Procedural Content Generation for Cooperative Games

Nuno Martins
nuno.lages.martins@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2020

Abstract

Procedural content generation is a popular topic in the games industry, it allows for faster development
of content at reduced cost by being able to create infinite content. Creating levels and other details
of the levels can reduce the workload on artists and game developers. Though a lot of work can still
be done in procedural content generators, such as making generated content more diverse and realistic,
when it comes to generating cooperative content, specifically content that requires collaboration between
both players to be completed, there is a severe lack of work and approaches. We provide a solution
to procedurally generating cooperative content. In this work, we create a level generator that uses
a genetic algorithm as a base. We study how to properly define the problem and apply it to the
game Geometry Friends as an example. We then evaluate our solution and finally we discuss how to
keep improving the area for procedural content generation in cooperative games and propose different
approaches. Keywords: Procedural Content Generation, Cooperation in Games, Procedural Content

Generator for Cooperative Games, Genetic Algorithm, Geometry Friends

1. Introduction

Games are a source of entertainment for many.
They can provide a variety of experiences and help
players learn or improve different skills. Multiplayer
games are specially sought after as they allow play-
ers to join their friends in many challenges and
promote friendship. The tools for creating games
keep improving and the game industry is larger
than ever. The hardware to play games has also
improved and allows for larger scale games to be
played and developed. But larger scale games take
a lot of time to be developed and it is extra time
consuming to design by hand every aspect of the
game. For those reasons procedural content gen-
eration is used to help develop certain aspects of
games including.

Games that focus on providing cooperative chal-
lenges and puzzles that require two or more players
can be very difficult to develop as they require the
game designer to carefully design the level and test
it to guarantee coherence between the different el-
ements that create the cooperative challenges. For
this reason procedural content generators for these
challenges are hard to develop and those that exist
allow multiple players but do not often need both
players to solve the challenges generated.

Improving tools that allow procedural content
generation is important as they also allow for
smaller groups of designers to create larger worlds
and they can reduce the costs of development.

While PCG has been subject to many studies,

including studies that focused on the generation of
cooperative challenges, there is still a lack of tools
to help with designing cooperative focused levels.

2. Goal

The problem we are addressing is the procedural
generation of cooperative levels, these are levels
that focus on providing cooperative challenges that
require cooperation to complete.

Our goal is to create a level generator that re-
ceives a series of requirements as input from the
designer and generates a level that fulfills those re-
quirements. To reach this goal we chose to use a
genetic algorithm that can help us find the best so-
lution, we chose a genetic algorithm as they allow
us to spread the search for the solution and allows
us to define a direct metric to evaluate the solu-
tions. We intend for the input to be a description
of where in the level should certain types of chal-
lenges be. We will test this solution by creating a
level generator for the game Geometry Friends

3. Related Work
3.1. Procedural Content Generation in Games

Procedural Content Generation(PCG) has been de-
fined as the algorithmic creation of game content
with limited or indirect user input [13] many games
such as Civilization' and No Mans Sky? uses it to

IFiraxis, 2K Games 2011, Civilization VI, video game,
Microsoft Windows, United States.

2Hello Games 2016, No Man’s Sky, video game, Microsoft
Windows, United Kingdom.

create their worlds. Togelius et al [13] defined con-
tent as most of what is in a game, except things
like the game engine and Non-playable Character
Artificial Intelligence behaviour.

When developing new tools it is important to
be able to classify them, so some desirable prop-
erties for a PCG have been defined [13] as: Speed,
Reliability, Controllability, Expressivity and diver-
sity, and Creativity and believability. Togelius et
al [13] then used those properties and defined a
taxonomy of PCG that consists of the following
dimensions: Online vs Offline, Necessary vs Op-
tional, Degree and Dimension of control, Generic
vs Adaptive, Stochastic vs Deterministic, Construc-
tive vs Generate-and-test, Automatic generation
versus mixed authorship.

3.2. Content for Procedural Generation

The definition of content by Togelius et al [13] is too
broad, Hendrikx et al [6] defined content that can
be procedurally generated by separating it into lay-
ers based on how the content can be created from
other content, these layers are: game bits, game
space, game systems, game scenarios, game design,
and derived content. These layers tend to have con-
crete and abstract elements, concrete ate things or
objects that can be interacted with while abstract
are more visual and concept driven.

There are many different ways of creating a Pro-
cedural Content Generator, Hendrikx et al [6] com-
piled a collection of them and related them to which
type of content they could be applied to. First they
created a taxonomy to classify the different types
of algorithms based on the main basis of the algo-
rithm, this taxonomy identified six groups: Pseudo-
Random Number Generators, Generative Gram-
mars, Image Filtering, Spatial Algorithms, Mod-
elling and Simulation of Complex Systems, Arti-
ficial Intelligence.

We looked at what each area had and how they
could help in our problem and decided that an Al
to search for levels that fit our requirements could
be the solution. We decided on a genetic algorithm
as they have been used in PCG. Connor et al [2]
used a genetic algorithm to create a game level, it
would generate the map and rate it the ratio of
space that was traversable and whether there was
a path from the beginning to the end. Mourato et
al [9] applied a genetic algorithm to generating lev-
els for the 1989 Prince of Persia® a 2d platforming
game. Given these varied uses of the genetic algo-
rithms we believed it could generate good results
for our problem as well.

3Jordan Mechner, Brgderbund Software, 1989, Prince of
Persia, MS-DOS, Brgderbund Software, Ubisoft

3.3. Genetic Algorithms

Genetic algorithms fall into the Artificial Intelli-
gence group of algorithms, according to Hendrikx
et al[6]. This is because the idea behind them is
to mimic biological evolution. Goldberg et al[5] de-
fines them as ‘search algorithms based on the me-
chanics of natural selection and natural genetics’
and they are used to solve optimization problems.
They mimic biological evolution because they define
a population that is described by structures that
are similar to chromosomes, then they evolve that
population through reproduction and some suffer
mutations. Genetic algorithms can be divided into
these parts: the chromosome or individual, the fit-
ness function, the selection method, the crossover
method and the mutation method. The stop condi-
tion is generally until the population converges or
a maximum number of generations.

The chromosome represents an individual in a
population and they are considered as a possible
solution to the problem. They are a sequence of
genes, a set of parameters or variables that repre-
sent our solution, also called the genotype, which is
the encoding of the chromosome, i.e. its represen-
tation. Usually they are represented by a string of
bits, binary values that are either 1 or 0, but the
representation varies a lot depending on the prob-
lem in question. From these genotypes comes the
phenotype which is where we get the expression or
meaning in the sequence of genes, what does each
part of our chromosome represents in our problem.
It is possible that the chromosome representation
does not have a fixed size.

The fitness function is where the problem we are
trying to solve is defined and where we interpret
the chromosome. Its objective is to give a value
to each individual in the population, normally the
values are between 0 and 1 where 1 is the best and
is considered to be a solution to the problem. This
function is where most of the effort in a genetic algo-
rithm should be applied. It is important to properly
define a function that approximates the designer's
goal. If improperly defined the function might con-
verge to a bad solution, that is one that the designer
does not actually want, or might not converge at all.

The selection is done to choose which individu-
als from the population should be used for creating
the next generation through crossover. The main
goal of this process is to help the algorithm con-
verge. This is because in general the selection pro-
cess chooses the best chromosomes, that is the ones
with highest fitness. There are many approaches to
the selection method. Some of these approaches are
different types of fitness proportionate selections,
that is that they use the fitness of each individual
and their overall relation to the population to de-
termine the likelihood that they are chosen. Exam-

ples of these selections methods are the Roulette
Wheel, Rank, and Stochastic Universal Sampling
selection. Others compare fitness value directly
such as the Tournament Selection and Elitism se-
lection method.

The previously selected chromosomes will act as
parents and mate in order to cross their genes and
create the children or individuals that compose the
next population. The reason for the crossover is
to try and diversify the population while passing
on features from the parents to the children. There
are many different ways for the parents to crossover,
among the most known are the single-point and
the two-point crossover, there is also a K-point
crossover variant. Another crossover method is
the uniform crossover, this method creates offspring
where each gene is chosen with a certain probabil-
ity, normally an equal probability, which parent it
inherits from. Something that can be necessary is
to define a crossover specific to your chromosome,
this can normally happen if there are certain guar-
antees that need to be fulfilled when creating the
offspring.

The main purpose of the mutation is to help di-
versify the population and stop it from converging
early, it does this by altering the chromosome in
different ways: it can alter the gene values or it can
switch the order of the genes. Not every individual
is affected by a mutation, this is controlled by a mu-
tation probability that should not be set too high or
else the search has a risk of becoming too random.
However it might be better might be better to have
a lot of diversity in the first generations of a genetic
algorithm and, as higher fitness solutions are found,
the mutation probability can be decreased. The flip
bit mutation is a classic mutation method. Other
variations of the flip bit might choose a segment
of the chromosome and flip those, or they can go
through the genes in a uniform manner and, with
a random chance, flip each gene. Other methods
involve switching the order, some reverse the gene
order, others reverse a segment, some shuffle the
index of the genes.

3.4. Cooperation in Games

Cooperation is a concept that has existed for mil-
lennia, it is the process of a group working together
towards a common goal. Zagal et al [14] refers to
three types of games categories in game theory:
Competitive, Cooperative and Collaborative. Al-
though originally only competitive and cooperative
where considered, Marschak et al [8] refers to how
collaboration in a team differs from cooperation. In
competitive games, players have goals that oppose
each other, therefore they need to create strategies
that oppose the strategy from the other player, so
this types of games are not relevant for our goal.

In Cooperative games both players have different
goals but they do not necessarily oppose each other,
this means that they may want to help each other in
order to get a better results for themselves. These
two definitions were part of the traditional Game
Theory. Later came the third category Collabora-
tive games. In these games all participants are in a
team therefore they all share the outcomes. So they
differ from cooperative games where players are not
forced to cooperate to reach their different goals. In
collaborative games players have the same goal and
therefore need cooperation in order to get the best
outcome.

Cooperation in video games comes in many differ-
ent ways and Rocha et al [11] defined several com-
mon Design Patterns and Challenges Archetypes
that appear in video games. These design patterns
are: Complementarity, Synergies between abili-
ties, Abilities that can only be used on another
player, Shared Goals, Synergies between goals, Spe-
cial Rules for Players of the same Team. These
where later extended by Magy et al [12] where they
added: Camera Setting, Interacting with the same
object, Shared Puzzles, Shared Characters, Special
characters targeting lone wolf, Vocalization, Lim-
ited Resources.

Reuter et al [10] and Hullettand and White-
head [7] also use patterns for describing coopera-
tion, but instead of the patterns describing game
mechanics they describe gameplay sections, for ex-
ample a pattern that describes a segment of the
level as: the players have to both interact with
two different buttons at the same time, this pat-
tern could then be called Timed Two Man Rule.

3.5. Procedural Content Generator for Cooperative
Games

There are Generators that create maps and levels
that allow for multiple players, however these levels
are generated based on a single player perspective.
Games like Minecraft, Risk of Rain?, use procedu-
ral generation to create their maps and levels, they
then allow multiple players on these maps, however
they are created in a way that does not focus on
providing challenges that require cooperation.

The area that combines both Procedural Content
Generation and Cooperation has not had much re-
search, van Arkel et al [1] used PCG to generate
levels for a simple cooperative game. Their game is
a 2D puzzle-platform game for two players, the ob-
jective is to move from the start to the end of a level.
The players can move, jump, stand on top of each
other and interact with levers or move objects. Van
Arkal et al [1] defined game design patterns and for
that they followed Reuter et al [10] and Hullettand
and Whitehead [7] approach of having design pat-

4Hopoo Games 2013, Risk of Rain, video game, Microsoft
Windows, Chucklefish

terns describe sections of gameplay, this way all a
generator had to do would be to combine them and
generate gameplay situations. Van Arkel et al [1]
used Ludoscope [4] an AT assisted mission and level
design tool.

3.6. Geometry Friends

Geometry Friends® is a cooperative puzzle platform
game for two players. The game has two different
characters, a yellow circle and a green rectangle.
Both characters are subjected to gravity and fric-
tion but each character is unique. The circle can
jump and the rectangle cannot jump, but it can
change its shape by stretching horizontally or verti-
cally while keeping the same area, so if it is horizon-
tally it will loose height but gain width. This differ-
ence is where the core gameplay lies. The circle is
bigger and cannot fit in small places while the rect-
angle by changing its size can fit through smaller
paths. In each level the players must collect all
the purple diamonds, there are different platforms
types, some platforms are colored yellow or green
and as such the characters that are not those col-
ors cannot pass through them. Figures 1 and 2 are
examples of levels.

Figure 1: Level in Ge-
ometry Friends

Figure 2: Level in with
special platforms

4. Implementation

Van Arkel et al[1]'s approach managed to generate
levels but to try and apply it to geometry friends,
we believe, would not result in the best and diverse
levels, this is because the levels do not have as much
space nor do they have areas as well defined as his,
and our characters are different from each other un-
like his where who does what does not matter. We
started this project with an idea on how to approach
in mind and after looking at previous attempts we
decided to use a genetic algorithm to search through
the possible solutions to our problem.

4.1. Overview

Our goal is to generate levels, specifically for the
game geometry friends, so our output will be a level.
That includes generating the characters starting po-
sition, the platforms, that is their position, width
and height, and the collectibles position. To do this

5Geometry
id.pt/geometryfriends

Friends,http://gaips.inesc-

we adapted a genetic algorithm where each chromo-
some would represent everything from the level, so
the spawns, platforms and collectibles. We wanted
the designer to be able to give some input and be
able to guide the algorithm into generating levels
with certain characteristics so for this we decided
on having the input be a series of areas where the
designer would specify how certain areas of the level
should be reached. So they would indicate if an area
should be reached through cooperation, or if only a
certain character should be able to reach that area
or both needed to reach it, we would then have the
collectibles be evenly spread throughout the differ-
ent areas. However we later found that just the
platforms and spawns positioning was a complex
enough problem for our fitness function, so we de-
cided on separating the generating process into two
steps, first a genetic algorithm would receive the in-
put and generate the platforms and characters posi-
tions that best matched that input, next we would
place collectibles in the areas provided by the input.
The process is shown in figure 3, in (1) is the vi-
sual representation of the input, in (2) is the visual
representation of the chromosome with the highest
fitness at the end of the genetic algorithm, this is
what we have at the end of the first step, a level
without collectibles in it. In (3) we have placed the
collectibles, they are positioned relative to the input
areas and the bigger area has more collectibles, and
in (4) we have the level playable inside the game,
this meant we had to transform the chromosome
and the collectibles position into an xml file that
could them be read by the game. We will go into
more detail in the following sections.

0] @ [E) “

Figure 3: The level generation from input to inside
the game

4.2. Chromosomes

In our implementation each chromosome repre-
sented a level, the Chromosomes in our first at-
tempt was structured as [Rectangle Spawn, Circle
Spawn, Collectible Array, Platform Array]. Both
the Rectangle Spawn and Circle Spawn were repre-
sented by a position so an ‘x” and ‘y’ value, the col-
lectible array represented the number of collectibles
and where they are positioned and the platform
array does the same but for the platforms. The
collectibles and platforms have one bit, we consid-
ered it the active indicator bit, that would deter-
mine whether that collectible or platform is actually
placed or not, we did this because our chromosome
had a fixed size but we didn’t want a fixed number

of collectible neither a fixed number of platforms.
We decided on having a chromosome with a fixed
size to limit our search space and also make it eas-
ier to manage and alter the chromosomes. The col-
lectibles then also had a position like the spawns,
the platforms were like the collectibles but also had
the width and height of the platform. The size of
the collectible array and the platform array deter-
mine the maximum amount of platforms so for the
collectible array it could indicate up to 5 collectibles
and the platform array could indicate up to 8 plat-
forms. We later changed the chromosomes because

X, , width(w), height(h): 16 bits each Position(p) = Activator bit(a): 1bit Collectible = Platform =

uuuuuu P \ G \

‘‘‘‘‘‘‘‘‘‘‘ \ \

[aT e Tel o Tal e TeT o o] o TeT o ulefel o Tofolel o ulefel e Tefolel o T]efe] o Tofo]e] & []efe] o Tefn

[ENE
B

Figure 4: First Chromosome genotype

of the fitness function, since the fitness function
only looked at the where each character could reach,
it did not look at the position of the collectibles.
Therefore we decided to separate the level genera-
tion into two parts, the first had the level's plat-
forms, rectangle and circle starting position, and in
the second part we would add the collectibles. This
meant that since the fitness function did not need to
take the collectibles into account the chromosome
did not need to represent them.

4.3. Fitness Function

The first fitness function we tested received an array
of regions that indicated if only the rectangle should
be able to reach it or just the circle or if cooperation
was needed or a common region where both should
be able to reach, these regions were described by
their position, an x and y, their width and height
and what type of regions it was. In the figure 5 we
used an input that requested a cooperative region
at the top of the level, shown in blue, a circle only
region on the left of the level, in yellow, a rectangle
only region on the right, in green, and a common
region in grey. The function would evaluate the
level using those regions and return a value between
0 and 1, where 1 represented a level that fit the
input perfectly.

Figure 5: Visual representation of input regions for
the fitness function

The first step was to calculate where each char-

acter could reach and what places needed coopera-
tion to be reached and only after would it be able
to evaluate the level based on the intersection of
where each character could reach and the regions in-
dicated. Then the fitness would be the sum of the
percentage of the area from all the input regions
that matched. To calculate where each character
could reach we used Rafael et al [3] approach, first
calculating where each character could fit and then
simulating the movements they could make starting
from their spawn, this gave us a grid that in each
cell we could know who could reach it and how,
in figure 6 we have a visual representation of that
grid and we can see that, in green is where only the
rectangle can reach, in yellow is where only the cir-
cle can reach, in blue is where the circle can reach
with the help of the rectangle, and in grey are areas
where both characters can reach. With this grid we
could then calculate the intersection with the input
regions given by the designer. To calculate the in-
tersection we would go to where the region would
be on the level and for each cell inside the region we
would compare who could reach that cell with the
region type, so if the region type requested coop-
eration, we would count how many cells could only
be reached by the circle with the help of the rect-
angle and then we would divide that by the area of
the input region, giving us the percentage of area
intersected.

In the figure 6 we can see the the areas where
each character can reach and how, in green only
the rectangle can reach those areas, in yellow only
the circle, in blue the circle requires the help of the
rectangle to reach that area and in grey both can
reach. However it is possible to see that near any
platform is an area in white that supposedly means
no character can reach it, except that in some cases
they can, this happens because Rafael's approach
first calculates where each character can fit, and
if a character would be partially inside a platform
it counts that area as somewhere they cannot fit.
Then when it goes to simulate where each charac-
ter can reach it only takes into consideration where
they can fit, which was previously calculated. This
means that near any platform that both could move
on top of, would first be a white area and then a
rectangle only area and then a common area, in
the figure6 we can look at the bottom area of the
map an see this happening. When we went to cal-
culate the intersection it would count those areas
in green as rectangle only areas but in reality both
players can reach those areas. So to fix this prob-
lem we added a step that extends their reach. We
do this by going to each place that each character
can reach and simulate having them placed there,
in other words, we go to each position that they can
reach and consider that every position around that

izl

Figure 6: Rafaels ap-Figure 7: Rafaels ap-
proach to calculate reach-proach with the improve-
ability ment

area they can also reach therefore extending their
reach and creating a simulation closer to the game
as seen in figure 7.

We tested this approach using the sum of the
percentage of intersections and common selec-
tion, crossover and mutation methods such as the
stochastic selection, two point crossover and the
uniform mutation and we saw it would get stuck
when generating certain levels. We noticed that it
would sometimes ignore one of the areas and max-
imize the others, for example, if there were two re-
gions indicated, one for rectangle only and another
for circle only. It could generate a level where the
specified rectangle only region was fully matched
but the circle only region was not matched at all, in
subsequent generations it would try to increase the
circle only region, but potentially at a cost to the
rectangle region which could lead to no overall fit-
ness improvement. In order to improve we changed
the fitness function the new approach would still
calculate where each could reach and the intersec-
tion of the character's reach with the input areas,
but instead of adding up the percentage of area
matched we would consider the value of the small-
est percentage of intersection between the all input
regions. This way we would get higher fitness when
all of them had reach at least a certain percentage,
this was better since we want the levels to better
represent the input.

This approach then generated much better re-
sults, but as it took only the worst intersection into
consideration, this meant that the others could keep
improving but that would not be taken into consid-
eration in the fitness, so we tested with, instead of
considering the smallest percentage of intersection,
we would instead multiply all the percentages and
that would be the fitness. This approach would give
fitness one if every area was fully intersected, fitness
zero if an area was being ignored. This approach
took into consideration every time there where im-
provements on the intersection percentage of any in-
put area and should help create smaller increments
in fitness leading to a smoother approach to a higher
fitness level that would be less dependant on mu-
tations that made big changes to the levels, like
the previous approach, yet it still had some resem-

Population 10 50 10
Size

Input Area Ifl Ijl

Mox I B
Generations
Mox [b == =
Generations
Mo = =
Generations

Table 1: Example of levels Generated

blance to the sum of the fitness as, in this approach
it could not completely ignore an area, but it would
still get stuck because to increase the percentage of
an area it could lead to decreasing the percentage
in a different area and so the overall fitness might
not increase. This did not happen as much with the
minimum intersection because we only look at the
smallest value which gave room for the percentage
of the other areas to decrease, so long as the smallest
percentage increased. Therefore we believe that the
guarantee that the minimum intersection approach
provides on how each region is evolving together is
better than having one that had a better intersec-
tion and another that had almost no intersection,
and so we decided that in the end the generator
would use the minimum intersection approach.

This fitness function where the input was a set
of areas could generate levels and they where var-
ied but depending on the input it could take a very
long time to reach acceptable levels. As seen in
table 1, with some inputs we could generate levels
that met our regions and the results for the same
input where quite varied, to create this tables we
used the algorithm with the minimum intersection
fitness function, an elitism selection method, the
uniform crossover we implemented that was specific
to our chromosome, and the uniform mutation that
either changed the number of platforms or the ap-
pearance of the platforms. We can then see that for
example in table 1, for the first input area, we gen-
erated different levels all with the same properties,
an area for the rectangle in the middle and a coop-
erative area at the top, as requested by the input.
Looking at the other input, the second input, we
again generated different levels, but we can see how
it can take more generations than others to reach
those results, as shown after 100 generations it was
not able to create levels with rectangle only areas
in the specified regions, while after more genera-
tions we get progressively better results. With 500
generations it generated levels where if it blocked

the entire bottom third of the level to the rectangle
that way the input area was achieved, but then with
2000 generations it managed to block only the cor-
ners for the rectangle leaving the middle for both.
2000 generations to reach the best results might not
be a problem if each generation is fairly quick, but
in our case we were testing in a computer with win-
dows 10 and python 3.8, the CPU was an AMD
fx 8320, we had 16GB of ram and the project was
kept on a 250GB SSD, with a population size of 50
it could take anywhere from 5 seconds up to 9 sec-
onds per generation that is, even in the best case,
over 2 and a half hours to generate a level.

4.4. Selection

The selection method for choosing the parents orig-
inally was just to take the entire population and use
them as parents, randomly choose two parents and
then using the crossover method to create two new
members of the population without repeating the
parents. This approach was just to have a baseline
for comparison, because we knew others should be
better.

When testing all these different selection meth-
ods, the random selection method, the stochastic
selection method, the tournament selection method
with size 4 and size 16, and the elitism selection
method, we used a population size of 50, 500 gen-
erations, we used the same crossover and mutation
methods as well as the fitness function that received
the same areas as input and considered the mini-
mum intersection as fitness, the input areas were
one cooperative area along the top of the level and
one rectangle only area on the bottom near the mid-
dle of the level.

To take fitness into consideration we tried
stochastic universal sampling but we ran into the
problem that sometimes the whole population had
zero fitness, this is because, for example, if every
spawn was inside a platform their fitness would be
zero, this led to it just choosing random levels and
having the same problem as the first attempt, how-
ever if one happened to have higher fitness and
no other had fitness then it would mainly choose
that one as both parents and therefore creating only
clones of that one as an offspring.

We then tried the tournament selection we used
two different sizes for the tournament, 4 and 16. We
found that with the small tournament size we got a
similar results as with random selection, although
a bit better when we looked at the average fitness.
With the larger tournament size we end up having
the same problem as with the stochastic selection in
which we would again be choosing the same level to
be parent several times, and that is again not bad as
long as it does not create offspring with itself, which
with a tournament for each parent and a larger size

lead to that

We then tried using elitism, where we would take
the top 30% of the population and create an off-
spring while making sure both parents where differ-
ent and each parent combination would not repeat
itself. This in general elevated the average fitness
as seen in figure 8, but after applying mutations it
could create worse levels than the previous genera-
tions, so we changed it to guarantee that the best
level would always stay from one generation to next
and it would be used to create offspring, this would
mean that that level would not suffer mutations but
its offspring would. From figure 9 we can see that
this way overall the values are higher.

Figure 9: Top 30%
Figure 8: Top 30% elitism and maintain-
elitism ing the best

Looking at these graphs we notice that the third
and fourth quartile are both near each other with
zero fitness, we believe that this is due to how the
fitness function can cutoff a levels fitness to zero
very quickly, for example if both characters are
inside platforms, then that is an unplayable level
and has zero fitness even if perhaps those platforms
ended being positioned in such a way that would
otherwise create a high fitness level. Another thing
that gives levels very low fitness is the fact that
we use the minimum intersection of the calculated
reachability with specified areas, so even if we have
a specified area that is fully reachable, but the other
is unreachable, be it by having a platform on top
of it or simply that characters just can not reach it,
then that level also has zero fitness.

4.5. Crossover

The crossovers we originally tested were the one
point crossover and the two point crossover. They
would take two parents and create two children.
Like in the mutation, but less likely, this could gen-
erate children that were equal to the parents, for ex-
ample if both parents had only the first three plat-
form active and the point chosen was after those
three platforms the crossover would just change the
platforms that where not active creating offspring
that were evaluated the same as the parents. An-
other problem of choosing a random index was that
it could pick an index in the middle of a value (x,
y, width, height) from a platform and could change
the platform itself acting almost like a mutation,

that is an unwanted side effect. Since we did not
want those side effects we tested a more specific
crossover to our chromosome, it would switch only
platforms that were active or it would switch be-
tween platforms that were active in one but not the
other, this way it would ignore crossing platforms
that were not active and that would not create off-
spring that did not differ from the parent. It would
also, when crossing, take the entire platform so as
to not change its size and position.

These approaches would generate two children
from the same two parents and the children would
be in a sense the opposite of the other, because
what one child got from one parent the other would
get from the second and vice versa. So the other
crossover we tested was to choose two parents and
generate only one child we would for each feature,
rectangle spawn, circle spawn, platform, we would
give it 50% chance to be from the first parent or the
second parent.

By generating only one child it is possible to not
repeat parents, while in the previous approaches
two parents would generate two children, in this
you can repeat one parent and not the other, al-
lowing you to choose a parent you believe will be
better to generate offspring and let them cross with
a more varied selection, rather than repeating both
parents.

4.6. Mutation

The mutation that was used at the beginning was
a simple bit flip mutation that would randomly
choose a bit and flip it. With so many different
bits it could make little to no difference in the out-
come so we then tried with a uniform mutation
that would go through each bit and with a random
chance it would flip that bit. Both these muta-
tions had the same problem and that was because
our chromosome had the active indicator bit that
would effectively make a lot of other bits irrelevant
or when we still had the collectibles in our chromo-
some it could change the collectible part only, this
meant that after a mutation the way the chromo-
some was evaluated could remain the same. When
we changed chromosome representations to an ar-
ray of integers without the collectibles, since we no
longer had bits, we tested what we consider some-
thing equivalent to the bit flip and that was a ran-
dom integer, so the first approach was to choose a
random index and generate a random integer, the
second was to do that uniformly through the array
and these still had the same problem.

Therefore the next mutation we tested was more
specific to our chromosome, it could go to the active
indicator for the platforms and it would flip it, or
it could choose a platform that was active and go
through its x, y, width and height and change them,

this was the equivalent to the flip bit, but would
guarantee that the level would always be changed
and therefore change its evaluation. This mutation
did not alter the level much which meant that it
would take a lot of mutations to get some significant
changes. That is why we then implemented a vari-
ation on the uniform mutation in such a way that
would guarantee changes, it would either change
the number of platforms, or it would change the
platforms or character starting positions(spawns).
We believe this approach is better than uniformly
changing all its values because it could lead to too
many mutations. Separating it into either changing
only the platforms number or only the platforms
themselves gives us a bit more control over the evo-
lution.

4.7. Collectibles

The levels generated do not yet have the collectibles
placed so in the following step we inserted the col-
lectibles in the level by using the input areas as
the regions to place them in, the requirements to
placing a collectible were: it must be in an area
that can be reached by a character, they should be
spread evenly through all the input areas, if an area
has a very large area then it should have more col-
lectibles, we set area size thresholds for the amount
of collectibles each region had, first every region had
at least one collectible, then if a region occupied
more 10% of the level it would have 2 collectibles, if
it represented more than 20% it would have 3 col-
lectibles, then if it represent more than 35% it would
have 4 collectibles and any region had an area that
would be equal to 50 or more% of a level would have
5 collectibles. The algorithm places collectibles in
each area, to do that, for each area it first checks
how many collectibles to place in it, it decides based
on the region's size, then for each collectible it ran-
domly chooses a position inside the corresponding
area and place them there, whenever a collectible is
placed it checks if it is in a reachable position, if the
position is reachable by the area type request and
then if it is not near other collectibles, if one or more
of these conditions fail, it generated a new random
position inside the area and repeats the process, af-
ter a certain amount of failed attempts it does not
place the collectible, meaning that area will have
one less collectible then what we decided based on
its size. In figure 10 we can see a level generated
with the same input used in testing the different se-
lection methods, and collectibles placed according
to the same input areas.

5. Results

After all the iterations we the decided that the end
generator would use the fitness function that re-
ceived as input a series of areas, it would use elitism
as a selection method, the crossover only gener-

Figure 10: A level with collectibles placed and its
representation in game

ated one child and it would uniformly choose from
which parent it would inherit an attribute, the mu-
tation we decided on would change either changed
the number of platforms or uniformly changed the
aspect of the platforms. This version of the gener-
ator was the one used for testing®.

6. Metrics

We did a short study of the generator based on the
time it took from receiving the input to having a
level generated. We tested in a computer with win-
dows 10 and python 3.8, the CPU was an AMD
fx 8320, we had 16GB of ram and the project was
kept on a 250GB SSD. We found that with a popu-
lation size of 50 each generation took on average 5.5
seconds where the majority of that time was used
evaluating the fitness of the levels, with a popula-
tion size of 10 it took on average 1.1 second per
generation. The time per generation can vary a lot,
this happens because during the evaluation we can
determine at earlier points if the level will have a
certain fitness, for example if no spawns are valid
then the fitness for that level will be zero, others
then take more time because the bigger the amount
of a level is reachable the longer it takes to evalu-
ate. The average time to calculate the fitness of a
level is one tenth of a second, but the lowest val-
ues are about 0.05 seconds while the highest can go
a bit above 0.2 seconds that is at least four times
longer than the fastest levels, and we want the levels
to have reachable areas so taking longer represent
levels that have more reachable places.

7. Experimenting

We asked people to experiment with the generator,
and give us some feedback. The process started
by showing them the game and having them play
the game. Then we introduced them to generator,
we explained how it worked, by showing examples
of input and examples of output, and showing how
they where related. Next we asked them to pro-
vide input to do this we created a basic GUI tool,
it was developed in python using ‘tkinter’, its main
purpose was to provide the participants with a vi-
sual representation of what their input meant, so
it showed where in the level and what type of area
they where requesting. This tool would take a series

of inputs describing the regions and then generated
those regions in the image on the right, the add
row button allowed the tester to specify more ar-
eas, the confirm spec button updated the preview
image on the right, that allowed them to see where
in the level they were specifying the area, the save
spec created a file that could then be used as input
for the level generator. We then used that input to
generate levels. The generator then chose the best
level generated and placed collectibles in it. The re-
sult was 10 versions of the best level where only the
collectible placements changed. We then had them
choose the version that seemed the best in terms
of collectible placement and we had them play the
generated level and say how it matched with their
expectation.

What we where looking as feedback was, first,
if the levels generated meet their requested input,
second, if the levels were playable, third, if the in-
put requested was meaningful, as in, if it helps de-
fine what the designer wants when creating a level,
fourth, what their opinion was on the time it took
to generate the levels after giving the input. The
responses varied a bit, depending on the input the
levels generated could be quite good and playable or
they could be impossible to complete. Some inputs
requested impossible combinations such as an area
just for the circle directly above an area that re-
quires cooperation to reach, this type of inputs lead
to the generator not being able to create a level
meeting the requirements.

For what we were looking for first we had some
positive reactions as the levels generated did some-
what meet what the participants where expecting,
but its important to note that those that tested the
tool are not familiar with the game and so asking to
create a level for a game they played only minutes
before can indicate the unusual inputs. In the fig-
ure 11 we show some of the inputs given to us in the
test and the levels generated at the end, including
their in game representation, our generator for the
last input did not manage to generate a level that
would satisfy it and so even after the 500 generation
all levels had a fitness value of zero, we believe it
was due to having a small circle only area above a
cooperative area.

Figure 11: Examples of input from testers and the
final level generated

Shttps://github.com/NMBLM/GeometryFriendsLevelGeneratdks for if the levels where playable most of them

could be completed, but for example the third in-
put requested generated a level where the rectangle
could either go left or right but not both ways, and
so it was not possible to complete. We asked if the
input requested was something helped define their
vision for the level, we had mixed responses, some
said that it would be better to specify the actions in-
stead, so for example saying they wanted the circle
and the rectangle to cooperate twice and how they
should cooperate. Others said that it was abstract
enough and that if they wanted to be more specific
that it would be better to just create the level en-
tirely. Lastly when asked about the time it took the
generate the level every one agreed that it was too
long, even if it is to done during development and
not right before it was going to be played.

8. Conclusions

In this work we proposed a level generator that
could provide cooperative challenges in its levels
and developed a level generator for the game Geom-
etry Friends. The method for creating those levels
used a genetic algorithm with a chromosome that
represented the level as the solution, then a fitness
function that received abstract input, such as where
certain events should take place (in our generator
these were the area that specified cooperation or in-
dividual tasks), the function then evaluated the lev-
els in terms of where the cooperative events and in-
dividual tasks where occurring and how those com-
pared to the requested input. For a problem as
complex as this, we believe that the crossover and
mutation methods should be tailored to the chro-
mosome and that common methods might not be
enough.

9. The Final Generator

In the end, we created a generator that could receive
input from the designer specifying areas of interest.
These areas could represent things such as: only the
rectangle should be able to reach this area, or only
the circle should be able to reach this area, or both
characters should be able to reach this area, or, fi-
nally, this area should be reachable only by having
both players cooperate. The generator could create
levels that matched those inputs. To do this it used
a genetic algorithm, the chromosome represented
the level and specified its features, it then evaluated
where each character could reach in the level, then
compared that to the input given by the designer
and gave it a fitness value. To get the best results
and improve the search done by the genetic algo-
rithm we studied the selection methods and found
that elitism provided better results, we found that
the crossover method was better if it was specific to
our level and we came to the same conclusion re-
garding the mutation, both needed to take in con-
sideration the features present in our chromosome.

10

In a second step after the genetic algorithm created
a level, we placed collectibles in the generated level
according to the input areas.

10. Future Work

The most direct improvements that can be made
are improvements to the current generator. As it
was described it cannot take into consideration all
types of platforms that are available in the game,
so extending it to be able to generate levels using
the yellow and the green platforms is one possible
improvement, another possible change is to to have
the chromosomes not be of fixed size and allow it
to have more than eight platforms. One thing that
could be changed is the input, we tested two dif-
ferent types of inputs, but others can be explored
as well, for example, one where the designer defines
the solution by indicating which moves to make and
then the generator only guarantees that that path
is possible and that it is a solution to the level. The
levels we generated did not focus on appearing hu-
man made, this can be another point of study.

As for the area of cooperative level generators,
there is still a lot of work that can be done and
different approaches that can be tested. For more
complex games, it might not be possible to calcu-
late where each character can be and where, so an
approach that used intelligent agents could be de-
veloped to play those games and try to complete
the levels generated, of course that would require an
artificial intelligence that is capable of completing
cooperative challenges, these types of Al are very
hard, especially ones that require timed actions on
the part of both players. Using neural networks to
evaluate the levels is a possible way to potentially
speed up the evaluation process, the biggest hur-
dle in this approach would be to have an extensive
enough set of levels that are also evaluated.

Acknowledgements

Gostaria de agradecer ao Rui Prada e José Rocha
pela a orientacao, ideias e ajuda que deram ao longo
do desenvolvimento, especialmente neste ano par-
ticularmente mau para todos. Também gostaria
de agradecer aos meus pais por me tolerarem es-
tar tanto tempo em casa a frente do computador.
Finalmente gostaria de agradecer aos meus amigos
e colegas que me ajudaram a sobreviver a este longo
e dificil ano.

References
[1] B. V. Arkel, D. Karavolos, and A. Bouwer.
Procedural generation of collaborative puzzle-
platform game levels. 2015.

[2] A. Connor, T. Greig, and J. Kruse. Evolution-
ary generation of game levels. EAI Endorsed
Transactions on Serious Games, 5:155857, 04
2018.

3]

[13]

R. V. P. de Passos Ramos. Procedural con-
tent generation for cooperative games. Mas-
ter’s thesis, Instituto Superior Técnico, Uni-
versidade de Lisboa, Nov. 2015.

J. Dormans. Engineering emergence: applied
theory for game design. 2012.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., USA,
1st edition, 1989.

M. Hendrikx, S. Meijer, J. Velden, and A. Io-
sup. Procedural content generation for games:
A survey. ACM Transactions on Multimedia
Computing, Communications and Applications

(ACM TOMCCAP), 9(1):1:1-1:22, Feb. 2013.

K. Hullett and J. Whitehead. Design patterns
in fps levels. In Proceedings of the Fifth In-
ternational Conference on the Foundations of
Digital Games, FDG ’10, page 78-85, New
York, NY, USA, 2010. Association for Com-
puting Machinery.

J. Marschak and R. Radner. Economic theory
of teams. 1972.

F. Mourato, M. Santos, and F. Birra. Auto-
matic level generation for platform videogames
using genetic algorithms. page 8, 11 2011.

C. Reuter, V. Wendel, S. Gébel, and R. Stein-
metz. Game design patterns for collaborative
player interactions. In DiGRA, 2014.

J. B. Rocha, S. Mascarenhas, and R. Prada.
Game mechanics for cooperative games. 2008.

M. Seif El-Nasr, B. Aghabeigi, D. Milam,
M. Erfani, B. Lameman, H. Maygoli, and
S. Mah. Understanding and evaluating coop-
erative games. In Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems, CHI ’10, page 253-262, New York,
NY, USA, 2010. Association for Computing
Machinery.

N. Shaker, J. Togelius, and M. J. Nel-
son. Procedural Content Generation in Games.
Springer Publishing Company, Incorporated,
1st edition, 2018.

J. Zagal and J. Rick. Collaborative games:
Lessons learned from board games. Simula-
tion & Gaming - Simulat Gaming, 37:24-40,
03 2006.

11

