
Addressing Disinformation With Open-Ended Internet Voting

Using Ring Signatures

Pedro Forjaz Figueiredo
pedronfigueiredo@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

The problem of disinformation has raised concerns regarding the reliability of content on social
media. The so-called fake news spread rapidly and mislead people. Therefore, it is clear how
paramount it is to develop a solution which helps to assess the credibility of information that is publicly
distributed. In this dissertation, a fully decentralized voting system is proposed, which allows people
to vote anonymously on trustworthiness characteristics of posts on social media. In the past decades,
significant effort has been directed into designing electronic voting solutions which promote privacy
and integrity. Nevertheless, to the best of our knowledge, none of these solutions approach open-ended,
continuous-tallying decentralized internet voting with privacy guarantees. The proposed scheme relies
on ring signatures and pseudonyms to grant eligibility without revealing the identity of the voter, and
implements mix networks to achieve voter anonymity. It supports multiple concurrent voting processes
with flexible ballots, and only requires one round for the voting phase. Additionally, this proposal
provides other desired voting properties, such as accuracy and verifiability.

Keywords: Electronic Voting, Fake News, Privacy, Security, Trustworthiness

1. Introduction

Since the 1980s, an extensive amount of electronic
voting protocols has unfolded and changed drasti-
cally the voting process by lowering costs, tallying
faster and providing more flexibility to the voters.

Electronic voting can be challenging. Some trust
assumptions, such as untappable channels, are un-
realistic for fully electronic voting, the reliability
of each component of a system must be disputed
and earning the trust of a voter is hard. Addition-
ally, it has many requirements that a system should
comply with, which can even sometimes contradict
themselves.

In this work, we use voting to address the prob-
lem of disinformation. The so-called fake news is
distorted or untrue information presented to read-
ers or viewers. Relevantly, due to the growth
of computer-mediated communication, this phe-
nomenon has proliferated, which has raised some
concerns regarding the trustworthiness of content
on social media.

Disinformation is a very delicate affair in the
sense that fighting it is extremely difficult, which
is due to a few reasons. First, content on the in-
ternet spreads rapidly and almost uncontrollably.
Second, social networking platforms present users

with specifically targeted information and adver-
tisements. That is, it is not a single problem, in-
stead every user is affected differently. Finally, and
most pertinent, users eventually end up misinter-
preting the information or being persuaded into
changing their beliefs or behavior.

Taking these reasons into account, it is clear how
paramount it is to develop a solution which helps
users to assess the reliability of information that is
publicly distributed.

The EUNOMIA1 Project [1] focuses on fight-
ing disinformation by providing social media users
with information cascades2, sentiment analysis and
trustworthiness indicators for posts on social net-
works. It introduces a concept called Human-as-
Trust-Sensor, which places the user at the center
of the reliability evaluation process. Along these
lines, users are helped to identify the provenance
of information and to understand how information
has been modified and spread. Moreover, they are
able to attribute trustworthiness properties to that
data.

1Supported by the European Union H2020 Research
and Innovation Programme, with Grant Agreement number
825171.

2An information cascade tracks changes made to data
since its original source until it is presented to the user.

1



EUNOMIA is a fully decentralized and dis-
tributed peer-to-peer platform, delegating the over-
all system management and tasks to a set of nodes.
These nodes are operated by independent and un-
related entities, therefore, trust is a feature of the
overall system as we cannot guarantee that each of
the entities is not malicious. The security model
states that the system as a whole can be trusted
as long as a subset of nodes remains honest. Fur-
thermore, storage in EUNOMIA is supported by a
potentially hostile peer-to-peer network, which can
be accessed by the nodes, providing them with a
highly distributed, decentralized storage solution.

1.1. Related Work

Generally, voting protocols are categorized by the
cryptographic procedure used to anonymize votes.
The most frequently employed cryptographic ap-
proaches are mix networks, homomorphic encryp-
tion and blind signatures. While these three are the
most common, there exist other techniques, namely,
threshold cryptography [21], which finds its roots
in the secret sharing scheme by Shamir [41], and
zero-knowledge proofs [26]. They are usually used
together with one of the leading approaches. For
example, threshold cryptography is usual in multi-
authority voting protocols, in which entities share
a private key.

The concept of mix network was first presented
by Chaum [14] in 1981. In this technique, an entity
called mix receives a list of encrypted inputs, and
decrypts and shuffles it in a random way, such that
the outputs are permuted and, thus, unlinkable to
the inputs. Usually, to achieve greater anonymity,
a few mixes are set up sequentially, creating a mix
network.

In the context of voting, the inputs to the mix
network are the ballots. Succinctly, the encrypted
ballots, along with the voter identity, are placed in
the bulletin board. Throughout the voting phase,
the voters can access the bulletin board and con-
firm that their encrypted ballot is, in fact, there.
When the election finishes, the identities of the vot-
ers are discarded, and the ballots are shuffled and
decrypted by the mix network, in a single batch. In
the end, the decrypted ballots can be counted and
no one is able to correlate them with the voters, or
even with the initial ciphertexts.

After the primordial protocol by Chaum [14],
many voting schemes followed [2, 6, 29, 32, 36, 39],
which solved many security issues and achieved ef-
ficient results. Mix network voting systems [3, 15]
usually implement the proposed protocols, with
some variations. Furthermore, a significant num-
ber of proposals [5, 30, 33, 39] aimed at developing
permutation proofs also emerged, allowing mixnet-
based voting protocols to be more efficient.

Voting schemes based on homomorphic encryp-
tion work by encrypting all votes separately with a
public key that belongs to election authorities, then
adding all of them together and, only after, decrypt-
ing the aggregated set of votes at once, which re-
veals no information about the votes individually.
It is important to highlight that this approach only
concerns the tallying process so other requirements,
such as verifying the ballot validity, should be ful-
filled through proofs of correctness.

Cohen (now Benaloh) and Fischer [16] proposed
the first homomorphic encryption voting protocol
in 1985, using a centralized authority. Then, some
proposals emerged [7, 8], which distributed the pow-
ers of the authorities among multiple machines.
The subsequent approaches focused on efficiency
[18, 19, 38] and on receipt-freeness [4, 28].

Blind signatures were introduced by Chaum [12]
in 1983. They work like regular digital signa-
tures, with one significant difference: the message
is blinded so the signer has no knowledge about the
information being signed. Once the data is signed,
the message author can unblind the information and
request another authority to verify the signature,
following the regular verification procedure.

In a voting environment, a blind signature au-
thenticates the ballot of a voter before the tallying
process, ensuring the eligibility of that voter and
keeping the vote unknown to the signer. After get-
ting the signed ballot, the voter can unblind it and
either send it immediately to tallying authority or
wait as long as they want. In the tallying phase, the
ballot is unlinkable to the voter. Note that voters
must send their signed ballot through anonymous
channels, otherwise privacy may be compromised.

Fujioka et al. [25] are widely recognized as the
pioneers of blind-signature-based voting schemes.
The propositions which followed prioritized receipt-
freeness [34, 35]. Then, multiple implementations
of this type of voting system were put forward
[20, 23, 27, 31], in which the tendency is to im-
prove the robustness of the system, by distributing
the powers of the authorities between a number of
machines.

Regarding the connection between the current
work and our work, a few remarks are pointed out.
First, all the work presented so far has a strict sep-
aration between the voting and the tallying phases,
which concerns the fairness property. In our case,
the ballot needs to be posted to the bulletin board
immediately after voting, in plain text, and able to
counted. This is what we call open-ended voting,
which, to the best of our knowledge, no systems
have approached yet.

Second, to verify if a voter is eligible to cast a bal-
lot, their identity is checked against the electoral
roll. Then, before counting the ballots, the iden-

2



tities are usually discarded to avoid compromising
privacy. In our scenario, though, such verification,
using the plain identity of the voter, cannot be done,
as it may jeopardize anonymity. Furthermore, it is
infeasible to discard the list of voters, otherwise the
system would not be able to detect double voting.

Finally, only a few schemes are designed to
support multiple elections running simultaneously
[23, 27, 31]. Generally, each election has a credential
to be distinguished from others. While this could
be a possible approach to solve the problem, we
find a simpler and more efficient way to ensure the
distinction between voting processes.

1.2. Contributions

This work focuses solely on the third part of the
EUNOMIA Project [1], which is providing trustwor-
thiness indicators for online information. We pro-
pose a voting system which entitles users to assign
trust properties to social media posts and choose
whether their set of attributes, such as followers or
political ideology, is shown in the final tally, if they
wish to have their identity shown, or if they would
like to stay anonymous.

The voting server, integrated in each of the EU-
NOMIA nodes, and thus respecting the underlying
design requirements, is responsible for handling bal-
lots, anonymizing them (if necessary) and counting
votes. All relevant public information is posted to
a storage server, supported by the previously men-
tioned peer-to-peer storage network.

We emphasize how challenging it is to design a
voting system under the security model of EUNO-
MIA. This is because the system is fully decentral-
ized and distributed, and has no trusted third party,
meaning that no entity can be trusted individually.

Furthermore, regarding the voting component,
some more challenges arise. First, voting processes
are open-ended, which raises many privacy compli-
cations. Second, the system must support multiple
simultaneous voting processes. Third, the system
has to avoid double voting without knowing if users
have voted before. And fourth, ballots should be
totally flexible and adaptable to different posts.

To summarize, the main contribution of this work
is the design and implementation of a voting scheme
which, besides tackling these challenges, promotes
the following properties:

� Accuracy: All valid votes are counted (com-
pleteness) and all invalid votes are not counted
(soundness).

� Privacy: Choices of the voters are secret.

� Uniqueness: No voter can cast a ballot twice
on the same post.

� Individual Verifiability: Voters can verify if
their cast ballot represents correctly their vot-
ing intentions (cast as intended) and that it has
been properly submitted (recorded as cast).

� Universal Verifiability: Ability to confirm
that all stored valid votes have been included
in the tally (counted as recorded) and that only
eligible voters voted (eligibility check).

� Robustness: Resistance to partial failures, to
malicious behavior by the authorities or the
voters and to some level of collusion.

� Transparency: All information relevant to
the voting is publicly available and able to be
verified.

These properties make up the adequate vot-
ing solution for the designated purpose, offering
anonymity and integrity.

1.3. Outline of the Paper
Section 2 provides the cryptographic building

blocks for the solution. In Section 3, the proposed
voting protocol is described. Section 4 then explains
succinctly how this solution was implemented. Fi-
nally, Section 5 reports the security and perfor-
mance evaluation of the protocol and Section 6 con-
tains the concluding remarks.

2. Building Blocks
2.1. Cryptographic Assumptions
Definition 2.1. A function f : N→ R+

0 is negligi-
ble if, for every positive polynomial p, the condition
f(n) < 1

p(n) holds for a sufficiently large n.

Definition 2.2. The discrete logarithm (DL) prob-
lem states that, given a cyclic group G = 〈g〉 of or-
der q and g, h ∈ G, finding x ∈ Zq such that gx = h
is hard.

The discrete logarithm assumption holds for a
group G if no probabilistic polynomial-time algo-
rithms can solve the DL problem in G with non-
negligible probability.

2.2. Proofs of Knowledge
Zero-knowledge proofs of knowledge are protocols

which allow one party to prove to another that they
know a value, without revealing it. We can achieve
this using an interactive protocol called sigma (Σ).
The Schnorr protocol [40] is a particular example of
the sigma protocol, which allows one to prove the
knowledge of a discrete logarithm in a cyclic group.

To define proofs of knowledge formally, we resort
to the symbolic notation proposed by Camenisch
and Stadler [11]. We then generally represent proofs
of knowledge as follows:

PK{(x1, ..., xn) : statements about x1, ..., xn}

3



where x1, ..., xn are only known to the prover, and
everything else is common knowledge.

For example, for prover P to prove knowledge
of x to verifier V, such that PK{(x) : h = gx},
where G = 〈g〉 of order p and h ∈ G are known
to all parties, and x ∈ Zp is secret, one follows the
protocol by Schnorr:

1. P picks k randomly from Zp, calculates r := gk

and sends to V;

2. V chooses a random challenge c ∈ Zp and re-
turns it to P;

3. P sends s := k + cx (mod p) to V, who can
verify that gs = hc · r.

The great advantage of these proofs is that one
can join together multiple statements about the se-
crets which knowledge is being proved. In par-
ticular, proofs of disjunction are pertinent to this
work. Cramer et al. [17] proposed a witness in-
distinguishable protocol for these proofs of partial
knowledge. To prove knowledge of x or y, such that
PK{(x, y) : a = gx ∨ b = hy}, one follows the pro-
tocol below. Note that P only knows x.

1. P picks kx, cy, sy randomly from Zp, calculates{
ra := gkx

rb := hsy · b−cy

and ra and rb sends to V;

2. V chooses a random challenge c ∈ Zp and re-
turns it to P;

3. P computes the challenge and the response for
x as cx := c − cy (mod p) and sx := kx +
cxx (mod p), respectively, and sends cx, cy, sx
and sy to V, who can verify that (1){

gsx = acx · ra
hsy = bcy · rb

and (2) c = cx + cy (mod p).

Fiat and Shamir [24] proposed a solution to trans-
form the three-move interactive protocol into a non-
interactive general proof of knowledge. In this tech-
nique, called Fiat-Shamir heuristic, the challenge
is generated from the common knowledge, using a
cryptographic hash function H : {0, 1}∗ → {0, 1}∗,
which eliminates the need of requesting a random
challenge from the verifier. For example, for the
Schnorr protocol above, the challenge would be
c := H(h‖g‖r).

Relevantly, this non-interactive protocol can be
used to create a signature scheme, which is called a

signature proof of knowledge (SPK). We represent
such signature as

SPK{(x) : y = gx}(m).

This example basically constitutes a Schnorr signa-
ture [40], where message m is signed using the pri-
vate key x. This works exactly like a non-interactive
protocol, except that message m is added to the
challenge, such that c := H(h‖g‖r‖m).

3. Voting Protocol
In this chapter, we propose a voting protocol to

be integrated in the EUNOMIA platform.

3.1. Objectives
Recalling the overall goal of this work, we want to

provide users with a way to vote on trustworthiness
properties of posts on social networks.

The approach we propose is rather challenging to
design. We state the reasons to justify the previous
assertion.

� Unlike traditional voting systems, the voting
procedure in this context is open-ended, which
implies that it does not end unless the post is
deleted. This raises many complications, one
of them being privacy, since ballots are counted
immediately after they are cast.

� The system must support multiple voting pro-
cesses running simultaneously. Usually, every
election requires a different credential, so this
could turn out to be a scalability issue: hav-
ing millions of concurrent voting processes with
millions of voters would not be practical.

� Every user can cast a ballot on every post at
most once, so all users are eligible unless they
have voted before. Additionally, no one can
know which users have voted.

� The ballot can differ depending on the post
the user is voting on. Hence, ballots should
have a flexible structure, and support from the
simpler, trust/no-trust scenario, to the more
complex, write-in ballot scenario.

3.2. EUNOMIA
The EUNOMIA ecosystem is made up of a set

of nodes called EUNOMIA Services Nodes (ESN).
Each group of nodes working together is called a
federation. Each node comprises a set of services,
some of which carry relevance to the voting pro-
tocol. The most pertinent to this work are listed
below.

� AAA Server: Responsible for authentication
and authorization of users, this service provides
a bridge between the EUNOMIA authentica-
tion and the voter registration process.

4



� Discovery Server: Publishes the information
of each service. Relevantly, it contains the cre-
dentials and metadata necessary for the voting
protocol to execute properly.

� Storage Server: Securely stores all data. It
keeps all information regarding the voting pro-
cesses, including ballots and voter credentials.

Each ESN runs on top of another node, which
belongs to the social networking platform. When
accessing their account, users can grant access to
their data, which EUNOMIA will extract and pro-
cess securely. Afterwards, EUNOMIA will be able
to provide users with the means to assess the relia-
bility of the content on their social media feed.

3.3. Entities
The voting protocol comprises the following par-

ties:

� Voter: Evaluates online posts by attributing
characteristics of trustworthiness. In the EU-
NOMIA ecosystem, the voter is the social net-
work user and carries out the actions through
a device, which is called the digital companion
(DC). They have a key pair, and we refer to
the public and private keys of a voter as y and
x, respectively.

� Manager: Registers new voters, distributes
ballots, extracts and verifies user features and
manages all voting processes.

� Tallier: Verifies the eligibility of the voters
and validates, signs and appends ballots to the
bulletin board. Also, it issues tallies for each
voting process.

� Anonymizer: Yields the unlinkability be-
tween a ballot and a voter. Multiple anonymiz-
ers linked together form a mix network.

The manager, tallier and anonymizer make up the
voting server component of the EUNOMIA node.
Furthermore, each of these entities has a key pair,
which is generated when the voting server is initial-
ized for the first time.

3.4. Architecture
We propose a voting system which relies on a

ring signature to provide eligibility. The unique-
ness property is achieved through a pseudonym and
anonymity is provided by a mix network between
the voter and the tallier, which is only optional
when voting, and left at the discretion of the user.

Before proceeding to the voting protocol, we
highlight that it is mandatory for the user to reg-
ister first as a voter. While the registration phase
is not included in the voting protocol below, it is

described in Section 3.4.1. We now enumerate the
phases of the proposed solution:

1. Preparation: The user requests a ballot and,
optionally, their features, in separate requests.
Note that ballots could have already been re-
quested by the user interface, automatically.

2. Voting: The user makes their choice and the
device generates the ring signature and ap-
pends it to the ballot. Additionally, they de-
cide whether to attach some or all of their fea-
tures to the ballot.

3. Anonymization: The user decides whether
to vote privately or publicly. Should the user
prefer to keep their anonymity, the ballot is
sent through the mix network. Otherwise, it is
sent directly to the tallier.

4. Validation: The tallier receives the ballot in
plain text, with the ring signature inside, and
gathers a threshold of signatures from other
talliers, which are conditional on the validity of
the ring signature, and on the uniqueness and
wellformedness of the ballot. If the user has ap-
pended features, they are sent to a threshold
of managers, which validate them and return
them signed. Upon receiving all responses, the
tallier verifies the signatures of the features,
discards them, and posts the ballot, along with
the features and the ballot signatures, to the
bulletin board.

3.4.1 Registration

The registration process is carried out only once,
preferably when the user is signing up with EUNO-
MIA. Despite only being part of the voting compo-
nent, the registration relies heavily on the EUNO-
MIA authentication. In any case, the rest of voting
protocol runs independently of EUNOMIA authen-
tication.

The registration process flows as follows:

1. The digital companion generates a key pair,
which identifies the voter.

2. The public key, along with the EUNOMIA user
identifier, are sent to the manager.

3. The manager verifies, through the EUNOMIA
authentication and storage services, if the user
has registered before as a voter.

4. If the user has not registered before, the man-
ager saves the public key in the storage service,
making it available to everyone, and unlinked
to the user identifier.

5



3.4.2 Voting and Validation

We use the notion of pseudonym, which allows
users to hide their identity from the system, while
providing linkability.

To formalize the pseudonym, we denote G as a
prime order group and define H1 : {0, 1}∗ → G as
a cryptographic hash function. It is calculated as

nym = H1(postId)x

where postId is the identifier of the post and x ∈ Z
is the private key of the user.

Note that no user can compute pseudonyms of
other users unless they hold their private key. Fur-
thermore, due to the discrete logarithm assumption,
the pseudonym is hard to reverse, so the identity of
the user is preserved.

To ensure the pseudonym is correctly computed,
it is calculated within the ring signature. The pro-
posed ring signature is then formalized as

SPK

{
(x1, ..., xn) :

∨n
i=1

(
yi = gxi ∧ nym = H1(postId)xi

)}(
B
)

wherein ballot B, which is a bit string, is signed,
while proving knowledge of values x1, ..., xn ∈ Z,
which are private keys. The element g ∈ G is pre-
defined and used to generate the public keys. The
public keys y1, ..., yn ∈ G, which form a set Y, are
randomly chosen from the set of keys of registered
voters. Each of these public keys yi has a corre-
sponding private key x′i. Because the voter only
knows their private key xj , where j ∈ {1, ..., n}, the
other private keys xi are simulated by the protocol.
We say the ring signature has size n when the set
of public keys Y contains n elements.

This construction uses the Chaum-Pedersen pro-
tocol [13] to ensure the validity of two statements,
in a conjunction:

� The private key xi generates a registered public
key yi.

� The pseudonym nym is computed with private
key xi.

The ring signature is a disjunction of n of these
conjunctive statements. Due to the proofs of partial
knowledge by Cramer et al. [17], one can prove that,
at least, one of the conjunctive statements is valid,
revealing nothing else.

For a matter of simplicity, we assign h :=
H1(postId). We define H : {0, 1}∗ → {0, 1}∗ as
a cryptographic hash function. Remind that set
Y = {y1, ..., yn} and elements g and nym all belong
to the prime order group G of order l.

The protocol works as follows:

1. The voter calculates their pseudonym nym =
hx and randomly picks from Z∗l

� ki, for all i = 1, 2, ..., n

� ci, for all i = 1, 2, ..., n, i 6= j

2. In the next phase, the voter calculates the fol-
lowing commitments:

rkeyi :=

{
gki , i = j

gki · y−cii , i 6= j

rnymi :=

{
hki , i = j

hki · nym−ci , i 6= j

3. Then, resorting to the Fiat-Shamir Heuristic
[24], the voter generates a challenge c based
on the common knowledge. The challenge is
defined as

c := H(rkey1 ‖ ... ‖ rkeyn ‖ rnym1 ‖ ...
... ‖ rnymn ‖ y1 ‖ ... ‖ yn ‖ nym ‖ B).

Then, the voter computes a valid challenge for
the legitimate statement as

cj := c−
n∑

i=1, i 6=j

ci (mod l).

4. The protocol proceeds to the last phase. The
following assignment determines the correct re-
sponses si, for all i = 1, 2, ..., n.

si :=

{
ki + ci · xi (mod l) , i = j

ki , i 6= j

5. The voter sends the commitments
∀ni=1r

key
i , rnymi , the challenges ∀ni=1ci, the

responses ∀ni=1si, the pseudonym nym and the
set Y of public keys to the verifier, which is
the tallier. All of these components make up
the ring signature, which is sent inside the
ballot.

6. Finally, the tallier confirms that the next con-
ditions hold:

(a) All public keys used in the ring signature
belong to registered and valid voters.

(b) The voter pseudonym nym has not been
used before.

(c) After computing the challenge c using the
common knowledge, verify that

c =

n∑
i=1

ci (mod l).

6



(d) For all i = 1, 2, ..., n, the following state-
ments hold:{

rkeyi = gsi · y−cii

rnymi = hsi · nym−ci

If all of the previous requirements verify, the
ring signature is valid and the voter is allowed
to cast the ballot.

Regarding feature validation, there exists a (t, n)
threshold scheme [41], in which the public key be-
longs to a federation of n nodes, and the private key
is distributed among the nodes. Whenever a new
node joins the federation, it is responsible for gener-
ating a new key pair in a distributed manner. Note
that features sent for validation, inside the ballot,
are encrypted for privacy reasons.

When validating features, the manager inside the
receiving node computes a partial decryption of the
features ciphertext, and sends it to a threshold of
other managers. Then, these open the features us-
ing their share of the private key, validate them, sign
them, and send them back to the manager which re-
quested their validation in the first place. Finally,
the received signatures are validated and the fea-
tures, decrypted, and unlinked to the user, are ap-
pended to the ballot.

3.4.3 Anonymization

In this setting, anonymity becomes remark-
ably difficult to achieve due to the open-ended,
continuous-tallying scenario. While we solve part
of the problem by using pseudonyms to hide the
identities of the users, there still exists the chance
to correlate users and ballots through the internet
connection, or even using timing analysis.

Therefore, a mix network was implemented be-
tween users and talliers, which randomly delays
and shuffles the ballots received, acting as an
anonymous channel. The mixnet provides pro-
tection against passive eavesdroppers and ensures
anonymity even if some mixes are malicious. We
highlight that users can opt out of this anonymiza-
tion process and send the ballot directly to the tal-
lier, or even use another anonymization technique,
such as Tor [22]. Still, the main advantage of using
ours is that it requires no additional effort.

This mix network is similar to the decryption
mixnet proposed by Chaum [14]. It is a low-latency
mix network, composed of a set of anonymizers
placed sequentially. Each anonymizer (or mix) re-
ceives a ballot, removes a layer of encryption, holds
the ballot for some time while waiting for others,
scrambles the ballots and, only then, forwards them
to the next anonymizer or to the tallier. This hin-
ders traffic correlation attacks.

3.4.4 Verifying and Deleting Votes

Through the pseudonym, which no one besides
the owner of the private key can compute, we allow
users to retrieve their previously cast ballot.

Additionally, users can delete past ballots. These
are removed using the pseudonym as well. We
point out that being able to delete ballots can im-
ply coercion-resistance, since a voter can vote in the
presence of the coercer and later change their vote
alone. Still, because we assume there is low coer-
cion in our scenario, we do not develop on this topic
further.

3.4.5 Tallying Votes

The tallying process is simple and requires small
computational effort. The tallying process runs as
follows:

1. A tally is requested and the tallier gets all bal-
lots for a specific post from the bulletin board.

2. The tallier requests, from the discovery service,
the certificates of all the talliers that signed the
ballots returned.

3. All ballots are verified, one by one, through
the signatures appended to them during the
validation phase. Ballots are valid as long as a
threshold of signatures is valid. Invalid ballots
are discarded.

4. The tally is signed and returned.

Note that the system is totally unaware of the
context and simply returns a list of authentic bal-
lots, cast by eligible voters. Only afterwards, the
user interface, independently of the voting proto-
col, arranges the votes as desired, while taking into
account the impartiality of EUNOMIA in the trust-
worthiness evaluation process.

4. Implementation
4.1. Credentials

Each entity of the protocol has a credential. The
parties and the cryptosystems used for their creden-
tials are stated below.

� Manager, Tallier and Anonymizer: Dur-
ing the first initialization process, all of them
generate distinct 2048-bit RSA [37] key pairs.
Then, they issue self-signed certificates, which
are used for testing purposes, and are then sup-
posed to be replaced by certificates signed by
a certificate authority.

� Voter: When registering with the voting sys-
tem, the voter generates a key pair using the
twisted Edwards form of the elliptic curve
Curve25519 [9, 10]. The public key is a point

7



in the curve, which, if compressed has 256 bits.
The private key also has 256 bits, and it is a
scalar value. The public key Y is generated by
calculating xG, where G is the predefined base
point of the curve [10] and x is the randomly
generated private key.

4.2. Voting Server and Client

The voting server is a service which runs inside
the EUNOMIA services nodes. Each service pro-
vides an Application Programming Interface (API),
which works as an abstraction layer to the other
services, so we specified an API to deliver the func-
tionality of the voting server to the rest of the EU-
NOMIA ecosystem.

This component is implemented as a Java appli-
cation, and runs an embedded web service. This
web service is powered by the Grizzly3 and Jersey4

frameworks and it provides the functionality for the
aforementioned API.

Relevantly, EUNOMIA nodes are built on top
of social network nodes. To run initial tests, we
have used Mastodon5, which is a distributed social
networking protocol. Also, given the necessity for
modularity of the components, all services run in
the same machine, but are virtually isolated from
each other using Docker6.

Regarding the client, it provides the functional-
ity required from a user, with regard to the voting
protocol. Remind that the digital companion (DC)
is an interface running on a device, such as a smart-
phone or a computer. Similarly to the EUNOMIA
node, the functionality of the digital companion can
be seen as modular, so the client works as a external
library integrated in the DC. It does not provide a
web API, instead functions can be invoked directly
after importing this library.

This component is implemented in Javascript,
which can be easily executed by any browser, us-
ing a Javascript engine. When the code is executed
outside the browser, Node.js7 is used as runtime en-
vironment. In fact, we set up the client library to
work primarily with Node.js, which allowed porta-
bility to other settings, such as mobile applications.

4.3. Decentralized EUNOMIA

Decentralized EUNOMIA8 was designed as a
proof of concept for the EUNOMIA platform. The
goal of this experiment was to test the full func-
tionality of the EUNOMIA Project, which includes
voting. It was built on top of the Mastodon social
networking protocol.

3https://javaee.github.io/grizzly
4https://eclipse-ee4j.github.io/jersey
5https://joinmastodon.org
6https://www.docker.com
7https://nodejs.org
8https://decentralized.eunomia.social

Some metrics were collected throughout a period
of nine days. A total of 286 users signed up, with
an average of 232 daily active users. The system re-
ceived around 80000 tally requests and about 5000
ballots were cast.

5. Evaluation
5.1. Security

For the system to function according to the ex-
pectations, we need to provide some trust assump-
tions. These are listed below.

� The user trusts the digital companion.

� The voter registration process is carried out by
an honest manager.

� At least a threshold of voting servers, which in-
cludes manager, tallier and anonymizer, is hon-
est.

� There is, at least, one honest anonymizer in a
mix network.

� The ECDLP is hard to solve, the RSA assump-
tions hold and the SHA-256 hash function im-
plements a random oracle.

� The communication channels between all enti-
ties provide confidentiality and integrity.

In subsection 1.2, the desired properties of the
system were outlined. We assess the compliance of
the protocol with respect to those properties.

Accuracy. Regarding completeness, if the third
trust assumption holds, one can be sure that valid
ballots are appropriately signed and added to the
bulletin board. The system also satisfies soundness
by making sure, through the ring signature, that
only eligible voters are able to cast ballots. How-
ever, note that a threshold of corrupt talliers can
post an invalid ballot (without a ring signature) to
the bulletin board. Still, any honest party verifying
the tally can trivially identify all invalid ballots.

Privacy. The identity of the user is hidden be-
hind a mix network and a pseudonym, so privacy is
fulfilled.

Uniqueness. The pseudonym allows the system
to ensure that a voter cannot vote twice on the same
post, and the ring signature guarantees that the
pseudonym is well formed. Notwithstanding, dupli-
cate ballots can still be validated if a threshold of
talliers is corrupted. Nevertheless, this can be easily
detected by any honest entity verifying a tally.

8



Verifiability. We divided verifiability into two
components: individual and universal. Voter (or
individual) verifiability is trivially achieved thanks
to the possibility of any user to check their vote
through the pseudonym. Regarding universal veri-
fiability, one can request access to the bulletin board
to verify if all recorded and valid ballots are present
in the tally calculated by the voting server. Further-
more, everyone can confirm that only eligible voters
cast a ballot by verifying the ring signatures of each
ballot.

Robustness. Ensuring availability when the sys-
tem partially fails is inherited from EUNOMIA. In
fact, most of the data is synchronized across the
federation and, because the system is decentralized,
some node failures and malicious behavior can be
tolerated.

5.2. Performance

Setup. To simulate the client, a personal com-
puter running MacOS 11, with four 2.6 GHz In-
tel Core i7 cores and 16 GB of RAM was used.
This computer operates over a network averaging
100 Mbps of speed. The experiments for the voting
server were deployed on a virtual machine running
Ubuntu 18.04, with one Intel Core processor capa-
ble of 2.5 GHz of clock speed, 1 GB of RAM and
networked on a 100 Mbps internet connection.

Registration. After five tests, we concluded that
the entire registration process takes around 900 ms,
including network communication time, and that
0.6 KB of data are exchanged. On the voting server
side, this operation lasts about 725 ms. Further-
more, the generation of credentials in the device of
the user takes an average of 12 ms to complete.

Voting. We started by assessing the performance
of the ring signature. The results are shown in Ta-
ble 1. Additionally, we measured the time to cast
a vote, from the time the user decides to vote until
a response is returned from the voting server, de-
pending on the number of keys k and on the number
of talliers t required to sign the ballot. These mea-
surements are presented in Table 2. For each k and
t, five experiments were conducted, and these were
performed using trust/no-trust ballots.

Regarding the number of keys k, there exists a
privacy and performance trade-off, that is, when k
increases, privacy improves but performance wors-
ens. Performance was prioritized by setting k = 5
by omission, which implies that an adversary would
need to corrupt four users to be able to infer which
key was indeed used to issue the ring signature.

Generation Verification Size

k = 5 61 ms 23 ms 2.3 KB

k = 10 107 ms 23 ms 4.5 KB

k = 30 291 ms 48 ms 13.1 KB

k = 100 924 ms 110 ms 43.1 KB

Table 1: Performance of the ring signature.

t = 1 t = 2 t = 3

k = 5 694 2151 2870

k = 10 786 2258 2927

k = 30 905 2500 3163

k = 100 1634 3183 3927

Table 2: Average time to vote (in milliseconds).

Tallying. Because the system is continuously is-
suing tallies, the evaluation and optimization of this
process is essential for this work. We recall that
each ballot is validated upon a tallying request,
which encompasses the verification of all signatures
of all ballots. Table 3 lists the tally issuance times
for n trust/no-trust ballots with a ring signature of
size k = 5, each of them signed by t talliers. These
timing statistics only consider the perspective of the
voting server.

t = 2 t = 3 t = 4

n = 10 61 63 59

n = 100 139 136 124

n = 500 372 411 414

Table 3: Average tallying times (in milliseconds).

6. Conclusions
In this work, a proposal for an internet voting

system was elaborated. This system is integrated
in EUNOMIA, and designed according to its prin-
ciples. We use ring signatures and pseudonyms to
grant eligibility, and implement a mix network to
ensure anonymity. Additionally, the system is fully
transparent and provides users with the capability
of verifying their votes, and that the tallying pro-
cess is performed correctly.

Furthermore, a fully functioning prototype was
implemented, which was tested with three hundred
users. The next testing phase is planned for Jan-

9



uary 2021, and will be performed in association
with the social journalism platform Blasting News9,
which counts with more than 100 million monthly
readers.

References
[1] EUNOMIA. https://eunomia.social/. (ac-

cessed December 31, 2020).

[2] M. Abe. Universally verifiable mix-net with
verification work independent of the number
of mix-servers. In International Conference on
the Theory and Applications of Cryptographic
Techniques, pages 437–447. Springer, 1998.

[3] B. Adida. Helios: Web-based open-audit vot-
ing. In USENIX security symposium, vol-
ume 17, pages 335–348, 2008.

[4] O. Baudron, P.-A. Fouque, D. Pointcheval,
J. Stern, and G. Poupard. Practical multi-
candidate election system. In Proceedings
of the twentieth annual ACM symposium on
Principles of distributed computing, pages 274–
283, 2001.

[5] S. Bayer and J. Groth. Efficient zero-
knowledge argument for correctness of a shuf-
fle. In Annual International Conference on
the Theory and Applications of Cryptographic
Techniques, pages 263–280. Springer, 2012.

[6] J. Benaloh. Simple verifiable elections. EVT,
6:5–5, 2006.

[7] J. C. Benaloh and M. Yung. Distributing the
power of a government to enhance the privacy
of voters. In Proceedings of the fifth annual
ACM symposium on Principles of distributed
computing, pages 52–62, 1986.

[8] J. D. C. Benaloh. Verifiable secret-ballot elec-
tions. 1989.

[9] D. J. Bernstein. Curve25519: new diffie-
hellman speed records. In International Work-
shop on Public Key Cryptography, pages 207–
228. Springer, 2006.

[10] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe,
and B.-Y. Yang. High-speed high-security sig-
natures. Journal of cryptographic engineering,
2(2):77–89, 2012.

[11] J. Camenisch and M. Stadler. Efficient group
signature schemes for large groups. In Annual
International Cryptology Conference, pages
410–424. Springer, 1997.

9https://www.blastingnews.com (accessed December 31,
2020)

[12] D. Chaum. Blind signatures for untraceable
payments. In Advances in cryptology, pages
199–203. Springer, 1983.

[13] D. Chaum and T. P. Pedersen. Wallet
databases with observers. In Annual Inter-
national Cryptology Conference, pages 89–105.
Springer, 1992.

[14] D. L. Chaum. Untraceable electronic mail, re-
turn addresses, and digital pseudonyms. Com-
munications of the ACM, 24(2):84–90, 1981.

[15] M. R. Clarkson, S. Chong, and A. C. Myers.
Civitas: Toward a secure voting system. In
2008 IEEE Symposium on Security and Pri-
vacy (sp 2008), pages 354–368. IEEE, 2008.

[16] J. D. Cohen and M. J. Fischer. A robust
and verifiable cryptographically secure election
scheme. 1985.

[17] R. Cramer, I. Damg̊ard, and B. Schoenmakers.
Proofs of partial knowledge and simplified de-
sign of witness hiding protocols. In Annual In-
ternational Cryptology Conference, pages 174–
187. Springer, 1994.

[18] R. Cramer, M. Franklin, B. Schoenmakers,
and M. Yung. Multi-authority secret-ballot
elections with linear work. In International
Conference on the Theory and Applications
of Cryptographic Techniques, pages 72–83.
Springer, 1996.

[19] R. Cramer, R. Gennaro, and B. Schoenmak-
ers. A secure and optimally efficient multi-
authority election scheme. European trans-
actions on Telecommunications, 8(5):481–490,
1997.

[20] L. F. Cranor and R. K. Cytron. Sensus: A
security-conscious electronic polling system for
the internet. In Proceedings of the Thirti-
eth Hawaii International Conference on system
sciences, volume 3, pages 561–570. IEEE, 1997.

[21] Y. Desmedt. Society and group oriented cryp-
tography: A new concept. In Conference on
the Theory and Application of Cryptographic
Techniques, pages 120–127. Springer, 1987.

[22] R. Dingledine, N. Mathewson, and P. Syver-
son. Tor: The second-generation onion router.
Technical report, Naval Research Lab Wash-
ington DC, 2004.

[23] B. W. DuRette. Multiple administrators
for electronic voting. Bachelor thesis, Mas-
sachusetts Institute of Technology, Boston,
USA, 1999.

10



[24] A. Fiat and A. Shamir. How to prove yourself:
Practical solutions to identification and signa-
ture problems. In Conference on the theory and
application of cryptographic techniques, pages
186–194. Springer, 1986.

[25] A. Fujioka, T. Okamoto, and K. Ohta. A
practical secret voting scheme for large scale
elections. In International Workshop on the
Theory and Application of Cryptographic Tech-
niques, pages 244–251. Springer, 1992.

[26] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof sys-
tems. SIAM Journal on computing, 18(1):186–
208, 1989.

[27] M. A. Herschberg. Secure electronic voting
over the world wide web. PhD thesis, Mas-
sachusetts Institute of Technology, 1997.

[28] M. Hirt and K. Sako. Efficient receipt-free vot-
ing based on homomorphic encryption. In In-
ternational Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages
539–556. Springer, 2000.

[29] M. Jakobsson. A practical mix. In Interna-
tional Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 448–
461. Springer, 1998.

[30] M. Jakobsson, A. Juels, and R. L. Rivest. Mak-
ing mix nets robust for electronic voting by
randomized partial checking. In USENIX secu-
rity symposium, pages 339–353. San Francisco,
USA, 2002.

[31] R. Joaquim, A. Zúquete, and P. Fer-
reira. REVS – a robust electronic vot-
ing system. IADIS International Journal of
WWW/Internet, 1(2):47–63, 2003.

[32] A. Juels, D. Catalano, and M. Jakobsson.
Coercion-resistant electronic elections. In To-
wards Trustworthy Elections, pages 37–63.
Springer, 2010.

[33] C. A. Neff. A verifiable secret shuffle and its
application to e-voting. In Proceedings of the
8th ACM conference on Computer and Com-
munications Security, pages 116–125, 2001.

[34] T. Okamoto. An electronic voting scheme.
In Advanced IT Tools, pages 21–30. Springer,
1996.

[35] T. Okamoto. Receipt-free electronic voting
schemes for large scale elections. In Interna-
tional Workshop on Security Protocols, pages
25–35. Springer, 1997.

[36] C. Park, K. Itoh, and K. Kurosawa. Efficient
anonymous channel and all/nothing election
scheme. In Workshop on the Theory and Ap-
plication of of Cryptographic Techniques, pages
248–259. Springer, 1993.

[37] R. L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and
public-key cryptosystems. Communications of
the ACM, 21(2):120–126, 1978.

[38] K. Sako and J. Kilian. Secure voting us-
ing partially compatible homomorphisms. In
Annual International Cryptology Conference,
pages 411–424. Springer, 1994.

[39] K. Sako and J. Kilian. Receipt-free mix-type
voting scheme. In International Conference on
the Theory and Applications of Cryptographic
Techniques, pages 393–403. Springer, 1995.

[40] C.-P. Schnorr. Efficient identification and sig-
natures for smart cards. In Conference on the
Theory and Application of Cryptology, pages
239–252. Springer, 1989.

[41] A. Shamir. How to share a secret. Communi-
cations of the ACM, 22(11):612–613, 1979.

11


