
OSPF extensions for the support of multi-area networks
with arbitrary topologies

Miguel Gonçalves
Instituto Superior Técnico

Lisboa, Portugal
miguel.d.goncalves@tecnico.ulisboa.pt

ABSTRACT
Routing protocols are a major part of the Internet, providing
information about the network to IP routers in order to allow
them to forward received packets. Link state routing proto-
cols, such as OSPF and IS-IS, are the most used nowadays,
solving the count-to-infinity problem found in distance vector
routing protocols by providing the complete network view to
every router. Link state routing networks can be divided in
areas to facilitate the scaling of the network. However, in cur-
rent OSPF versions, inter-area routing uses a distance vector
approach, bringing limitations to multi-area networks. In par-
ticular, they must have a two-level hierarchical structure, and
optimal routing is not guaranteed for inter-area routing. This
MSc Dissertation describes the development of two extensions
of the OSPF protocol that overcome the mentioned limitations,
one for OSPFv2 (IPv4) and the other for OSPFv3 (IPv6). They
provide a link state approach to inter-area routing, allowing
arbitrary multi-area topologies and optimal inter-area rout-
ing. An implementation in Python of the base OSPF protocol
was also developed to support the development of the exten-
sions, which were created on top of the base implementation.
GNS3 networks were created and used to test the implementa-
tion, showing that both versions of the base implementation
and the OSPFv2 extension are operational. This dissertation
gives some background on OSPF and its multi-area extensions,
describes the software architecture and the developed imple-
mentation, and presents the experiments performed and the
respective results. This MSc Dissertation was supported by
the Instituto de Telecomunicações.

Author Keywords
OSPF; OSPFv2; OSPFv3; Routing; Link state routing;
Routing protocols.

INTRODUCTION

Motivation
Information travels through the Internet contained in IP pack-
ets, having a source device and destined to another device.
Routers are the pieces of equipment that allow IP packets
to reach destinations not directly connected to their sources.
Routers allow it by performing packet forwarding, i.e. select-
ing the interface through which a received packet will be sent
in order to reach its destination. In order to forward packets,
routers must possess information about the network, which
is learnt and disseminated in the network using routing pro-
tocols. Routing protocols are therefore a vital mechanism of
the Internet. They can be either inter-domain, when routing is
performed across multiple routing domains, or intra-domain
when routing occurs inside a single routing domain. There
are two main types of intra-domain routing protocols: DVR
protocols, and LSR protocols.

DVR protocols, such as the RIP, operate by exchanging
messages called distance vectors between directly connected
routers in a network. Distance vectors bind a network desti-
nation to a path cost. In RIP, usually a hop receives a cost
of 1. By receiving the distance vectors of all of the neighbor
routers, a router is able to calculate the shortest path to reach
any destination in the network, and the respective cost.

However, the approach brings problems, in particular a sit-
uation known as count-to-infinity. It occurs when a router
becomes unreachable, for example by crashing. Its neighbor
routers detect that they cannot reach it, however they keep
receiving distance vectors from other neighbor routers in the
network containing paths to the now unreachable router. Since
routers running DVR protocols do not have a complete net-
work view, the new paths are accepted and then disseminated
with increased costs, leading to an infinite cycle where the
failure of the router is never discovered and instead paths to
it are successively disseminated with higher path costs. RIP
solves the situation by declaring a path cost of 16 as infinity,
which brings limitations to the size of RIP networks.

LSR protocols provide the complete network view to the
routers, preventing the count-to-infinity problem. OSPF and
IS-IS are two of such protocols. OSPF currently has 2 differ-
ent versions, OSPFv2 and OSPFv3, respectively for IPv4 and
IPv6. The main difference between the versions is the sepa-



ration of topological and addressing information in OSPFv3
when disseminating routing information in the network.

OSPF networks (i.e. networks with routers running OSPF)
can be divided in areas to facilitate scaling. Current OSPF
versions use a distance vector approach for inter-area routing.
Such approach brings two limitations for multi-area networks
in OSPF: the networks are limited to a two-level hierarchical
structure with a single area in the top level, and there are cases
where it is not guaranteed that the selected path to a destination
is the shortest (i.e. optimal routing is not guaranteed).

Objectives
The general objective of the current MSc Dissertation is to
develop two OSPF extensions, one for OSPFv2 and another
for OSPFv3, which can overcome the previously mentioned
restrictions by applying a LSR approach to inter-area routing
in OSPF, allowing arbitrary multi-area topologies and optimal
inter-area routing. The extensions are described in [16].

The extensions have been designed to take advantage of the
OSPF base mechanisms, in order to only require ABRs to be
updated so as to accommodate the extensions. The extensions
are therefore transparent to area internal routers.

Achievements
Both OSPF versions have been implemented according to the
current specifications, with the OSPF extensions being created
on top of the base OSPF implementation. It is an objective of
the current dissertation to create a proof of concept of the exten-
sions, where readability is preferred over execution speed. For
that reason, the base OSPF implementation and the extensions
have been written in Python, and not in faster but less read-
able languages such as C++. Functional tests were performed
on the base OSPF implementation and on the respective ex-
tensions using GNS3 and Wireshark. Another objective of
the current dissertation is to create an implementation of the
base OSPF and of the extensions which is compatible with
Cisco routers, which therefore were used in functional and
interoperability tests.

Structure
Section 2 will provide information about routing protocols.
Section 3 will describe the developed OSPF extensions. Sec-
tion 4 will describe the software architecture of the implemen-
tation of the base OSPF protocol and of the extensions. Section
5 will describe the implementation. Section 6 will describe
the evaluation of the implementation. Section 7 will describe
the conclusions and future work of the current dissertation.

ROUTING PROTOCOLS

Introduction to routing protocols
There are several types of physical devices connected to the
Internet. From the point of view of computer networking, they
can be classified in three categories: hosts, network devices,
and communication media. Hosts, such as servers and mobile
phones, are sources and destinations of the information that
travels through the Internet. Network devices perform routing
and forwarding of information, allowing it to reach destina-
tions not directly connected to the information sources. Hosts

and network devices are physically connected by communica-
tion media such as copper wires and Ethernet cables, forming
networks that can be of several types.

In the network layer, information travels through the network
in packets which are forwarded by IP routers. Forwarding
is performed according to forwarding tables, which tell the
outgoing interface of a packet according to its destination
IP address. Each router maintains its own forwarding table,
which can be created either statically by network administra-
tors or maintained dynamically using routing protocols such
as RIP or OSPF. Routing protocols have the advantage of
being able to automatically update the forwarding tables of
the routers in reaction to failures of links and routers in the
network, or to the appearance of new ones.

Routing protocols can be inter-domain, when the routing is
performed across multiple routing domains, even if inside
the same AS; or intra-domain, when routing occurs inside a
single domain. The BGP is the currently used inter-domain
routing protocol. Intra-domain routing protocols can be further
subdivided; the most important categories are distance vector
and link state. RIP is an example of the former, while OSPF
and the IS-IS protocol are examples of the latter.

The Open Shortest Path First protocol
DVR protocols have been largely supplanted by LSR protocols
such as OSPF, as stated in [12]. LSR protocols provide routers
with a complete network view, preventing the count-to-infinity
problem of DVR protocols and removing the limitation in the
number of hops of a network path. OSPF for IPv4, known
as OSPFv2, is currently defined in RFC 2328 [13], while
OSPFv3, for IPv6, is currently defined in RFC 5340 [10].

Section 2 of [17] describes both types of routing information
and the OSPF synchronization mechanisms. From the point
of view of routing, 3 types of information must be known:

• Topological information: Provides information about the
routers, the costs assigned to their interfaces, and the links
between routers;

• Addressing information: Provides information about the
routable address prefixes assigned to routers and links;

• Link information: Provides information about the addresses
needed to carry packets to the next-hop router.

OSPF stores the network information in a LSDB, created
in every router. LSAs contains specific parts of the routing
information, and are the building blocks of a LSDB. Except
for the link information in OSPFv3 and assuming the network
only has one area, every router in the network must have the
same LSAs in its LSDB.

The main differences between OSPFv2 and OSPFv3 lie in the
way the routing information is stored: while OSPFv2 mixes
topological and addressing information in its LSAs (with link
information being implicit in their contents), OSPFv3 sepa-
rates each type of information in different LSAs, creating for
the effect new types of LSAs not present in OSPFv2.



OSPF uses 3 synchronization mechanisms to keep the network
view consistent and updated across all routers. The mecha-
nisms are the following:

• Hello protocol: Allows routers to discover active neighbor
routers in a subnet they are attached to;

• Reliable flooding procedure: Allows the dissemination of
network information across a network, ending when all
routers have received it;

• Initial LSDB synchronization process: Allows synchro-
nization of the network information known by routers that
become neighbors, such as when a new router joins a net-
work.

OSPF has 5 types of links between routers: point-to-point
links, point-to-multipoint links, Non-Broadcast Multi-Access
links, broadcast (shared) links, and virtual links. The most
relevant are the point-to-point links and the broadcast links,
which will be the ones focused on in this work.

Routers and links have identifiers. Transit shared links, which
can connect 2 or more routers at the same time, are the most
complex case. To identify them, a router known as the DR
must be elected using the Hello protocol to provide the iden-
tifier of the link. A BDR is also elected to replace the DR in
case it fails.

To facilitate scaling, OSPF routing domains can be divided in
areas. As described in Section 5.1.3 of [9], some restrictions
apply. There must be a special area called backbone area
directly connected to all others, and all inter-area traffic must
pass through the backbone area even if it not the shortest
path to the destination. The structure of an OSPF multi-area
network is illustrated in Figure 1. A router interface always
belongs to one and only one area; a router therefore always
belongs to one or more areas.

Figure 1. Topology of an OSPF hierarchical network
Source: Adapted from [17]

Regarding the structure of an OSPF area, there are 3 types of
routers. ABRs connect the backbone area with at least one
other area: they have at least one interface assigned to the
backbone area, and at least one interface assigned to every
other area they are connected to. Direct connection between 2
non-backbone areas is not possible.

ASBRs connect the OSPF routing domain with other routing
domains or ASes. Routers that do not belong to the previous
two types (i.e. routers whose interfaces belong all to the same
routing domain and area) are called internal routers.

OSPF EXTENSIONS

General description
The main goal of the current MSc Dissertation is to implement
two OSPF extensions, one for each version, that will address
and overcome the restrictions in shortest path calculation and
selection of network topologies currently present in OSPF hier-
archical networks. The extensions are described in [16], which
will be referred to as the base article, and the implementation
supporting the MSc Dissertation, present at [11], is based on
it with a few changes.

The use of a DVR approach by OSPF in inter-area routing
imposes restrictions in the selection of the shortest path to a
network destination, and limits the network topologies to a
two-level hierarchy with only one area at the top level. The
OSPF extensions described in the base article, one for each
OSPF version, propose a LSR approach to inter-area routing to
overcome the restrictions. Such approach to inter-area routing
is currently not implemented by any LSR technology, as stated
in Section 3.2 of [17].

Given the role of ABRs as gateways between areas, they form a
routing overlay over an OSPF hierarchical network, similar to
having a single-area network running on top of the hierarchical
network. In a graph representing the ABR overlay, the nodes
are the network ABRs, while the arcs are the shortest intra-
area paths between two ABRs connected to the same area.
The arc costs correspond to the cost of the shortest path to
the neighbor ABR. Internal routers do not form part of the
graph, including as well ASBRs that are not ABRs, just like
layer-2 equipment such as switches can be abstracted from
graph representations of OSPF networks. Figure 2 shows a
multi-area OSPF network with a topology not supported by the
base protocol. In the network, R1 is connected to the address
prefix ap1, while R2 is connected to the address prefix ap2.

Each ABR computes its local view of the network using the
information stored in the LSDBs of the areas it is connected
to. Then, the information is stored and shared between ABRs
using 3 new types of LSAs: ABR-LSAs, Prefix-LSAs, and
ASBR-LSAs, called overlay LSAs in the base article. An ABR
will update and flood new overlay LSAs every time it detects
a relevant change in one of its LSDBs.

Since area internal routers are unaware of the details of inter-
area routing and rely solely on the information supplied by
ABRs to know about prefixes and ASBRs outside the area, the
OSPF extensions are transparent to them and no modification
of the internal routers is required. Both versions of OSPF



Figure 2. Topology of an OSPF multi-area network
Source: Adapted from [16]

already support new types of LSAs. In particular, since overlay
LSAs must reach the entire network regardless of the area,
they will have AS-scope. Area internal routers will store and
flood overlay LSAs as if their LS Type was known, even if
they do not use the information stored in the LSAs. The OSPF
synchronization mechanisms ensure the reliable distribution of
the overlay LSAs and therefore the correctness of the network
routing information.

Both extensions operate in the same way. The only design
difference is in the Prefix-LSA, which has different content in
each OSPF version.

Overlay LSAs
All of the proposed overlay LSAs advertise the shortest path
cost from the Advertising Router, which is always an ABR, to
another ABR, a prefix, or an ASBR, located in the same areas
the source ABR is connected to. ABR-LSAs, Prefix-LSAs and
ASBR-LSAs advertise costs to ABRs, network prefixes and
ASBRs, respectively. The advertised path is always intra-area
i.e. it will be calculated using only the Router-LSAs, Network-
LSAs and Intra-Area-Prefix-LSAs (only in OSPFv3) present
in the area LSDBs, even if the actual shortest path crosses
other areas. It is possible for the path to cross an intermediate
ABR, as long as the inbound and outbound interfaces belong
to the same area as the Advertising Router and the destination.

The content of the overlay LSA bodies only differs between
OSPF versions for the Prefix-LSA. The Advertising Router
is always the source ABR. In OSPFv2, the overlay LSAs are
type 11 Opaque-LSAs (also known as Opaque-AS LSAs),
with the LS Type field always set to 11. Considering the IANA
assignation of Opaque Types available at [7], which states
that values up to 10 are registered (the registration of value
10 is temporary), in our implementation ABR-LSAs, Prefix-
LSAs and ASBR-LSAs received a value of 11, 12 and 13,
respectively.

OSPFv3 already supports new LSA types. The first byte of
the LS Type (the U-bit) is set to True to indicate that the LSA
should be stored and flooded just like a regular LSA, while
the second and third bits (the S1 and S2 bits) are set to 10

to indicate a AS-scope. IANA has registered LSA Function
Codes (which denote the LSA Type in OSPFv3) up to 16, with
the registration of value 16 being temporary, as seen at [8].
Therefore, in our implementation, the ABR-LSA, Prefix-LSA
and ASBR-LSA are given a value of 17, 18 and 19 as LSA
Function Code. This information is summarized in Table 1.

ABR-LSA Prefix-LSA ASBR-LSA
OSPFv2 LS Type 11 11 11

OSPFv2 Opaque Type 11 12 13
OSPFv3 LS Type 17 18 19

Table 1. LS Type and Opaque Type of overlay LSAs

An overlay LSA can store information on as many network
elements of the same type as required, as long as all of them
are associated with the same ABR. The set of parameters that
describes a network element inside an overlay LSA is repeated
for every element being described. For that reason, each ABR
produces at most one overlay LSA of each type.

For each described network element, all overlay LSAs store
a metric value which consists of the shortest intra-area path
cost from the source ABR to the element, either another ABR,
a prefix or an ASBR. Prefix-LSAs in OSPFv3 also store the
number of prefixes in the LSA. Additionally, each overlay
LSA contains the following fields for each element:

ABR-LSA The Router ID of the neighbor ABR

Prefix-LSA In OSPFv2, the subnet address and subnet mask.
In OSPFv3, the prefix length and the address prefix, along
with its options

ASBR-LSA The Router ID of the neighbor ASBR

Differences to base article
There are a number of differences between the the OSPF exten-
sions as described in the base article and the implementation
supporting the current MSc Dissertation.

In the base article, ABR-LSAs can store information on mul-
tiple ABRs, while Prefix-LSAs and ASBR-LSAs can store
information on only one prefix or ASBR. For the implemen-
tation, it was decided to make all overlay LSAs consistent
by allowing all 3 types to store information on multiple net-
work elements on a single LSA. This behavior is seen in the
current OSPFv3 specification, in the Intra-Area-Prefix-LSAs
and Link-LSAs, which can store multiple prefixes in a single
LSA. It was also decided to add a Prefix Number field to the
Prefix-LSA in OSPFv3, present as well in the two LSA types
of the current specification.

Analysing RFC 2328[13] for OSPFv2 and RFC 5340[10] for
OSPFv3, it is possible to conclude that Router-LSAs and
Intra-Area-Prefix-LSAs use 2 bytes to store the metrics. AS-
External-LSAs, Summary-LSAs of both types, Inter-Area-
Prefix-LSAs and Inter-Area-Router-LSAs use 3 bytes to store
metrics. In the first case the metric is an interface cost, while
in the second case the metric is the sum of interface costs.
In overlay LSAs, the metric is a sum of interface costs as
well. For that reason, it was decided to increase the length of
the metric field from 1 to 3 bytes in all overlay LSAs for the
implementation.



Section 3 of the base article proposes a mechanism similar
to the OSPF initial LSDB synchronization process, with new
messages, where an ABR that has just joined the network can
request its overlay LSAs to the ABRs in the same areas. As
described in Section 4.2.2 of [15], since the overlay LSAs are
Opaque-AS-LSAs which are recognized by OSPF, they are
already exchanged during the initial LSDB synchronization
process between the new ABR and its neighbor routers even if
they are area internal routers. Given that in OSPFv3 new LSAs
can be stored and flooded like regular LSAs if their U-bit is
set (which happens for the overlay LSAs), it can be concluded
that there is no need to implement an additional mechanism to
perform the initial LSDB synchronization process. However,
OSPFv2 routers must signal their support of Opaque-LSAs
by setting the O-bit in the Options field of DB Description
packets. Otherwise, they will not receive Opaque-LSAs during
the initial LSDB synchronization process.

Practical example
Table 2 shows the overlay LSAs for the network from Figure
2. It considers the address prefix ap1 connected to R1, in area
1, and the address prefix ap2 connected to R2, in area 4. All
costs shown in the overlay LSAs are costs of intra-area paths,
including the costs of paths between ABRs.

ABR1 ABR2 ABR3 ABR4 ABR5
ABR2: 5 ABR1: 5 ABR1: 9 ABR1: 1 ABR2: 2
ABR3: 9 ABR3: 1 ABR2: 1 ABR5: 3 ABR3: 1
ABR4: 1 ABR5: 2 ABR5: 1 ABR4: 3

ABR-LSAs

ABR1 ABR2 ABR3 ABR4 ABR5
ap1: 4 ap1: 1 ap1: 5 ap2: 2 ap2: 1

Prefix-LSAs

ABR4 ABR5
ASBR: 1 ASBR: 2

ASBR-LSAs
Table 2. Overlay LSAs for the network from Figure 2

Source: Adapted from [16]

ABRs 1, 2 and 3 are connected to area 1, with all intra-area
paths going through R1. ABR1 shares only area 1 with the
other 2 ABRs, so the path costs to reach ABR2 and ABR3 that
are introduced in its ABR-LSA are the ones that go through
R1. On the other hand, ABR2 and ABR3 are both connected to
area 1 and to area 3, with the shortest intra-area path between
the 2 routers going through area 3 with cost 1. Therefore, for
the ABR-LSAs of both routers, a cost of 1 to reach the other
ABR is inserted. ABR3 does not insert in its ABR-LSA the
shortest path cost of 5 to reach ABR1 by going through areas
3, 4 and 2, since it is an inter-area path, neither the path cost
of 6 that can be obtained by going through areas 3 and 1. On
the other hand, ABR2 puts in its ABR-LSA a shortest path
cost of 2 to reach ABR5 despite being directly connected to
it, since the path that goes through ABR3 is still an intra-area
path even if it goes through an ABR.

In the network, ap1 and ap2 are being advertised inside area 1
by R1 and inside area 4 by R2, respectively. ABRs 1, 2 and

3 are connected to area 1, and therefore create and advertise
Prefix-LSAs stating that ap1 is in a directly connected area,
with the shortest intra-area path cost being the one that directly
reaches R1. The same happens for ABR4 and ABR5 regarding
ap2 and R2.

The network has a single ASBR, an area internal router in area
4. Given that only ABR4 and ABR5 are connected to the area,
they are the only routers to create and flood an ASBR-LSA
with the shortest intra-area path cost (which is also the overall
shortest path cost) to reach the ASBR from them.

After the network stabilizes and all ABRs know all of the
network overlay LSAs, they can compute the overall shortest
path costs to reach the network prefixes and the ASBR. By
using the network ABR-LSAs to build the overlay graph, each
ABR will know the overall shortest path cost to reach all other
ABRs in the network. For example, ABR1 will know that its
overall shortest path costs to reach ABR2, ABR3, ABR4 and
ABR5 are 5, 5, 1 and 4, respectively. Prefix-LSAs and ASBR-
LSAs tell ABRs which prefixes and ASBRs are associated
with each ABR, respectively, along with the intra-area shortest
path costs from the ABR to the network element. ABR1 learns
that ABR4 can reach the ASBR with cost 1 and ap2 with cost
2, while ABR5 can reach the ASBR and ap2 with cost 2 and 1,
respectively. By adding the overall shortest path cost to each
ABR with the intra-area shortest path cost from the ABR to
the network element, ABR1 can obtain the overall shortest
path cost from itself to the network element. To reach ap2 and
the ASBR from ABR1, the next hop router will be ABR4.

With the shortest path costs calculated, ABRs create Network-
Summary-LSAs in OSPFv2 and Inter-Area-Prefix-LSAs in
OSPFv3, for prefixes, and ASBR-Summary-LSAs in OSPFv2
and Inter-Area-Router-LSAs in OSPFv3, for ASBRs, contain-
ing the overall shortest path costs to reach them. ABR1, ABR2
and ABR3 will tell R1 that the shortest path cost from them
to ap2 is 3, 3 and 2, respectively, and 2, 4 and 3 to reach the
ASBR, respectively. By summing the costs advertised by the
ABRs with the intra-area shortest path costs to reach each of
the area ABRs, R1 can conclude that the shortest path cost to
reach ap2 and the ASBR through ABR1 is 7 and 6, through
ABR2 is 4 and 5, and through ABR3 is 7 and 8, respectively.
With the information, R1 can now select ABR2 as the next
hop router to reach ap2 and the ASBR, knowing that the over-
all shortest path cost to reach ap2 and the ASBR is 4 and 5,
respectively.

SOFTWARE ARCHITECTURE

General description
The program that supports the current MSc Dissertation con-
sists of an OSPF router, able to be interconnected with other
machines running either the same router program or current
OSPF implementations. The program runs both OSPF ver-
sions as defined in the current specifications and supports
Opaque-LSAs as well, with the OSPF extensions being cre-
ated on top of the base implementation.

Its software architecture is based on the OSPF specifications
as described in RFC 2328 [13] and RFC 5340 [10], and also on
the OSPF implementation described in [14]. The architecture



is object-oriented, with an hierarchy of four software layers
which from top to bottom are: the router, the area, the interface,
and the neighbor. The architecture is illustrated in Figure
3. Grey lines represent the interactions between layers, and
arrows indicate the direction of the interaction.

Figure 3. Software architecture of the supporting program

Router neighbors are directly associated with router interfaces,
to the point where a router can have two or more different
neighbor relationships with the same neighbor router through
the same number of interfaces. For that reason, the neighbor
layer can be placed under the interface layer.

Organizing the router, area and interface layers is less direct.
Routers have at least one interface, which will belong to one
and only one area. Areas also have at least one interface, re-
gardless of the routers those interfaces belong to. Therefore,
a router can belong to a single area while having several in-
terfaces, or at most belong to as many areas as the interfaces
it has. Given that, the router layer can be placed at the top
of the hierarchy, with the area layer immediately below and
the interface layer below it, leaving the neighbor layer as the
bottom layer of the hierarchy.

Despite the differences between OSPFv2 and OSPFv3, the
software architecture is suitable for both OSPF versions. In
particular, state machines, mechanisms, and the OSPF base
concepts such as the area, the interface and the neighbor router
remain unchanged. The main consequences of the separa-
tion of topological and addressing information in OSPFv3
are the creation of new types of LSAs, and changes in the
structure and content of existing LSA types. These changes
are supported by the software architecture and only affect the
implementation.

The top software layer contains four classes: the router, the
OSPF routing table, the interface to the routing table stored in
the kernel of the machine running the program, and the part
of the LSDB that stores the overlay LSAs. The area layer
contains the area class and the remainder of the LSDB, where
the regular LSAs are stored. One router instance is associ-
ated with at least one area instance. Both the interface and
the neighbor layers contain a single class, which respectively
represents an OSPF interface and an OSPF neighbor router
from the point of view of an interface. An area instance is

associated with at least one interface instance, while the latter
may have no neighbor instances associated.

A few classes support the program operation without belong-
ing to a specific layer, being instantiated by classes in more
than one layer. Both router and interface instances are associ-
ated with at least one instance of the socket class, while both
interface and neighbor instances are associated with at least
one instance of the timer class.

Software layers
The router layer contains the OSPF top-level data structures,
as described in Section 5 of [13], such as the Router ID, the
list of area data structures for the areas the router belongs to,
and the OSPF forwarding table. The layer controls directly or
indirectly all layers of the program.

The area layer contains the OSPF area data structures, as de-
scribed in Section 6 of [13]. Each area data structure contains
elements such as the Area ID, the interfaces connected to the
area, and most of the LSAs defined in the base OSPF specifi-
cations in use by the supporting implementation. In particular,
Router-LSAs, Network-LSAs, Network-Summary-LSAs in
OSPFv2, and Intra-Area-Prefix-LSAs and Inter-Area-Prefix-
LSAs in OSPFv3, are stored in the area layer.

The interface layer contains the OSPF interface data structures,
as described in Section 9 of [13]. Each interface data structure
contains elements such as the IP address, the network DR and
BDR, the current interface state, the interface cost, the list
of OSPF neighbors associated with the interface, and the list
of the interface Link-LSAs for OSPFv3. Unlike the upper
software layers, the interface layer only has one class, the
interface class. The interface layer stores the states machines
of the interface and the neighbor.

The neighbor layer contains the OSPF neighbor data structures,
as described in Section 10 of [13]. Each neighbor data struc-
ture contains elements such as the current neighbor state, the
Router ID and the IP address of the neighbor, and the neighbor
inactivity timer. Like the interface layer, the neighbor layer
has only one class, the neighbor class.

OSPF extensions
Changes in the router and the interface layers were required
to accommodate the OSPF extensions implemented for the
current MSc Dissertation. Most changes were performed in
the router layer.

A new class was added to the router layer, a data object for
storing the overlay LSAs. The class is similar to the LSDB
class of the area layer, storing overlay LSAs and allowing the
addition, update and removal of elements from its instances.
The router class creates a single instance of the overlay LSDB
class. It was decided to store the overlay LSAs in the router
layer since the current OSPFv3 specification, described in
Section 4.1 of [10], assigns unknown LSAs with their U-bit
set and AS-scope to the top-level data structure, which matches
the characteristics of the overlay LSAs.

The process of building the OSPF routing table has been up-
dated. After the intra-area OSPF routing table is generated,



the self-originated overlay LSAs are updated using the routing
table content, and are flooded to the network. Then, the OSPF
routing table is updated using only the information contained
in the overlay LSAs. Unlike in current OSPF specifications, it
is possible for the intra-area shortest path costs to be replaced
by inter-area shortest path costs to the same destination.

The information of the updated OSPF routing table is then
transferred to the kernel routing table. Network-Summary-
LSAs and Inter-Area-Prefix-LSAs are created, installed in the
respective area LSDB and flooded with the information of the
updated OSPF routing table.

The interface layer required less changes. As the overlay LSAs
in both OSPF versions are stored and flooded like regular
LSAs, the processing of incoming OSPF packets could remain
intact. Only the access to the LSDB was updated. In order to
add, remove or update an overlay LSA, an interface instance
will directly access the extension LSDB in the router layer.
Regular LSAs continue to be added to, and fetched and deleted
from the area LSDB.

IMPLEMENTATION
Overview
The implementation supporting the current MSc Dissertation
is available at [11], and was developed using Python 3.6 [6]
in machines running Ubuntu 18.04 [4]. The structure of the
program follows the software architecture defined in the pre-
vious section. In particular, the root directory of the project
contains a Python package for each software layer defined
previously. Each class is stored in a different module named
after the class, and stored inside the corresponding package.
The implementation has a total of eight packages.

Each class contains the code and the parameters for both OSPF
versions, when required. The program can run both OSPF
versions at the same time, each version in a separate process
with different instances of the same classes. No state is shared
between the processes.

The interaction with the user is provided by a command-line
interface, which is available at every moment after the router
program is started. The different commands available allow
to access the content of the kernel routing table, the content
of the router LSDBs, and the information about the router
neighbors, among other functionalities. The commands are
the same for both OSPF versions, and fetch the content from
the two router processes if both OSPF versions are running at
the same time.

Source code
In our implementation, most constants are stored in the conf.py
file, in the configuration package. The file does not contain
any classes, consisting in a list of static parameters. The static
parameters defined by the current OSPF specifications, such
as the time to wait after sending each Hello packet, the time to
wait until a neighbor is declared dead if no Hello packets are
received from the neighbor, and the types of the LSAs and the
packets, are stored in the file.

The general package contains classes that do not belong to a
specific software layer of the program, and are used by classes

in more than one layer. The socket and the timer classes
are stored in the general package, along with a third class
containing utility functions used throughout the code.

In our implementation, LSAs and OSPF packets are repre-
sented using data objects. The LSA and the packet headers are
represented as different classes. Each LSA body type and each
packet body type are represented as different classes as well.
Each data object can be packed into a byte stream in order
to be sent to the network, or unpacked from a byte stream
received from the network. Although the LSA and the packet
classes are used by more than one software layer, given their
particular role and their number, it was decided to place the
classes in separate packages and not in the general package.

The router package contains the classes of the router layer.
The router class controls directly or indirectly all layers of
the program. It is one of the largest classes of the program,
with more than 1.000 lines of code. During the program
startup, a router main process is started, which controls the
operation of the corresponding OSPF version in the program.
The kernel routing table is also set by the router main loop,
using a separate thread.

No loops are run inside the area layer classes, which act as
data objects to store information. In particular, the area class is
used to start all underlying interfaces during the router startup,
and provide the initial content of the respective LSDB.

The interface class, the only class of the interface package,
is the largest class of the code with more than 1.500 lines
of code. The class contains the code of all of the events
defined in the OSPF specifications that change the states of
the interface and the neighbor state machines. Each event
is represented as a different method. Additionally, the code
of the DR election is also contained in the interface class,
with each step of the election being represented as a different
method. In our implementation, OSPFv3 interface instances
can store Link-LSAs, supporting the addition, deletion and
getting of stored LSAs, the same way it is done in the LSDB
class. The interface class also contains a loop, similar to the
router main loop.

The neighbor class is the only class of the neighbor package.
It is instantiated by the interface class when an Hello packet
from a new neighbor router is received. Similar to the area
class, no loops are run inside the neighbor class.

OSPF extensions
Most of the code written for the OSPF extensions was placed
in the router layer. The interface layer suffered minor changes
in order to accommodate the OSPF extensions.

A new class was created in the router layer, the extension
LSDB class. The class is very similar to the LSDB class of
the area layer, storing the overlay LSAs of the router. Overlay
LSAs of the same type are stored in the same list, and each
LSA list is protected by a thread-safe lock. The class contains
methods to get, add and delete LSAs stored in the class in-
stance. The class contains as well a method that returns the
shortest path tree of the ABR overlay, in the same format as
the area shortest path tree returned by the base LSDB class.



The procedure of updating the kernel routing table has been
updated in the router class. The new steps are only executed
if the router is an ABR. The router main process counts the
number of areas that the router is connected to, according to
the initial configuration. If the router is connected to more
than 1 area, then the router is an ABR.

For ABRs, a copy of the overlay LSAs is obtained together
with the copies of the area LSDBs. An OSPF routing table is
created, and the table receives the paths to the prefixes inside
the directly connected areas, which allows the router to update
its overlay LSAs. The updates are written to the extension
LSDB class and to the copy created by the update procedure,
to avoid fetching a new copy of the overlay LSAs.

The router then updates the OSPF routing table using the
information of the overlay LSAs, which will always provide
the shortest path costs to each prefix in the network. If a prefix
already has an entry in the OSPF routing table but with an
higher shortest path cost, then the entry is updated. With the
OSPF routing table updated, the router updates the kernel
routing table. Finally, the router creates Network-Summary-
LSAs in OSPFv2, and Inter-Area-Prefix-LSAs in OSPFv3,
using the information of the updated OSPF routing table. The
new LSAs are stored in the corresponding area LSDBs and
flooded to the network.

The overlay LSAs are represented in the program by new body
classes in the LSA package. The new classes implement the
body abstract class, and can be packed into byte streams and
unpacked from byte streams. The LSA interface class contains
methods that call the methods of the overlay LSA body classes,
and the class supports the creation and manipulation of overlay
LSAs. For that reason, overlay LSAs can be handled by the
program like regular LSAs.

During the program startup, each interface instance receives a
reference to the extension LSDB class, along with the refer-
ence to the area LSDB, in order to allow the interface instances
to access and manipulate the overlay LSAs.

EVALUATION

GNS3 networks
In order to test the implementation supporting the current
MSc Dissertation, a total of three virtual networks have been
created. GNS3 [3] was used to create the virtual networks,
since it supports Cisco [1] virtual routers.

It is an objective of the current dissertation to perform inter-
operability tests on our implementation, using Cisco routers.
Two versions of the Cisco IOS were used in the virtual net-
works: the version 12.2(15)ZJ (the Cisco 3725 router was
used), and the version 15.7(3)M.

In order to virtualize the machines running our implementa-
tion, Docker containers [2] were used. Not only GNS3 sup-
ports Docker containers, but also containers are much faster
to start and stop than virtual machines, and use less memory.
While VMware [5] was used during the initial months of the
development, it became impractical once the number of vir-
tual machines in the network started to grow, leading to the

virtual machines being replaced by Docker containers in the
networks.

The test networks are divided in two groups. The first group
contains two single-area OSPF networks, and the second group
contains a multi-area OSPF network with a topology not possi-
ble with the current OSPF specifications. The networks inside
the first group have the same topology and addresses. The
only difference between the networks lies in the routers: in
the first network a router can be represented by a Cisco router,
while in the second network the same router is replaced by a
Docker container running our implementation.

All of the networks are configured for both OSPFv2
and OSPFv3. The IP addresses for the networks al-
ways have the form 222.222.X.Y/24, in OSPFv2, and
2001:db8:cafe:X::Y/64, in OSPFv3, where X identifies the
subnet inside the network and Y identifies the interface inside
the subnet. For every network interface, the values for X and
Y are the same for both OSPF versions. For example, if an in-
terface has the IPv4 address 222.222.1.3/24, then the interface
will also have the IPv6 address 2001:db8:cafe:1::3/64.

The first group of networks contains the networks 1-1 and
1-2. Both networks are single-area, and have 6 routers and 6
network prefixes. Four of the routers, R1, R4, R5, and R6, are
connected to the same subnet. R1 connects the subnet with the
rest of the network, and forms a loop with R2 and R3. A VPCS
is connected to R1, and another VPCS is connected to R2. The
network 1-1 contains one Docker container, the R4, while the
remainder of the routers are Cisco routers. The network 1-2
replaces every Cisco router with a Docker container running
our implementation. The networks use the Cisco IOS release
12.2(15)ZJ.

The second group of networks contains a single network, the
network 2-1. The network contains 6 routers and 5 network
prefixes, and is divided in 4 areas: the area 1 at the top, the
area 2 in the center on the left, the area 3 in the center on
the right, and the area 4 at the bottom. All of the network
routers, except for R6, are ABR. R1, R2 and R3 are connected
to the area 1 through a switch, which also connects R6 to
the network. R1 is also connected to the area 2, while R2
and R3 are also connected to the area 3. The area 2 contains
a single link, connecting R1 to R4. The area 3 contains 2
links, connecting R5 to R2 and R3, respectively. R4 and R5
are connected through the area 4, using two switches. R6
is a Cisco router, while the remaining routers are Docker
containers. The network uses the Cisco IOS release 15.7(3)M.

Manual testing and results
During the implementation of the OSPF extensions, it was
noticed that the Cisco 3725 routers did not correctly flood
stored OSPFv3 LSAs with unknown LS Type during the initial
LSDB synchronization process. The LSAs were flooded with
the LS Function Code set to 0, preventing the identification of
the respective LS Type by the receiving routers. An attempt
was made to overcome the problem by replacing the Cisco
routers of the network 2-1 with other Cisco routers running
the Cisco IOS release 15.7(3)M, more recent than the Cisco
IOS release executed in the Cisco 3725 routers.



While the problem disappeared, a new apparent bug was found:
the Cisco routers being used seemed to treat all OSPFv3 LSAs
with unknown LS Type as if all of them had the same LS Type.
If a Cisco router received a LSA with unknown LS Type, and
later it received another LSA with a different unknown LS
Type and a lower sequence number, then the Cisco router
would discard the second incoming LSA and send the first
LSA back to the sending router, as if it was a more recent
instance of the second LSA. To the best of our knowledge, the
problem was not caused by a bug in our implementation or by
a configuration error.

Considering the apparent bugs in the Cisco routers regarding
LSAs with unknown LS Type in OSPFv3, it was decided to
perform experiments only with the OSPFv2 extension.

In order to test the correct implementation of the OSPFv2
extension, two experiments have been performed in the net-
work 2-1. The network has a multi-area topology that is not
supported by the current OSPF specification, being divided in
4 non-hierarchical areas.

The first experiment tested the correct functioning of the
OSPFv2 extension, including the generation and flooding of
the overlay LSAs and the update of the kernel routing table
based on the respective information. A second objective was
to test the correct creation and flooding of Network-Summary-
LSAs, in order to allow the area internal routers to know the
network prefixes outside the area and how to reach them. The
network 2-1 has one area internal router, a Cisco router, placed
in the area 1.

For the experiment, the five network ABRs were started at
the same time. The network was started and allowed to con-
verge a total of three times, in order to measure the network
convergence times. Table 3 shows the measured convergence
times for each router in each execution, in seconds. The time
was measured since the router startup until the last update of
the respective kernel routing table, therefore including the 40
seconds that each router remains in the Waiting state after the
respective startup.

Execution R1 R2 R3 R4 R5 Average
1 189,2 196,2 193,4 187,1 191,7 191,5
2 190,5 201,2 200,2 187,8 194,6 194,9
3 171,9 175,3 173,1 169,3 165,5 171,0

Average 183,9 190,9 188,9 181,4 183,9 185,8
Table 3. Convergence time for each ABR of the network 2-1 during 3
executions, in seconds

On average the routers took 186 seconds to converge, a value
258% higher than the average convergence times of the Cisco
routers R1, R5 and R6 in the network 1-1, and 151% higher
than the average convergence times of the routers R1, R2 and
R3 running our implementation in the network 1-2.

The increase in the number of routers converging at the same
time, the additional processing required by the OSPFv2 ex-
tension, and the exchange of overlay LSAs along with regular
OSPF LSAs, can be considered causes of the increment of the
convergence times. However, it can also be considered that
further work can be performed on the OSPFv2 extension to
improve and optimize it.

Figure 4 shows the overlay LSAs generated by the network
ABRs. Each router in the network generates one Prefix-LSA
with the different prefixes of the areas that the ABR is con-
nected to, and one ABR-LSA with the different ABRs con-
nected to the same areas, along with the costs to reach the
prefixes and the ABRs, respectively. Every interface cost was
set to 10 for the experiment.

Figure 4. Overlay LSAs of the network 2-1 as seen in the command-line
interface of R1

After the network converged and the convergence times were
measured, R6 was started. When the router stabilized, the
kernel routing table of the router contained paths to the 5
subnets of the network. In particular, the subnet with the
address 222.222.3.0 could be reached through three different
shortest paths, each path having a cost of 30 and going through
a different ABR of the area 1.

The second experiment was similar to the first experiment,
with the difference of setting the costs of the interfaces of R1
from 10 to 1. The remaining interface costs were not changed.
The goal of the experiment was to test the correct functioning
of the OSPFv2 extension in a network with different interface
costs, and the correct transmission of the respective routing
information to the area internal routers.

Similar to the first experiment, first the network ABRs were
started and allowed to converge, and then R6 was started. With
R1 having lower interface costs than R2 and R3, R6 inserted
in the respective kernel routing table a single shortest path to
the subnet with the prefix 222.222.3.0, with a cost of 21 and
going through R1. The cost of the shortest path to the prefix
222.222.2.0, which already passed through R1 in the previous
experiment, was reduced from 20 to 11. The shortest paths to
the other prefixes were not changed.

CONCLUSION
LSR protocols are superior to DVR protocols, since they al-
low routers to have the complete network view, preventing
the problem known as count-to-infinity that affects DVR pro-
tocols such as RIP. However, the current versions of OSPF
use a distance vector approach to inter-area routing, bringing
two important restrictions to OSPF multi-area networks: the
networks must have a two-level hierarchical structure with a
single area in the top level, and optimal routing between areas
is not guaranteed.



For the current MSc Dissertation, two extensions to the base
OSPF protocol were implemented, one for each version, which
apply a link state approach to inter-area routing, providing the
complete network view to all routers in the network even
across areas. The extensions allow to create an ABR overlay,
a logical network formed by the network ABR over the OSPF
network, where all ABRs know the shortest paths to reach
each other, and advertise as well the shortest path costs to
reach the address prefixes located in their areas. New types of
LSAs were created in order to carry the information between
ABRs. As the current OSPF specification already supports the
creation of new types of LSAs, the extensions are transparent
to area internal routers.

An implementation of the current OSPF specifications was first
created, in order to be later extended with the OSPF extensions.
The software architecture contains four different layers: from
the top to the bottom, the router, the area, the interface, and
the neighbor, each layer corresponding to a data structure
or a set of data structures defined in the OSPF RFCs. The
router layer contains the top-level OSPF data structures, and
is responsible for listening to OSPF packets in the network,
coordinating the flooding of LSAs, and setting the kernel
routing table. The area layer stores the area-scope LSAs. The
interface layer manages the state machines of the interface and
of the neighbor, elects the DR and the BDR of the subnet, and
processes the incoming packets. The neighbor layer contains
the neighbor data structure. The OSPF extensions required
modifications in the router and in the interface layers, mainly
a reformulation of the process of updating the kernel routing
table of the machine running the program.

In order to test the implementation, three GNS3 networks were
created, interconnecting Cisco routers and Docker containers
running the implementation. Experiments were conducted in
single-area OSPF networks, and in a multi-area network with
a topology not possible with the current OSPF specifications.
The single-area experiments were performed for both OSPF
versions, and proved that the implementation can work cor-
rectly in single-area OSPF networks, being capable of interop-
erating with Cisco routers, and successfully forming networks
only with machines running the program. Bugs were found in
the Cisco routers that prevented the correct manipulation of
LSA with unknown LS Type in OSPFv3. For that reason, the
experiments in the multi-area network were conducted only
for the OSPFv2 extension. The experiments proved that the
extension is operating, being capable of generating and flood-
ing overlay LSA across a multi-area network, and flooding the
routing information to the area internal routers.

Future work
As a future work, our implementation of the base OSPF speci-
fications should be improved and optimized, with the objective
of fixing bugs in the implementation and decreasing the con-
vergence times of networks with Docker containers running
our implementation. Additionally, experiments should be per-
formed on our implementation of the OSPFv3 extension, using
networks with topologies not possible with the current OSPF
specifications. The implementation of both OSPF extensions
can then be improved and optimized like the base implementa-

tion, in order to fix bugs and reduce the respective convergence
times. Another possibility of future work is the addition of
support for ASBRs and domain-external prefixes, both in the
base OSPF implementation and in the implementation of the
OSPF extensions.

Finally, the OSPF extensions and their implementation can be
described in an Internet-Draft, to be submitted to the IETF.

REFERENCES
[1] Cisco - Global Home Page. (????).

https://www.cisco.com/

[2] Docker - Empowering App Development for Developers.
(????). https://www.docker.com/

[3] GNS3 | The software that empowers network
professionals. (????). https://www.gns3.com/

[4] Ubuntu. (????). https://ubuntu.com/

[5] VMware – Delivering a Digital Foundation for
Businesses. (????). https://www.vmware.com/

[6] Welcome to Python.org. (????). https://www.python.org/

[7] 2020a. Opaque-LSA Option Types. (2020).
https://www.iana.org/assignments/ospf-opaque-types/

ospf-opaque-types.xhtml

[8] 2020b. OSPFv3 parameters. (2020).
https://www.iana.org/assignments/ospfv3-parameters/

ospfv3-parameters.xhtml

[9] Olivier Bonaventure. 2010. Computer Networking :
Principles, Protocols and Practice (1 ed.). Université
Catholique de Louvain.
https://www.computer-networking.info/

[10] R. Coltun, D. Ferguson, J. Moy, and Ed. A. Lindem.
2008. RFC 5340 - OSPF for IPv6. (2008). DOI:
http://dx.doi.org/10.17487/RFC5340

[11] Miguel Gonçalves. 2020.
ospf-multiarea-arbitrary-topology. (2020).
https://github.com/migueldgoncalves/

ospf-multiarea-arbitrary-topology

[12] Gary Malkin. 1998. RFC 2453 - RIP Version 2. (1998).
DOI:http://dx.doi.org/10.17487/RFC2453

[13] John T. Moy. 1998. RFC 2328 - OSPF Version 2. (1998).
DOI:http://dx.doi.org/10.17487/RFC2328

[14] John T. Moy. 2001. OSPF Complete Implementation (1
ed.). Addison-Wesley, New York.

[15] André Pinheiro Pires. 2018. OSPF extension to support
multi-area networks with arbitrary topologies.
Technical Report. Instituto Superior Técnico. 76 pages.
https://fenix.tecnico.ulisboa.pt/departamentos/dei/

dissertacao/1972678479054624

[16] Rui Valadas. 2017. OSPF extension for the support of
multi-area networks with arbitrary topologies. (2017).
http://arxiv.org/abs/1704.08916

[17] Rui Valadas. 2019. OSPF and IS-IS From Link State
Routing Principles to Technologies (1 ed.). CRC Press.
DOI:http://dx.doi.org/10.1201/9780429027543

https://www.cisco.com/
https://www.docker.com/
https://www.gns3.com/
https://ubuntu.com/
https://www.vmware.com/
https://www.python.org/
https://www.iana.org/assignments/ospf-opaque-types/ospf-opaque-types.xhtml
https://www.iana.org/assignments/ospf-opaque-types/ospf-opaque-types.xhtml
https://www.iana.org/assignments/ospfv3-parameters/ospfv3-parameters.xhtml
https://www.iana.org/assignments/ospfv3-parameters/ospfv3-parameters.xhtml
https://www.computer-networking.info/
http://dx.doi.org/10.17487/RFC5340
https://github.com/migueldgoncalves/ospf-multiarea-arbitrary-topology
https://github.com/migueldgoncalves/ospf-multiarea-arbitrary-topology
http://dx.doi.org/10.17487/RFC2453
http://dx.doi.org/10.17487/RFC2328
https://fenix.tecnico.ulisboa.pt/departamentos/dei/dissertacao/1972678479054624
https://fenix.tecnico.ulisboa.pt/departamentos/dei/dissertacao/1972678479054624
http://arxiv.org/abs/1704.08916
http://dx.doi.org/10.1201/9780429027543

	Introduction
	Motivation
	Objectives
	Achievements
	Structure

	Routing Protocols
	Introduction to routing protocols
	The Open Shortest Path First protocol

	OSPF extensions
	General description
	Overlay LSAs
	Differences to base article
	Practical example

	Software Architecture
	General description
	Software layers
	OSPF extensions

	Implementation
	Overview
	Source code
	OSPF extensions

	Evaluation
	GNS3 networks
	Manual testing and results

	Conclusion
	Future work

	References 

