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Abstract – Bioenergy has been proven to have great potential as a substitute for fossil fuels and help reach the European 

Union’s environmental goals. However, to be a sustainable alternative, it needs to be economically viable. Thus, an efficient 

and well-designed supply chain is required.  

Most research works from literature assume the technologies used to convert biomass into bioenergy as stable and the 

process immediately productive as planned after installation. However, there is still a lot of uncertainty inherent to them and 

their conversion efficiency’s, given they haven’t reached maturity. It is of great importance that this uncertainty is 

considered and incorporated in the design process, so the problem becomes more realistic and results are more reliable. 

The learning curve theory is the approach used to represent the technology’s evolution over time due to learning and the 

conversion efficiency’s uncertainty associated to it. It uses the accumulated production as measure of experience of the 

technologies and then calculates its impact on costs. Afterwards, to test the effects of this approach, it is incorporated in a 

Mixed-Integer Linear Programming model that supports decisions concerning biorefineries installation sites and process 

technologies, biomass collection sites, biomass and product’s flows and transportation modes, while minimizing costs.  

The model’s application to the Portuguese context suggests that considering the conversion efficiency’s evolution 

uncertainty using learning curves reduces the total production costs of the supply chain, despite increasing the total costs. 

This model represents reality more accurately and makes the biomass supply chain more flexible for any future scenario. 

Keywords: Biomass Supply Chain, Optimisation, Technology Uncertainty, Learning Curves 

1. Background on Biorefineries Supply Chain 

1.1 – EU’s role in a bio economy  

With the development of technology and increasing 

worldwide industrialization, the need to use energy has 

been increasing over the years. Adding the climate change, 

the usage of fossil fuels stopped being a viable option and 

the goal has been investing in sustainable energy sources. 

The concern of being an economy that consumes secure, 

safe, competitive and, most importantly, sustainable energy 

has been continuously present in the European Union. Even 

though with a slow process, the EU has been trying to 

transition from a fossil-input-based economy to a bio-based 

economy (Vandermeulen et al., 2012b). It has created three 

European Commission’s energy packages in order to have 

compatible market arrangements in (almost) all EU 

countries (Glachant and Ruester, 2014) and going towards 

the objective of establishing an internal energy market 

between Member States. The third, and most recent 

package, adopted in 2009, was created with the objective of 

achieving the ‘Europe 2020 Strategy’ goals (20% share of 

energy consumption from renewable sources and 10% 

minimum target for share of biofuels in transport sector by 

all Member States) with an energy supply that was secure, 

competitive and sustainable (European Parliament, 2017a). 

It is in this context that the biomass is introduced. Biomass 

is the biodegradable fraction of agricultural material, such 

as products, waste and residues of biological origin, 

forestry and related industries (fisheries and aquaculture) 

and the biodegradable fraction of industrial and municipal 

waste. Being a renewable resource, it offers opportunities 

to the ecological footprint of the fossil-input-based 

economy by being secure and environmentally friendly, 

besides ensuring energy diversity (Vandermeulen et al., 

2012a). Also, it is very likely to be the only viable 

alternative to fossil sources in the production of 

transportation fuels and chemicals).   

This is supported by the fact that it is the only source with 

rare richness in carbon given the plant biomass used to 

produce biofuels and bioproducts uses carbon dioxide while 

growing which compensates its release in the conversion 

process (Naik et al., 2010). 

1.2 – Biomass Supply Chain 

The biomass supply chain differs from traditional supply 

chains given it integrates the process of harvesting and 

collection of the biomass and the pre-treatment into less 

dense biomass. Then, a step dedicated to the conversion 

process in integrated biorefineries where biomass is 

transformed into valuable products and energy (biofuels, 

bioenergy, biochemical, biomaterials) in an integrated 

manner (Parisi, 2020). Finally, it has product distribution 

and logistics (Hong et al., 2016). To ensure the delivery of 

the finished products through the supply chain effectively 

and efficiently, there are decisions that have to be made at 

a strategic, tactical and operational level (Awudu and 

Zhang, 2012). The strategic level decisions should be made 

at the beginning of planning and in line with the 

organizations overall objectives. They are relative to the 

design of the biomass supply chain network in terms of the 

sourcing of biomass, type of feedstock, dimension and type 

of the technology installed, capacity and location of all 

facilities and final product type and quantity (Ghaderi et al., 

2016). The tactical level is based on medium-term decisions 

(6 months-1 year) that concentrate on the fleet 

management, inventory planning decisions and production 

decisions, such as scheduling (Awudu and Zhang, 2012). 

Lastly, the operational level focuses on short-term 

decisions (weekly/daily/hourly) that ensure a continuous 

operation of the supply chain processes in a timely and cost 

effective manner (Awudu and Zhang, 2012). Those include 

detailed inventory, production, and transportation 

management decisions (Sharma et al., 2013). 

Given the nature of the supply chain in question, there are 

uncertainties inherent to all stages of the supply chain. 

However, uncertainties existing in important parameters 
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considered in the decision making of the supply chain 

design influence the decision process. Plus, the fact that 

they exist through the echelons of the supply chain 

increases their impact across the supply chain levels, being 

necessary to address them in order to optimize the supply 

chain. Since bioenergy isn’t yet competitive comparing 

with fossil fuels (Paulo et al., 2015), aiming for it to become 

a sustainable competitive alternative to their production, 

different methods can be used to incorporate the 

uncertainties in the design of the supply chain of biofuels 

and help making more realistic decisions. 
 

2. – State Of Art  

Before diving into the research problem, several theoretical 

concepts regarding biomass supply chain optimization 

under uncertainty and uncertainty representation methods 

are covered to understand the status quo of research 

developments and findings over the years.  

2.1 – Biomass Supply Chain Under Uncertainty 
The main obstacles of increasing the biomass usage in 

energy supply are the costs of the supply chain and the used 

conversion technologies (Rentizelas et al., 2009). Also, the 

uncertainties inherent to its stages (Awudu and Zhang, 

2012) are an obstacle as well, given their implications, as 

it was explained before, affect the decision making process 

(Kazemzadeh and Hu, 2013). Accordingly, uncertainty has 

been considered in the design phase of the biomass SC in 

order to obtain optimal solutions through models that are 

closer to reality  (Ghaderi et al., 2016). 

From the literature review, it can be concluded that, for the 

optimization of the design of the biomass supply chain, the 

mixed integer linear programming (MILP) is the most seen 

in literature (Bairamzadeh et al., 2016), (Paulo et al., 2017). 

Other types of mathematical programming presented in 

research papers are linear programming (LP) (Cundiff et 

al., 1997), (Bhavna Sharma et al., 2013), integer 

programming (IP), mixed integer non-linear programming 

(MINLP), mixed integer quadratic programming (MIQP) 

(Arabi et al., 2019), non-linear programming (NLP) and 

mixed integer linear fractional programming (MILFP) 

(Tong et al. 2014c). In these the uncertainty representation 

can be done by using different methods. The first is the 

stochastic programming. This method includes the multi-

stage approach, which usually considers two-stages. The 

first-stage variables represent decisions made before the 

realization of the uncertain parameters (Tong et al., 2014b) 

and the second-stage represent decisions made only after 

the realization of the uncertain parameters (Tong et al., 

2014b). Another approach is the scenario-based stochastic 

programming, used by Mas et al. 2010, among others, 

which main idea is to tackle only a finite number of 

uncertain realizations, where each realization is a scenario 

and has its own probability assigned (Tong et al., 2014b). 

Since the two-stage approach is an intractable infinite-

dimensional optimization problem, is usually used along 

with the scenario-based approach to transform the problem 

into a tractable one over a finite-dimensional space while 

still achieving reasonable results (McLean and Li, 2013). 

Robust optimization and fuzzy programming are also used, 

although not as often. The first chooses the solution that is 

able to cope better with the various realizations of uncertain 

parameters (Tong et al., 2014c) within a specified 

uncertainty set (Babazadeh, 2018), to guarantee feasibility. 

The second is most used when there is unreliable or lack of 

information about the uncertainties and historical data, it’s 

difficult to obtain the probability distribution for the 

stochastic programming approach to obtain good results 

and be efficient. 

Regarding uncertainties, the most common uncertainty 

considered in the optimization models when designing the 

supply chain is in the feedstock supply (Kazemzadeh and 

Hu, 2013). Demand uncertainty is the second, followed by 

price uncertainty. The inclusion of variations in cost 

incurred in terms of transportation, operation or production 

(Kazemzadeh and Hu, 2013), and in terms of carbon costs 

(Giarola et al., 2012). The costs variability considered by 

Walther et al. 2012, Tong et al. 2014b, Tong et al. 2014a 

and Li and Hu, 2014 were regarding technology investment 

costs, an uncertainty really tied with the technology 

uncertainty due to its advancement and progress. Besides 

the capital costs, Tong et al. 2014a and Li and Hu 2014 

consider the conversion rate as uncertain, defending that it 

is due to non-mature technologies. Sharing the same 

opinion, Paulo et al. 2017, Gao and You 2017, Bairamzadeh 

et al. 2018 and Marufuzzaman et al. 2014 also have it in 

consideration and defend it is an uncertainty also caused by 

the fact that different technologies and different feedstocks 

have different conversion efficiencies, thus different 

production quantities.  

This uncertainty inherent to the conversion technologies is 

of great importance given the impacts it has in the supply 

chain for not having reached maturity and still being in 

development. However, only a few studies consider it and 

the conversion ratios’ values used are only based on the past 

and not on the future. They were obtained by approximation 

from historical data, based on experimental results at a 

small scale in laboratories, or even inspired by the 

conversion ratios of the technology used in the fossil fuels 

conversion facilities. Even if sometimes those 

approximations consider technology improvements, they 

were the ones already achieved in the past up to the present 

and not the possible ones in the future. Thus, maturity and 

learning are still miss represented and, since decisions at a 

design stage are regarding the future, they shouldn’t in 

order to make them more realistic. 

2.2 – The Learning Curves 

One of the first authors to describe the learning concept was 

(Wright, 1936). In his paper, he explains that one of the 

factors that possibly make the cost of airplane’s 

manufacture to decrease as the quantity produced increases 

is the labor cost. He acknowledges one of the reasons it 

decreases is the practice gained by the workforce as the 

production quantities increase, which, consequently, makes 

the workforce and worktime production requirements of 

each unit to reduce. Therefore, a negative correlation 

between learning and costs was empirically observed and 

the graphical representation of his findings is currently 

referred to as learning curve. In this relationship, the costs 

decline at a constant rate – learning rate - each time the 

cumulative production doubles (Weiss et al., 2010).  

There are different types of learning curves depending on 

the number of cost reduction factors. The one-factor-

learning curve (OFLC) relates the variations of the costs 

over time with only one factor as the independent variable 

- the accumulated learning (Sagar and van der Zwaan, 

2006). The multi-factor-learning curve considers the impact 

of different and relevant cost reduction drivers (Samadi, 

2018). The most popular is the two-factor-learning curve 

and differentiates that considers two learning factors: the 
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learning-by-doing and learning-by-searching (Wiesenthal 

et al., 2012). However, the effects of learning through 

research and development are difficult to quantify.  

The learning curve approach has multiple purposes, but in 

the 1990s, started to treat technology dynamically and it has 

become a widely used method to project mostly 

technological changes (Nemet, 2006). Based on the 

concept, every time a unit of some specific technology is 

produced, some learning is accumulated causing a cheaper 

production of the next unit of the same technology. Since 

considering the learning and experience is essential to 

understand and predict future costs variations of technology 

and how these are related to technology developments 

(Wiesenthal et al., 2012), the learning curve theory has 

great potential to cover the gap in literature and correctly 

represent the technology’s conversion efficiency 

uncertainty, which is lacking a correct consideration of 

maturity and learning in its modulation. 
 

3 – Problem Statement and Main Contributions 

Technology continues to develop as result of many 

important factors, such as learning with experience, 

research, and development, or others, that have not been 

rightly considered. This development can be measured in 

terms of the technological process’s efficiency, thus, its 

development and evolution are dismissed when the 

conversion efficiency is included in the optimization 

models as a known, constant and in the present time period 

value. Having this said, the research problem to be tackled 

in this master thesis is the formal and mathematical 

representation of technology evolution and its impact 

using the conversion efficiency and learning curves, as 

literature showed potential in these to represent 

technological developments. With a mathematical 

representation of this dynamic development of 

technological processes, one can prove that it affects their 

performance and feedstock/product conversion. By doing 

this and then incorporating it in a biomass SC stochastic 

optimization model, the model becomes more accurate, and 

its results are more realistic. It would help planners and 

decision makers to take more informed design decisions 

regarding biomass conversion technologies and potentially 

reduce costs, which would help leverage biomass and 

reduce the fossil fuel’ consumption. 
 

4. Conversion Efficiency & Learning Curves – Data 

Collection and Analysis 

This chapter introduces the data collection and data 

treatment procedures required to obtain valuable inputs for 

the representation of the conversion efficiency uncertainty 

and learning curve’s formulation of the biomass conversion 

technologies. These technologies are used in biorefineries 

to produce bioenergy, therefore, information regarding 

biorefineries and their used technological processes and 

specifications are searched. 

4.1. Scope of Research 

The scope of data to collect is Europe/European Union 

since it keeps a geographical proximity with Portugal while 

ensuring to have a wider ground to collect data. Also, due 

to the same focus on goals towards a sustainable economy, 

which also underlines the chance to have more biorefineries 

to collect data from. Moreover, the definition of integrated 

biorefinery used in this thesis is the one employed by de 

Jong et al., 2012 and by BIC, 2017 to define an integrated 

biorefinery: “a facility that does the sustainable processing 

of biomass into a spectrum of marketable products (food, 

feed, material, chemicals) and energy (fuels, power, heat), 

using a wide variety of conversion technologies in an 

integrated manner”. Only facilities that corresponded to this 

definition were considered. Also, only integrated 

biorefineries that produce biofuels as one of their products 

were considered. Finally, data should be collected from a 

reliable source that would help reduce the amount of 

information to collect on biorefineries while ensuring that 

standard information is obtained, guaranteeing that it would 

not be needed to identify and analyze different and multiple 

sources of highly probable unreliable information. 

4.2. Mapping Integrated Biorefineries in the EU 

Research aiming to find the existent biorefineries in the EU 

was made in many sources. The report and associated 

database developed by Parisi 2020 was used as a starting 

point and to guide the rest of the research. The report 

consists on the description of the distribution of the bio-

based industry in the European Union and the database 

allows the user have access on the facilities using biomass. 

These are represented with IDs and, for each, can be found 

its definition of biorefinery, country, coordinates, 

feedstock class and origin, status, range of capacity of 

production, product class and category, type of plant, 

among others. Although this is valuable information that 

will help to construct the integrated biorefinery’s database 

for the present thesis, the information is still general and 

not quite exactly the needed. A report by BIC 2017, the 

Biorefineries Blog and the European Technology 

Innovation Platform were consulted to complement the 

information of the work by Parisi 2020. These sources have 

available lists of biorefineries and respective 

specifications. The remaining cases where a match 

between the database by Parisi 2020 the other sources 

couldn’t be made, Google Maps was used to search the 

coordinates the database has available and find the 

information about each biorefinery.  

The database by Parisi 2020 includes 2362 biorefineries. 

From these, only 50 are mapped in this study. This number 

was obtained by reducing the biorefineries to the relevant 

ones for this study. First, only biorefineries with product-

energy integration and that produced biofuels were 

considered. This ensures that the facilities obtained 

produce energy and products in an integrated manner. 

Also, only biorefineries at a commercial scale were 

considered, given it is in this phase that this study is 

considering to be happening technology developments and 

efficiency increase with experience. Finally, random 

locations were assumed as errors and similar coordinates 

that resulted in facilities in the same industrial place, were 

considered as only one integrated biorefinery. 

4.3. Integrated Biorefineries Specifications 

Once the biorefineries were mapped, the focus was on 

collecting all information available about them that made 

sense to the present study. To do this, the same sources 

used for mapping the biorefineries were consulted, plus 

Google to extensively search for information on the 

biorefineries that the other sources didn’t have available. 

From the 50 biorefineries mapped, the type of biofuels 

produced that were found were: biodiesel, bioethanol, 

Naphta (biochemical), biomethanol, biomethane and 

biogas. The most common are biodiesel and bioethanol, 

and given the others don’t have substantial of information, 

the biodiesel and bioethanol are assumed to be the focus of 
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this study. Also, co-products are not being considering due 

to lack of information on some of the biorefineries and so 

as to compare them all on the same basis. All biorefineries 

that didn’t have available information on production 

quantities were discarded as they couldn’t contribute to this 

study.  

Regarding quantities and type of feedstock, the first 

follows the same logic of the product in cases of 

inexistent information.  The most used biomass to 

produce bioethanol is cereals, corn and sugar and to 

produce biodiesel is seeds and animal fats. Due to 

shortage of data, the different types of feedstock of each 

biofuel are considered only as one. 

In terms of the technological conversion processes used 

in the biorefineries mapped, the most popular and the ones 

who have more information available are the fermentation 

and the transesterification processes. The other found are 

esterification, anaerobic digestion and hydrotreatment. 

Since these last don’t have a considerable amount of 

information, they will not be considered in this study. On 

another matter, the conversion efficiencies of the two 

technologies considered were estimated from biofuels and 

feedstock data or their exact values were found with 

research. In this study, this concept is defined as the 

percentage of input that is turned into a useful biofuel 

output by an energy conversion technological process, or, 

as literature also refers it, by an energy conversion 

technology. It encompasses the whole process, the actors 

in it and all the stages that the biomass needs to go through 

until it becomes a biofuel. In order to make an analysis on 

the conversion efficiency evolution over time, all 

biorefineries found were used together, per technology, 

and compared to each other. To do this, the year of the 

beginning of operation and the year of the information 

available on the conversion efficiency/feedstock/product’s 

quantities of each bioreifnery were used. They were used 

to calculate the difference between the two to obtain the 

years of operation needed to reach their conversion 

efficiency found with research. Once these were calculated 

to every biorefinery found (10 for the fermentation process 

and 6 for the transesterification process), the tendency lines 

from Figure 1 were obtained. These figures consist in 

graphics that show the trend of the conversion efficiency 

with the increase of the years of operation of an integrated 

biorefinery, for the Fermentation and Transesterification 

process, respectively. As it can be verified for both 

technological processes, it is clear the existent growth trend 

over time and, therefore, over the amount of accumulated 

production carried out by each biorefinery over time. By 

keeping producing over the years, experience is inevitably 

gained in the conversion process. The trends also reflects 

this experience and learning gained by “doing.” This is the 

reason why the more years pass after a biorefinery 

installation, the higher the conversion efficiencies 

reported. Moreover, from the available data, it can be 

concluded that the fermentation process, by having a 

higher slope of the tendency line, has a higher increase of 

the conversion efficiency with time, thus has a faster 

learning process. It also is important to refer that by not 

considering the production of co-products and not 

including them in the calculus of the conversion 

efficiency’s values, it is natural that their obtained values 

presented in the figures above are a little lower than 

expected. Finally, regarding the learning rates of the 

conversion technologies, the only values found were in the 

study by de Wit et al. 2010. The learning rate considered 

with the increase of cumulative production for the 

transesterification process is 10% and for the fermentation 

process 20%. Both were estimated for bioethanol and 

biodiesel, respectively, using data form different 

biomasses without distinction. 

Finally, information regarding production costs of the 

biorefineries was difficult to find. The study by de Wit et 

al., 2010 was the one found with more information 

available and presented information on costs from the year 

2004, thus to obtain current values, an average annual 

inflation rate of 1.51% was used. Also, the costs were 

available for the production of biodiesel and bioethanol 

from different types of biomass. However, as said before, 

the differences between biomasses are discarded and the 

technological processes will be seen as one entity, the costs 

from different biomasses were summed and an average cost 

was obtained for each technology. Therefore, for the 

fermentation process, the average production costs of 

producing bioethanol from sugars/starch obtained was 

318.33€/ton of bioethanol and for a capacity of production 

of 100000ton. For the transesterification process, an 

average of 198.80€/ton was obtained for the production of 

biodiesel from oil seeds/fats and for a production capacity 

of 50000ton. This costs included operation costs, such as 

labor and utilities, and maintenance direct costs. Moreover, 

as said before, only the exact process of the transformation 

to bioethanol and biodiesel is being referred. However, 

these costs include all the other stages of the process (e.g. 

milling and oil extraction). 
 

5. Model Formulation 

5.1 Learning Curve’s Mathematical Formulation 

To formally and mathematically represent the technology 

evolution, the learning curve theory was chosen to be used 

and related with the conversion efficiency of the 

biorefineries’ conversion technologies. This study 

considers that the conversion efficiency evolution happens 

after the biorefineries reach a commercial level. In these, 

once it is installed and operational, technology evolution 

and optimization are most likely to happen only due to 

learning-by-doing. The learning from research and 

development happened mostly when they were at a 

laboratory or pilot scale, given it is a phase more dedicated 

to investigation, research, and tests. Therefore, having all 

of this in mind, only the one-factor learning curve will be 

Figure 1 - Tendency lines of the conversion efficiency for fermentation and 
transesterification technology 
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used and the research & development effect in learning will 

not be considered. 

Regarding learning system boundaries, these only include 

the technological process and all of its stages from the 

moment the birefinery enters a biorefinery until it becomes 

biofuel. Then, it includes all the stages in between, such as 

the pre-processing of the biomass, conversion stage or 

others, but also all the handling and labor needed in the 

process.  

At last, each technology/technological process has 

different characteristics and stages depending on what is 

being processed and what produced. Consequently, their 

learning rates are also different, which results in different 

learning curves. Therefore, the experience curves will be 

constructed for each technology when it produces a type of 

biofuel from a type of biomass. 

The costs development observed with a one-factor learning 

curve for each technology producing each type of biofuel, 

can be described by equation (1): 
 

 

𝐶𝐶𝑏𝑚𝑝𝑡 = 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓
(
𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡

𝑋𝑏𝑚𝑝
𝑟𝑒𝑓 )−𝜀𝑏𝑚𝑝     (1) 

 

With 𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 as the cumulated production of biofuel 𝑝 

from biomass 𝑏 by conversion technology 𝑚 in time period 

𝑡 and scenario 𝑠, in tons. This is the measure of experience 

defined in this study, as it represents the evolution of the 

conversion process and. 𝐶𝐶𝑏𝑚𝑝𝑡 is the unitary cost of 

production of biofuel 𝑝 from biomass 𝑏 by conversion 

technology 𝑚 at time period 𝑡, in €/ton. These are the costs 

that vary with the increase of experience. 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓

 and 𝑋𝑏𝑚𝑝
𝑟𝑒𝑓

 

are the the initial conditions at an arbitrary starting point, 

respectively, of the cost, in €/ton, and cumulated 

production, in tons, of biofuel 𝑝 from biomass 𝑏 by 

technology 𝑚. (
𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡

𝑋𝑏𝑚𝑝
𝑟𝑒𝑓 )−𝜀𝑏𝑚𝑝 is the ratio of the current 

accumulated production product 𝑝 from biomass 𝑏 of 

conversion technology 𝑚 in time period 𝑡 to its initial 

accumulated production. This factor represents the 

reduction in cost of unit production expansion due to 

learning-by-doing. Finally, 𝜀𝑏𝑚𝑝 is a positive learning 

coefficient of conversion technology 𝑚 when producing 𝑝 

from biomass 𝑏. This is the learning coefficient and 

measures the impact of the learning in the costs. 

Regarding the relationship of the conversion efficiency and 

the chose measure of experience, this can be obtained with 

equation (1) by replacing the accumulated production with 

the sum, over time, of conversion efficiency multiplied by 

the biomass feedstock. This goes in line with the conversion 

efficiency definition of this study - the percentage of input 

that is turned into a useful output by an energy conversion 

process – and can be show in equation (2): 
 

𝐶𝑏𝑚𝑝𝑡 = 𝐶𝐶𝑏𝑚𝑝
𝑟𝑒𝑓
(
∑ µ𝑏𝑚𝑝𝑡.𝑏𝑓𝑏𝑚𝑡𝑡

µ𝑏𝑚𝑝𝑡0.𝑏𝑓𝑏𝑚𝑡0
)−𝜀𝑏𝑚𝑝   (2) 

From equation (2) a relationship between the conversion 

efficiency and the chosen measure of experience – the 

accumulated conversion technology’s production quantity 

𝐴𝐶𝑝𝑞𝑏𝑚𝑝𝑡 – can be obtained. Therefore, the higher the 

values of conversion efficiency, the higher the accumulated 

production quantities obtained. Since this last translates 

into a higher amount of experience, the first can too and 

also have impact and influence the conversion 

technology’s costs 𝐶𝐶𝑏𝑚𝑝𝑡. Moreover, this influence on 

costs is variable, given the conversion efficiency 

µ𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑏𝑚𝑝𝑡  of a technology 𝑚 is time dependent. This 

was concluded from Figure 1 that shows that with time 

passing by and experience being gained through the years, 

the values of the conversion efficiency tend to increase. 

Thus, the amount in which the accumulated production 

increases in consecutive time periods of equal duration is 

higher as the efficiency of the process increases. This will 

translate in increasing reductions in costs over time. 

5.2 Stochastic Optimization Model’s Mathematical 

Formulation 

To test if the learning curve formulation presented in 

section 4.1 is adequate to represent the evolution of the 

conversion technologies and the impact of their future 

conversion efficiencies on costs, a stochastic optimization 

model will be used. Since the case study, SC and 

uncertainty in question is the same and also, there is the 

opportunity to work with the authors of the study, the two-

stage stochastic MILP model constructed by Paulo et al. 

2020 for the design of the biomass SC considering the 

uncertainty in the conversion efficiency will be used and 

adapted to the present study. The model uses a scenario tree 

approach, composed with nodes and arcs, to handle the 

uncertainty under study in the context of a two-stage 

stochastic programming model. Each node represents the 

possible outcome of the conversion efficiency with an 

associated probability of occurrence, the arcs represent the 

different evolutions it may have, and each scenario is 

represented by the path from the root to a leaf node. In this 

approach, the decision variables are divided into first-stage 

variables and second-stage variables. The first-stage 

variables are the ones related to decisions being made 

before the uncertainty is revealed – plant location and 

capacity - and the second-stage ones correspond to 

decisions being made after having full information on the 

uncertain parameters – process technology, production and 

processing quantities and transfer flows. Furthermore, the 

model of the present study contributes to the one by Paulo 

et al. 2020 by accounting the impact on costs of the 

conversion efficiency evolution due to technological 

developments using the learning curve theory. However, 

the approach to include them in the model whilst still 

having a linear problem was to use them to calculate the 

production costs of each technology for different levels of 

accumulated production of a certain type of product from a 

certain type of feedstock. This turns into a parameter that 

feeds the model with personalized production costs for 

each accumulated production level that decrease at the 

same time as these last increases and thus, illustrating the 

learning curve theory. Finally, while the model by  Paulo 

et al. 2020 includes intermediate processing/storage 

facilities, the model of this study will not since its focus is 

on the biorefineries and their processing technologies. 

Considering the sets 𝑏, �̄�  ∈  𝐵 as biomass type, 𝑝  ∈  𝑃 as 

the products, 𝑖 ∈ 𝐼 as biomass collection sites, 𝑘  ∈  𝐾 as 

Integrated biorefinery site, 𝑣  ∈  𝑉 as market sites, 𝑞  ∈  𝑄 

as integrated biorefinery’s conversion capacities, 𝑚  ∈  𝑀 

as integrated biorefinery’s conversion technology, 𝑟  ∈  𝑅 

as biomasses transportation modes, 𝑧  ∈  𝑍 as end 

product’s transportation mode, 𝑡, �̄�  ∈  𝑇 as time periods, 

𝑠, �̄�   ∈  𝑆 as scenario tree nodes and 𝑛 ∈ 𝑁 as levels of 

accumulated production in the biorefineries, the next 

constraints were added to the ones developed in the 

working paper  by Paulo et al. 2020. These enable the 

model to consider the impact of the experience and 
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conversion efficiency evolution on costs using the learning 

curve theory. Equations (3-4) focus on the chosen 

definition of experience of the conversion technologies – 

the accumulated production. Equation (3) defines that or 

the first time period, the accumulated production of biofuel 

𝑝 from biomass 𝑏 by a technology 𝑚 is the same amount 

of the total production of that product from that biomass. 

Equation (4) defines for the remaining time periods that the 

accumulated production of biofuel 𝑝 from biomass 𝑏 by 

technology 𝑚 is the total production of the present time 

period 𝑡 and scenario 𝑠, plus the accumulated production 

of the previous time period 𝑡 − 1 and predecessor �̄� of 

scenario node 𝑠. Equations (5-6) focus on defining the level 

of total accumulated production 𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 each 

technology has reached. Equation (5) ensures the 

accumulated production of a conversion technology in 

each time period and scenario node belong to at most one 

level of accumulated production. Equation (6) defines the 

level of accumulated production a technological process 𝑚 

in each biorefinery has reached with a binary that is equal 

to 1, when the accumulated production is between two 

levels 𝑛 of accumulated production. Finally, equations (7-

8) focus on corresponding the level of accumulated 

production, and thus experience, a technology has reached 

in time period 𝑡 and scenario 𝑠 to the production 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡  

in the same scenario and time period that enabled the 

technology to reach it. This is done using an auxiliary 

variable of production quantity 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿   that assumes 

the value of the production quantity 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡  when the 

binary 𝑦𝑁𝑘𝑚𝑛𝑠𝑡  is equal to 1 for a technology 𝑚 in level of 

accumulated production 𝑛. This auxiliary variable enables 

the model to be maintained linear. The parameter 𝑀𝑎𝑥 is 

the maximum value of production that exists for any 

technology and it has to be higher than any possible value 

for 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 . This way, the parameter will guarantee that 

the auxiliary non-negative variable 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿  will be zero 

when  𝑦𝑁𝑘𝑚𝑛𝑠𝑡 is zero. 
 

𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 =  𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀ 𝑝 ∈

𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 1                  (3) 

 

𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 =  𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 + 𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘�̄�(𝑡−1) ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧

 ∀ �̄� ∈ 𝐻 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈
𝑊𝐵  ∧  ∀ 𝑡 > 1                                 (4) 

 

∑ 𝑌𝑘𝑚𝑛𝑠𝑡
𝑁 ≤ 1𝑛  ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑡 ∈ 𝑇             (5) 

 

∑𝐿𝐴𝐶𝑛
𝑛

𝑌𝑘𝑚𝑛𝑠𝑡
𝑁  ≤  𝐴𝐶𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 ≤  ∑𝐿𝐴𝐶𝑛+1

𝑛

𝑌𝑘𝑚𝑛𝑠𝑡
𝑁   

∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧  ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈ 𝑊𝑃  ∧
(𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 𝑇                (6) 

 

𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 − (1 − 𝑦𝑁𝑘𝑚𝑛𝑠𝑡) ∗ 𝑀𝑎𝑥 ≤ 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿

≤ 𝑃𝑄𝑏𝑚𝑝𝑘𝑠𝑡 + (1 − 𝑦𝑁𝑘𝑚𝑛𝑠𝑡) ∗ 𝑀𝑎𝑥   

 ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑛 ∈ 𝑁 ∧ ∀ 𝑠 ∈ 𝑆 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧
(𝑚, 𝑝) ∈ 𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 𝑇                                         (7) 
 

∑ 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿

𝑛 ≤ ∑ 𝑦𝑁𝑘𝑚𝑛𝑠𝑡 ∗ 𝑀𝑎𝑥𝑛   
 ∀𝑘 ∈ 𝐾  ∧ ∀ 𝑠 ∈ 𝑆 ∧ ∀𝑚 ∈ 𝑀 ∧ ∀𝑝 ∈ 𝑃 ∧ ∀ 𝑏 ∈ 𝐵 ∧ (𝑚, 𝑝) ∈
𝑊𝑃  ∧ (𝑚, 𝑏) ∈ 𝑊𝐵  ∧  ∀ 𝑡 = 𝑇                                                             (8) 

 

Having included this constrains, the objective function 

used in the working paper by Paulo et al. 2020 was 

modified to equation (9): 
 

𝑀𝑖𝑛 𝐶𝑜𝑠𝑡𝑆𝐶  =

 ∑ 𝛹𝑠  

(

 
 
 

∑ ∑ ∑ ∑ ∑ ∑ 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡𝐶𝐵𝑏𝑖𝑡𝑡𝑟:( 𝑏,𝑟,𝑡)∈𝑍𝐵𝑚𝑘𝑖:(𝑖,𝑘)∈𝐷𝐵𝑏:(𝑚,𝑏)∈𝑊𝐵
 +              

∑ ∑ ∑ ∑ ∑ ∑ 𝐶𝐶𝑏𝑚𝑝𝑛𝑡𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿

𝑡𝑛𝑘𝑝:(𝑚,𝑝)∈𝑊𝑃𝑚 𝑏(𝑚,𝑏)∈𝑊𝐵
 +                

 ∑ ∑ ∑ ∑ ∑ ∑ 𝐵𝐹𝑏𝑖𝑘𝑚𝑟𝑠𝑡𝐷𝐼𝐾𝑖𝑘 𝐶𝑇𝐵𝑏𝑟𝑡𝑡𝑟:( 𝑏,𝑟,𝑡)∈𝑍𝐵𝑚𝑘𝑖:(𝑖,𝑘)∈𝐷𝐵𝑏:(𝑚,𝑏)∈𝑊𝐵
 +

∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑃𝐹𝑏𝑚𝑝𝑘𝑣𝑧𝑠𝑡 𝐷𝐾𝑉𝑘𝑣 𝐶𝑇𝑃𝑝𝑧𝑡𝑡𝑧:(𝑝,𝑧,𝑡)∈𝑍𝑃𝑣𝑘𝑚𝑝:(𝑚,𝑝)∈𝑊𝑃𝑏:(𝑚,𝑏)∈𝑊𝐵
 )

 
 
 

𝑠  +

 ∑ ∑ ∑ ∑ 𝑂𝑘𝑚𝑞𝑡
𝐵

 𝐶𝐼𝐵𝑚𝑞𝑡𝑡𝑞𝑚𝑘    + ∑ ∑ ∑ ∑ 𝑌𝑘𝑚𝑞𝑡
𝐵  𝐶𝐹𝐵𝑚𝑞𝑡𝑡   𝑞𝑚𝑘                   (9) 

 

The difference is in the total variable operating costs of 

the biorefineries. These account for utilities, direct labor, 

production, maintenance and all costs that vary with the 

operation (𝐶𝐶𝑏𝑚𝑝𝑛𝑡) and are multiplied by the amount of 

production in the facility 𝑃𝑄𝑏𝑚𝑝𝑘𝑛𝑠𝑡
𝐿 . These costs are 

calculated with the use of learning curves that, as defined in 

subchapter 5.1, use the accumulated production as the 

definition of experience. Thus, they are dependent on the 

level of accumulated production each facility has reached 

in each time period and scenario, and decrease each time 

one facility reaches a new level of accumulated production. 
 

6. Case-study 

6.1. The Portuguese Case 

As explained in chapter 1.1, the EU is working towards 

becoming an economy that consumes secure, safe, 

competitive and, most importantly, sustainable energy. It 

has created regulations, energy packages, defined goals, 

etc., and, at the moment, it has a plan - the 2030 Climate 

Target Plan - to reduce greenhouse emissions to at least 

55% below 1990 levels by 2030. In order to meet the 

targets of the plan, all EU Member States needed to submit, 

by the end of 2019, a 10-year integrated national energy 

and climate plan (NECP) for the period from 2021 to 2030. 

Regarding the Portuguese reality, the “Resolução do 

Conselho de Ministros nº53/2020” approves the National 

Plan of Energy and Climate 2030 (PNEC 2030) of 

Portugal. In this plan, besides being defined goals of GHG 

emissions’ reductions, the reduction of the primary energy 

consumption to improve the energy efficiency and increase 

of electricity interconnections, it was defined the 

incorporation of 47% energy from renewable sources in the 

final gross energy consumption. Portugal has been 

registering a good progress in its renewable energy 

objectives as the “Resolução do Conselho de Ministros 

nº53/2020” states that in 2018, around 30.3% of the final 

energy consumption was satisfied using renewable 

sources. This percentage goes in line with the country’s 

goal to be reached in the year 2020: 31% of renewable 

sources of energy in the final energy consumption and 10% 

of renewable energy sources in the final consumption of 

energy in transportation. Moreover, in 2017, the 

“Resolução do Conselho de Ministros nº163/2017” 

approves the National Plan for the Promotion of 

Biorefineries (PNPB) which enforces the valorisation of 

renewable sources of energy by supporting the use of 

biomass as an alternative source to fossil resources. Also, 

presents a strategy, for the next years until 2030, to 

promote biorefineries in the national territory, employment 

and energy independency, to contribute to the reduction of 

GHG’s emissions and to enhance biomasses that haven’t 

been valued, that are residual or with low energetic value. 

6.2- Case-study’s Data Collection 

The network structure used was similar to the used by 

Paulo et al. 2020, but without the pre-processing facilities. 

It contains as nodes biomass collection sites, integrated 

biorefineries, markets and transportation mode. However, 

some the elements used to define the operation of each 

node were adapted according to the research done in the 
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present study. For the biomass collection sites, 150 out of 

278 Portuguese municipalities were considered. Also, the 

collection sites are assumed to exist in the headquarters of 

each. The biomass availability on each, was searched for 

the types of biomass found with research in chapter 3.3 and 

using as sources the National Statistics Institute of 

Portugal’s website, the Direção-geral dos Território’s 

website. For the integrated biorefinery’s sites, there are 28 

potential sites considered for installation that can have 

either one of the technologies. Some of them are districts 

and others are municipalities. For both options, the 

installation location of the biorefineries was considered in 

the geographic centre of each. have installed. The two 

technological conversion processes considered in the 

biroefineries are the fermentation and the 

transesterification processes and they can only process 

starch/sugar to produce bioethanol and animal fats/seeds to 

produce biodiesel, respectively. The market sites 

considered are the headquarters of each one of the 18 

districts of Portugal. These locations will receive biofuels 

from the integrated biorefineries depending on the demand 

of the biofuels considered in this study. To find their 

demands in Portugal, the website of the National Statistics 

Institute of Portugal was consulted. These were assumed to 

be constant over time. 

The scenario tree approach in the model was used to study 

possible future situations of conversion efficiencies of each 

technology/technological conversion process when 

processing a type of biomass into a type of biofuel. Having 

the equations of the tendency lines for the different 

technologies in chapter 3.3, it is possible to calculate values 

of conversion efficiencies that reflect the learning-by-doing 

of each technology by increasing over the time horizon of 

this study – 4 years - and that are based on reality. 

Regarding the tree structure, each node turns into two new 

nodes. One represents the conversion efficiency’s increase 

with experience and following the tendency line and the 

other, represents the case where there is no learning or no 

attempt to learn, thus the efficiency remains the same. The 

probabilities of the nodes were chosen so as the nodes that 

represent an increase in the efficiency are always more 

likely to happen, given it is the tendency obtained with real 

data. Also, consecutive increases in conversion efficiency 

are less likely to happen over time, given it is natural that at 

the beginning of an operation and during the adaptation 

period it is easier to detect opportunities of improvement 

than after a few years of operation. At last, if the conversion 

efficiency remains the same in two consecutive time 

periods, in the next one, the probability that it will increase 

is the same as if it had increased in the previous node. This, 

to represent the same increasing opportunity of the 

conversion efficiency the technology had in the previous 

node. The tree was also constructed to ensure that, the 

probability of occurrence of the final node in the best case 

scenario would still have a higher efficiency than the node, 

from the same predecessor, that represents a static 

conversion efficiency. All this considerations result in a tree 

with 4 periods of time and 15 scenarios. 

Regarding the other parameters of the model, the biomass 

cost used for the sugar/starch biomass feedstock are the 

costs of corn of 180 €/tonne in 2018 and actualized, with an 

average inflation rate of 1.51%, of 185.33 €/tonne. The 

costs found for the seeds/animal fats biomass feedstock are 

the costs of sunflower seeds of 400 €/tonne in 2018 and, 

with the same inflation rate, of 411.85 €/tonne. These are 

assumed equal in each municipality. The installation costs 

used for a biorefinery with the fermentation process and 

75000 tonnes of production capacity are 36415463 € and 

the fixed costs are 2798404,35€ (McAloon et al., 2000). For 

a biorefinery using the transesterification process with 

50000 tonnes of capacity, the installation costs considered 

are 12164061.2 € and the fixed costs are 1190851 €  (Abo 

El-Enin et al., 2013). For all costs, an average inflation rate 

of 2.17% to update the cost for 2020 and then an exchange 

rate of 0.85 from dollars to euros were used. In order to 

obtain the costs for the other capacities of both conversion 

technologies, the Williams rule with a power factor of 0,6 

was used (Max et al., 2003). The variable costs are 

calculated for each level of accumulated production using 

the learning curve of equation (1) for each technology. The 

learning rates 𝐿𝑅𝑏𝑚𝑝 used to obtain learning coefficients 

𝜀𝑏𝑚𝑝 are the ones presented in subchapter 3.3. The initial 

accumulated productions of reference 𝑋𝑏𝑚𝑝
𝑟𝑒𝑓

 considered are 

10000 tonnes for both technologies (a quantity that is lower 

than any production of any technology with any capacity 

and conversion efficiency of t1). Their respective initial 

unitary costs of reference are calculated using equation (1) 

when replacing the unitary production costs and 

correspondent accumulated production quantities. The 

levels 𝑛 associated to the calculate costs start at 10000 

tonnes - the accumulated production of reference - and then 

increase 25000 tonnes in each level until the accumulated 

production reaches 1025000 tonnes (one level higher than 

the maximum accumulated production a biorefinery with 

the technology that has available the biggest production 

capacity can produce in the time horizon of this study). 

Regarding transportation costs, for both biomasses 0.111 

€/tonne/km is used (Hellmann and Verburg, 2011), after 

being actualized using an average inflation rate of 1.50% 

for the pound an exchange rate of 1.11% from pounds to 

euros. For both biofuels are also considered the same for 

the different types and are 0.44€/tonne/km, the same value 

used by Paulo et al. 2020. 
 

7. Model Implementation and Case-Study Results 

In order to apply the model to the Portuguese context, the 

model presented in chapter 6 was implemented in GAMS 

(26.1.0) using CPLEX (12.8.0.0) solver. Also, a CPLEX 

Parallel MILP Optimizer was used with the intent to have 

increases in speed to reach a solution. All experiments are 

conducted on an Intel(R) Xeon(R) CPU E5-2660 v3 @ 

2.60GHz 2.60 GHz (2 processors) with 64,0 GB RAM. 

with optimality gaps of 9% and 14% as stopping criteria 

for the models with three and four time periods, 

respectively. Based on preliminary tests done with the 

model, these values are considered a reasonable 

compromise to deal with the computational complexity 

derived from the number of scenario nodes. 

7.1 – Model Construction’s and Uncertainty 

Representation Validation 

In order to validate the model before running it with the 

real data, a deterministic version of the model was used, 

smaller quantity of data to test the model was inputted and 

the data was changed to reach conclusions on the model’s 

behavior. For the ultimate validation of the model and 

testing of the adequacy of the learning curve theory to 

conversion efficiency’s evolution representation with the 

actual data from the case-study, a stochastic model with 
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only three time periods, thus less scenario nodes, is firstly 

analyzed and used. This decision was made after in the first 

attempts to run the stochastic model with 4 periods of time 

and efforts were made to make it more efficient by using 

CPLEX options, the amount of time it needed to find an 

optimized solution was too high. The scenario tree used for 

three time periods remained the same, but only accounting 

the first three time periods. Thus, probabilities and 

conversion efficiencies remain the same for each node. 

Also, this tree still has represented the relevant 

characteristics of the conversion technology evolution of 

the two technologies. 

7.2 – Case study results for stochastic model with three 

periods of time 

Figure 2 shows, five integrated biorefineries are installed 

so as demand can be satisfied. Two are installed with the 

Fermentation technology with 75000 tonnes of capacity in 

Lisboa and Vila Real. Other two with the same technology 

but with 250000 tonnes of capacity), in Évora and Leiria. 

The fifth integrated biorefinery is installed in Montemor-

o-Novo with the Transesterification technology and 50000 

tonnes of capacity. These results go in line with what it was 

expected, given the biroefineries are strategically installed 

near the areas where there are higher quantities of biomass 

available (Centre and Alentejo region), approximately in 

the center of the areas of greater density of biomass 

availability of each type and the capacities and their 

locations are also installed considering high focuses of 

demand and the proximity to them. 

 

Figure 2- SC network for Stochastic model with three time periods 
 

In terms of conversion efficiency, analyzing its evolution 

for the biorefinery installed in Évora, it starts, in the first 

time period and scenario node, in the level of accumulated 

production 8, with a correspondent unitary cost of 

199.94€/ton. As the time periods increase, the accumulated 

production also increase, thus experience is gained and, 

consequently, costs decrease.  This is verified in the third 

time period, in which the costs of the same biorefinery’s 

technology now vary between 138.56 and 148.21€/tonnes.  

Regarding total costs of the supply chain, this solution had 

a total cost of 1726658280.96€.  The biomass acquisition 

and production costs are the higher costs, as they are the 

highest unitary costs considered in the case study 

(corn/cereals and the seeds/animal fats cost around 

200€/ton and 400€/ton, respectively). Also, even though 

they decrease over time, the production costs start at 

466.17€/ton and 263.77€/ton of biofuel for the 

fermentation and the transesterification process, 

respectively. After an analysis on the cost evolution over 

time and scenarios, the total production costs for each time 

period decrease and in cases of increase of conversion 

efficiency the total biomass acquisition costs decrease. 

Given the demand is constant over time, high efficiencies 

traduce into lower feedstock quantities needed. 

7.3 – Stochastic vs Deterministic Model with three 

periods of time 

This study defends that literature has not been rightly 

considering the conversion efficiency of the conversion 

technologies in biorefineries, given they consider it as 

static instead of dynamic over time. Thus, the optimization 

model of chapter 4 is compared to the deterministic version 

of it to reach conclusions on the effects of considering the 

conversion efficiency evolution over time. In terms of the 

production costs, the total production costs of the 

stochastic model are lower than the deterministic given 

they decrease with learning, which happens in all 

scenario’s paths. Even if this decrease doesn’t traduce 

directly in conversion efficiency. With this not being 

considered in the deterministic model, the production costs 

component is much higher, givens the unitary production 

costs are high for these types of products.  

7.4- Uncertainty Analysis 

A ± 5% and ± 5% variation of the tendency line’s slope 

of the fermentation and transesterification technology, 

respectively, is introduced, as it is a line obtained from 

researched data from which assumptions were made. From 

the analysis on the fermentation process, it is concluded 

that having a 5% increase in the increment, of each period 

of time, of the original inputs of the conversion 

efficiencies, results in a -2.9% decrease in total costs. On 

the other side, having a 5% reduction in the increment of 

the conversion efficiencies, in each time period, results in 

an increase in the total costs of 2.9%. This is what is 

expected given higher conversion efficiencies over time, 

thus, faster learning, result in greater reductions of the 

unitary production costs. For the transesterification 

process, increasing the tendency line’s slope by 5% results 

in a cost decrease of 0.7% and reducing the tendency line’s 

slope by 5%, results in a 1% total costs decrease. This 

happens given, since the demand on biodiesel in Portugal 

is low, the slopes variations don’t influence costs 

reductions. The installed biorefineries with the 

transesterification technology of both scenarios do not 

operate at its maximum capacity and they don’t even 

upgrade their level of production the time horizon of this 

study. Thus they don’t reduce costs significantly to have 

influence in the total SC costs. These cost variations are 

then associated to a possible solution given by the model 

as result of the 9% relative gap. 

7.5 – Case study results for Stochastic model with four 

periods of time 

After validating the stochastic model’s construction and 

the effects of considering the conversion efficiencies 

evolution of the technologies over time, the model is 

applied with the four time periods, to the Portuguese 

context. By considering four periods of time, this model 

helps making long term decisions given the results 

information are available for a larger horizon of time. The 

model also makes recommendations on biorefinery’s 

installation sites and technologies, considering the biomass 

availability and demand, with the objective of minimizing 

the cost of the national supply chain of biomass. This 

specific model, reached a relative gap of 0.14 due to the 

mathematical complexity of solving a problem with a great 

number of scenarios. Thus, does not give the optimal 

solution. However, once the model is already validated, 
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this a reliable solution. 

Four biorefineries are openned in time period 1. One in 

Beja with the fermentation technology with 75000 tonnes 

of bioethanol of capacity. One in Santarém and another in 

Vila Real, both installed with fermentation technologies 

with capacities to produce 250000 tonnes. Finally, one in 

Évora with the transesterification technology with 

production capacity of 50000 tonnes of biodiesel. Then, in 

the second time period, a biorefinery with the fermentation 

process with 75000 tonnes of capacity is installed in 

Coimbra. All biorefineries are installed strategically in 

places near the biomass collection sites that serve them, as 

well as near the demand focuses. The SC costs result was 

2 135 217 851.58 €, with more than a half being biomass 

acquisition costs. 
 

7. Conclusions and Future Work 

Having understood the lack of representation of the 

biomass technology’s conversion efficiency uncertainty 

within the biomass SC optimization models and that 

researchers have been dealing with it poorly, this master 

thesis is introduced. After exploring the literature and 

finding potential on the learning curve theory to represent 

technological developments, this study proposes to 

develop a mathematical representation of technology 

evolution and its impacts using the conversion efficiency 

and learning curves. Then, it adapts the stochastic model 

developed by Paulo et al. 2020 to include it and test its 

adequacy by applying it to the Portuguese context with the 

objective of minimizing the cost of the national supply 

chain of biomass. Prior to the development of the 

mathematical representation of the conversion 

technologies evolution, an extensive research is done on 

integrated biorefineries of the EU in order to obtain more 

data and from countries similar to Portugal. A major 

limitation in this process is the enormous lack of data on 

biorefineries and their specifications, thus assumptions 

many assumptions are made.  

The implementation results of the proposed model proved 

the mathematical representation of the conversion 

efficiency to be a success, as costs are lower than the 

models that do not consider these aspects, thus don’t 

accurately represent reality. This is also positive, as it helps 

the biomass and biofuels on becoming more attractive.  

For recommendations and future work opportunities, it can 

be interesting to dedicate in the further optimization of the 

proposed model or applying decomposition methods so its 

performance can be more efficient. A high number of 

scenarios always requires some computational effort. 

Moreover, this model does not consider the demand as 

deterministic, importations and exportations and the 

production of co-products in the biorefineries due to lack 

of data. In the future, it may be appropriate to consider the 

demand as stochastic and these factors in the model. 

Finally, the learning curves used in this study only consider 

one factor – the learning-by-doing factor  - and it may be 

interesting to deepen research so as to find sufficient 

information on other existent factors, such as learning with 

research and development.  
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