287 103,5 194,3 
Alcobaça 142,1 243,7 261 386 166,4 338,3 99,4 177,7 351,4 205,7 245 30,9 106,9 295,6 147,5 56,8 120,4 167,4 207,5 61,9 121,4 135 232,7 280,6 279,9 276,8 139,5 184,1 
Alcochete 246,1 151,1 365 482,1 215,7 439,6 203,4 101,3 255,1 255 307,8 134,9 34,5 203 71,2 160,8 127,2 185,8 311,4 75,7 177,2 30 134,8 384,6 376 378 188,8 285,4 
Alenquer 198,5 186 317,5 442,4 190,2 394,7 155,8 126,5 288,5 229,5 282,4 87,3 44 237,9 96,3 113,2 128,7 189,7 263,9 43 151,8 72 169,7 337 336,3 333,2 163,3 240,5 

Alfândega da Fé 230,8 462,5 193,6 72,8 215,8 90,4 225 387,2 596,9 178,7 123,8 291,2 421,4 514,5 395,2 265,8 310,5 293,2 191,9 349,7 263,3 441,8 509,8 241,4 42,2 98,6 242,4 149,9 
Alijó 170,1 469,5 131,3 110,9 222,7 73 196,9 394,1 603,9 185,6 130,8 263,1 393,3 521,4 402,2 237,7 317,5 300,1 129,5 326,7 254,8 418,8 505,5 179 79,3 35,3 249,4 109,8 

Aljustrel 365,5 36,6 480,2 543,5 265,5 548,8 314 93 119,2 304,8 357,6 254,3 162,2 66,2 99,4 280,2 185,7 193 426,6 185 268,1 124,6 76,8 499,8 437,4 487,3 237,8 394,6 
Almeida 191 381,9 233,5 165,7 133,9 172,7 184,4 306,6 516,3 98,7 46,3 250,5 357,8 433,8 314,6 225,1 229,9 212,6 231,2 281 197,1 372,9 429,2 281,3 59,7 154,2 161,8 109,2 
Almeirim 187,4 175,1 302,1 413,1 146,7 370,6 135,8 109,1 295,8 186 238,9 76,2 83,9 227,1 78,9 102,1 81,7 142,7 248,5 6,9 108,3 92,7 179,4 321,6 307 309,1 119,8 216,4 

Almodôvar 409,1 65,7 523,8 587 309 592,4 357,5 136,5 74,5 348,3 401,2 297,9 206 41,5 142,9 323,8 229,2 236,5 470,2 228,5 311,6 168,3 100,6 543,3 480,9 530,8 281,4 438,2 
Alpiarça 184,1 182,1 295,3 406,3 139,9 363,8 128,9 116 302,7 179,2 232 80,4 88,1 234 85,9 100,8 74,9 135,9 241,7 11 101,4 99,6 186,3 314,8 300,2 302,2 113 209,6 

Alter do Chão 237,2 164,7 348,4 362,1 84,1 369 182,1 89,3 299,1 123,4 176,2 149 178,2 216,6 97,4 157,1 34,6 34 294,8 119 106 162,9 212 368 256 320,8 56,4 230,9 
Alvaiázere 110 259,4 221,2 332,3 115,4 289,8 54,9 190,3 380,1 145,6 190,5 56 161,6 311,4 163,2 36,8 96,7 143,9 167,6 84,9 50 177 263,7 240,8 226,2 228,2 99,4 135,5 

Alvito 327,2 35,8 441,9 491,7 213,7 498,7 275,6 41,2 170,5 253 305,9 216 147,5 87,8 61 241,9 135,3 141,2 388,3 146,6 221,7 109,4 103,6 461,4 385,6 448,9 186,1 356,3 
Amarante 124,7 480,3 56,8 158,7 253,5 101,9 173,2 411,2 601 216,4 161,6 233,7 363,9 532,3 384,2 208,3 317,6 331 58,8 299,3 248,3 391,9 484,6 104,6 121,1 39,3 280,2 107,8 

Anadia 31 337,6 143,5 277,7 168,9 225,3 30,4 268,4 458,2 147,4 143,2 95,4 225,6 389,5 241,4 70 174,8 204,5 89,9 163 105,5 253,6 341,8 163 178,1 163,8 152,9 77,4 
Ansião 94 276,3 204,4 326,1 109,7 281,7 42,8 207,2 397 139,4 184,3 45,2 175,4 328,3 180,1 19,5 113,6 145,2 150,9 101,8 46,3 193,9 280,6 224 220 220,2 93,6 127,5 

Armamar 140,4 444,9 112,4 154,7 198,1 102,4 167,2 369,5 579,3 161 106,2 233,4 363,6 496,8 375,4 208 292,9 275,6 110,8 297 225,1 389,1 475,8 160,1 90,5 40,8 224,8 80,1 
Arraiolos 274,2 100 385,4 436,8 158,8 443,8 219,1 24 234,4 198,1 251 175,3 119,4 152 22,7 191,9 71,5 97,9 331,8 105,9 158 88,2 137,2 404,9 330,7 392,3 131,2 299,7 

Arronches 257,2 166,6 368,4 381,5 103,5 388,5 202,1 91,3 301 142,8 195,7 188,5 205,1 218,6 109,9 188,9 79,7 24,7 314,8 164,1 125,4 175,4 224,4 388 275,4 340,2 75,9 250,3 
Arruda dos Vinhos 214,7 186,8 333,7 458,6 197,5 411 172 127,3 289,2 236,8 289,6 103,5 35,8 238,7 97,1 129,4 135,9 197 280,1 50,3 159,1 69,3 170,5 353,2 352,5 349,4 170,6 256,7 

Aveiro 4 362,2 121,4 267,5 197,1 215,2 58,5 296,2 482,9 178,2 155,2 111,6 241,3 414,2 266 94,4 203 232,6 67,8 180,4 133,6 269,3 366,5 140,2 189,1 153,6 181 82,2 
Avis 230,9 142,1 342,1 393,5 115,5 400,5 175,8 66,1 276,5 154,8 207,7 142,7 146,8 194,1 66 150,7 28,2 65,4 288,5 112,6 114,7 131,5 180,5 361,6 287,4 349 87,9 256,4 

Azambuja 199,6 192,4 318,6 440,5 174,1 395,9 157 132,9 294,8 213,4 266,2 88,4 50,4 244,3 102,7 114,3 112,5 173,6 265 26,9 135,7 78,4 176,1 338,1 334,4 334,3 147,2 241,7 
Barcelos 120,6 476,2 23,8 233,6 307,6 142,5 169 407,1 596,9 284,6 236,4 229,5 359,7 528,2 380 204,1 313,5 343,1 52,9 295,1 244,1 387,7 480,5 31,3 195,9 114,1 291,5 174,9 

Barrancos 391,8 96,1 503 532,1 254,1 539,1 336,7 107,4 210,8 293,4 346,2 292,2 234 109,5 137,2 311,7 189,2 180,6 449,4 222,8 275,6 203,9 192,8 522,6 426 490,8 226,5 400,9 
Beja 362,6 9,6 477,2 526,6 248,7 533,6 311 76,1 139,5 288 340,8 251,4 173,9 52,4 96,4 277,3 170,2 176,1 423,6 182 256,7 135,9 98,5 496,8 420,5 484,3 221 391,6 

Belmonte 178,8 316,4 242,1 211,7 69,6 218,7 148,6 241 450,8 33,3 24,9 214,7 292,3 368,3 249,1 189,4 164,4 147 219,1 215,5 131,5 307,3 363,7 289,9 105,6 170,4 96,2 97,1 
Benavente 219,8 166,3 334,3 445,6 179,2 403,1 168,3 108,2 268,8 218,5 271,3 108,6 51,9 218,3 78 134,5 111,6 170,2 280,7 39,3 140,8 60,3 150 353,8 339,5 341,5 152,3 248,9 
Bombarral 181,7 223 302,2 427,1 197,2 379,5 140,6 163,6 325,5 236,5 286,1 72,1 71,7 275 133,4 97,9 146,8 198,1 248,6 61,2 158,3 107,4 206,8 321,7 321 317,9 170,3 225,2 

Borba 281,6 121,3 392,8 419,4 141,4 426,4 226,5 55,8 260,3 180,7 233,6 193,4 172,8 173,3 76 201,5 79 63,1 339,2 142,5 163,3 141,5 190,2 412,4 313,3 378,1 113,8 288,2 
Bragança 267,7 527,3 215,6 9,7 280,6 100,3 289,8 452 661,7 243,5 188,6 356 486,2 579,3 460,1 330,6 375,3 358 214,4 414,5 328,1 506,6 574,6 263,9 107 121,2 307,2 207,4 
Cadaval 188,9 216,7 309,4 434,3 190,2 386,7 147,8 157,2 319,1 229,5 282,3 79,3 74,5 268,6 127 105,2 138,7 191,2 255,8 53 151,4 102,7 200,4 329 328,3 325,1 163,3 232,5 

Caldas da Rainha 163,7 232,3 284,2 409,2 185,7 361,5 122,6 167,5 334,8 225 268,2 54,1 89,6 284,3 137,3 80 137,3 186,7 230,6 51,7 145,3 118,3 216 303,8 303,1 300 158,8 207,3 
Campo Maior 280 165,4 391,2 404,2 126,3 411,2 224,9 100,6 304,4 165,6 218,4 210,3 219,2 217,3 122,5 211,7 95,8 47,5 337,6 180,2 148,2 188 235 410,7 298,2 363 98,6 273,1 
Cantanhede 34,8 332,3 155,4 290,4 163,7 238,1 25,1 263,2 453 158,4 154,2 87,9 218 384,3 236,1 62,5 169,6 199,2 101,8 153,4 100,2 246,1 336,6 174,3 189,1 176,5 147,6 88,5 

Carrazeda de Ansiães 196,7 459,4 163,3 94,2 212,6 91,5 207,6 384,1 593,8 175,5 120,7 273,8 404 511,4 392,1 248,4 307,4 290,1 161,7 337,4 260,2 429,5 506,7 211 53,1 68,5 239,3 123,9 
Cartaxo 194,6 195,3 308,8 427,8 161,4 385,3 150,4 129,3 308 200,7 253,5 83,4 63,6 247,3 99,1 109,3 99,8 160,9 255,2 14,2 122,9 91,6 189,3 328,4 321,7 323,7 134,5 231,1 

Castelo Branco 197,3 248,8 308,5 279,6 10,7 286,6 142,2 173,4 383,2 41 93,8 154,7 224,7 300,7 181,5 129 96,8 79,5 255 147,9 65,5 239,8 296,1 328,1 173,6 238,4 28,7 148,5 
Castelo de Vide 226,4 194,4 337,6 350,6 72,7 357,6 171,3 119,1 328,8 112 164,8 158,4 218,7 246,4 137,7 158 74,9 19,4 284 141,6 94,5 203,2 252,2 357,1 244,5 309,3 45 219,4 

Castro Daire 93,5 427,4 133 175,2 184 122,9 123,1 355,5 548,1 145,7 108,3 189,3 319,5 479,4 331,2 163,9 264,7 261,5 111,5 252,9 180,9 345 431,7 179,2 108 61,3 210,7 36 
Castro Verde 387,7 44,3 502,4 565,7 287,7 571 336,2 115,2 95,9 327 379,8 276,5 184,6 42,9 121,6 302,5 207,9 215,2 448,8 207,2 290,3 147 91,4 522 459,6 509,5 260 416,8 

Celorico da Beira 130,3 364,2 195,9 165,5 117,4 172,5 123,7 288,8 498,6 80,3 25,5 189,8 320 416,1 296,9 164,4 212,2 194,8 170,5 248,3 162 340,4 411,5 243,7 59,4 124,2 144 48,5 
Chamusca 167,6 198,5 278,9 389,9 123,5 347,4 112,5 130,3 319,1 162,8 215,6 67,9 104,5 250,4 102,3 84,4 64 119,5 225,3 27,4 85 116 202,7 298,4 283,8 285,8 96,6 193,2 

Chaves 214,5 533,6 119,3 99,8 286,8 6,9 241,4 458,2 666,3 249,7 194,9 307,5 437,7 585,5 449,5 282,1 381,6 364,3 156,7 371,2 299,2 463,2 549,9 172,5 113,2 63,4 313,5 154,3 
Coimbra 58,8 310,9 170 289,1 142,3 241,5 5 241,8 431,6 147,5 148,1 68,7 198,9 362,8 214,7 43,3 148,2 177,8 116,4 136,4 78,8 226,9 315,2 189,6 183 179,9 126,2 87,2 

Condeixa-a-Nova 68,5 299,5 179 303,9 130,9 256,2 17,3 230,4 420,2 151,9 162,9 52,6 182,8 351,5 203,4 27,2 136,8 166,4 125,4 122 67,5 210,8 303,8 198,5 197,8 194,7 114,8 102 
Coruche 219,6 144,2 334,3 445,4 178,2 402,9 168,1 78,2 264,9 217,5 270,3 108,4 80 196,1 48 134,3 81,6 140,2 280,7 39,1 140,6 73,6 151,3 353,8 339,3 341,4 151,3 248,7 
Covilhã 169,2 303,7 255,6 229 56,9 236 138,7 228,3 438,1 18,6 42,2 198,4 279,6 355,6 236,4 172,6 151,7 134,3 213,3 202,8 118,8 294,7 351 286,4 122,9 184 83,6 91,9 
Crato 225,4 177,1 336,6 349,7 71,7 356,6 170,3 101,7 311,5 111 163,8 156,3 190,6 229 109,8 157,1 47 21,6 283 131,4 93,6 175,3 224,4 356,2 243,6 308,4 44 218,5 
Cuba 344,4 19,1 459 508,8 230,9 515,8 292,8 58,4 158,1 270,2 323 233,2 164,6 71,1 78,2 259,1 152,4 158,4 405,4 163,8 238,9 126,6 99,1 478,6 402,8 466,1 203,2 373,4 
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Elvas 289,2 145,9 400,4 413,5 135,5 420,5 234,1 83,4 284,9 174,8 227,7 211,9 200,4 197,8 103,6 220 97,5 56,7 346,8 170,1 157,4 169,1 217,8 420 307,4 372,2 107,9 282,3 
Estarreja 19,5 380,9 102,3 261,4 212,3 204,6 73,7 311,8 501,6 188,3 151,6 131 260,7 432,9 284,8 110,5 218,2 247,8 48,7 199,9 148,9 288,7 385,2 121,1 185,5 141,9 196,2 78,6 
Estremoz 269,4 121,4 380,6 409,6 131,7 416,6 214,3 46 255,8 171 223,8 181,2 161,4 173,3 64,6 189,2 66,7 55,8 327 131,1 153,2 130,1 179,2 400,1 303,5 368,3 104 278,4 

Évora 296,5 76,2 408,1 451,3 173,3 458,3 241,8 10,2 210,6 212,6 265,5 185,3 127 128,1 30,3 211,2 94,2 100,8 354,5 115,9 180,7 97 136,7 427,6 345,2 410 145,7 320,1 
Ferreira do Alentejo 340,9 24 455,6 518,9 240,9 524,2 289,4 68,4 142,3 280,2 333 229,7 151,5 75,9 74,8 255,7 161,1 168,4 402 160,4 243,5 113,9 75,3 475,2 412,8 462,7 213,2 370 
Ferreira do Zêzere 126,5 250,9 237,7 348,8 101,1 306,3 71,4 181,8 371,6 136,4 191,7 64,5 153,1 302,9 154,7 57,4 88,2 135,4 184,1 76,4 35,7 168,5 255,2 257,3 242,7 244,7 85,1 152 

Figueira da Foz 60,9 305,1 182,2 327,8 168,5 275,9 44,3 239,1 425,8 186,2 186,8 54,4 184,1 357 208,9 41,4 163,9 204,1 128,6 123,3 105,1 212,1 309,4 201 221,7 214,4 152,5 125,9 
Figueira de Castelo Rodrigo 202,1 396,4 211,2 143,5 149,6 150,5 195,5 321 530,8 113,2 59,9 261,6 372,3 448,3 329,1 236,3 244,4 227,1 209,7 295,5 211,5 387,4 443,7 259 37,4 131,9 176,3 120,4 

Fronteira 253 147,7 364,2 379,1 101,1 386,1 197,8 72,3 282,1 140,4 193,3 164,8 169,7 199,6 81,1 172,8 50,3 49,4 310,6 134,7 123 146,6 195,7 383,7 273 337,8 73,5 247,9 
Fundão 178,3 288,2 272,9 242,5 41,5 249,5 147,8 212,9 422,6 7,5 55,7 184,5 264,2 340,2 221 158,7 136,2 118,9 231,7 187,4 102,4 279,2 335,5 304,9 136,4 201,2 68,1 110,4 
Golegã 159,8 208 271 382 115,6 339,5 104,7 139,8 328,7 154,9 207,8 59,9 108,8 259,9 111,8 76,5 69,4 116,6 217,4 31,7 77,2 125,6 212,3 290,5 275,9 278 88,7 185,3 
Gouveia 123,3 358,3 203,6 192,2 111,5 193,5 106,5 282,9 492,7 73,2 50,5 172,7 302,8 410,2 291 147,3 206,3 189 163,6 226,5 140,2 318,6 405,3 236,8 86,1 131,9 138,2 41,6 
Grândola 321,6 68,8 436,2 529,1 251,2 505 270,2 91,9 172,9 290,5 343,3 210,4 112,8 120,7 69,9 236,3 156,2 189,2 382,6 141,2 238,6 74,8 45,9 455,8 423,1 443,5 223,5 350,8 
Guarda 154,8 340,8 218,1 187,7 94 194,7 148,2 265,5 475,2 55,7 7,5 214,4 316,7 392,7 273,5 189 188,8 171,5 195,1 239,9 156 331,8 388,1 265,8 81,6 146,4 120,7 73,1 

Idanha-a-Nova 223,3 283,3 307,2 276,8 34,6 283,8 176,7 207,9 417,7 45,5 92,2 189,2 259,2 335,2 216 163,5 131,3 113,9 276,8 182,4 100 274,2 330,6 349,9 170,7 235,5 63,2 155,4 
Leiria 111,5 251,3 230,3 355,3 154,8 307,6 68,7 185,3 372 184,5 214,3 6,7 130,4 303,3 155,1 26,1 115,1 162,3 176,7 69,5 91,3 158,4 255,6 249,9 249,2 246 134,4 153,4 
Loulé 471,1 127,7 585,8 649 371,1 654,4 419,5 198,5 17,3 410,4 463,2 359,9 264 89,3 204,9 385,8 291,2 298,5 532,2 290,5 373,6 226,4 154,2 605,3 542,9 592,8 343,4 500,2 

Loures 237,9 171,5 356,9 481,8 220,5 434,2 195,3 124,7 275,5 259,8 312,6 126,7 14,5 223,4 94,5 152,7 151,8 210,4 303,3 73,5 181,7 50 155,2 376,5 375,8 372,6 193,6 280 
Lourinhã 198,8 225,1 319,3 444,3 214,3 396,6 157,7 168,7 329,1 253,6 303,3 89,2 67,9 277,1 138,5 115,1 164 215,3 265,7 78,3 175,5 103,6 208,8 338,9 338,2 335,1 187,4 242,4 
Mação 177,2 215,7 288,4 342,1 64,2 342,5 122,1 139,7 348,8 103,5 156,3 102,7 166,4 267,7 131,9 108,8 45,6 68 234,8 89,6 43,7 181,3 246,5 307,9 236 280,9 37,3 188,3 

Macedo de Cavaleiros 232,6 485 181,1 41,8 238,2 78,9 247,5 409,6 619,4 201,1 146,3 313,6 443,8 536,9 417,7 288,3 333 315,7 179,3 372,2 285,8 464,2 532,3 228,9 64,7 86,1 264,9 172,3 
Mafra 231,9 196 352,4 477,3 233,7 429,7 190,8 149,2 300 273 325,8 122,3 38,8 247,9 119 148,2 171,4 230 298,8 86,4 195,2 74,5 179,7 372 371,3 368,1 206,8 275,5 

Mangualde 98,1 383,6 178,4 200,7 136,8 168,3 88,5 308,2 513,5 98,5 59,7 154,7 284,9 435,5 296,7 129,3 229 214,2 138,4 218,3 142,4 310,4 397,1 211,5 94,6 106,7 163,5 16,4 
Mêda 171,4 405,6 175,1 128,3 158,9 135,3 168,1 330,3 540 121,8 66,9 234,3 364,5 457,6 338,3 208,9 253,6 236,3 173,6 292,8 206,4 384,9 452,9 222,9 22,2 98,2 185,5 91,8 

Mértola 414,6 52,7 529,2 578,6 300,6 585,6 363 128,1 101,4 339,9 392,8 303,4 225,9 10,1 148,4 329,3 222,2 228,1 475,6 234 308,7 187,9 133,8 548,8 472,5 536,3 273 443,6 
Miranda do Douro 308,2 529,3 268,4 76,1 282,5 167,2 302,4 454 663,7 246,1 192,8 368,6 498,7 581,3 462 343,2 377,3 360 266,6 427,1 340,7 519,1 576,6 316,1 119,6 173,4 309,2 227,3 

Mirandela 207,4 481 155,9 62,2 234,2 52,6 234,3 405,6 615,4 197,1 142,3 300,4 430,6 532,9 413,7 275 329 311,6 154,2 364,1 281,8 456,1 528,3 203,7 60,6 60,9 260,9 147,2 
Mogadouro 261,2 482,3 230,9 83,4 235,5 128,7 255,4 407 616,7 199,1 145,8 321,6 451,7 534,3 415 296,2 330,3 313 229,1 380,1 293,7 472,1 529,6 278,7 72,6 135,9 262,2 180,3 
Monforte 260,6 148,3 371,8 384,9 106,9 391,9 205,5 72,9 282,7 146,2 199 175,8 186,7 200,2 91,5 183,9 61,4 28,6 318,2 145,8 128,8 157 206,1 391,4 278,8 343,6 79,2 253,7 

Montalegre 210,1 565,7 89,7 142,8 326,9 43,3 258,6 496,6 686,4 289,8 235 319,1 449,3 617,7 469,6 293,7 403 404,4 142,5 384,7 326,1 477,3 570 142,9 156,3 90,3 353,6 181,2 
Montemor-o-Novo 266,3 96,3 380,9 459,4 181,4 449,6 214,7 30,3 217 220,7 273,5 155,1 96,8 148,2 9,9 181 86,4 119,4 327,4 85,7 168,8 66,8 114,7 400,5 353,3 388 153,8 295,3 
Montemor-o-Velho 58,6 318,1 179,3 311,3 150,8 261,7 27,7 250,3 438,7 169,7 170,3 66,9 197,1 370 221,9 41,5 156,7 186,3 125,7 136,3 87,3 225,1 322,3 198,1 205,2 200,1 134,7 109,4 

Montijo 250,6 145,7 369,5 486,6 220,2 444,1 207,9 99,5 249,8 259,5 312,3 139,4 33,2 197,7 69,4 165,3 131,7 188,7 316 80,2 181,7 24,3 129,5 389,1 380,5 382,5 193,3 289,9 
Mora 243,2 136,4 354,4 419,4 141,4 422,9 188,1 60,4 261,3 180,7 233,5 143,4 108,8 188,4 44,4 160 44,8 105,2 300,8 74,6 127,2 102,4 159 373,9 313,3 361,4 114,5 268,7 
Moura 371,9 51,3 483,9 518,3 240,4 525,3 317,6 76 184,2 279,7 332,5 260,8 202,5 82,9 105,8 286,7 170,1 166,9 430,3 191,4 256,5 165,9 144,2 503,5 412,2 477 212,7 387,1 
Mourão 342,1 87 453,3 482,3 204,4 489,3 287 57,7 220,7 243,7 296,5 242,5 184,2 119,4 87,5 261,9 139,5 130,9 399,7 173,1 225,9 154,2 179,9 472,9 376,3 441,1 176,7 351,1 

Nisa 199,5 203,6 310,7 323,7 45,7 330,7 144,3 128,2 338 85 137,9 135,3 197,8 255,5 136,3 131,1 54 34,3 257,1 120,8 67,6 199,2 250,9 330,2 217,6 282,4 18,1 192,5 
Óbidos 169,4 233,1 289,9 414,9 187,3 367,2 128,3 167,1 336,6 226,6 273,9 59,8 83,2 285,1 136,9 85,7 137 188,3 236,3 51,3 148,5 118,9 217,9 309,5 308,8 305,7 160,4 213 

Odemira 401,6 93,8 516,2 600,5 322,6 585 350,1 150,1 136,6 361,9 414,7 290,4 192,7 105,1 149,8 316,3 236,2 250,1 462,6 221,1 318,5 154,7 56,7 535,7 494,5 523,4 294,9 430,8 
Oleiros 154,9 270,8 266,8 315,9 61,2 300,5 100,5 195,5 405,2 73,5 129,2 113 212,9 322,8 191,4 87,2 105,1 101,5 213,2 136,2 29 228,3 306 286,4 209,9 238,9 49,9 146,3 

Oliveira do Hospital 103,1 365,4 215,5 223,8 125,5 211,9 75,5 289,4 490,8 87,2 82 141,7 271,9 417,3 273,9 116,3 195,8 203 161,9 195,6 109,2 287,7 374,4 235,1 117,7 150,3 152,2 58,2 
Ourém 133,5 241 243,9 365,6 136,1 321,2 82,3 172,8 361,7 172,5 223,8 25,3 137,3 292,9 144,8 42,9 89,9 137,1 190,3 66,4 71,7 158,6 245,3 263,5 259,5 259,6 109,2 167 
Ourique 395 58,8 509,5 580,2 302,3 578,4 343,5 129,8 98,9 341,6 394,4 283,8 187,4 57,5 136,1 309,7 222,5 229,8 456 214,5 304,8 149,7 76,1 529,1 474,2 516,8 274,6 424,1 
Palmela 264,9 138 383,9 500,9 234,5 458,4 222,3 95,6 242 273,8 326,7 153,7 40,8 190 65,4 179,6 145,6 183,5 330,3 94,6 196,1 8,2 121,7 403,4 394,8 396,9 207,6 304,2 

Penamacor 208,8 300,5 276,2 245,8 51,8 252,8 178,2 225,1 434,9 36,1 61,2 206,4 276,4 352,4 233,2 180,7 148,5 131,1 253,2 199,6 117,2 291,4 347,8 324 139,7 204,5 80,3 131,2 
Pinhel 177,9 372,2 211,4 167,6 125,5 174,6 171,3 296,9 506,6 89 35,7 237,5 348,2 424,2 304,9 212,1 220,2 202,9 209,8 271,4 187,4 363,2 419,5 259,2 61,5 139,7 152,1 96,2 

Pombal 94,2 277,2 204,6 329,6 129,1 281,9 43 211,2 397,9 158,7 188,6 26,1 156,3 329,2 181 7,1 123,1 164,6 151 95,4 65,6 184,3 281,5 224,2 223,5 220,4 113 127,7 
Ponte de Lima 149,7 505,3 33,5 247,5 336,7 151 198,1 436,2 626 305,2 250,4 258,6 388,8 557,2 409,1 233,2 342,6 372,2 82 324,2 273,2 416,8 509,6 26,6 209,9 128,1 320,6 196,6 
Ponte de Sor 203,3 170,2 314,5 374,7 96,7 381,7 148,2 94,2 303,3 136 188,9 115,1 153,5 222,2 86,4 123,1 8,2 68,5 260,9 85,7 87,1 145,3 201 334 268,6 321,5 69,8 228,8 

Portalegre 233,1 176,1 344,3 357,3 79,3 364,3 177,9 100,8 310,5 118,6 171,5 164,3 212,1 228,1 119,4 164,7 68,5 6 290,7 147,5 101,2 184,9 234 363,8 251,2 316 51,7 226,1 
Portel 337,5 38,5 449,5 492,1 214,1 499,1 283,2 41,6 177,5 253,4 306,2 226,3 168,1 90,5 71,4 252,2 135,6 141,6 395,9 157 222,1 133,8 124,3 469 386 450,8 186,4 360,9 

Porto de Mós 145,1 225,3 260,9 389,1 134,1 341,4 102,5 159,3 346 173,4 226,2 33,9 115,2 277,3 129,1 59,9 88,1 135,1 207,3 44,2 95,2 142,9 229,6 280,5 283 279,8 107,2 187,2 
Proença-a-Nova 149,4 248,3 260,6 324,5 48,2 314,8 94,3 172,3 381,4 85,9 138,7 106,8 195,7 300,2 164,5 81,1 78,2 84,7 207 118,8 17,6 210,7 279,1 280,2 218,5 253,2 33,1 160,5 

Redondo 294,9 97,2 406,1 435,2 157,2 442,1 239,8 36,4 236,2 196,5 249,3 206,7 162,8 149,2 66,1 214,8 92,3 83,7 352,5 151,7 178,7 132,8 172,2 425,7 329,1 393,9 129,5 304 
Reguengos de Monsaraz 322,7 83 433,9 462,9 184,9 469,9 267,6 38,3 222 224,2 277,1 223 164,8 135 68 242,5 120 111,4 380,3 153,7 206,5 134,8 168,8 453,4 356,8 421,6 157,3 331,7 

Rio Maior 170,7 212,6 289,6 414,6 163,2 366,9 128 146,6 330,3 202,5 255,3 59,4 85,9 264,5 116,4 85,4 116,5 164,2 236 30,8 124,4 113,9 211,6 309,2 308,5 305,3 136,3 212,7 
Sabugal 182 332,3 245,2 214,8 83,6 221,8 175,4 257 466,7 53,9 30,2 238 308,2 384,2 265 212,3 180,3 163 222,3 231,4 149 323,3 379,6 293 108,7 173,5 112,2 100,3 

Salvaterra de Magos 214,4 168,8 328,9 440,2 173,8 397,7 162,9 102,8 274,2 213,1 265,9 103,2 57,3 220,7 72,6 129,1 106,2 164,8 275,3 33,9 135,4 65,7 155,4 348,4 334,1 336,1 146,9 243,5 
Santarém 180,7 181,9 295,3 413,7 147,3 371,2 136,4 115,9 302,6 186,6 239,5 69,5 77,2 233,8 85,7 95,4 85,8 146,8 241,8 5,4 108,9 99,5 186,2 314,9 307,6 309,7 120,4 217 

Santiago do Cacém 346,3 77,9 460,9 553,8 275,9 529,7 294,9 116,6 164,9 315,2 368 235,1 137,5 121,7 94,6 261,1 180,9 213,9 407,3 165,9 263,3 99,5 21,3 480,5 447,8 468,2 248,2 375,5 
São João da Pesqueira 169 432,4 135,6 121,9 185,7 110,1 180,7 357,1 566,8 148,6 93,7 246,8 377 484,4 365,2 221,4 280,4 263,1 134 310,5 233,2 402,5 479,7 183,4 42,3 56,2 212,3 96,9 

São Pedro do Sul 67,1 410,3 153,7 200,2 170,8 147,8 105,4 341,1 531 132,5 95 170,4 300,6 462,2 314,1 145 247,6 248,3 100,2 235,8 163,8 327,8 414,6 173,4 127,4 86,3 197,5 22,8 
Sátão 100,9 406,4 155,5 194,6 159,6 145,4 108,5 331 533,5 121,3 79,9 174,7 304,8 458,3 316,6 149,3 250,1 237,1 139,8 238,3 165,2 330,4 417,1 203,3 88,5 83,8 186,3 21,4 
Seia 122,4 350,5 208,8 206,9 103,8 198,7 91,9 275,2 484,9 65,4 65,2 158 288,2 402,5 283,2 132,7 198,5 181,2 166,4 211,9 125,6 304 390,7 239,6 100,9 137,1 130,4 45 

Serpa 389,7 28 504,4 548,9 271 555,9 338,1 103,3 156,2 310,3 363,1 278,5 201 54,9 123,5 304,4 197,4 197,5 450,8 209,1 283,8 163 125,6 523,9 442,8 507,6 243,3 417,7 
Sertã 133,9 256,7 245,1 327,4 65,6 299,3 78,8 180,7 385,7 102,4 156,1 91,3 185,6 308,6 168,8 65,6 87,1 101,1 191,6 108,9 3,3 201 283,4 264,7 221,3 237,7 49,5 145,1 

Setúbal 269,8 135,8 388,7 505,8 239,4 463,3 227,1 97 239,8 278,7 331,5 158,6 45,3 187,8 66,9 184,5 145,3 185 335,2 99,4 200,9 0,8 119,6 408,3 399,7 401,7 212,5 309,1 
Silves 459,6 122,1 574,2 643,5 365,5 643 408,1 193 56,7 404,8 457,7 348,4 252 107,2 199,4 374,3 285,7 293 520,6 279,1 368,1 214,3 138,9 593,7 537,4 581,4 337,9 488,7 
Sines 366,4 98,4 481 573,9 295,9 549,8 314,9 136,6 166,3 335,2 388,1 255,2 157,5 133,5 114,6 281,1 201 233,9 427,4 185,9 283,3 119,5 4,4 500,5 467,8 488,2 268,3 395,6 
Sintra 253,3 195,5 373,8 498,7 245,8 451,1 212,2 148,7 299,5 285,1 338 143,7 25,8 247,5 118,5 169,5 175,8 234,4 320,2 98,9 207 67,9 179,3 393,3 392,6 389,5 218,9 296,9 
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Soure 77,3 299,3 191,2 316,1 138,2 268,5 29,6 233,3 420 164,7 175,1 48,2 178,4 351,3 203,2 22,8 142,1 173,7 137,6 117,6 74,7 206,4 303,6 210,7 210 206,9 122,1 114,2 
Sousel 255,2 135,2 366,4 392,2 114,3 399,2 200 59,8 269,6 153,6 206,4 167 157,4 187,1 68 175 52,5 57,4 312,8 123,2 136,1 133,5 182,5 385,9 286,1 351 86,6 261 
Tábua 81,6 351,6 194 242,7 137,6 203,9 55,6 275,6 477 96,8 101 121,8 252 403,6 260,2 96,4 182 194,4 140,5 181,8 95,5 273,9 360,6 213,6 136,6 142,4 142,8 49,7 
Tavira 488,1 138,3 602,8 664,3 386,3 671,3 436,5 213,8 30,1 425,6 478,5 376,9 285 85,8 221,9 402,8 307,9 313,8 549,2 307,5 390,6 247,3 179,9 622,3 558,2 609,8 358,7 517,2 
Tomar 134,1 232 245,3 356,3 115,5 313,8 79 162,9 352,7 152,2 207,5 45,9 134,2 284 135,8 53,9 69,3 116,5 191,7 57,5 51,5 149,6 236,3 264,8 250,2 252,3 88,6 159,6 

Tondela 76,7 370,1 179,3 230,2 158,9 177,9 65,8 301 490,8 120,6 96,5 131,9 262,1 422 273,9 106,6 207,4 222,6 125,8 195,6 123,6 287,7 374,4 198,9 131,4 116,3 171 23,7 
Torre de Moncorvo 205,3 437,1 194,4 97,5 190,3 104,5 199,6 361,7 571,5 153,2 98,4 265,7 395,9 489 369,8 240,3 285,1 267,7 192,9 324,2 237,9 416,3 484,4 242,2 16,7 102,1 216,9 124,4 

Torres Novas 158,9 217,3 269,3 381,6 115,5 339,1 104,2 149,1 338 154,8 207,7 51,3 110,5 269,2 121,1 70,6 69,6 116,5 215,7 38,4 76,7 134,9 221,6 288,9 275,5 277,5 88,6 184,8 
Torres Vedras 205,8 207,3 326,3 451,2 216,3 403,6 164,7 151,7 311,3 255,6 308,5 96,2 50,1 259,3 121,5 122,1 158,2 217,3 272,7 72,5 177,5 85,8 191 345,9 345,2 342 189,4 249,4 

Trancoso 147,7 381,4 175,6 151 134,6 158 143,9 306 515,8 97,5 42,7 210 340,2 433,3 314,1 184,7 229,4 212,1 174,1 268,5 182,2 360,6 428,7 223,4 44,9 104 161,3 68,2 
Vagos 8,9 353,4 130,2 276,3 193,1 224 54,5 287,4 474,1 175,9 164 102,7 232,4 405,3 257,2 89,7 199 228,6 76,6 171,6 129,6 260,5 357,7 149,1 197,9 162,4 177 91 

Valpaços 220,3 505,2 140,5 74,6 258,4 28,5 247,2 429,8 639,6 221,3 166,5 313,4 443,5 557,1 437,9 288 353,2 335,8 162,5 377 305 469,1 552,5 190,7 84,8 69,2 285 160,1 
Viana do Alentejo 316,6 47,2 431,3 481,7 203,7 488,7 265 31,2 179,5 243 295,8 205,4 143,2 99,1 50,4 231,3 125,2 131,2 377,7 136 211,7 105,2 112,5 450,8 375,6 438,3 176 345,7 
Viana do Castelo 139,8 496,3 53,8 263,5 327,7 172,5 189,1 427,2 617 304,7 266,3 249,7 379,8 548,3 400,1 224,3 333,6 363,2 73,6 315,2 264,2 407,9 500,6 4,6 225,8 144 311,6 195 

Vidigueira 348,2 23,6 460,7 503,3 225,3 510,3 294,4 52,8 162,6 264,6 317,5 237 168,5 75,5 82,1 262,9 146,9 152,8 407,1 167,7 233,3 130,5 110,1 480,3 397,2 462 197,7 372,1 
Vila Flor 214,6 455,6 170,6 80,8 208,8 78,1 218,1 380,2 590 171,7 116,9 284,2 414,4 507,5 388,3 258,8 303,6 286,2 168,9 342,7 256,4 434,8 502,9 218,4 35,2 75,6 235,5 141,8 

Vila Franca de Xira 210,7 174,7 329,6 454,6 193,5 406,9 168 115,2 277,2 232,8 285,6 99,5 31 226,7 85,1 125,4 129,9 188,5 276,1 46,3 155,1 60,7 158,4 349,2 348,5 345,4 166,6 252,7 
Vila Nova de Foz Côa 147,7 381,4 175,6 151 134,6 158 143,9 306 515,8 97,5 42,7 210 340,2 433,3 314,1 184,7 229,4 212,1 174,1 268,5 182,2 360,6 428,7 223,4 44,9 104 161,3 68,2 

Vila Real 153 484,2 96 120,3 238,5 63,5 179,9 409,9 604,9 201,4 146,6 246 376,2 536,1 388 220,6 321,5 315,9 94,3 309,7 237,7 401,7 488,5 143,8 98,4 3,4 265,1 92,8 
Vila Velha de Ródão 181,5 221 292,7 306,5 28,6 313,5 126,4 145,7 355,4 67,9 120,7 134,9 197,7 273 153,7 113,1 69,8 51,7 239,1 120,9 49,6 212,8 268,3 312,2 200,4 265,2 5 175,3 

Vila Viçosa 287,3 116,6 398,5 424,4 146,4 431,4 232,2 55,8 255,6 185,7 238,6 199,1 178,4 168,6 81,7 207,1 84,6 68,1 344,9 148,2 168,3 147,2 191,6 418 318,3 383,1 118,8 293,2 
Vimioso 289,5 518,6 238 47,6 271,8 136,8 291,7 443,3 653 235,4 182,1 357,9 488 570,6 451,3 332,5 366,6 349,3 236,2 416,4 330 508,4 565,9 285,8 108,9 143 298,5 216,6 
Vinhais 264,3 532,5 186,4 32,6 285,8 67,2 291,2 457,2 666,9 248,7 193,8 357,4 487,6 584,5 465,3 332 380,5 363,2 211,1 419,7 333,3 511,8 579,8 239,7 112,2 117,8 312,4 204,1 
Viseu 81,8 391,5 164,5 206,7 148,7 154,4 87,2 320,1 512,2 110,4 73,1 153,4 283,6 443,5 295,3 128 228,8 226,1 122,1 217 145 309,1 395,8 195,3 108 92,8 175,3 3,7 
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Table 13- Distances between Integrated Biorefinery’s sites and Market’s Sites, km. (Parameter 𝐷𝐾𝑉𝑘𝑣) 
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Aveiro 3,964 362,6 121 267,7 197,3 58,82 296,5 483,1 154,8 111,5 241,9 233,1 67,75 180,7 269,8 139,8 153 81,82 
Beja 362,2 9,554 476,6 527,3 248,8 310,9 76,16 139,7 340,8 251,3 173,6 176,1 423,4 181,9 135,8 496,3 484,2 391,5 
Braga 121,4 477,2 3,82 215,6 308,5 170 408,1 597,8 218,1 230,3 360,8 344,3 54,15 295,3 388,7 53,83 96,04 164,5 
Braganca 267,5 526,6 215 9,664 279,6 289,1 451,3 661,1 187,7 355,3 485,8 357,3 213,3 413,7 505,8 263,5 120,3 206,7 
Castelo Branco 197,1 248,7 308 280,6 10,7 142,3 173,3 383,1 94,03 154,8 224,4 79,34 254,8 147,3 239,4 327,7 238,5 148,7 
Chaves 215,2 533,6 119,3 100,3 286,6 241,5 458,3 666,4 194,7 307,6 438,1 364,3 156,5 371,2 463,3 172,5 63,46 154,4 
Coimbra 58,49 311 169,4 289,8 142,2 5,042 241,8 431,6 148,2 68,71 199,2 177,9 116,2 136,4 227,1 189,1 179,9 87,19 
Évora 296,2 76,14 407,5 452 173,4 241,8 10,2 210,6 265,5 185,3 126,8 100,8 354,2 115,9 97,04 427,2 409,9 320,1 
Faro 482,9 139,5 597,3 661,7 383,2 431,6 210,6 4,005 475,2 372 277,5 310,5 544 302,6 239,8 617 604,9 512,2 
Fundão 178,2 288 273,5 243,5 40,97 147,5 212,6 422,4 55,72 184,5 263,7 118,6 231,7 186,6 278,7 304,7 201,4 110,4 
Guarda 155,2 340,8 218,7 188,6 93,81 148,1 265,5 475,2 7,528 214,3 316,5 171,5 195,1 239,5 331,5 266,3 146,6 73,1 
Leiria 111,6 251,4 229,9 356 154,7 68,71 185,3 371,9 214,4 6,706 130,7 164,3 176,7 69,48 158,6 249,7 246 153,4 
Lisboa 241,3 173,9 360,1 486,2 224,7 198,9 127 277,5 316,7 130,4 2,599 212,1 306,9 77,16 45,31 379,8 376,2 283,6 
Mértola 414,2 52,41 528,5 579,3 300,7 362,8 128,1 101,4 392,7 303,3 225,6 228,1 475,3 233,8 187,8 548,3 536,1 443,5 
Montemor_o_Novo 266 96,39 380,4 460,1 181,5 214,7 30,27 217 273,5 155,1 96,61 119,4 327,2 85,71 66,87 400,1 388 295,3 
Pombal 94,41 277,3 204,5 330,6 129 43,32 211,2 397,8 189 26,07 156,6 164,7 151,3 95,39 184,5 224,3 220,6 128 
Ponte de Sor 203 170,2 313,9 375,3 96,78 148,2 94,22 303,3 188,8 115,1 153,9 68,49 260,6 85,76 145,3 333,6 321,5 228,8 
Portalegre 232,6 176,1 343,5 358 79,46 177,8 100,8 310,6 171,5 162,3 212,5 5,965 290,3 146,8 185 363,2 315,9 226,1 
Porto 67,79 423,6 53,33 214,4 255 116,4 354,5 544,2 195,1 176,7 307,2 290,7 1,812 241,8 335,2 73,56 94,29 122,1 
Santarém 180,4 182 295,5 414,5 147,9 136,4 115,9 302,6 239,9 69,52 77,45 147,5 242,3 5,422 99,44 315,2 309,7 217 
Serta 133,6 256,7 244,5 328,1 65,5 78,82 180,7 385,7 156 91,34 185,6 101,2 191,3 108,9 200,9 264,2 237,7 145 
Setúbal 269,3 135,9 388,1 506,6 239,8 226,9 97 239,8 331,8 158,4 45,51 184,9 334,9 99,46 0,795 407,9 401,7 309,1 
Sines 366,5 98,49 480,9 574,6 296,1 315,2 136,7 166,3 388,1 255,6 157,3 234 427,6 186,2 119,6 500,6 488,5 395,8 
Viana do Castelo 140,2 496,8 53,52 263,9 328,1 189,6 427,6 617,4 265,8 249,9 380,4 363,8 73,25 314,9 408,3 4,635 143,8 195,3 
Vila Nova de Foz Côa 189,1 420,5 178,2 107 173,6 183 345,2 555 81,59 249,2 379,7 251,2 175,8 307,6 399,7 225,8 98,43 108 
Vila Real 153,6 484,3 96,34 121,2 238,4 179,9 410 604,9 146,4 246 376,5 316 93,84 309,7 401,7 144 3,443 92,83 
Vila Velha de Rodao 181 221 291,9 307,2 28,67 126,2 145,7 355,4 120,7 134,4 197,5 51,69 238,7 120,4 212,5 311,6 265,1 175,3 
Viseu 82,2 391,6 164,9 207,4 148,5 87,21 320,1 512,2 73,11 153,4 283,9 226,1 122,1 217 309,1 195 92,77 3,661 
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Table 14- Conversion efficiencies of conversion technologies for a type of biomass and product, per scenario and 
time period.(Parameter 𝜇𝑏𝑚𝑝𝑠𝑡) 

Biomass Technology Product Scenario t1 t2 t3 t4 

Sugar/Starch Fermentation Bioethanol s1 0,2558    
Sugar/Starch Fermentation BIoethanol s2  0,3108   
Sugar/Starch Fermentation BIoethanol s3  0,2558   
Sugar/Starch Fermentation Bioethanol s4   0,3658  
Sugar/Starch Fermentation Bioethanol s5   0,3108  
Sugar/Starch Fermentation Bioethanol s6   0,3108  
Sugar/Starch Fermentation BIoethanol s7   0,2558  
Sugar/Starch Fermentation BIoethanol s8    0,4208 
Sugar/Starch Fermentation Bioethanol s9    0,3658 
Sugar/Starch Fermentation Bioethanol s10    0,3658 
Sugar/Starch Fermentation Bioethanol s11    0,3108 
Sugar/Starch Fermentation BIoethanol s12    0,3658 
Sugar/Starch Fermentation BIoethanol s13    0,3108 
Sugar/Starch Fermentation Bioethanol s14    0,3108 
Sugar/Starch Fermentation Bioethanol s15    0,2558 
Sugar/Starch Transesterification Biodiesel s1 0,2751    
Seeds/Animal fats Transesterification Biodiesel s2  0,3101   
Seeds/Animal fats Transesterification Biodiesel s3  0,2751   
Seeds/Animal fats Transesterification Biodiesel s4   0,3451  
Seeds/Animal fats Transesterification Biodiesel s5   0,3101  
Seeds/Animal fats Transesterification Biodiesel s6   0,3101  
Seeds/Animal fats Transesterification Biodiesel s7   0,2751  
Seeds/Animal fats Transesterification Biodiesel s8    0,3801 
Seeds/Animal fats Transesterification Biodiesel s9    0,3451 
Seeds/Animal fats Transesterification Biodiesel s10    0,3451 
Seeds/Animal fats Transesterification Biodiesel s11    0,3101 
Seeds/Animal fats Transesterification Biodiesel s12    0,3451 
Seeds/Animal fats Transesterification Biodiesel s13    0,3101 
Seeds/Animal fats Transesterification Biodiesel s14    0,3101 
Seeds/Animal fats Transesterification Biodiesel s15    0,2751 

 

Table 15- Capacities of each conversion technology and respective installation and fixed costs, in year 2020. 
(Parameters 𝐶𝐴𝑃𝐵𝑚𝑞 , 𝐶𝐼𝐵𝑚𝑞𝑡, 𝐶𝐹𝐵𝑚𝑞𝑡 

Technology Capacity (tonne) Installation Costs Fixed Costs 

Fermentation 75000 36415463€ 2798404€ 

 250000 74991680€ 9328014€ 

Transesterification 50000 12164061€ 1190851€ 

 200000 27945674€ 4763405€ 

 

 

Table 16- Production Costs for each technology, biomass and biofuel and level of accumulated production, in 
€.(Parameter 𝐶𝐶𝑏𝑚𝑝𝑛𝑡) 

Type of Biomass 
Technological 

Process 
Type of Biofuel 

Level of 
Accumulated 

Production (tonne) 

Cost over the time 
horizon of the study 

(€,2020) 

Sugar/Starch Fermentation Bioethanol 10000 466,17 

Sugar/Starch Fermentation Bioethanol 25000 358,12 

Sugar/Starch Fermentation Bioethanol 50000 298,85 

Sugar/Starch Fermentation Bioethanol 75000 267,02 

Sugar/Starch Fermentation Bioethanol 100000 245,84 

Sugar/Starch Fermentation Bioethanol 125000 230,25 

Sugar/Starch Fermentation Bioethanol 150000 218,09 
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Sugar/Starch Fermentation Bioethanol 175000 208,20 

Sugar/Starch Fermentation Bioethanol 200000 199,94 

Sugar/Starch Fermentation Bioethanol 225000 192,88 

Sugar/Starch Fermentation Bioethanol 250000 186,74 

Sugar/Starch Fermentation Bioethanol 275000 181,34 

Sugar/Starch Fermentation Bioethanol 300000 176,53 

Sugar/Starch Fermentation Bioethanol 325000 172,20 

Sugar/Starch Fermentation Bioethanol 350000 168,27 

Sugar/Starch Fermentation Bioethanol 375000 164,69 

Sugar/Starch Fermentation Bioethanol 400000 161,41 

Sugar/Starch Fermentation Bioethanol 425000 158,38 

Sugar/Starch Fermentation Bioethanol 450000 155,57 

Sugar/Starch Fermentation Bioethanol 475000 152,95 

Sugar/Starch Fermentation Bioethanol 500000 150,50 

Sugar/Starch Fermentation Bioethanol 525000 148,21 

Sugar/Starch Fermentation Bioethanol 550000 146,06 

Sugar/Starch Fermentation Bioethanol 575000 144,03 

Sugar/Starch Fermentation Bioethanol 600000 142,11 

Sugar/Starch Fermentation Bioethanol 625000 140,29 

Sugar/Starch Fermentation Bioethanol 650000 138,56 

Sugar/Starch Fermentation Bioethanol 675000 136,92 

Sugar/Starch Fermentation Bioethanol 700000 135,35 

Sugar/Starch Fermentation Bioethanol 725000 133,85 

Sugar/Starch Fermentation Bioethanol 750000 132,43 

Sugar/Starch Fermentation Bioethanol 775000 131,06 

Sugar/Starch Fermentation Bioethanol 800000 129,74 

Sugar/Starch Fermentation Bioethanol 825000 128,48 

Sugar/Starch Fermentation Bioethanol 850000 127,27 

Sugar/Starch Fermentation Bioethanol 875000 126,11 

Sugar/Starch Fermentation Bioethanol 900000 124,98 

Sugar/Starch Fermentation Bioethanol 925000 123,90 

Sugar/Starch Fermentation Bioethanol 950000 122,86 

Sugar/Starch Fermentation Bioethanol 975000 121,85 

Sugar/Starch Fermentation Bioethanol 1000000 120,87 

Sugar/Starch Fermentation Bioethanol 1025000 119,92 

Seeds/Animal Fats Transesterification Biodiesel 10000 263,77 

Seeds/Animal Fats Transesterification Biodiesel 25000 233,16 

Seeds/Animal Fats Transesterification Biodiesel 50000 214,28 

Seeds/Animal Fats Transesterification Biodiesel 75000 203,24 

Seeds/Animal Fats Transesterification Biodiesel 100000 195,48 

Seeds/Animal Fats Transesterification Biodiesel 125000 189,54 

Seeds/Animal Fats Transesterification Biodiesel 150000 184,75 

Seeds/Animal Fats Transesterification Biodiesel 175000 180,75 

Seeds/Animal Fats Transesterification Biodiesel 200000 177,33 

Seeds/Animal Fats Transesterification Biodiesel 225000 174,35 

Seeds/Animal Fats Transesterification Biodiesel 250000 171,71 

Seeds/Animal Fats Transesterification Biodiesel 275000 169,34 

Seeds/Animal Fats Transesterification Biodiesel 300000 167,21 

Seeds/Animal Fats Transesterification Biodiesel 325000 165,26 

Seeds/Animal Fats Transesterification Biodiesel 350000 163,47 

Seeds/Animal Fats Transesterification Biodiesel 375000 161,82 

Seeds/Animal Fats Transesterification Biodiesel 400000 160,29 

Seeds/Animal Fats Transesterification Biodiesel 425000 158,86 

Seeds/Animal Fats Transesterification Biodiesel 450000 157,52 

Seeds/Animal Fats Transesterification Biodiesel 475000 156,26 

Seeds/Animal Fats Transesterification Biodiesel 500000 155,08 

Seeds/Animal Fats Transesterification Biodiesel 525000 153,96 

Seeds/Animal Fats Transesterification Biodiesel 550000 152,90 

Seeds/Animal Fats Transesterification Biodiesel 575000 151,89 



 

99 

Seeds/Animal Fats Transesterification Biodiesel 600000 150,93 

Seeds/Animal Fats Transesterification Biodiesel 625000 150,02 

Seeds/Animal Fats Transesterification Biodiesel 650000 149,14 

Seeds/Animal Fats Transesterification Biodiesel 675000 148,30 

Seeds/Animal Fats Transesterification Biodiesel 700000 147,50 

Seeds/Animal Fats Transesterification Biodiesel 725000 146,73 

Seeds/Animal Fats Transesterification Biodiesel 750000 145,99 

Seeds/Animal Fats Transesterification Biodiesel 775000 145,27 

Seeds/Animal Fats Transesterification Biodiesel 800000 144,58 

Seeds/Animal Fats Transesterification Biodiesel 825000 143,92 

Seeds/Animal Fats Transesterification Biodiesel 850000 143,28 

Seeds/Animal Fats Transesterification Biodiesel 875000 142,66 

Seeds/Animal Fats Transesterification Biodiesel 900000 142,05 

Seeds/Animal Fats Transesterification Biodiesel 925000 141,47 

Seeds/Animal Fats Transesterification Biodiesel 950000 140,91 

Seeds/Animal Fats Transesterification Biodiesel 975000 140,36 

Seeds/Animal Fats Transesterification Biodiesel 1000000 139,83 

Seeds/Animal Fats Transesterification Biodiesel 1025000 139,31 

 

 

Table 17 - Biomass Acquisition Costs, in € (Parameter 𝐶𝐵𝑏𝑖𝑡) 

Type of Biomass Cost in every 
Municipality, € 

Sugar/Starch 185,33 

Seeds/Animal Fats 411,85 

 

Table 18- Transportation costs for biomass and biofuels, €/ton/km (Parameters 𝐶𝑇𝐵𝑏𝑟𝑡, 𝐶𝑇𝑃𝑝𝑧𝑡) 

Biomass/Biofuel Transportation 

Mode 

Cost (€/ton/km) 

Starch/Sugar Truck 0,111 

Seeds/Animal Fats Truck 0,111 

Bioethanol Truck 0,44 

Biodiesel Truck 0,44 

 

Table 19- Bioethanol and Biodiesel Demand for each Portuguese District, in tonnes. (Parameter 𝐷𝑝𝑣𝑡) 

District Total Bioethanol (ton) Total Biodiesel (ton) 

Aveiro 44734,8 89 
Beja 9014,7 0 

Braga 37002,6 136 
Bragança 4716,1 0 

Castelo Branco 9128 0 
Coimbra 20824,7 27 

Évora 7479 99 
Faro 28430,5 0 

Guarda 6133,1 0 
Leiria 31735,6 422 
Lisboa 104406,1 3180 

Portalegre 3968,6 0 
Porto 91174,8 156 

Santarém 46052,1 24 
Setúbal 46053,4 269 

Viana do Castelo 7409,9 363 
Vila Real 8374 4 

Viseu 16027 1 

 


