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Resumo

Esta investigação propõe a utilização de controlo por visão para controlar a posição de um veı́culo

áereo não tripulado (VANT) em relação a um ponto de interesse no espaço. De forma a poder testar o

controlo por visão experimentalmente e em laboratório, o quadrirotor Parrot AR Drone 2.0 é utilizado.

As duas abordagens principais de controlo por visão são implementadas, controlo por visão baseado

na imagem (IBVS) e controlo por visão baseado em posição (PBVS), a fim de que um ponto genérico no

espaço, que esteja ou não a mover-se, seja seguido pelo veı́culo. Controladores proporcional integral e

derivativo (PID) são usados para controlar a posição e a orientação do quadrirotor na execução desta

tarefa. O atraso na aquisição da imagem do alvo a seguir apresenta-se como uma das principais

desvantagens em utilizar a visão no controlo do movimento do quadrirotor. Tendo em conta que isso

potencia a saı́da do alvo do campo de visão da câmara, foi desenvolvido um algoritmo que garante que

o alvo continua a ser seguido e que o controlo por visão continua a funcionar. Este algoritmo previne

também cenários em que a imagem está corrompida e o alvo não é detetado na imagem. Todas as

medições dos sensores embutidos no veı́culo e as estimações da posição do alvo são validadas.

Este trabalho foi desenvolvido no âmbito do projeto Eye in the Sky - Utilização de Balões de Alta-

Altitude para Apoio à Decisão em Operações de Combate a Incêndios Rurais (https://adai.pt/eyeinthesky/),

financiado pela Fundação para a Ciência e a Tecnologia (PCIF/SSI/0103/2018).

Palavras-chave: controlo por visão, controlo por visão baseado na imagem, controlo por

visão baseado na posição, seguimento de alvo, Parrot AR Drone 2.0
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Abstract

This thesis proposes the use of visual servoing for controlling the unmanned aerial vehicles (UAV) po-

sition when monitoring wildfires. In order to experimentally test the control strategy in laboratory condi-

tions, the quadrotor Parrot AR Drone 2.0 is used. The image-based visual servo (IBVS) and the position-

based visual servo (PBVS) approaches are implemented for target tracking purposes. Proportional-

Integral-Derivative (PID) controllers are implemented for position and heading control of the quadrotor,

so that a generic interest point in space is tracked in both static and moving conditions. One of the most

important drawbacks of real vision sensing discovered is the presence of a constant time delay on the

image acquisition process. This causes the target point to leave several times the field of view, thus,

an algorithm is developed to ensure that the target continues to be tracked and the visual servo control

keeps on working. Plus, the algorithm prevents situations in which the image is corrupted and the target

is not detected. All drone sensors measurements and target position estimations are validated through

a motion capture system that tracks both the drone and the target during the experiments.

This work was done in the scope of project Eye In The Sky – Using High-Altitude Balloons for Deci-

sion Support in Wildfire Operations (https://adai.pt/eyeinthesky/), funded by Fundação para a Ciência e

a Tecnologia (PCIF/SSI/0103/2018).

Keywords: visual servoing, image-based visual servo, position-based visual servo, target track-

ing, Parrot AR Drone 2.0
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Chapter 1

Introduction

1.1 Motivation

Investment on Unmanned Aerial Vehicles (UAV) technologies is increasing alongside demand. This

emerging technology has become very attractive to different market segments with a growing number of

applications.

Besides the more traditional use cases, commonly related to military operations, like surveillance and

monitoring [1], there is a growing interest on infrastructure inspection and goods delivery applications,

[2]. On those cases, the efficiency is one of the motivators to replace human resources.

The UAV can also play a big role on local and global scale emergencies that endangers human

lives, for instance the current pandemic. They actively support the government authorities in combat

of coronavirus by disinfecting highly populated places, enforcing social distancing and delivering health

goods [3].

Moreover, for operations in extreme weather conditions the UAV could be very helpful not only on

search and rescue missions, but also on monitoring disasters impact to support decision making, [4].

The Eye in the Sky project is a good example of this UAV application. This project, in which this

thesis is integrated, aims to develop an unmanned aerial platform for supporting firefighting operations

on monitoring the perimeter of the fires and detecting hotspots in burning areas.

For this project, the images captured by the camera onboard the UAV are an essential source of data.

Furthermore, the camera can be used as a sensor to control the relative pose of UAV, a technique known

as visual servoing. Vision sensors are a very interesting option for when there is a limited payload to be

carry out, since most of UAV includes a camera, and they can operate in a GPS-denied environment.

Additionally, visual servoing techniques have become very popular for target tracking applications and

many researches show its high effectiveness, [5],[6] and [7].
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1.2 Topic Overview

An eye-in-hand camera configuration is used in a visual servo control loop when the robot has a camera

mounted on it, like most of UAV do. Alternatively, the camera could be fixed in the workspace instead,

creating an eye-to-hand configuration, [8]. For target tracking tasks eye-to-hand configuration requires

the camera to be fixed on the target. This could be a successful approach for UAV landing purposes,

[9]. However, in case of tracking a non-physical target and/or high altitude flight is required, for instance

on wildfire perimeter monitoring or road following [7], this is not applicable. That is why the eye-in-hand

configuration is commonly adopted on those target tracking applications.

There are two main types of visual servoing: image-based visual servo (IBVS) and position-based

visual servo (PBVS). The IBVS uses image plane measurements for feedback control, which results in

a strongly nonlinear and coupled system. On the other hand, the PBVS uses the image features to

reconstruct the 3D pose of the target object and, so, an error in the Cartesian space is given as input to

the controller. This approach became advantageous as it allows tasks being defined on the Cartesian

space. However, the object’s pose highly depends on the estimation of the camera intrinsic parameters

given by camera calibration, which can introduce errors in the tracking law.

In order to determine the 3D parameters of the object required for PBVS scheme, the epipolar ge-

ometry can be used, assuming there is a stereo vision, [10]. Even if a monocular camera is available,

there are always two subsequent images. Thus, the essential matrix can give the rotation matrix and

translation vector up to a scalar factor between views. However, when the camera views are almost

coincident the parameters estimations get poor. That is why the homography is usually preferred when

the object image features belongs to the same plane.

Besides image data, additional information about the object model is needed, such as its real size

or depth from the camera, so its position in 3D space is determined, [11]. To measure depth, sensors

based on laser or sound ranging technologies could be integrated on the UAV. A stereo vision system

can also be used for depth measurement through the triangulation method, [11]. Other researches

propose alternative visual servo approaches to address the lack of depth information for monocular

vision. Some of them are the so called hybrid visual servo schemes, [10] [12], first introduced by [13].

These schemes decouple the translation and rotation components through homography without needing

depth data. Both image and Cartesian space data regulate the controller inputs in the hybrid visual

servo approaches. Other researchers suggest adaptive control strategies based on a priori available

image data to compensate for the depth lack, [14], [15]. Recent studies show very satisfying results of

employing deep neural networks on depth estimation, [16], [17].

If visual servoing is applied to a quadrotor, a type of UAV, other challenges have to be addressed,

due to its underactuated properties. Since the horizontal velocities are coupled with the roll and pitch

variations, these rotations are misinterpreted as image errors. This could lead the object that is being

tracked to be outside the field of view, [6]. In order to prevent the errors, [18] and [6] created a virtual

camera independent from the quadrotor rotation to compensate for the roll and pitch movements. Even

though this method provides a smoother quadrotor motion in image and Cartesian space than the clas-
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sical IBVS, it does not prevent the target from leaving the field of view. The implementation of a Kalman

filter is proposed by [19] to solve the temporary loss of the target.

1.3 Objectives

The present thesis aims to understand the effectiveness of visual servoing on controlling the UAV posi-

tion when facing the Eye in the Sky project scenarios mentioned before. In order to do this, a laboratory

experimental setup will be created. Here, the two basic visual servoing approaches, IBVS and PBVS,

will be implemented in the quadrotor Parrot AR Drone 2.0. They will be first tested in a simulator envi-

ronment and afterwards in the experimental setup. In both environments, the Parrot will be following a

generic point in space, which ultimately could be a flame. In order to do this, a control strategy will be

created so the position and heading of the quadrotor are controlled. Two different scenarios are tested

for each visual servoing approach, one in which the target is motionless and the other where it is moving.

As previously mentioned, there is a high possibility of the target being outside the camera field of

view when is tracked by a quadrotor. Thus this situation will also be addressed in this thesis.

At the end, this work aims to conclude about the drawbacks of using vision as a sensor and the

advantages of choosing one of the visual servo approaches over the other in a experimental context.

1.4 Thesis Outline

This thesis is divided into six chapters. Chapter 1 introduces the present work by explaining the motiva-

tion behind it, the main objectives and the related work concerning visual servoing and its application on

quadrotor control. In Chapter 2 the perspective projection relations of the pinhole camera model are de-

rived and IBVS and PBVS control laws are presented. The model of the quadrotor dynamics, as well as

the controllers designed for it, are the topics addressed in Chapter 3. Subsequently, the target tracking

problem formulation is tackled in Chapter 4. In addition, all the algorithms and tools required to perform

the target tracking task on both simulator and experimental environments are explained. Chapter 5 cov-

ers the results obtained for both visual servo approaches in the different environments, considering if

the target is moving or not. Finally, Chapter 6 provides a summary of the research and briefly discusses

future work directions.
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Chapter 2

Visual Servoing

2.1 Camera Model

In order to describe the camera optics, the so-called pinhole camera model is used [20]. This is a

purely geometric model that through the perspective projection maps the relation between 3D world

coordinates and 2D image coordinates.

Consider a pointW represented by its cartesian coordinates (Xf , Yf , Zf ) in a fixed frame {Of ,Xf ,Yf ,Zf}.

The same point is defined with respect to another reference frame, in this case the camera frame

{Oc,Xc,Yc,Zc}, as (Xc, Yc, Zc), whose coordinates are obtained through a transformation between

frames. This transformation is described in an homogeneous representation by
Xc

Yc

Zc

1

 =

Rcf tcf

0 1



Xf

Yf

Zf

1

 (2.1)

where Rcf and tcf are the rotation matrix and the translation vector, respectively, which converts the fixed

frame coordinates into the camera frame coordinates. Following the pinhole camera model illustrated in

Figure 2.1, the Z-axis of the camera frame corresponds to the optical axis and (Xc, Yc, Zc) is projected

on the image plane through a ray that connects this point and the optical center, which is the origin of

the camera frame, Oc. The intersection of the ray with the image plane gives the image point w, which

can be defined in a 2D euclidean frame parallel to the camera frame and centered at the principal point

p as xi,e
yi,e

 =
f

Zc

Xc

Yc

 (2.2)

where f denotes the focal length (world distance from the optical center to the image plane) and

(xi,e, yi,e) are the euclidean image coordinates. With homogeneous coordinates (2.2) can be rewrit-
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Figure 2.1: Pinhole Camera Model

ten as

Zc


xi,e

yi,e

1

 =


f 0 0 0

0 f 0 0

0 0 1 0



Xc

Yc

Zc

1

 (2.3)

Since the image points in digital cameras are usually specified relative to the top-left corner of the

image in pixel units, the coordinates of the image point w should be described by
xi,p

yi,p

1

 =


sx sθ ox

0 sy oy

0 0 1



xi,e

yi,e

1

 (2.4)

where (xi,p, yi,p, 1) are the homogeneous coordinates of the point in pixels, (ox, oy) are the principal

point coordinates in pixels, sx and sy are scale factors that count for the number of pixels per unit length

in x and y direction, respectively, and sθ is the skew parameter.

Finally, the overall relationship between the 3D world coordinates of the point, (Xf , Yf , Zf ), and its

corresponding image coordinates, (xi,p, yi,p), is given by (2.5). This one is obtained by replacing (2.1) in

(2.3) and, subsequently its result in (2.4).

Zc


xi,p

yi,p

1

 =


fsx sθ ox

0 fsy oy

0 0 1




1 0 0 0

0 1 0 0

0 0 1 0


Rcf tcf

0 1



Xf

Yf

Zf

1

 = Kint PKext


Xf

Yf

Zf

1

 (2.5)
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In (2.5) Kint, represents the intrinsic camera matrix, P is a standard projection matrix and Kext is

named extrinsic camera matrix.

2.1.1 Intrinsic Camera Matrix Parameters

The intrinsic camera matrix parameters can be determined using the Camera Calibrator app from Matlab.

The app requires images of a checkerboard with known square size captured by the camera being

calibrated. To get better estimations, the images uploaded should cover different perspectives of the

checkerboard with respect to the camera and the pattern should be all visible.

On the other hand, the focal length in world units, f , can be calculated through the camera perspec-

tive projection illustrated in Figure 2.2.

Figure 2.2: Perspective projection of the pinhole camera model

Considering that w2 and l2 are the square size of the checkerboard in pixel and metric units, re-

spectively. There could be the case where the principal point is not aligned with the vertex of a square,

as shown in Figure 2.2. Thus, the offset between the principal point and one of the square’s vertex,

represented in pixels by w1 and in meters by l1, should be taking into account when calculating f .

From similarity of triangles, the relationship between pixel and metric distances was established and

given by (2.6). Through it, l1 is obtained.

 tan(θ1 + θ2)(l1 + l2) = tan(θ1)l1

tan(θ1 + θ2)(w1 + w2) = tan(θ1)w1

⇔ l1 =
w1l2
w2

(2.6)

Once again, through trigonometric relations the focal length in world units, f , can be obtained by
tan(θ1) = w1

F

tan(θ1) = l1
f+Z

⇔ f =
Fl1
w1
− Z, (2.7)
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where F is the focal length in pixel units determined by the camera calibration process. This value

depends on the axis of the camera frame considered. It is equal to fsx in the X-axis direction and to

fsy in the Y-axis direction. The Z denotes the metric distance between the image and the checkerboard

plane.

2.2 Visual Servo Control Schemes

According to [21], the goal of visual servo control schemes is to minimize the error

e(t) = s(t) − s∗, (2.8)

where s(t) is a vector of k visual features and s∗ is the vector with the desired features values. Depending

on the approach of the visual servo control, s has a different meaning, as it will be explained in Sections

2.2.1 and 2.2.2.

In order to establish a tracking control law, the relationship between the time variation of the visual

features, ṡ, and the camera velocity, vc = (vtc,vrc), which includes the linear, vtc = (vx, vy, vz), and an-

gular, vrc = (ωx, ωy, ωz), components, is defined by [21] as (2.9). Once again, the form of the interaction

matrix, Le ∈ Rk×6, is related to the visual servoing scheme adopted.

ṡ = Levc (2.9)

Assuming the s∗ values are constant, the time derivative of the error, ė, is determined by (2.10), .

ė = Levc (2.10)

To ensure the error converges to zero sufficiently fast, an exponential decrease of the error, described

by (2.11), is applied, where λ is a scalar in s−1 dictating the error convergence rate. Therefore, the

equations (2.10) and (2.11) combined gives the expression (2.12), which describes the relation between

the velocity of the camera and the error.

ė = −λe (2.11)

Levc = −λe (2.12)

In the end, the control law of visual servoing is given by

vc = −λL̂+
e e, (2.13)

where L+
e = (Le

TLe)−1Le
T is the Moore-Penrose pseudo-inverse of Le. But since the interaction matrix

depends on parameters that are estimated, an approximation of L+
e , L̂+

e , is used instead in (2.13).
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2.2.1 Image Based Control Law

According to [21], in IBVS s(t) is traditionally defined as the image coordinates of interest points,

(xi,e, yi,e), which from now on will be mentioned as (x, y). Using (2.3) and (2.4), (x, y) is determined

based on intrinsic camera matrix parameters as shown in (2.14).

x = Xc/Zc = (xi,p − ox)/fsx

y = Yc/Zc = (yi,p − oy)/fsy
(2.14)

To obtain the interaction matrix for IBVS, first the time derivative of s is taken:

ẋ = Ẋc/Zc −XcŻc/Z
2
c = (Ẋc − xŻc)/Zc

ẏ = Ẏc/Zc − YcŻc/Z2
c = (Ẏc − yŻc)/Zc

(2.15)

Replacing the expressions for the spacial velocities Ẋc, Ẏc and Żc given by (2.16) into (2.15), a

relation between the time derivative of the image features (ẋ, ẏ) and the camera velocity components is

established by (2.17).

(Ẋc, Ẏc, Żc)
T = −vtc − vrc × (Xc, YC , Zc)

T ⇔


Ẋc = −vx − ωyZc + ωzYc

Ẏc = −vy − ωzXc + ωxZc

Żc = −vz − ωxYc + ωyXc

(2.16)

ẋ = −vx/Zc − xvz/Zc + xyωx − (1 + x2)ωy + yωz)

ẏ = −vy/Zc − yvz/Zc + (1 + y2)ωx − xyωy − xωz
(2.17)

Therefore, if (2.17) is rewritten in the form of (2.9), the following equation is obtained

(ẋ, ẏ)T = Levc (2.18)

where Le is the interaction matrix given by:

Le =

−1Zc
0 x

Zc
xy −(1 + x2) y

0 −1
Zc

y
Zc

(1 + y2) −xy −x

 (2.19)

In order to apply (2.13), L̂+
e must be determined. In [21] there are three different approaches pur-

posed for calculating L̂+
e .

The first one assumes that the depth of each feature, Zc, is available in every time step and, thus, Le

is always known. Hence, the estimated pseudo-inverse is given by

L̂+
e = L+

e . (2.20)

The second approach takes Le as Le∗ , which corresponds to (2.19) when e = 0, and, so,

L̂+
e = L+

e∗ . (2.21)
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Finally, the last one combines the previous approaches presented and takes the form of

L̂+
e =

1

2
(Le + Le∗)+. (2.22)

2.2.2 Position Based Control Law

In the case of PBVS, according to [21] the object pose with respect to the camera frame is used to

define s. This is usually represented as (t, αu), where t is a translation vector and αu is the angle/axis

parameterization for the rotation.

Let s parameters be specified with respect to the camera frame mentioned in Section 2.1 and the

fixed frame be attached to the object, then the translation vector will be tcf . Thus, (2.8) will be given by

e = (tcf − t∗cf , αu), (2.23)

where t∗cf is the desired translation vector.

For this error definition the interaction matrix takes the form of

Le =

−I tcf

0 Lαu

 , Lαu = I− α

2
u +

(
1− sinc(α)

sinc2(α/2)

)
u2, (2.24)

in which I is a 3x3 identity matrix and sinc(x) is the sinus cardinal function.

Subsequently, the pseudo-inverse matrix, L+
e , which characterizes the control law of the PBVS

scheme will be given by

L̂+
e =

−I tcf Lαu
−1

0 Lαu
−1

 . (2.25)

So, for PBVS, the (2.13) can be simplified tovc = −λ((tcf − t∗cf ) + (t∗cf )Tαu)

ωc = −λαu
, (2.26)

since L−1αuαu = αu.
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Chapter 3

Quadrotor Model and Control

3.1 Parrot AR Drone 2.0

The Parrot AR Drone 2.0 (Parrot) is a quadrotor, i.e. it has four rotors, in a cross configuration, as shown

in Figure 3.1. The black hull is attached in order to avoid collision and damage when flying indoor.

Figure 3.1: Parrot AR Drone 2.0 in www.drones.nl/drones/parrot-ar-drone-2-0-power-edition

Although the quadrotor has 6 degree of freedom (DOF), three translational and three rotational, its

motion is controlled by the rotational speed of the four rotors coupled in pairs. As seen in Figure 3.2,

the angular velocity of rotors 1 and 3, w1 and w3, and rotors 2 and 4, w2 and w4, actuates in opposite

direction to guarantee that the drone does not rotate around itself. The rotational speed of the motors

generates a force pointing upwards and a momentum acting with opposite direction from the propellers

to make the quadrotor lift.

By varying the rotational speed of each rotor, four basic movements allow the quadrotor to reach a

desired attitude and height: throttle, roll, pitch and yaw.

From the sensory equipment onboard of the quadrotor is possible to control the maneuvers described

before. The altitude of the drone is measured by the ultrasonic altimeter. The inertial measurement unit

uses the accelerometer, gyroscope and magnetometer to determine quadrotor’s attitude angles and their

rate of change. Moreover, the images captured from the bottom facing camera are used to estimate the

horizontal velocity of the quadrotor. According to [22], the linear velocities are determined through two
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Figure 3.2: Referential frames representation: camera frame, drone frame and fixed frame

complementary algorithms: one computes optical flow over the whole image range and the other uses

image features displacement over time.

All these state variables are measured relatively to the body-fixed frame of the quadrotor represented

in Figure 3.2 by the unit vectors (Xd,Yd,Zd), whose origin, Od, is the drone’s center of mass. However,

if the drone’s position is to be controlled, it must be defined in a frame that does not depend on drone

motion and, so, a fixed frame {Of ,Xf ,Yf ,Zf} is used. Its origin’s position will be defined on Section

4.1.

Accordingly with Figure 3.2, the translation from the drone frame to the fixed frame is represented by

the vector tfd. The relative orientation between those frames is given by the rotation matrix

Rfd = Rz(ψ) ·Ry(θ) ·Rx(φ) =

=


cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)

cos(θ) sin(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)

− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)

 , (3.1)

where φ, θ and ψ are the Euler angles that describe the rotation around X, Y and Z-axis of drone frame,

respectively.

3.2 Quadrotor Model

For the purpose of Parrot dynamics simulation and real-time control, the development kit models from

[23] were used. Both developed in Simulink, the simulator model blocks were derived via system identi-

fication, whereas the real-time model blocks can send commands to and read states from the drone via
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Wi-Fi connection.

Indeed, the simulator model is an approximation of the real model have the same control inputs

and state variables available, thus the simulator model can be used for designing the controllers. The

control inputs of the system are: roll and pitch angles, yaw rate and vertical velocity. The state variables

available, that in the case of real-time are estimated through the sensors described in Section 3.1, are

roll, pitch and yaw angles, altitude and longitudinal, lateral and vertical velocities.

3.2.1 Simulator Model

The quadrotor dynamics of the simulator model illustrated in Figure 3.3 is defined by six linear time-

invariant state-space equations organized into four subsystems: lateral movement, longitudinal move-

ment, heading and vertical movement. The first one addresses the roll and lateral velocity dynamics,

represented by the ’ssRoll’ and ’ssRoll2V’ blocks, respectively. The ’ssPitch’ and ’ssPitch2U’ compose

the second subsystem and describe the pitch and the longitudinal velocity dynamics, respectively. Fi-

nally, the third one includes the yaw dynamics represented by the ’ssYaw’ block and the fourth one

comprises the altitude dynamics depicted by the ’ssAltitude’ block.

Figure 3.3: Simulator simulink model of quadrotor dynamics, named by [23] as ARDrone Simulator Block

Additionally, each subsystem in Figure 3.3 has a saturation block that limits the control references

values to ensure the validity of the linear equations that describe quadrotor dynamics.

To execute the control law, the same sample time of the real-time model is applied, Ts = 0.065s,

to better model the real system. Furthermore, a time delay of 0.26s (timeDelay = 4*Ts), represented

in Figure 3.3 by the ’time delay’ constant block, was added to the reference input values of quadrotor

system to consider the effect of the communication delay between the host computer and the drone.
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Lateral Movement

In (3.2) the lateral velocity dynamics is represented by tfRoll and tfRoll2V transfer functions.

tfV = tfRoll × tfRoll2V =
1.483s+ 3.524

s2 + 4.268s+ 12.69
× 4.774

s+ 0.4596
=

7.081s+ 16.82

s3 + 4.728s2 + 14.65s+ 5.83
. (3.2)

The tfRoll transfer function, which describes the internal dynamics of roll movement as a second

order system, is assumed to has embedded feedback control, because there is no controllable input

variable available, and, as it can be seen in Figure 3.4, is already stabilized.

Figure 3.4: Step response of tfRoll transfer function

The tfRoll2V transfer function is an approximation of the kinematic relation between the roll angle, φ,

and the lateral velocity, v. It is defined by (3.3) on time domain, where g stands for the acceleration of

gravity. The equivalent Laplace representation of (3.3) is given by (3.4) and is a stable first-order system,

like tfRoll2V. Since the real pole location of both transfer functions are close to each other (the pole from

tfRoll2V is at -0.4596 and (3.4) pole is at zero), they have similar transient responses for small variations

of roll.

v̇ = g ∗ φ (3.3)

V (s)

Φ(s)
=
g

s
(3.4)

Longitudinal Movement

The longitudinal dynamics of the quadrotor is mathematically expressed by tfPitch and tfPitch2U transfer

functions in

tfU = tfP itch× tfP itch2U =
2.514s+ 4.866

s2 + 3.978s+ 11.92
× −6.154

s+ 0.665
=

−15.47s− 29.95

s3 + 4.643s2 + 14.56s+ 7, 926
. (3.5)

On one hand, the tfPitch characterizes the internal dynamics of pitch movement. Similarly to tfRoll

transfer function, tfPitch is a second order system with embedded feedback control and, as shown in
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Figure 3.5, is stable.

Figure 3.5: Step response of tfPitch transfer function

On the other hand, the tfPitch2U transfer function is an approximation of the kinematic relation ex-

pressed in time domain by (3.6), where θ is the pitch angle and u is the longitudinal velocity. Both

tfPitch2U and (3.7), which is the Laplace representation of (3.6), are stable first-order systems and its

real poles location in the s-plane are close to each other (the pole from tfPitch2U is at -0.665 and (3.7)

pole is at zero), which means the transient responses are similar for small variations of pitch.

u̇ = −g ∗ θ (3.6)

U(s)

Θ(s)
= −g

s
(3.7)

Heading

The dynamics of heading subsystem is described by the transfer function tfYaw, whose expression is

given by

tfY aw =
1.265

s+ 0.0059
. (3.8)

This transfer function is consider an approximation of the kinematics expression (3.9) that relates the

yaw angle, ψ, and the yaw rate, r, and whose Laplace representation is given by (3.10), since it is a

first-order system and the transient responses are similar for small variations.

ψ̇ = r (3.9)

Ψ(s)

R(s)
=

1

s
(3.10)
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Vertical Movement

The vertical movement is characterized by the transfer function tfAltitude defined by

tfAltitude =
0.1526s+ 5.153

s2 + 5.82s
. (3.11)

3.2.2 Real-time Model

The ARDrone Wi-Fi Block, illustrated in Figure 3.6, replaces the ARDrone Simulator Block in real-time

experiments.

Figure 3.6: Real-time simulink model of quadrotor dynamics, named by [23] as ARDrone Wi-Fi Block

As stated before, this Simulink block receives the values of state variables from the drone sensors

and sends AT-commands to control and configure the drone. Both information is transmitted through an

UDP protocol defined inside Packet Input/Output Simulink blocks. The Packet Input block illustrated in

Figure 3.6 receives information from the drone through the UDP port 5554, while the Packet Output block

defined inside the Sending Data to AR Drone subsystem uses the UDP port 5556 to send information

to the drone.

Furthermore, before the input control references commands are send to the drone, they are saturated

to guarantee a linear behaviour of the system.

In this scenario, the sample time is Ts = 0.065s, to guarantee that the commands and states are

updated every time step. This is true assuming that this value is higher than the communication delay

due to Wi-Fi connection.

3.3 Quadrotor Control

The main goal of this project is to apply the classic visual servo control approaches, IBVS and PBVS, to

the drone, so it can track a target, which can be a generic point in space. Thus, the position and heading

of the drone must be controlled.
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Figure 3.7: Quadrotor control architecture

The desired altitude and heading for the quadrotor are set as references to the vertical movement

and heading subsystems in a closed loop. A cascade control strategy is proposed to control the drone’s

horizontal position through visual servoing. In this way, the outer loop of the cascade follows the visual

control law, which gives the reference inputs (u∗ and v∗) to the velocity closed loop systems (the inner

loop of the cascade). To get the desired system response to position and heading inputs, classical

Proportional-Integrative-Derivative (PID) controllers (3.12) are applied to the tracking errors, e(t). In

(3.12) the P is the proportional gain, D is the derivative gain and I is the integrative gain.

Pe(t) +D
∂e(t)

∂t
+ I

∫ t

0

e(t)dt, (3.12)

In order to obtain the PID controller gains, first the system transfer functions are computed taking in

consideration the time delay mentioned in Section 3.2.1. The time delay is modelled as a first order Padé

approximation (3.13), where θ is the time delay in seconds. Then, the transfer functions are discretized

using the zero order hold method, which assumes the control inputs are piece wise constant over the

sample time Ts=0.065s.

e−θs ≈
1− θ

2s

1 + θ
2s

(3.13)

Furthermore, after the desired specifications of the system response are defined in terms of over-

shoot (Mp), settling time, ts, (2% criteria) and steady state error (ess), the desired system dominant

poles location (sd) in the s-plane is determined. Knowing that, the different PID controller architectures

are tested and the respective gains are set so the root locus fits the desired dominant poles location

and, thus, respects the magnitude and angle conditions:

|KGc(sd)Gp(sd)| = 1 (3.14)
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arg[KGc(sd)Gp(sd)] = −180◦, (3.15)

whereK is the DC gain of the system, Gc is the controller transfer function andGp is the transfer function

of the system to be controlled.

3.3.1 Altitude and Heading Control

The altitude and heading PID controllers are developed for the linear subsystems introduced in Section

3.2.1 which are the vertical movement and heading, respectively.

Figure 3.8: Root locus of vertical movement subsystem

In what concerns the vertical movement, it is a type 1 system and thus the steady state error is zero

for a step input reference. A fast transient response of the system is desired so the drone lifts 1m in

less than 5s. Hence, the dominant poles of the system should be located on the crossed region of the

root locus illustrated in Figure 3.8. Since a low overshoot is preferred, the poles could be placed at the

convergence point of blue and green lines inside the crossed region, where the overshoot is zero.

a)

Specs Required Specs Obtained
Mp(%) 0 0
ts(s) <5 3.15
ess(%) 0 0

b)

Figure 3.9: Step response of vertical movement closed loop system a) and the respective response
characteristics b)

Having said that, with only a proportional gain the dominant poles are placed at the convergence
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point. The gain corresponds to P=0.93 and gives the step response characteristics desired, as shown

in Figure 3.9.

In the case of the heading subsystem, it is a type zero system, which means there is a constant

steady state error of the response with respect to a step input. However, this is not considered a problem

since the yaw angle is kept fixed during the simulations to avoid the target being outside the field of view.

Thus, a maximum steady state of 20% is established for the step input response.

Moreover, a fast and low overshoot transient response is desired so the image plane position remains

fixed as fast as possible in a smooth way. Therefore, once again it is convenient to locate the dominant

poles at the convergence point of the root locus of the system depicted in Figure 3.10, where the settling

time is below 5s (crossed region) and the overshoot equals zero.

Figure 3.10: Root locus of heading subsystem

To place the poles at the desired location, a change of the system’s gain is required. So, a propor-

tional controller with P = 0.7 is applied to the system to give the desired step response illustrated in

Figure 3.11.

a)

Specs Required Specs Obtained

Mp(%) 0 0

ts(s) <5 3.48

ess(%) <20 0.81
b)

Figure 3.11: Step response of heading closed loop system a) and the respective response characteris-

tics b)
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3.3.2 Horizontal Velocity Control

Similarly to altitude and heading, the PID controllers of the cascade control’s inner loop system were

designed for the linear subsystems presented before on Section 3.2.1, named as longitudinal and lateral

movement.

Figure 3.12: Root locus of longitudinal move-
ment subsystem

Figure 3.13: Root locus of lateral movement
subsystem

Generally, the inner loop system responses should be 3/4 times faster than the outer loop ones and,

so, there is high priority on having a low settling time, but low priority on having a minimum overshoot.

Hence, the maximum value established for the settling time and overshoot percentage were 4s and 5%,

respectively, which corresponds to the crossed region of the systems root locus shown in Figures 3.12

and 3.13. Plus, a zero steady state error is desired for a step input, which is achieved with an integrator,

since the system is type zero.

a)

Specs Required Specs Obtained

Mp(%) <5 1.1

ts(s) <4 3.79

ess(%) 0 0
b)

Figure 3.14: Step response of longitudinal movement closed loop system a) and the respective response

characteristics b)

This time a PI controller fits the required velocity systems’ response characteristics to a step input,

as shown in Figures 3.14 and 3.15. The gains of the controller are P = -0.222 and I = -0.204 , for the
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longitudinal subsystem and P = 0.61 and I = 0.327, for the lateral one.

a)

Specs Required Specs Obtained

Mp(%) <5 0.98

ts(s) <4 3.23

ess(%) 0 0
b)

Figure 3.15: Step response of lateral movement closed loop system a) and the respective response

characteristics b)

3.3.3 Visual Servo Control

In order to design the PID controllers to control the relative position of the drone’s camera, first the linear

equations that describes the relation between the cameras position and the target’s relative horizontal

position, both in the image space and Cartesian space must be obtained.

Having in mind that the velocity of the drone is the same of the camera since it is fixed to it, the

camera’s position can be determined as the integral of the velocity, after the drone’s frame is transformed

into the fixed frame. Due to the integral term the open loop systems of the outer loop are type 1.

In what concerns the relative position response, either defined on the image plane or on the Cartesian

one, the steady state error must be close to zero so the drone reaches target. Also the position response

should be approximately 3 times slower than the velocity one, as explained before, so the maximum

settling time is set to 10s and the overshot should be the minimum to prevent the target being outside

the field of view.

IBVS approach

Starting with the IBVS control approach, the measured output of the outer loop are the image coordinates

of the target. Thus, the relation between it and the camera’s position could be described by (2.5), which

is highly nonlinear. To make it linear, this equation is approximated by a first order Taylor polynomial

function:

f ′(δx) = f(x0) +
∂f

∂x
x0
δx, (3.16)

where f(x) = f(θ, φ, ψ, tcfx
, tcfy

, tcfz
) is the function that represents (2.5), x0 = (0, 0, ψ̄, 0, 0, z̄) is the

nominal point and δx = x− x0 is the deviation from the nominal point.
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The remaining variables from (2.5) are fixed parameters, since the intrinsic camera matrix parameters

mentioned in Section 4.1.2 are specific for each camera characteristics and the target is considered

static and coincident with the fixed frame, so (Xf , Yf , Zf ) = (0, 0, 0).

Taking all these assumptions in consideration, plus the small angle approximation for the trigonomet-

ric functions, the linear system which describes the image coordinates of the target is found to be

xi,p
yi,p

 =

0 0 0 147.66 0 0

0 0 0 0 147.77 0





θ

φ

ψ

tcfx

tcfy

tcfz


. (3.17)

Consequently, the open loop system of the outer loop is obtained and the PID controller can be

designed. Having in mind the requirements for the systems response stated previously, the available

area for the dominant poles location was identified by a cross region in the system’s root locus depicted

in Figure 3.16.

a) xi,p coordinate b) yi,p coordinate

Figure 3.16: Root locus of target image coordinates linear system

As seen in Figures 3.17 and 3.18, the x and y coordinates of the image plane could respect the

response specifications of a step input, with only a proportional gain of -0.00180 and -0.00197, respec-

tively. These values replace λ in the visual servo control law.
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a)

Specs Required Specs Obtained

Mp(%) 0 0

ts(s) 10 8.74

ess(%) 0 0
b)

Figure 3.17: Step response of target image coordinate xi,p closed loop system a) and the correspondent

response characteristics b)

a)

Specs Required Specs Obtained

Mp(%) 0 0

ts(s) 10 8.72

ess(%) 0 0
b)

Figure 3.18: Step response of target image coordinate yi,p closed loop system a) and the correspondent

response characteristics b)

PBVS approach

On the other hand, the measured output for the outer loop in PBVS control approach is the position of

the target with respect the camera frame, which corresponds to tcf . Considering that the fixed frame

origin is coincident with the object and this one is static, the camera’s position in the fixed frame and

the position of the target in the camera frame varies by the same amount. Plus, if the fixed frame axis

direction is opposite to the camera frame axis, the linear relation between those variables is described

as
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tcfx

tcfy

 =

0 0 0 1 0

0 0 0 0 1




θ

φ

ψ

tfcx

tfcy


(3.18)

Having 3.18, the open loop system of the outer loop is obtained and it is represented on the s-plane

by Figure 3.19. In this figure the desired area for the system’s dominant poles location is illustrated by a

crossed region.

a) tcfx coordinate b) tcfy coordinate

Figure 3.19: Root locus of target 3D coordinates linear system

Finally, the required specifications for the open loop system described to a step input were achieved

by applying a proportional gain for both x and y directions of tcf , as shown in Figures 3.20 and 3.21,

respectively. The values of the gains are 0.25331 and 0.27856 and they replace λ in the visual servo

control law.

a)

Specs Required Specs Obtained

Mp(%) 0 0

ts(s) <10 9.57

ess(%) 0 0
b)

Figure 3.20: Step response of target 3D coordinate tcfx closed loop system a) and the correspondent

response characteristics b)
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a)

Specs Required Specs Obtained

Mp(%) 0 0

ts(s) <10 9.47

ess(%) 0 0
b)

Figure 3.21: Step response of target 3D coordinate tcfy closed loop system a) and the correspondent

response characteristics b)

25



26



Chapter 4

Setup and Implementation

4.1 Problem Formulation

The image data is acquired by the bottom facing camera of the Parrot, which is fixed to it. This makes

the visual servo control a eye-in-hand configuration problem.

So, there is a constant relationship between the pose of the drone and the pose of the camera. This

can be described by the transformation matrix that relates the drone frame coordinates and the camera

frame coordinates given by

[
Xc Yc Zc 1

]T
=

Rcd tcd

0 1

[Xd Yd Zd 1
]T
, (4.1)

where

Rcd =


0 1 0

−1 0 0

0 0 1

 tcd =
[
0 −0.067 −0.0435 + f

]
. (4.2)

The rotation matrix Rcd can be easily determined by looking at the drone and camera frames ori-

entation in Figure 3.2. On the other hand, the translation vector tcd components were evaluated on

SolidWorks, where the distance between the quadrotor center of mass and the center of camera lens

was measured.

In order to test the application of the visual servo control algorithms presented before on the Parrot,

a simple approach was studied. There is just one image feature to be tracked, which is the centroid of a

rectangle. From now on the rectangular object is referred as target.

Moreover, the goal pose of the quadrotor is fixed and it is defined as the one where the target is

placed at the center of the image. Plus, during the trajectory the altitude and the heading of the Parrot

are kept constant.

In this way, the depth of the target relative to the camera frame, Zc, will be always known if the ground

where the target is placed corresponds to Zf = 0 and the ultrasonic altimeter measurements from the

drone are available.
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Let is assume the fixed frame has the origin coincident with the centroid, Xf = 0 and Yf = 0. Then,

knowing the intrinsic camera matrix parameters (Section 2.1.1) and giving the image coordinates of the

centroid in pixels (xi,p, yi,p) and the correspondent Rcf = RcdRfd
T , (2.5) can be solved in order to

determine tcf . Therefore, this translation vector, which represents the coordinates of the fixed frame

origin in the camera frame, can be used to describe s(t) in PBVS control law.

Finally, since only the horizontal linear velocity is to be controlled, the PBVS control law is given byvx = −λ(tcfx − t∗cfx)

vy = −λ(tcfy − t∗cfy )
, (4.3)

where the pseudo-inverse matrix is 2x2 and takes the form of

L̂+
e =

[
−I
]
. (4.4)

On the other hand, the Le for the IBVS is represented by (4.6), which gives the control law in (4.5). In

this case, the coordinates of the target’s centroid, xi,p and yi,p, constitute s(t). Since the altitude of the

drone remains constant, Zc is also constant and, thus, the three alternatives proposed for L̂+
e in Section

2.2.1 are practically the same. But as Zc is available every time step, the (2.20) is used.

vx =
λ(xi,p−x∗

i,p)

Zc

vy =
λ(yi,p−y∗i,p)

Zc

(4.5)

Le =

−1Zc
0

0 −1
Zc

 (4.6)

4.1.1 Simulink model

Figure 4.1: Block diagram of quadrotor control using IBVS
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The IBVS and PBVS are implemented in Simulink according to the schemes represented in Figures

4.1 and 4.2, respectively, both in simulator and real environment.

These schemes are a detailed version of the control arquitecture illustrated in Figure 3.7, since they

specify how the s is obtained for each visual servo control approach. In the case of IBVS, after the

target’s image is captured by the Image Acquisition module, the image is processed inside the Centroid

Detection and Tracking module so the target’s centroid location in the image plane is determined and

given as input to the IBVS Controller. While in case of PBVS, besides going through the same steps

described for the IBVS, the location of the target centroid in the image plane is converted into a position in

space by the Target Position Estimation module, so the PBVS Controller can take it as input. This module

implements the calculations explained before to determine tcf on both simulation and real environment.

Figure 4.2: Block diagram of quadrotor control using PBVS

Even though the Drone and Camera Dynamics are the same since the bodies are attached to each

other, they are represented on these schemes separately in order to resemble the frames defined in

Section 3.1.

In Sections 4.2 and 4.3 the implementation of the modules introduced here are explained in detail for

both simulator and experimental environment.

4.1.2 Camera Calibration

In order to follow the calibration process described in Section 2.1.1 and get the intrinsic camera parame-

ters required for tcf calculation, different checkerboard formats were used on the working environments.

A printable version of a checkerboard like shown in Figure 4.3 was used in case of the real environment,

while in the simulator environment a surface with a checkered pattern was created inside a virtual world,

as shown in Figure 4.4.

Both the images have the same size, which is the one from the bottom facing camera of the drone

(360x640). However, the intrinsic camera matrix for the real (4.7) and virtual (4.8) environments has

29



Figure 4.3: Checkerboard in Real World Figure 4.4: Checkerboard in Virtual World

some discrepancies in the fsx and fsy values. This is essentially explained by the fact that it is not

possible to include the camera’s diagonal field of view (64◦) in the software where the virtual world was

created. Plus, there are no options to introduce the pixel’s size and lens specifications, like curvature

and thickness, which directly influences the field of view and the focal length.

Kint =


823.12 0 320.57

0 821.31 180.89

0 0 1

 (4.7) Kint =


287.95 0 320

0 288.02 180

0 0 1

 (4.8)

It is important to mention that the center of projection of the camera model, denoted in Figure 2.1 as

Oc, neither correspond to the lenses plane in the real environment nor to the viewpoint defined in the

virtual environment. The center of projection, which corresponds to the origin of the camera frame, is

defined in the fixed frame as a point that distance f in z-direction from the ones previously mention.

4.2 Simulator environment

In the simulator environment the Drone Dynamics module consists on the transfer functions referred in

Section 3.2.1.

The implementation of the Image Acquisition and Centroid Detection and Tracking modules are de-

tailed in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Virtual Environment and Image Acquisition

In order to test the visual servo control in the simulator model, the drone, the camera and the target were

created in the virtual world editor from the Simulink 3D Animation application (VRML) to visualize and

induce motion. Their geometries are associated to the respective frame already described. Apart from

that, the camera also includes a viewpoint, which provides a target’s view from the camera’s perspective.

In order to get the views of the camera as images in the Simulink model, like the one in Figure 4.5,

the VR to Video block is used. This allows to chose the desired viewpoint from the VRML generated

file and the resolution of the video frames. Additionally, the position and orientation of the drone and

the target can be defined as input variables of the block, which enables the control of these objects
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Figure 4.5: Camera view in VRML - the target is the red rectangle

movement. The camera motion is induced by the drone’s one, since the camera frame is defined related

to drone frame.

4.2.2 Target Centroid Detection

Having the image of the target, this one must be segmented from the rest of the environment, so it can

be uniquely identified.

As seen in Figure 4.5, the image background contrasts with the target, which is the red rectangle.

Therefore, the image turns into black and white based on the red channel of the RGB color space. The

self-developed Matlab function imbinarize is used to make this image color space conversion, which

also takes as input a threshold required for Otsu’s method application. This threshold was established

based on the histogram of the image’s red channel illustrated in Figure 4.6, where the pixels from the

target are the only ones detected upwards from the red line.

Figure 4.6: Histogram of the VRML image red channel

Then, the regionprops Matlab function is applied to the binary image to detect the regions segmented

and its properties. In this case, since the target is the only region detected, there is only one centroid

on the image, which is shown in Figure 4.7 with a red cross. In this environment, as opposed to the

real one, is very unlikely that the target will be outside the field of view and, so, there is no strategy

implemented to address this problem.
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Figure 4.7: Target centroid identification after image being segmented

4.3 Experimental environment

In the experimental model there are two different modes for controlling the position of the drone: waypoint

tracking and visual servoing, as shown in Figure 4.8. The first one, which was developed by [23],

receives as reference inputs a user defined trajectory points that include information of the desired

drone position, the yaw angle and the waiting time the drone should remain on that pose. As already

mentioned, the second one has constant references inputs for both IBVS and PBVS case, aiming to

drive the drone so the target is centered in the image of the bottom facing camera.

In a practical point of view, the waypoint tracking control mode allows the drone reaching a certain

altitude (h∗) after it takes off to increase the so called working distance, i.e. the distance between the

lens of the camera and the plane of the target. Having achieved the desired altitude, once the target

appears on the image, the visual servo control mode is run. The algorithms of the modules required to

determine s, namely Image Acquisition and Centroid Detection and Tracking, are described in detail on

Sections 4.3.1 and 4.3.2, respectively.

Figure 4.8: Quadrotor control architecture for the real environment

In order to change between modes, a switch block, illustrated in Figure 4.8, is implemented so unique

values are set for the heading, altitude and velocity controller reference inputs (ψ∗, h∗, u∗, v∗).

32



The controllers parameters values, which are specified in Section 4.3.3, are the same for both modes,

as the dynamics of the drone does not change. The result of the control action is then transmitted to the

drone by AT commands through the ARDrone Wi-Fi Block at the same time it receives sensors data and

status from the drone, as mentioned in Section 3.2.2.

4.3.1 Image Acquisition

Figure 4.9: Image Acquisition Simulink blocks

The images from the bottom facing camera of the drone are transferred to the host computer in a

packet format through a TCP protocol. This protocol is defined in a Packet Input block, as shown in

Figure 4.9, and uses port 5555, as established in [24], for the server (drone) to stream video and port

8000 for the client (host computer) to receive it.

Considering there are two cameras fixed to the drone and only one video could be streamed, the

video channel configurations must be changed so the bottom facing camera is set. To do so the AT com-

mand AT*CONFIG=’ strcmd “video:video channel”,”1” char(13) is defined inside Drone State Request

Simulink block, which is part of ARDrone Wi-Fi Block. The meaning of the AT command strings can be

found at [24].

After testing different sample times for the image acquisition process, it was found there is a trade

off between image quality and speed of the process. Since the feedback control depends on the image

data, its quality cannot be compromised, thus, the fundamental sample time presented in Section 3.2.2

was the one chosen, as it is the minimum value that guarantees image quality.

As mention before, the image is transmitted in a packet format. However, this type of format unit

cannot be read by Simulink. So, a Simulink block, named in Figure 4.9 as Decode Image, developed by

Rui Coelho in C language [25] was used to transform the packet format into uint8 format.

Asynchronous Data Acquisition

By receiving all data from the drone with the same sample time, it was possible to conclude about the

existence of a time delay between image and the other sensors data acquisition.

To measure the time delay, two periodic signals were required from the two data sources, so cross-

correlation could be applied between them, [26]. Therefore, a signal showing the variation of the area

in pixels of the target was created based on the image, in order to be compared to the altitude of the

drone measured with the ultrasonic altimeter. The target area was estimated using the Matlab function

regionprops, after applying the image processing algorithm explained on Section 4.3.2.
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In this way, by varying the altitude of the drone, at the highest point, the drone is further from the

target and, thus, the area of the object on the image plane is minimum. The opposite happens when the

Parrot is at the lowest altitude.

Figure 4.10: Time evolution of the normalized signals: inverse of the object’s area and drone altitude

Hence, both signals were normalized between [-1,1] and the inverse of the area was used instead,

so they could be compared, as shown in Figure 4.10.

Then, the cross correlation coefficients of the signals were determined using xcorr Matlab function,

as well as the sample lags at which the coefficients were computed, as illustrated on the graph of Figure

4.11. In this way, the time delay can be determined as the lag ∗ Ts for the maximum cross-correlation

coefficient.

Figure 4.11: Cross-correlation of the normalized signals: inverse of the object’s area and drone altitude

After repeating the acquisition process several times for different sample times and number of data

samples, was found that the lag which aligns the signals is constant and it is equal to 61 samples. So,

in the present case where Ts = 0.065s, the time delay corresponds to 3.956s, which means the image

acquisition is delayed by 3.956s with respect to the other sensors information acquisition.
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Figure 4.12: Alignment of the normalized signals: inverse of the object’s area and drone altitude

Such time delay can be explained by the fact the image and the other sensors data are transmitted

through different protocols between drone and host computer. A TCP protocol is used for the image

data acquisition, while a UDP protocol is used to acquire the remaining data.

By using a TCP protocol all images captured are delivered by the host computer in the correct order,

even if the image no longer corresponds to the current time. On the other hand, a UDP protocol, which

is commonly used for streaming, does not require that all data is delivered. In this case, the priority is to

transmit the most recent data available to the host computer.

Moreover, the image size is much bigger than the size of the other data, like height, which increases

the latency in the communication process. So, for the purpose of this work, it would be preferred to

have the drone’s camera images transmitted by a UDP protocol, since only the most updated images

are required.

This phenomenon makes the centroid location and, consequently, the target position estimations be

incorrectly determined for the actual time, since these measurements depend on image data. Therefore,

the control action will be compromised, as the system will respond to a velocity reference delayed in time.

Additionally, increases the possibility of the target being out of the field of view.

The obvious solution to this problem would be synchronized both signals as shown in Figure 4.12.

However, this implies delaying all sensors data acquisition, except image, and readjust the controllers

parameters, which would make the system unstable.

Since the communication protocols are drone’s predefined settings and the sample time cannot be

reduced to not compromise the quality of the images, the experimental tests will proceed with a time

delay of 3.955s between image and other sensors data acquisition.

4.3.2 Target Centroid Detection and Tracking

In this module the target’s centroid coordinates are determined and it is ensured that even when the

target is out of the image, the visual servo control keeps working so the target could be tracked.
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The Centroid Detection and Tracking module can be divided into two parts, the image processing

algorithm and the centroid tracking algorithm. Both of them are presented in detail in the following

sub-sections.

Image Processing Algorithm

Figure 4.13: Image processing algorithm Simulink blocks

The main objective of the image processing algorithm is to segment the red target. To do so, a red

color filter and a image binarization functions were created and they are represented in Figure 4.13 as

a Matlab function blocks named colorfilter and binarize, respectively.

Figure 4.14: Camera original image Figure 4.15: Image after red color filter is applied

Figure 4.16: Image segmentation

So, after the Centroid Detection and Tracking module receives the image coming from the Image

Acquisition module, the image format type is changed from uint8 to double and then the color space is

converted from RGB to HSV, since colorfilter is designed for it.

Basically, the colorfilter algorithm identifies the pixels of an image like the one in Figure 4.14 with hue

values between the range [300 25], which corresponds to red color. The ones within the range stays

with its HSV values and so its RGB values, but the remaining ones are turn into gray scale when the
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color space changes to RGB as illustrated in Figure 4.15, since the saturation values are set to zero.

Then, in order to segment the target, the image is converted into black and white, like shown in

Figure 4.16 (the unfilled space of the rectangle corresponds to the reflective markers, which are grey).

This is done by applying a threshold based on the difference between red and green channel values and

the red and blue channel values, because there is a huge contrast between them as the red color will

appear as black in green and blue channels.

As most of the image processing algorithms, their performance can be influenced by the brightness

conditions. In this present work they could vary a lot because the drone structure is in between light

focus and camera. However, the range of the color filter and the threshold chosen in binarization process

guarantee that even if a shadow covers the target and different elements are identified like in Figure 4.16,

the target will always be the largest element being segmented.

Centroid Tracking Algorithm

Figure 4.17: Centroid tracking algorithm Simulink blocks

Having the target being segmented on the image, the centroid tracking algorithm can detect its centroid

and consider the cases where the target is not correctly identified or is out of the field of view, so the

drone could keep tracking it.

First of all, the area and the centroid of all blob in the black and white image received from the image

processing algorithm are detected by the Blob Analisys Simulink block shown in Figure 4.17. Even

though the image processing algorithm is robust enough to always segment the target, it may identify

other smaller blobs as exemplified in Figure 4.16. Thus, the centroid of the target will be selected as the

one with the greatest area.

Assuming that on the first time the visual servo control mode is on the centroid tracking algorithm can

identify the target centroid, there are three possible subsequent scenarios. The first one is the normal

case where the target is inside the camera field of view. In the second one the image acquisition glitches

and the image gets distorted. The last one addresses the case when the target is outside the field of

view.

In order to understand how these scenarios and the target’s centroid are determined, a brief descrip-

tion of the algorithm represented in Figure 4.17 as centroid tracking is presented. In Appendix A the
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pseudo code of the algorithm can be found.

The algorithm has as inputs the actual centroid of the target determined by the Blob Analisys, Cen-

troid, and the previous output of the algorithm, CentroidSentPrev, accessed through the Memory block

shown in Figure 4.17. The output is the CentroidSent, which, depending on the scenario, has different

definitions and is one of the inputs to the visual servo controllers.

After the variables being initialized, the algorithm first checks if the Centroid coordinates are equal

to zero or not to determined whether the target is outside or inside the camera’s field of view. Then, the

scenarios previously described are analysed.

Figure 4.18: Target is inside the camera’s field of view - default case for centroid tracking algorithm

The first scenario is defined as the default condition, where the CentroidSent returns the actual

centroid (Centroid), as shown in Figure 4.18.

a) previous iteration b) actual iteration

Figure 4.19: Image gets distorted while the target is inside the field of view and, so, the target centroid
coordinates of the actual iteration b) will correspond to the one from previous iteration a)

In the second scenario, the image of the target does not correspond to the reality as most of the times

there is no red region or the red region of the target spreads all over the image. Consequently, the image

processing algorithm either does not have elements to segment or segments a larger area of red pixels

which is deviated from the actual position of the target. Thus, if facing the case illustrated in Figure 4.19,

where there is no red region, the centroid of the target is assumed to be the one from previous iteration

(CentroidPrev). On the other hand, if the second case occurs, the norm of the distance between the

actual centroid and the previous one will be bigger than a threshold, X, and if there is no occurrence of

this scenario in previous iteration, the CentroidSent is also the CentroidPrev.
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a) previous iteration b) actual iteration

Figure 4.20: Target leaves the image for the first time and, so, the target centroid coordinates of the
actual iteration b) will correspond to the one from previous iteration a)

In what concerns the third scenario, there are three ways of identifying it. The first one is when

the target is outside the image, after a normal case happens, like shown in Figure 4.20, and, thus, the

centroid given as output is the CentroidPrev. On the second one two things could happen: the target

is consecutively outside the field of view or the target is outside the image for the first time after an

occurence of the second scenario. Since this previous way of determining the third scenario occurs

after an exception, the CentroidSent is the CentroidSentPrev. The last one, corresponds to a case

where, for the first time, the target is outside the field of view, but there are blobs being segmented. In

this case, the centroid identified belongs to one of the blobs, but since it is further from the last target’s

centroid detected, the output of the algorithm is the CentroidPrev.

In case the target is moving, the predictions made for its centroid image coordinates on the previous

scenarios are fair, since it is always moving in approximately the same direction.

Finally, it could be the case of consecutive occurrences of the second or third scenarios. In both

situations the centroid given as output of the algorithm (CentroidSent) is the one previously outputted

(CentroidSentPrev).

4.3.3 PID controllers’ parameters

Based on the PID controllers designed for the simulator model in Section 3.3, the gains of the controllers

were tuned for the experimental tests. In general, all gains’ value were decreased in order to get a

smooth response of the real system. All controllers parameters are shown in Tables 4.1 and 4.2.

Altitude Heading Long. Velocity (Vx) Lat. Velocity (Vy)
P 0.3 0.1 -0.14 0.23
I 0 0 -0.1 0.115
D 0 0 0 0

Table 4.1: PID controller gains for the control of altitude, heading and velocity of the drone
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IBVS PBVS
xi,p yi,p tcfx tcfy

λ -0.0001 -0.0001 0.1 0.1

Table 4.2: IBVS and PBVS control law gains

4.3.4 Ground Truth of Sensors’ Data Estimations

In order to evaluate the accuracy of the drone sensors measurements used for feedback control, the

data was recorded by the Qualisys Track Manager (QTM) motion capture system installed in Robotics

Arena of IST and is established as the ground truth.

Figure 4.21: Experimental setup Figure 4.22: QTM virtual environment

The QTM is a software that allows 2D/3D motion capture of rigid bodies. During the capture the rigid

bodies are automatically tracked by QTM, providing its 6 DOF data in real-time.

To set the Parrot as a rigid body in QTM, 5 retro-reflective markers were fixed to its indoor hull as

shown in Figure 4.21, so the drone could be identified and tracked. As seen in both Figures 4.21 and

4.22, the same happens with the target, but only 3 markers are required to track its translational motion.

The origin of the rigid body frames is assumed by the system to be the geometric center of the markers,

which corresponds approximately to the center of the hull and the center of the target, respectively.

Figure 4.23: Normalized altitude signals given
by QTM and ultrasonic altimeter

Figure 4.24: Cross-correlation of the normal-
ized altitude signals
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By receiving both data in the same Simulink model, all drone’s sensors and QTM measurements

were acquired with same sample time. As shown in Figure 4.23, the height data acquired from QTM

and from the ultrasonic altimeter are synchronized, since the maximum correlation coefficient between

signals (Figure 4.24) corresponds to zero lag. In this way, data from the drone’s embedded sensors,

except camera, and from the QTM can be directly compared.

a) Roll angle b) Pitch angle

c) Yaw angle

Figure 4.25: Comparison of QTM and IMU measurements for drone rotational angles: roll (a)), pitch (b))
and yaw (c))

As seen in Figure 4.25, the drone’s orientation measurements given by the QTM and the drone’s

embedded IMU follow approximately the same variation. Even though there are some discrepancies

between the signals, they do not play a major concern since its maximum value is around 1o for all of

them.

In what concerns the altitude measurements represented in Figure 4.26, there is a small offset of

0.1m between the QTM and the ultrasonic altimeter data, which is clearly visible when the altitude is

nearly constant. This happens since the measurements reference points are slightly different.

Finally, the horizontal translational velocities estimated by the image-based algorithms mentioned in

Section 3.1 are compared to the derivative of the horizontal position data given by QTM, as shown in

Figure 4.27. Although the derivative data is very noisy, it can be seen that both signals follow the same

trend.

In order to test the variability of the image-based algorithms on estimating the translational velocities,
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Figure 4.26: Comparison of QTM and ultrasonic altimeter measurements for drone altitude

several tests were perform where the drone is hovering at different altitudes.

a) Velocity in x direction b) Velocity in y direction

Figure 4.27: Comparison of QTM position derivatives and image-based estimations for drone transla-
tional velocities in x (a)) and y (b)) directions of drone frame

Tables 4.3 and 4.4 show the maximum of the error’s module and the rms of the error between

velocities in x and y direction, respectively, for each altitude between 1 and 2.8m with a step size of

0.3m. By looking at the estimators, it is clear that the altitude and the error of the velocity measurements

are independent variables, since there is no positive or negative correlation between them.

Altitude (m) |Error max| (m/s) RMS error (m/s)
1 0.0672 0.0147

1.3 0.0723 0.0204
1.6 0.0947 0.0245
1.9 0.0658 0.0157
2.2 0.0660 0.0156
2.5 0.1872 0.0224
2.8 0.0453 0.0148

Table 4.3: Statistics of the error between QTM and image-based measurements for the x velocity com-
ponent of the drone at different flight altitudes

Even though the image resolution decreases with increasing camera’s altitude, it is proved that as

long as the checkerboard pattern surface shown in Figure 4.22 is inside the camera’s field of view, the
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Altitude (m) |Error max| (m) RMS error (m)
1 0.0596 0.0194

1.3 0.2183 0.0384
1.6 0.2641 0.0367
1.9 0.1329 0.0221
2.2 0.1332 0.0220
2.5 0.1432 0.0239
2.8 0.0701 0.0210

Table 4.4: Statistics of the error between QTM and image-based measurements for the y velocity com-
ponent of the drone at different flight altitudes

translational velocities estimations are fair and independent from the altitude. Probably the squares of

the checkerboard are sufficiently large and there is a huge contrast between the its colors, so its features

could be detected uniquely by the image-based algorithms used to estimate the velocities.
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Chapter 5

Results

5.1 Simulator environment

In order to fairly compare the results between the visual servo approaches, the initial position of the

drone is the same for all simulations. This is (0.5,1.5,-2)m and it is defined in a referential parallel to the

drone frame, whose origin belongs to target’s plane. Plus, in the cases where the target is moving, its

velocity is set to 0.1m/s.

Moreover, the simulation results are validated with the findings described in [21].

5.1.1 IBVS

Static Target

In the case where the target is static, the error (2.8) converges to zero and the trajectory of the target’s

centroid in the image plane is almost a straight line, as illustrated in Figure 5.1.

Figure 5.1: Target trajectory in image space
- IBVS simulated for static target in simulator
model

Figure 5.2: Error of x and y target image co-
ordinates - IBVS simulated for static target in
simulator model

However, at the beginning of the simulation the trajectory is further from the green straight line shown

in Figure 5.1, which according to [21] is explained by the high condition number of L+
e and it is translated

in a high peak of the camera velocity as depicted in Figure 5.3.
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a) Velocity in x direction b) Velocity in y direction

Figure 5.3: Reference and measured velocity a) x and b) y components relative to drone frame - IBVS
simulated for static target in simulator model

As expected there is an exponential decrease of the image tracking error (Figure 5.2), but only after

the first 6s of simulation, which means the convergence properties of the image behaviour are far from

ideal. This effect is also shown in the velocity and Euler angles signals represented in Figures 5.3 and

5.4, respectively.

a) Roll b) Pitch

Figure 5.4: Reference and measured rotational angles a) Roll and b) Pitch relative to drone frame - IBVS
simulated for static target in simulator model

In IBVS approach the orientation of the drone with respect to the target is interpreted as an error in

the image plane. Thus, the actuation of the roll and pitch angles increases the error in the image plane

and delays its convergence to zero.

Moving Target

When the target is moving with constant velocity, there will always be a constant steady state error of

the target centroid coordinates in the image plane, since the linear systems that describe the behaviour

of these coordinates are type 1, as referred in Section 3.3.3.

Therefore, if the target moves in the x direction of the drone frame, there will be a constant steady

state error in the y direction of the image plane as illustrated in Figure 5.5 and in more detail in Figure
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5.6. This error corresponds to 26 pixels, which is 7.22% of the image size on that direction.

Figure 5.5: Target trajectory in image space -
IBVS simulated for a target moving forward in
simulator model

Figure 5.6: Error of x and y target image co-
ordinates - IBVS simulated for a target moving
forward in simulator model

Figure 5.7: Target trajectory in image space -
IBVS simulated for a target moving laterally in
simulator model

Figure 5.8: Error of x and y target image co-
ordinates - IBVS simulated for a target moving
laterally in simulator model

On the other hand if the target is moving in the y direction of the drone’s frame, the steady state error

occurs for the x coordinate of the image plane, as shown in Figures 5.7 and 5.8. In this case the error is

28 pixels, which corresponds to 4.37% of the length of the image.

Figure 5.9: Target trajectory in image space - IBVS simulated for a target moving diagonally in simulator
model
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So, in the case the target is moving on both directions there will be both steady state errors mentioned

above, as illustrated in Figure 5.9.

All the characteristics of IBVS approach described for the static target are applied to these cases.

5.1.2 PBVS

Static Target

According to [21], in the PBVS approach the trajectory of the target’s centroid on the image plane should

be a pure straight line, which does not happen for the target trajectory on the cartesian plane. As seen

in Figures 5.10 and 5.11 both predictions occur when the target is motionless.

Figure 5.10: Target trajectory in image space
- PBVS simulated for static target in simulator
model

Figure 5.11: Target trajectory in Cartesian
space - PBVS simulated for static target in sim-
ulator model

In contrast with the IBVS approach, there is an exponential decrease of the error (2.8) and velocity

components almost from the beginning of the simulation (around 1s), as illustrated in Figure 5.12 and

5.13, respectively. Plus, those signals meet zero at the same time, which is approximately 11s.

Figure 5.12: Error of x and y target 3D coor-
dinates with respect to camera frame - PBVS
simulated for static target in simulator model

Figure 5.13: References and measured veloci-
ties of the drone relative to drone frame - PBVS
simulated for static target in simulator model

Moreover, the target position estimations made using the camera model described in Section 2.1 are

very close to the real values set in the virtual world environment, as shown in Figure 5.11. By looking into

Figure 5.14 it is possible to conclude that the maximum errors of the estimations are 36mm and 17mm
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in the x and y directions of the camera frame. These values are consider low since they correspond to

0.83% and 0.7% of the image size on those directions, respectively.

Figure 5.14: Error of target horizontal position estimations with respect to the camera frame - PBVS
simulated for static target in simulator model

The position estimation errors might have been introduced by the estimated values for the intrinsic

camera matrix parameters. This explains the higher error in y direction in comparison with the error in

the x direction shown in Figure 5.14, since the target is further from the center of the image in the larger

direction of the image plane.

Moving Target

Once again if the target is moving with constant velocity there will always be a steady state error of

the target position in the cartesian plane, since the linear systems that represent the dynamics of those

coordinates are type 1, as mentioned in Section 3.3.3.

Having said that, when the target is moving in the x direction of the drone’s frame, there is a constant

steady state error in y direction of the camera frame, as shown in Figure 5.15 and more in detail in 5.16.

The error is equal to 0.36m, which in the y direction of the image plane is equivalent to 50 pixels (13.9%

of the width of the image size).

Figure 5.15: Target trajectory in Cartesian
space - PBVS simulated for a target moving
forward in simulator model

Figure 5.16: Error of x and y target 3D coor-
dinates with respect to camera frame - PBVS
simulated for a target moving forward in simu-
lator model
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On the other hand, if the target moves in the y direction of the drone’s frame, there is a constant

steady state error in the x direction of the camera frame, as seen in Figures 5.17 and 5.18. It corresponds

to 0.39m, which is equivalent to 55 pixels error in the x direction of the image plane (8.6% of the length

of the image size).

Figure 5.17: Target trajectory in Cartesian
space - PBVS simulated for a target moving
laterally in simulator model

Figure 5.18: Error of x and y target 3D coor-
dinates with respect to camera frame - PBVS
simulated for a target moving laterally in simu-
lator model

Finally, if the target is moving in x and y directions, there will be a steady state error on both directions

with the same magnitudes presented for the previous cases, as shown in Figure 5.19.

Figure 5.19: Target trajectory in Cartesian space - PBVS simulated for a target moving diagonally in
simulator model

5.2 Experimental environment

Taking into account that the time delay between the image and other sensors data acquisition compro-

mises the control action, a saturation is applied to the error of visual servo control laws. In this way, the

velocity references, which are delayed in time, are less aggressive to the system when the error is large.

This proposed solution is tested and compared to the classical approaches of IBVS and PBVS for the

case the target is static.
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5.2.1 IBVS

Static Target

First of all, the initial position of the target in the image plane is corrected for both error approaches. As

expected, the target approaches the center of the image following a smooth trajectory, which is close to

the straight line that connects the initial position point and the center one, as shown in Figures ?? and

5.21.

Figure 5.20: Target trajectory in image space
- IBVS simulated for a static target in real-time
model

Figure 5.21: Target trajectory in image space -
IBVS with error saturation simulated for a static
target in real-time model

After correcting the initial position, both approaches do consecutive attempts to position the target

in the center of the image. However, the case in which the error is saturated (Figure 5.21) shows more

attempts.

This effect is also shown by the graphs in Figure 5.22, where the position error in both image direc-

tions, x and y, is depicted. Even though the error does not converge to zero, there are several times

where it crosses zero or almost reaches that value. Once again the proposed approach has more of

these occurrences.

However, looking into the modulus of the mean values of the error, there is no clear relation between

them and the type of error. The mean of the error in x direction is bigger for the non saturated case,

while the one in y direction is bigger for the saturated case.

So, in order to take a better overview, a batch of 5 tests was done for the two different cases, where

the drone takes off from the same position and whose statistics are depicted on Tables 5.1 and 5.2. It

was found that the average of the error’s modulus mean value in x and y direction are 69 and 42 for the

simple case and 68 and 42 for the saturated one, respectively. On the other hand, the average values

for the maximum of the error in x and y directions are 206 and 133 for the simple error and 178 and 120

for the saturated error, respectively. Even though the average of the error’s modulus maximum value are

bigger for the simple case than the saturated one, there is no clear evidence that the error’s saturation

improves the IBVS performance, as the average values of the mean error’s modulus are practically the

same.

In fact the target covers a larger region on the image plane in case of using the simple error, which
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a) x coordinate b) y coordinate

c) x coordinate - error saturation d) y coordinate - error saturation

Figure 5.22: Error of x and y target image coordinates - IBVS simulated with and without saturation for
static target in real-time model

means it is most probable of getting the target outside the camera’s field of view than the saturated one.

This is likely to happen because the maximum of the error’s modulus corresponds to 32% and 37% of

the image size for the x and y directions, respectively.

Test No x error mean (pixels) y error mean (pixels) x error max (pixels) y error max (pixels)
1 83 43 256 125
2 70 45 183 118
3 64 47 192 147
4 45 36 153 101
5 80 42 248 174

Table 5.1: Statistics of x and y target image coordinates error signals - IBVS simulated for a static target
in real-time model

Test No x error mean (pixels) y error mean (pixels) x error max (pixels) y error max (pixels)
1 72 45 166 114
2 68 31 186 102
3 55 49 174 112
4 76 44 192 160
5 70 42 170 110

Table 5.2: Statistics of x and y target image coordinates error signals - IBVS with error saturation simu-
lated for a static target in real-time model

One of the big reasons for the permanent variation of the position signal on both cases presented
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before is the incapability of the drone to follow the horizontal velocity references. This comes clear when

looking into the magnitudes of red and green signals in Figure 5.23, which corresponds to the reference

and sensor’s measured velocities, respectively. Such discrepancies might be explained by the image-

based algorithms used to estimate the velocities not being able to distinguished between translational

and angular motion, [27]. This coupling effect of the quadrotor dynamics cannot also be detected by the

QTM measurements and for that reason the drone velocity estimations were validated in Section 4.3.4.

a) x component b) y component

c) x component - error saturation d) y component - error saturation

Figure 5.23: Reference and measured velocity x (a) and c)) and y (b) and d)) components relative to
drone frame - IBVS simulated with and without saturation for static target in real-time model

Moreover there is no clear evidence that the moving average of the measured velocity represented in

black (Figure 5.23) follows the trend of the reference one. So, it is difficult to evaluate the effectiveness

of the IBVS control.

Moving Target

Also a moving target with constant velocity was tested to evaluate the drone capability on tracking it,

even if it is momentarily outside the camera’s field of view. The target is moved by hand using a rope

fixed to it, therefore the velocity is not keep exactly constant.

Let is consider the case where the target is moving straight in the x direction of drone’s frame. By

looking at Figure 5.24 is clear that the drone cannot reach the target in order to get it in the center of the

the image.

The simulator tests shown that the error in the y direction of the image plane should converge to a
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Figure 5.24: Target trajectory in image space - IBVS simulated for a target moving forward in real-time
model

steady state close to zero. However, due to the time delay between image and the other sensors data

acquisition and variations of the target’s velocity, this does not happen in the real environment.

a) x coordinate b) y coordinate

Figure 5.25: Error of x (a)) and y (b)) target image coordinates - IBVS simulated for a target moving
forward in real-time model

In Figure 5.25 is illustrated the position error in x and y directions correspondent to the case pre-

sented in Figure 5.24, where the constant lines depicted on the graphs represent the moments when

the target is out of the field of view. In this case, since the target is moving in the opposite direction of

the camera frame y-axis, the target tends to reach the upper boarder of the image, which corresponds

to 0 pixels in y direction of the image plane and to -180 pixels in terms of error in this direction. That

is why the mean of the error in the y direction (-135 pixels) is bigger in modulus than the one for the x

direction (11 pixels).

Even though the drone never reaches the target, the drone can track it, since there is always a point

which identifies the target on the image plane. To illustrate it, the x and y position of the target and the

drone given by the Qualisys were compared, as shown in Figure 5.26.

Despite the great variation of drone’s position in y direction of Qualisys fixed frame, its mean value

(217 mm) is close to the target’s y position (≈ 312 mm), as illustrated in Figure 5.27, and the drone’s x

position follows the target one.
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Figure 5.26: QTM data for target and drone
trajectory in Cartesian space - IBVS simulated
for a target moving forward in real-time model

Figure 5.27: Error between QTM data for tar-
get and drone position in Cartesian space -
IBVS simulated for a target moving forward in
real-time model

Figure 5.28: QTM data for target and drone
trajectory in Cartesian space - IBVS simulated
for a target moving laterally in real-time model

Figure 5.29: Error between QTM data for tar-
get and drone position in Cartesian space -
IBVS simulated for a target moving laterally in
real-time model

When the target is moving in y direction of the drone’s frame, there is less variation of the drone’s

position in the perpendicular direction compared to the previous case, as shown in Figure 5.28 and more

in detail in 5.29. Once again, the mean value of the drone’s position in the opposite direction to the one

the target is moving (2982 mm) is almost coincident with the correspondent target’s position coordinate

(≈ 2890 mm).

Furthermore, the tracking performance of the drone when the target moving on both x and y direction

was also evaluated. It was found that the drone keeps track of the target in both x and y direction with

an almost constant offset, as seen in Figure 5.30.

Moreover, the visual servo control effect is visible for this previous scenario, since the velocity refer-

ences are bigger. Looking into Figure 5.31, it is clear that the trend of the velocity measured, represented

by the moving average signal, follows the reference velocity.
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Figure 5.30: QTM data for target and drone trajectory in Cartesian space - IBVS simulated for a target
moving diagonally in real-time model

a) x component b) y component

Figure 5.31: Reference and measured velocity x (a)) and y (b)) components relative to drone frame -
IBVS simulated for a target moving diagonally in real-time model

5.2.2 PBVS

Validation of camera position estimation

In order to validate the position estimation of the target expressed relative to the camera frame, tcf ,

the QTM position data for the drone and the target was used. For the sake of comparison, the camera

position in Qualisys is considered to be the drone position, whose measurements are available.

As seen in Figure 5.32, there is a huge discrepancy between the estimations of the camera model

and the QTM measurements.

Since the target position estimated by the camera model depends on the image data, it is delayed

61 samples relatively to the Qualisys data, as proven on Section 4.3.1. Thus, if the offset is corrected,

the x and y signals become synchronized, as shown in Figure 5.33.

In this way, the data can be truly compared. As shown in Figure 5.34, the error between the es-

timations and Qualisys data varies in time. This is explained by the randomness associated to the

image processing algorithm used to detect target centroid, whose coordinates in pixels influences the

calculation of tcf . Despite that, the error of the position estimation is low.

Considering the case being analyzed, the rms of the error, which is 0.043m for the x position and

0.040m for the y position, represents 3.4% and 5.6% of the image size in x and y direction, respectively.
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a) x component b) y component

Figure 5.32: Camera model estimations and QTM data for target x (a)) and y (b)) 3D coordinates with
respect to camera frame - PBVS simulated for a static target in real-time model

a) x component b) y component

Figure 5.33: Synchronized camera model estimations and QTM data for target x (a)) and y (b)) 3D
coordinates with respect to camera frame - PBVS simulated for a static target in real-time model

a) x coordinate b) y coordinate

Figure 5.34: Error of x (a)) and y (b)) target 3D coordinates estimations - PBVS simulated for static
target in real-time model

Plus, the maximum of the error’s module, which is 0.116m for the x position and 0.112m for the y position,

corresponds to 9.2% and 15.7% of the image size in x and y direction, accordingly.

In a general overview, this tendency is illustrated on Table 5.3, where the errors are represented as a

percentage relatively to the size of the field of view in millimeters. The mean of the rms error is 6.1% and

7.6% for x and y direction, respectively, while the mean of the module of the maximum error is 15.1% in
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Test No rmse x (%) rmse y (%) max x (%) max y (%)
1 5.9 6.3 12.0 15.0
2 8.0 8.9 18.3 20.4
3 7.7 7.8 21.0 27.1
4 3.7 6.8 11.6 21.5
5 5.1 8.4 12.6 22.3

Table 5.3: Statistics of x and y 3D target coordinates estimated through the camera model - PBVS
simulated for a static target in real-time model

x direction and 21.3% in y direction.

Errors could have be introduced by inaccurate estimations of intrinsic camera parameters and by

considering different world points for the camera frame origin location.

Static Target

In Figures 5.35 and 5.36 is illustrated the target position evolution with respect to the camera frame for

the PBVS and PBVS with error saturation, respectively. For both approaches, the target gets closer

to the camera frame origin following a curved line, as expected. Then, the drone makes consecutive

attempts to reach the origin every time its position is deviated from it.

Figure 5.35: Target trajectory in Cartesian
space - PBVS simulated for a static target in
real-time model

Figure 5.36: Target trajectory in Cartesian
space - PBVS with error saturation simulated
for a static target in real-time model

Also, by looking into the position error graphs in Figure 5.37, it is clear that there are several times

where the error crosses zero or almost reach it for both cases.

Additionally, the mean of the errors’ module in x and y direction, which are 89mm and 128mm for

the simple case and 169mm and 97mm for the case where the error is saturated, show this trend since

they are very close to zero. However, based on those values it is not clear if there is any advantage on

applying an error saturation.

In order to understand it, several tests were performed in which the starting position of the drone

is the same. From its statistics results on Tables 5.4 and 5.5, it was found that the average values of

the mean error’s modulus in x and y direction are 94mm and 115mm for the simple error and 152mm

and 101mm for the saturated one. Plus, the average values of the maximum error’s modulus in x and

y direction are 297mm and 298mm for the first case mentioned before and 399mm and 243mm for the
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a) x coordinate b) y coordinate

c) x coordinate - error saturation d) y coordinate - error saturation

Figure 5.37: Error of x and y target 3D coordinates - PBVS simulated with and without saturation for
static target in real-time model

second one. Although there is a small improvement on reducing the displacement of the drone with

respect to the target in y direction using the saturation, it causes a higher increase of the error in the x

direction.

Test No x error mean (mm) y error mean (mm) x error max (mm) y error max (mm)
1 57 79 141 220
2 70 114 275 353
3 143 141 394 335
4 102 122 312 309
5 99 121 361 272

Table 5.4: Statistics of x and y 3D target coordinates error signals - PBVS simulated for a static target in
real-time model

Test No x error mean (mm) y error mean (mm) x error max (mm) y error max (mm)
1 164 145 431 228
2 204 91 543 285
3 123 72 310 160
4 143 102 319 275
5 126 97 394 266

Table 5.5: Statistics of x and y 3D target coordinates error signals - PBVS simulated with error saturation
for a static target in real-time model
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The effect of the saturation is also visible when comparing the magnitudes of the measured velocity

signals in Figure 5.38. It could lower the maximum values in approximately 25% and 40% in x and y

direction, respectively. Besides this, there are big discrepancies between the measured and the refer-

ence input velocities for both error approaches, which might be explained by the reasons mentioned in

Section 5.2.1 for the IBVS case.

a) x component b) y component

c) x component - error saturation d) y component - error saturation

Figure 5.38: Reference and measured velocity x (a) and c)) and y (b) and d)) components relative to
drone frame - PBVS simulated with and without saturation for static target in real-time model

Once again, the effect of the visual servo control is not clear based on the velocity graphs of Figure

5.38, since the reference inputs have a lower variation than the measured values and the trend of the

measured velocities (black line) does not always follow the reference ones.

Moving Target

Simmilarly to the IBVS case, different target motion scenarios were tested: foward motion, i.e moving in

the x direction of the drone’s frame, lateral motion, i.e. moving in the y direction of the drone’s frame,

and diagonal motion, i.e. moving in both x and y directions of the drone’s frame.

Considering an example of the first scenario, it is visible in Figure 5.39, where the position of the

target with respect to camera frame is illustrated, that the drone cannot reach the target in order to align

it with the camera’s frame origin.

By looking at Figure 5.40 b), where the position error in the direction the target is moving is depicted,

it is clear that the error fluctuation is deviated from zero, but not converges to a steady state, as expected.
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Figure 5.39: Target trajectory in Cartesian space - PBVS simulated for a target moving forward in real-
time model

Plus, its values are almost all negative, which means the drone is most of the time behind the target.

However, the mean value of the error, which is -239 mm for the estimated position and -194 mm for

the real one, indicates that this deviation is small when compare to the length of the field of view in this

direction, that is 713 mm. Hence, the drone could be able to track the target without this being out of the

field of view.

a) x coordinate b) y coordinate

Figure 5.40: Error of x (a)) and y (b)) target 3D coordinates - PBVS simulated for a target moving forward
in real-time model

Even though the target is barely moving on the y direction of the drone’s frame, the correspondent

position error relative to the camera’s frame, which is illustrated in the graph on the left side of Figure

5.40, shows large fluctuation peaks. Nevertheless, the mean value of the position error is -52mm for the

estimated data, which is close to the one obtained for the real data, -97mm, and to zero.

By analysing the target position illustrated in Figure 5.39 it is not clear that the target gets out of the

field of view, whose limits are [-633.2,633.2] mm in x direction and [-356.4,356.4] mm in y direction. But

looking at Figure 5.40 is visible that the lowest value of the position error in x direction is lower than

-633.2 mm and there are several times where the error in y position is lower than -356 mm.

Moreover, the error between the estimated position measurements and the Qualisys data depicted in

Figure 5.41 is small, as its rms values are 0.073m and 0.074m for x and y direction, respectively. Hence,
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the estimations are considered a valid data set.

a) x coordinate b) y coordinate

Figure 5.41: Error between estimations and QTM x (a)) and y (b)) target 3D coordinates - PBVS simu-
lated for a target moving forward in real-time model

By plotting the Qualisys data for the drone and the target position in Figure 5.42, it is clear that even

though the drone cannot reach the target, it can track it.

Figure 5.42: QTM data for target and drone
trajectory in Cartesian space - IBVS simulated
for a target moving forward in real-time model

Figure 5.43: Error between QTM data for tar-
get and drone position in Cartesian space -
PBVS simulated for a target moving forward in
real-time model

Although there is a great variation of drone’s position in y direction of Qualisys fixed frame (Figure

5.43), its mean value (207 mm) is close to the target’s y position (≈300 mm) and the drone’s x position

follows the target one.

Take into consideration the second scenario illustrated in Figure 5.44, there is a smaller deviation

of drone’s position in the opposite direction to the one the target is taking compared to the previous

case. As shown in Figure 5.45, the fluctuation is around 2959mm, which is near the target’s x position

(≈2930mm). Once again, the drone is still able to track the target in the y direction of drone’s frame.

Finally, the third scenario shows a very good tracking performance. As illustrated in Figure 5.46, the

drone keeps pace with the target.

Also for this scenario is visible the effect of the visual servo control. As seen in Figure 5.47, the

moving average signal of the measured velocity follows the upward trend of the velocity reference in the

x direction and the downward trend in the case of the y component of the velocity reference.
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Figure 5.44: QTM data for target and drone
trajectory in Cartesian space - PBVS simulated
for a target moving laterally in real-time model

Figure 5.45: Error between QTM data for tar-
get and drone position in Cartesian space -
PBVS simulated for a target moving laterally in
real-time model

Figure 5.46: QTM data for target and drone trajectory in Cartesian space - PBVS simulated for a target
moving diagonally in real-time model

a) x component b) y component

Figure 5.47: Reference and measured velocity x (a)) and y (b)) components relative to drone frame -
PBVS simulated for a target moving diagonally in real-time model
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Chapter 6

Conclusions

In this project the implementation of visual servo control algorithms to Parrot AR Drone 2.0 was inves-

tigated. Both IBVS and PBVS are combined with PID control strategy to test target tracking scenarios.

The drone was able to track a generic target either in a static or in movement condition. However, a time

delay was found between the transmitting data protocols which compromises the visual servo control

performance. There is a lag of 61 samples between the image and the other drone data acquisition,

which introduces a time-delay on tracking the reference trajectory.

This increases the probability of the target being outside the camera’s field of view, specially when it

is moving. But the centroid tracking algorithm developed could address this problem in a way that the

visual servo control could still work and the drone could still catch the target. Plus, this algorithm could

prevent situations where there are faults in the image acquisition process.

Even though the visual servo control laws error does not converge to zero, as expected, the drone

could make several attempts on reaching the target. The statistics showed that when the target is

motionless, there are small deviations from zero error and there is no clear benefit on saturating the

error. Additionally, the QTM position data reveals drone capacity on tracking the target moving in different

directions, but also the high difficulty of the drone on keeping the same position in space, specially in the

y direction of drone frame. This explained why a much better performance is achieved when the target

is moving diagonally.

On the other hand, the tracking performance of the drone on following the velocity reference was

found to be very unsatisfactory. The drone velocity could catch up the trend of the reference, but there

are big discrepancies on their magnitude. Possible errors might have been introduced by the image-

based algorithms used to estimate the horizontal velocities onboard the quadrotor, because they are not

able to detect the coupling effect between its translational and rotational motion.

Based on the experimental results obtained, it was not possible to conclude about any advantage of

one visual servo approach over the other, due to the time delay. But considering that the estimations

of target’s position are quite accurate when comparing to QTM measurements and looking into the

simulator results, the PBVS approach seems more attractive to Eye in the Sky project applications. The

main advantage is considered to be the easy conversion between Cartesian space coordinates and any
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geographic coordinate system.

Regarding future developments of the proposed solution for the Eye in the Sky project applications,

the laboratory testing conditions could be improved, so more realistic results for the visual servoing

implementation are acquired. The controller and image processing could be implemented in an on-

board control unit to obtain a decentralized approach that could be tested in a open-field where constant

communication with the UAV cannot be guaranteed. Also, this would avoid the time delay problem

concerning the Wi-fi control. In case this is still an option, the video streaming protocol should be

changed to UDP.

Moreover, the use of a rotating camera would be preferred so the underactuated degrees of freedom

of the drone could be addressed on the visual servoing approach, at the expense of an increased

complexity. This way a larger area in space could be monitored.

Finally, a more realistic scenario and a more complex environment could be created to test the visual

servo control.
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Appendix A

Centroid tracking algorithm
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Algorithm 1: Centroid Tracking
Require: Centroid,CentroidSentPrev;

Out = 0;
TargetIsOut1 = 0;
TargetIsOut2 = 0;
OutPrev = Out;
CentroidPrev = Centroid;
while Image On = TRUE do

OutPrev = Out;
CentroidPrev = Centroid;
if Centroid = 0 then

Out = 1
else

Out = 0
end if;
TargetIsOut1Prev = TargetIsOut1;
TargetIsOut2Prev = TargetIsOut2;
if ‖Centroid− CentroidPrev‖ >X and Out = 0 and TargetIsOut1Prev = 0 and TargetIsOut2Prev =
0 then

TargetIsOut1 = 1;
TargetIsOut2 = 0;

else if ‖Centroid− CentroidSentPrev‖ >X and TargetIsOut1Prev = 1 then
TargetIsOut1 = 1;
TargetIsOut2 = 1;

else if Out = 1 and OutPrev = 0 and TargetIsOut1Prev = 0 then
TargetIsOut1 = 1;
TargetIsOut2 = 0;

else if (Out = 1 and OutPrev = 1) or (Out = 1 and OutPrev = 0 and TargetIsOut1Prev = 1) then
TargetIsOut1 = 1;
TargetIsOut2 = 1;

else
TargetIsOut1 = 0;
TargetIsOut2 = 0;

end if
if TargetIsOut1 = 1 and TargetIsOut2 = 1 then

CentroidSent = CentroidSentPrev;
else if TargetIsOut1 = 1 and TargetIsOut2 = 0 then

CentroidSent = CentroidPrev;
else

CentroidSent = Centroid;
end if
return CentroidSent

end while
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