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Abstract

In the 21st century, every year, approximately 880 thousand people living in Europe suffer an ischemic stroke.
Predicting the patient’s outcome is key to choosing the course of treatment. In this master thesis, it was predicted
the functional outcome, by the binary version, of the modified Rankin Scale at two points in time: three months
and one year after the stroke took place. Often, data provided by health organisations to conduct these studies
is incomplete which can impair the results. Thus the need arises to choose a proper way to handle the missing
data. Here missing values were imputed with six different methods and the classifiers were then trained with
seven distinct machine learning models. It was shown the area under the receiver operating characteristic curve
for the best classifiers, at the three months and one-year marks, are 0.8217 and 0.7537, respectively. Moreover, it
was not found a statistically significant difference between the performance of the distinct imputation methods
for each machine learning model.
Keywords: Ischemic Stroke, Missing Data, Imputation Techniques, Machine Learning

1. Introduction
A cerebrovascular accident (CVA), or stroke, results
from ischemia caused by thrombosis, malformation,
stenosis, or a haemorrhage from a ruptured aneurysm
[1]. Roughly, 1.1 million people living in Europe suffer
a stroke yearly in the 21st century, ischemic strokes ac-
counting for approximately 80% of cases and this num-
ber is expected to rise to 1.5 million because of the age-
ing population [2, 3]. In the year 2013, 11.8% of all
deaths were attributed to stroke making it the second
main cause of death in the world (half of these were from
ischemic strokes). Furthermore, in 2013, a CVA is also
the third most common cause of disability (4.5%) being
responsible for 113 million disability-adjusted life-years
globally [4].

The course of treatment is highly dependable on the
predicted outcome of the patient meaning that any tool
created to help predict the patients’ functional outcome
are immensely useful. Moreover, it is common for both
the patient and the family to ask for a long term prog-
nosis which is an answer that is neither immediate nor
straightforward [5].

Over the last decade, the medical community has
been searching for the best scores to predict the pa-
tients’ functional outcome using data available at ad-
mission, making it possible to have a more informed
treatment decision. Among them, the Acute Stroke
Registry and Analysis of Lausanne (ASTRAL) [6], the
DRAGON [7] and the Totaled HealthRisks in Vascular
Events (THRIVE) [8] scores.

Currently, the modified Rankin Scale (mRS) is the
gold standard used scale for ”measuring the degree of
disability or dependence in the daily activities of peo-
ple who have suffered a stroke or other causes of neu-
rological disability” [9, 10]. The scale goes as follows
(the physician should choose the best fit of the patients’
ability) [10]: i Score 0: No symptoms. ii Score 1: No
significant disability. Able to carry out all usual activi-
ties, despite some symptoms. iii Score 2: Slight disabil-

ity. Able to look after own affairs without assistance,
but unable to carry out all previous activities. iv Score
3: Moderate disability. Requires some help, but able
to walk unassisted. v Score 4: Moderately severe dis-
ability. Unable to attend to own bodily needs without
assistance, and unable to walk unassisted. vi Score 5:
Severe disability. Requires constant nursing care and
attention, bedridden, incontinent. vii Score 6: Dead.

Some of this scale’s major strengths are: i ) it covers
the full range of functional outcomes, from no symp-
toms to death [11] ii ) its categorization is intuitive and
easily understood by clinicians and patients [11] iii ) its
concurrent validity is demonstrated by strong correla-
tion with measures of stroke pathology and agreement
with other stroke scales [12]. The main criticisms from
the scientific community to mRS has been its subjectiv-
ity when determining between categories and its repro-
ducibility by examiners and patients [12].

In order to predict the mRS artificial intelligence (AI)
was used. The term AI was used for the first time in
a conference in 1956 at Dartmouth [13]. Nowadays, AI
is comprised, for example, of machine learning (ML)
methods able to identify patterns and account for com-
plex interactions within the data [14].

The amount of large-scale annotated clinical data
is increasing due to the adoption of electronic health
record (EHR) systems, ML methods are also getting
better every year and are readily available in opensource
packages. These along with the rapidly growing com-
putational power and cloud storage have contributed to
the current growth in AI which, in turn, is expected
to alter the landscape of medical practice in the close
future [15, 16].

Nowadays, AI systems have already specialist-level
performance in a wide range of medical tasks [17, 18].
Furthermore, they also allow physicians to be in con-
tact with areas they haven’t been able to before, as AI
enables remote healthcare services for rural and low-
income zones [19].
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Missing data is a problem present in EHR and, given
that a lot of ML models only work on complete datasets,
it is a problem that needs to be dealt with either by
deleting incomplete observations or by imputing it, i.e.,
replacing any values that are missing with a value esti-
mated by the remaining available information [20].

Here we use machine learning techniques to predict
the functional outcome of a patient using the binary
version of the modified Rankin Scale: good outcome for
scores 0 to 2 and poor outcome for scores 3 to 6. This
is done at two points in time: three months and one
year after the initial stroke. In addiction, we are also
interested in studying the impact of missing data and
the choice of the data imputation technique in machine
learning models.

We start by performing the imputation using
six distinct approaches: mode/median according to
the quantitative/qualitative nature of the variables,
mode/median according to the quantitative/qualitative
nature of the variables and taking into account the
dependence of a few variables, hotdeck, k-nearest
neighbours, decision trees and multiple imputation
with posterior predictive distribution/conditional mean
imputation once again according to the quantita-
tive/qualitative nature of the variables. We then com-
pare the impact of the different imputation methods
in each machine learning model (L1 regression, Sup-
port Vector Machines, Random Forest, Xgboost, Neu-
ral Networks, Classification And Regression Trees and
k-Nearest Neighbours).

To our knowledge, similar work has only been done by
Woźnica et al. [21] who analysed different imputation
methods for a collection of datasets and a collection of
machine learning algorithms. Similarly, Jadhav et al.
[22] and Kyureghian et al. [23] have evaluated some of
the existing imputation techniques, yet not in the same
way. They focused on the quality of imputed data, by
assessing the accuracy of predicting the missing values
to fully known simulated data.

2. Background

2.1. Missing Data Mechanisms
It is important to understand the mechanisms by which
the data is missing before addressing the issue of impu-
tation since it will have an impact on some of the as-
sumptions made. Little et al. [24, 25] formulated three
possible missing data mechanisms taking into account
the relation between the missing (unobserved) and the
available (observed) data.

The three possible missing data mechanisms are then
defined as follows [20]:

i Missing Completely at Random (MCAR): the
probability of an observation being missing de-
pends only on itself. MCAR is the highest level of
random given that the missingness does not depend
on any information in the dataset. In a medical set-
ting, this might correspond to a doctor forgetting
to record the gender of every seventh patient that
comes in the emergency room - there is no hidden
mechanism related to any variable and it does not
depend on any characteristic of the patients.

ii Missing at Random (MAR): the probability of a

value being missing is related only to the observable
information, i.e., some statistical relationship ex-
ists between the observed and the missing variables
meaning the missing data may be traceable from
the observed values in the dataset. As a medical ex-
ample, let’s assume elderly people are less probable
to notify the physician they have had pneumonia
before, the response rate of the variable ”pneumo-
nia” will be correlated to the variable ”age”.

iii Not Missing at Random (NMAR): the probability
of a value being missing depends both on missing
and observed values. It refers to the case when nei-
ther MCAR nor MAR holds, the pattern of missing
data is not random and non predictable from avail-
able values.

NMAR is usually regarded as the worst type as it
might lead to bias whereas MCAR and MAR may lead
to loss of statistical power [26, 27]. Determining the
missing mechanism is usually impossible, as it depends
on unseen data. A t-test comparing the characteristics
of the groups’ missing values and observed values on a
certain variable will yield different characteristics if the
data is not MCAR yet the result is merely indicative
since it always depends on the sample size of the data.
Additionally, there is no method for distinguishing be-
tween MAR or NMAR data [25]. Given this impossi-
bility we must rely on sensitivity analyses and testing
how the inference holds under different conditions, e.g.
diabetic patients will have their blood sugar measured
more often than non diabetic patients meaning the vari-
able ”blood sugar” depends on the variable ”diabetic”
[22].

2.2. Handling Missing Values
The goal of the various imputation methods is the ac-
curate estimation of population parameters in order to
keep the power of the following data analysis and data
mining techniques. There is no rule as to what method
should be chosen to handle the missing values of a given
dataset yet there is a common agreement that imputa-
tion should be used with care in datasets with over 25%
of the data missing [22].

The easiest way to handle missing data is to omit
the observations or cases that have missing values. Al-
though this is often the standard method, it reduces
the dataset. Therefore should only be used when a small
amount of missing values is present [22]. Moreover, usu-
ally, deletion methods lead to valid inferences only for
MCAR data [28]. There are two general approaches:

• Complete-Case Analysis / Listwise Deletion: ob-
servations with one or more missing values are dis-
carded. It is assumed that the sample is represen-
tative of the whole population meaning the analysis
will not be biased towards a subgroup.

• Available-Case Analysis/ Pairwise Deletion: obser-
vations with one or more missing values are only
discarded if they are being analysed. Consequently,
sample sizes will be different making it impossible
to make a statistical comparison of the results [20].

Another way is to use single imputation which fills
missing values with a predicted value, all the while ig-
noring uncertainty, resulting often in the underestima-
tion of variance [20]. Similarly to the deletion meth-
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ods, several approaches can be taken. Below is a non-
comprehensive list:

• Imputation with a constant: the missing values are
replaced with a constant. When dealing with a cat-
egorical variable one might replace it with “Miss-
ing” or a value of no significance, e.g., “999”.

• Mode, Mean and Median Imputation: the cate-
gorical and numerical missing values are replaced
by the variables mode or mean/median, respec-
tively. The mean should only be used for popula-
tions which have a normal distribution, otherwise
the median should be used [20]. The latter is also
more robust to outliers. There are disadvantages
[29]: i ) The new variance understates the true
variance. ii ) The new distribution has more values
under the category containing mean/median/mode
than the true population. iii ) The correlations be-
tween variables are diminished.
A special case can be used, conditional
mode/mean/median. Here a variable is
grouped according to a second variable and
the mode/mean/median is computed for every
unique value of the second variable. It might be
useful when a known relation exists.

• Hot Deck Imputation: the missing values are re-
placed with a value from the known data’s esti-
mated distribution. The implementation is done
in two steps, first the data is grouped in clusters
and each missing value is attributed to a cluster.
Then a distribution for the variable with the miss-
ing values is created for each cluster and the miss-
ing value is filled. This simple approach allows for
the variable distribution’s preservation however it
underestimates the variability [30]. Moreover, the
definition of ”similar” for the creation of clusters
is not straightforward, several metrics can be used
which will result in different imputations [29].

• Model-Based Imputation: the missing values are
replaced by values estimated by a predictive model.
The complete data will be used to create a model,
e.g., regression, logistic regression, neural networks
or other (non) parametric modelling techniques.
Due to its characteristics, the model won’t have
high accuracy when the data is MCAR. When
rightly applied, its estimated values are usually
more well-behaved than the true values [20].

• Regression Imputation: the missing values are re-
placed by values estimated by a regression model
(a particular case of a Model-Based Imputation).
This imputation method, like the Hot Deck, is able
to preserve the distribution shape however it might
produce biased results when applied to NMAR and
MAR data.
There are disadvantages since it does not take into
account the uncertainty in the missing data [29]: i )
It assumes the estimated variable correlates with
the remaining variables in the dataset. ii ) It rein-
forces relationships already existent in the dataset
reducing its generalization capability. iii ) It un-
derstates the distribution’s variance. iv ) The es-
timated value is not constrained and may conse-
quently be outside predetermined boundaries for
set variable thus requiring additional adjustment.

• k-Nearest Neighbours Imputation: the missing val-
ues are replaced by the mean of the k values com-
ing from the k most similar complete observations.
There are several ways to compute this similarity
(distance functions, e.g., Euclidean, Manhattan,
Mahalanobis, Pearson, etc) notwithstanding it is
very time consuming for a large dataset. Moreover,
the value given to k should be thoroughly investi-
gated, the value should be large enough to encom-
pass all significant attributes yet not as large that
would include attributes which significantly differ
from our target observation [20]. Its main advan-
tage is the fact that the correlation structure of the
data is taken into consideration. Additionally, it
can handle both discrete and continuous variables
[20].

2.2.1 Multiple Imputation
Single imputation tends to underestimate the variance
and ignores uncertainty [20] while multiple imputation
incorporates uncertainty into its methods [31]. Rubin
[32] created a method which takes the average of the
outcome across multiple imputed datasets. The impu-
tation of multiple plausible values allows the model to
account for uncertainty. This Monte Carlo technique
consists of three steps: i Imputation: missing values
are replaced, using a method of choice, M times (5–10
is generally sufficient) [28]. ii Analysis: every M com-
pleted dataset is analysed (e.g. it is built a logistic re-
gression classifier for outcome prediction), resulting in
M analyses [20]. iii Pooling: the M analysis and results
are consolidated into one final one, e.g., by computing
the mean and the 95 % CI of the M analyses [20].

The above three steps make multiple imputation a
very time consuming step, which is why many analyst
opt not to choose set imputation.

3. Implementation
3.1. Database: Precise Stroke
The dataset used in this study results from a collab-
oration, between investigators from Instituto de En-
genharia de Sistemas e Computadores, Investigação e
Desenvolvimento in Lisbon (INESC-ID) and from the
Santa Maria Hospital in Lisbon, in the project Precise.
Our original dataset was comprised of 536 patients how-
ever the mRS three months and one year after the event
was only recorded for 243 and 234 patients, respectively.
This database has data collected at admission, follow-up
data, data collected on discharge, three months and one
year after the initial stroke. Before data pre-processing
93% of the dataset features had more than 30% of its
data missing, 90% of the dataset features had more than
50% of its data missing and 64% of the dataset features
had more than 70% of its data missing. Further research
was not done given the elevated number of features in
the dataset, 393 and 466 for the mRS three months and
one year, respectively. For more information regarding
missing data exploration in R the work by Ghazali et
al. should be consulted [33].

3.2. Data Cleaning and Manipulation
Data cleaning was performed for both predicted out-
comes in the same manner by deleting features that
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contained more than 90% of missing values and features
which were meta-data, e.g. record number. Variables
that record times were converted into time differences
between variables, e.g. time of the initial event and
time of arrival at the hospital becomes time between the
event and arrival. Variables consisting of a true/false
list were used to create a column for each list entry.
Furthermore, observations having a field ”Unknown” or
”Untested” were set to ”NA” whereas the field ”Not
Applicable” was kept. Patients for which the mRS was
not recorded or were dead by the time of its assessment
were removed. Moreover, using the caret package [34],
features with zero variance and near-zero variance (the
feature must have a ratio of the most common value to
the second most common value lower than 95:5) were
removed as well as features with a correlation higher
than 85%. These last features were removed in order to
enable the use of multiple imputation. After cleaning
the data, the resulting dataset had 138 features and 243
patients for the mRS three months and 192 features and
234 patients for the mRS one year.

The target variable was the mRS three months and
one year after the event. To turn the problem into a
binary classification problem the mRS was discretized
into two classes: i Good outcome: defined by mRS ≤
2 ii Poor outcome: defined by mRS > 2 This particu-
lar discretization is of medical relevance because it sep-
arates the patients who will be able to live a rather
normal independent life from the ones who will require
significant assistance.

3.3. Data Imputation
The database Precise Stroke has a number of dependent
fields, i.e. fields which can only be filled when a third
field has a pre-determined answer, as is shown in Fig.
1: ”Idade” can only be filled when the previous field’s
(”Hipertensão Arterial” or ”Diabetes Mellitus”) answer
is ”Sim”. In this cases primal data imputation was per-
formed, single value imputation was used with the value
”9999” or ”0” depending on the variable’s quantitative
or qualitative nature, respectively.

Figure 1: Example of two dependent fields on the
database Precise Stroke.

After data cleaning, manipulation and a primal data
imputation, 6 experiments were designed that aimed to
assess with what precision we could predict the patient’s
mRS three months and the mRS one year after admis-
sion. Each experiment corresponds to a different impu-
tation method:

• Mode/Median Imputation (Imp. 1), according to
the quantitative/qualitative nature of the variables
(imputeTS package in R [35]).

• Mode/Median Imputation (Imp. 2), according to
the quantitative/qualitative nature of the variable
and taking into account the dependence of a few

variables (imputeTS package in R for each pair de-
pendent/independent variable [35]).

• Hotdeck Imputation (Imp. 3) (VIM package in R
[36]).

• k-Nearest Neighbours Imputation (Imp. 4). Done
by using the default settings (k=5 and a variation
of the Gower Distance) of the VIM package in R
[36].

• Decision Trees Imputation (Imp. 5) (missForest
package in R [37, 38]).

• Multiple Imputation (Imp. 6) with poste-
rior predictive distribution or conditional mean-
imputation, according to the quantitative or qual-
itative nature of the variables. Done by using
the default settings (maximum number of itera-
tions=30 and number of chains=4) of the mi pack-
age in R [39].

3.4. Machine Learning Models
For each experiment we used the following classifiers:

• Logistic Regression L1-regularised; caret method
”regLogistic” from R package LiblineaR [40, 41].

• Support Vector Machines: caret method ”svm-
Poly” from R package kernlab [42, 43].

• Random Forest: caret method ”rf” from R package
randomForest [44].

• Extreme Gradient Boosting: caret method ”xg-
bLinear” from R package xgboost [45, 46, 47].

• Neural Network: caret method ”nnet” from R
package nnet [48, 49].

• Classification And Regression Trees: caret method
”rpart” from R package rpart [50].

• k-Nearest Neighbours: caret method ”knn” from R
itself [48, 49].

3.5. Evaluation and Training
To measure the performance of the models it was used
the AUC. To train and validate the model it was used
10-fold cross validation, using the caret package [34].
ROC and PR curves were created, using the mLeval R
package [51], to further compare the models. In order
to determine if the differences observed between the dif-
ferent classifiers’ AUC were statistically significant the
DeLong’s test was applied, using the pROC R package,
and a p-value threshold of 0.05 was chosen. To deter-
mine the best parameterization for each model a grid
search was performed over a set of reasonable values.

4. Results
4.1. Modified Rankin Scale at Three Months
From table 1 it can be seen how there is no one bet-
ter imputation method, it greatly depends on the model
being used to train the classifier. Woźnica et al. [21]
arrived at the same conclusion, more complex methods
aren’t always the best option. Here the combination
which achieved the best results was performing hotdeck
imputation and using neural networks as the classifica-
tion model with an AUC of 0.8217.

In Figure 2 can be found the twenty most important
variables and its relative importance (scale of 100%)
for the best modified Rankin Scale classifier at three
months. 13 out of the 20 variables are all known pre-
dictors that are used by traditional scores (National
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Institutes of Health Stroke Scale/Score (NIHSS) [52],
Hospital Anxiety and Depression Scale (HADS) [53],
Mini-Mental State Examination (MMSE) [54] and the
Montreal Cognitive Assessment (MoCA) [55]) also ap-
pear in the most important features list of the classifiers.
The major presence of the NIHSS score comes as no sur-
prise given its metrics measure the symptoms’ severity
and there is a direct correlation between the severity of
the symptoms and the patient’s likelihood to recover [5].
Interestingly, features related to recovery are also rep-
resented, and ranked fourth and fifth nonetheless, high-
lighting the importance of physical therapy and speech
therapy.

In a medical context, a classifier which has an 80%
sensitivity, i.e. is able to predict eight in every ten pa-
tients who will require significant assistance (positive
class), is considered a good model [56]. Looking at ta-
ble 2, the partial AUC values for an 80% sensitivity
were computed and the correction by McClish was ap-
plied. The best imputation method is the same as when
the total AUC is computed, table 1, as well as the best
pair imputation method/classification model.

Furthermore, it was previously discussed how the
metric AUC could be misleading when computed for an
imbalanced dataset as a small variation in the number
of correct and incorrect predictions resulted in a large
change in the ROC curve and, consequently, in the AUC
score providing an excessively optimistic value for per-
formance [57]. Fernández et al. advise the reader to, in
this situation, use the precision-recall curve and AUC-
PR. The different metrics AUC and AUC-PR in tables
1 and 3, respectively, are not in agreement when elect-
ing the best imputation method and classification model
pair. For AUC-PR the best imputation method would
be decision trees paired with a random forest classifier.
These results show how important it is the choice of the
evaluation metric.

Figure 2: The twenty most important variables and its
relative importance (scale of 100%) for the best model
predicting the modified Rankin Scale at three months:
hotdeck imputation and neural network classification.

Given that the observed performances were so close
to each other, paired DeLong’s tests using a p-value of
0.05 were performed to determine whether the observed
differences were statistically significant. Table 4 and

5 show the results among each classification model and
imputation method, respectively. For readability rea-
sons, the p-value was omitted and a check-mark was
placed instead when the difference between the classi-
fiers are statistically significant. Models which did not
show any significant difference were also omitted.

Taking a closer look at each model in table 4 it
can be concluded that the great majority of imputa-
tion methods are statistically equivalent. To the best of
our knowledge, this can be explained by two facts: the
elevated amount of missing values (93% of the dataset
features had more than 30% of its data missing) and the
small number of patients used to conduct this study.
Previous studies [21, 22, 23] have shown the differ-
ence between the performance of the several imputation
methods is small and small sample sizes only allow large
differences to be detected [58]. Moreover, it is known
imputation should be used carefully in datasets with
over 25% of the data missing [22], the high proportion
of missing data may introduce considerable bias result-
ing in too similar imputations. On the other hand, in
table 5, it can be concluded that the great majority of
classification models are statistically different.

ROC curves for the six imputation methods and seven
different models predicting the modified Rankin Scale
at three months are not shown given that the curves
overlap several times and there is no clear distinction
between them which is expected considering the close
AUC values in table 1 and the statistical tests per-
formed, table 4.

Coherently, the precision-recall curves are zigzagged,
reason why they are also not shown. It is common to
have noisy curves for small recall values however when
this tendency persists for higher recalls, curves for dif-
ferent classifiers crossing each other very frequently, it
makes it hard to choose the best classifier by analyzing
set curves.

4.2. Modified Rankin Scale at One Year

5. Modified Rankin Scale at One Year
Contrarily to the results for the models predicting the
modified Rankin Scale at three months, from table 6 the
best imputation model can be chosen, hotdeck, which
yields the best results for four out of the seven models
supporting the previous conclusion that more complex
methods aren’t always the best option [21]. Here, sim-
ilarly to the results at three months, the combination
which achieved the best results was performing hotdeck
imputation and using neural networks as the classifica-
tion model with an AUC of 0.7537.

It was expected an increase in performance for the
models predicting the modified Rankin Scale at one year
when compared to predicting the modified Rankin Scale
at three months since stroke symptoms are maximal on
onset and decrease in severity with time. Moreover, as
time goes by, the patients’ state is less likely to sig-
nificantly change, meaning, it was expected to be eas-
ier to predict the patients’ functional outcome at one
year based on their state at three months than their
functional outcome at three months based on the pa-
tients’ state a few days after stroke (when the symp-
toms are more likely to vary greatly on a daily basis)
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Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours

Imp. 1 0.7665 + 0.0218 0.7615 + 0.0219 0.8004 + 0.0209 0.7754 + 0.0216 0.7979 + 0.0208 0.6250 + 0.0230 0.7110 + 0.0219

Imp. 2 0.7705 + 0.0217 0.7589 + 0.0219 0.8001 + 0.0209 0.7566 + 0.0220 0.7984 + 0.0207 0.6433 + 0.0235 0.6919 + 0.0218

Imp. 3 0.7815 + 0.0214 0.7730 + 0.0216 0.7998 + 0.0209 0.7737 + 0.0216 0.8217 + 0.0198 0.6456 + 0.0225 0.7061 + 0.0218

Imp. 4 0.7760 + 0.0216 0.7811 + 0.0214 0.7916 + 0.0212 0.7818 + 0.0214 0.7945 + 0.0209 0.6218 + 0.0233 0.7071 + 0.0220

Imp. 5 0.7891 + 0.0212 0.7672 + 0.0217 0.7876 + 0.0213 - 0.7365 + 0.0224 0.7087 + 0.0230 0.7303 + 0.0220

Imp. 6 0.8014 + 0.0209 0.7791 + 0.0214 0.7972 + 0.0210 - 0.7768 + 0.0215 0.6768 + 0.0228 0.7314 + 0.0220

Table 1: AUC results for six imputation methods and seven different models predicting the modified Rankin Scale
at three months. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours

Imp. 1 0.8708 0.8670 0.9114 0.8819 0.8979 0.6819 0.8045

Imp. 2 0.8759 0.8640 0.9104 0.8590 0.8967 0.7065 0.7783

Imp. 3 0.8885 0.8805 0.9110 0.8791 0.9151 0.7119 0.7981

Imp. 4 0.8825 0.8918 0.9027 0.8895 0.8930 0.6769 0.7989

Imp. 5 0.9006 0.8739 0.8978 - 0.8320 0.7948 0.8295

Imp. 6 0.9129 0.8896 0.9086 - 0.8794 0.7548 0.8311

Table 2: Partial AUC results, 80% sensitivity, for six imputation methods and seven different models predicting
the modified Rankin Scale at three months. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours

Imp. 1 0.470 0.640 0.630 0.650 0.550 0.140 0.500

Imp. 2 0.440 0.630 0.630 0.600 0.550 0.100 0.520

Imp. 3 0.400 0.600 0.610 0.600 0.550 0.400 0.400

Imp. 4 0.480 0.600 0.600 0.600 0.530 0.130 0.480

Imp. 5 0.600 0.640 0.660 - 0.530 0.130 0.600

Imp. 6 0.600 0.620 0.590 - 0.570 0.390 0.600

Table 3: AUC-PR results for six imputation methods and seven different models predicting the modified Rankin
Scale at three months. The best imputation method for each model is highlighted.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6

Imp. 1 X
Imp. 2 X
Imp. 3

Imp. 4

Imp. 5

Imp. 6

((a)) Logistic Regression L1-regularised.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6

Imp. 1 X
Imp. 2 X
Imp. 3 X X
Imp. 4 X
Imp. 5 X
Imp. 6

((b)) Neural Network.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6

Imp. 1 X X
Imp. 2 X X
Imp. 3 X
Imp. 4 X X
Imp. 5

Imp. 6

((c)) Classification And Regression Trees.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6

Imp. 1

Imp. 2 X X
Imp. 3

Imp. 4

Imp. 5

Imp. 6

((d)) k-Nearest Neighbours.

Table 4: Paired DeLong’s test results for each model - prediction of modified Rankin Scale at three months.
Note: The following models are not presented since there were no significant differences present: Support Vector
Machine, Random Forest, Extreme Gradient Boosting.

[5]. Comparing the AUC for both three months and
one year, tables 1 and 6 respectively, it is seen this is
not true. A possible explanation is that the added fea-
tures have a portion of missing data too big that, when
completed with the different imputation techniques, add
noise rather than any relevant information resulting in
the worsening of the AUC.

In Figure 3 can be found the twenty most important
features and its relative importance (scale of 100%) for
the best modified Rankin Scale classifier at one year.
The tendency seen at three months of variables corre-
sponding to known predictors that are used by tradi-
tional scores is still present as anticipated. Only 4 of
the 20 features were recorded at three months which is

a lower number than expected given that, as mentioned
above, the patients’ situation is less likely to signifi-
cantly change the more time has passed since the stroke
occurred [5]. This corroborates the above hypothesis,
data recorded at three months added more noise than
information. Although the majority of the most impor-
tant variables at one year were present at three months,
the overlap between the variables at the two dates is
very small.

Looking at table 7, the partial AUC values for an
80% sensitivity were computed and the correction by
McClish was applied. As for the three months mark,
the best imputation method is the same as when the
total AUC is computed, table 6, as well as the best

6



KNN CART NN Xgboost RF SVM LR

KNN X X X X X X
CART X X X X X
NN X X
Xgboost

RF X X
SVM

LR

((a)) Mode/Median Imputation (Imp. 1).

KNN CART NN Xgboost RF SVM LR

KNN X X X X X X
CART X X X X X
NN X X
Xgboost X
RF X
SVM

LR

((b)) Mode/Median Imputation taking into account the depen-
dence of a few variables (Imp. 2).

KNN CART NN Xgboost RF SVM LR

KNN X X X X X X
CART X X X X X
NN X X X
Xgboost

RF

SVM

LR

((c)) Hotdeck Imputation (Imp. 3).

KNN CART NN Xgboost RF SVM LR

KNN X X X X X X
CART X X X X X
NN

Xgboost

RF

SVM

LR

((d)) K-Nearest Neighbours Imputation (Imp. 4).

KNN CART NN RF SVM LR

KNN X X X
CART X X X
NN X X
RF

SVM

LR

((e)) Decision Trees Imputation (Imp. 5).

KNN CART NN RF SVM LR

KNN X X X X X
CART X X X X
NN

RF

SVM

LR

((f)) Multiple Imputation (Imp. 6).

Table 5: Paired DeLong’s test results for each imputation method - prediction of modified Rankin Scale at three
months.

pair imputation method/classification model.
Furthermore, the different metrics AUC and AUC-

PR in tables 6 and 8, respectively, are again not in
agreement when electing the best imputation method
and classification model pair. Here, for the AUC-PR
evaluation metric, there is a tie for the best pair: mul-
tiple imputation/logistic regression and mode/median
imputation with dependent variables/extreme gradient
boosting.

Figure 3: The twenty most important variables and its
relative importance (scale of 100%) for the best model
predicting the modified Rankin Scale at one year: hot-
deck imputation and neural network classification.

Table 9 and 10 show the results of the paired De-

Long’s tests, using a p-value of 0.05, among each clas-
sification model and imputation method, respectively.

Taking a closer look at each model in table 9 it can be
concluded that the great majority of imputation meth-
ods are statistically equivalent. The same happened for
the results at three months and both outcomes can be
explained by the facts enumerated before: the elevated
amount of missing values and the small number of pa-
tients used to conduct this study. On the other hand, in
table 10, contrarily to what happens for the results at
three months, it is seen greater statistical equivalence
between classification models. Again, a possible expla-
nation lies in the added features: adding it, with its
big portion of missing data might have resulted in the
addiction of noise rather than any relevant information.

The ROC curves for the six imputation methods and
seven different models predicting the modified Rankin
Scale at one year are not shown given that the same
conclusion can be drawn as at three months: there is
no clear distinction between them, the different classi-
fier for each classification method are equivalent which
is supported by the AUC values in table 6 and the
statistical tests performed, table 9.

As at the three-month timeline, the precision-recall
curves are zigzagged, reason why they are also not
shown.

6. Conclusions
It was possible to conclude that machine learning can
indeed effectively predict the functional outcome of an
ischemic stroke patient. The AUC for the three months

7



Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours

Imp. 1 0.7140 + 0.0244 0.7166 + 0.0239 0.6756 + 0.0231 0.7092 + 0.0244 0.7254 + 0.0241 0.6680 + 0.0247 0.6982 + 0.0235

Imp. 2 0.7103 + 0.0244 0.7188 + 0.0239 0.6632 + 0.0230 0.7067 + 0.0243 0.7488 + 0.0235 0.6341 + 0.0242 0.6989 + 0.0235

Imp. 3 0.7295 + 0.0242 0.7296 + 0.0239 0.6683 + 0.0230 0.7320 + 0.0242 0.7537 + 0.0232 0.6739 + 0.0247 0.6966 + 0.0233

Imp. 4 0.7236 + 0.0243 0.7236 + 0.0239 0.6802 + 0.0233 0.7075 + 0.0244 0.7358 + 0.0238 0.6297 + 0.0241 0.6989 + 0.0235

Imp. 5 0.7278 + 0.0242 0.7233 + 0.0241 0.6826 + 0.0232 - 0.6857 + 0.0248 0.6782 + 0.0247 0.6885 + 0.0238

Imp. 6 0.7171 + 0.0242 0.6959 + 0.0239 0.6687 + 0.0231 - 0.7146 + 0.0244 0.6861 + 0.0245 0.6950 + 0.0240

Table 6: AUC results for six imputation methods and seven different models predicting the modified Rankin Scale
at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation, Imp. 2 - Mode/Median
Imputation taking into account the dependence of a few variables, Imp. 3 - Hotdeck Imputation, Imp. 4 - K-
Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6 - Multiple Imputation. The best
imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours

Imp. 1 0.8062 0.8117 0.7564 0.7999 0.8078 0.7427 0.7877

Imp. 2 0.8013 0.8147 0.7388 0.7970 0.8357 0.6957 0.7888

Imp. 3 0.8264 0.8288 0.7460 0.8298 0.8374 0.7508 0.7857

Imp. 4 0.8187 0.8211 0.7626 0.7973 0.8186 0.6894 0.7888

Imp. 5 0.8247 0.8198 0.7662 - 0.7663 0.7569 0.7735

Imp. 6 0.8108 0.7837 0.7465 - 0.8065 0.7679 0.7822

Table 7: Partial AUC results, 80% sensitivity, for six imputation methods and seven different models predicting
the modified Rankin Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation,
Imp. 2 - Mode/Median Imputation taking into account the dependence of a few variables, Imp. 3 - Hotdeck
Imputation, Imp. 4 - K-Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6 - Multiple
Imputation. The best imputation method for each model is highlighted.

Logistic Regression Support Vector Machine Random Forest Extreme Gradient Boosting Neural Network CART k-Nearest Neighbours

Imp. 1 0.560 0.610 0.670 0.590 0.080 0.340 0.590

Imp. 2 0.610 0.600 0.690 0.710 0.100 0.340 0.580

Imp. 3 0.680 0.540 0.580 0.620 0.120 0.430 0.460

Imp. 4 0.630 0.630 0.700 0.600 0.250 0.340 0.650

Imp. 5 0.520 0.520 0.610 - 0.480 0.250 0.530

Imp. 6 0.710 0.640 0.670 - 0.550 0.380 0.370

Table 8: AUC-PR results for six imputation methods and seven different models predicting the modified Rankin
Scale at one year. The six different imputations used: Imp. 1 - Mode/Median Imputation, Imp. 2 - Mode/Median
Imputation taking into account the dependence of a few variables, Imp. 3 - Hotdeck Imputation, Imp. 4 - K-
Nearest Neighbours Imputation, Imp. 5 - Decision Trees Imputation, Imp. 6 - Multiple Imputation. The best
imputation method for each model is highlighted.

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6

Imp. 1 X
Imp. 2 X X
Imp. 3 X X
Imp. 4 X
Imp. 5

Imp. 6

((a)) Neural Network

Imp. 1 Imp. 2 Imp. 3 Imp. 4 Imp. 5 Imp. 6

Imp. 1 X
Imp. 2 X X X
Imp. 3 X
Imp. 4 X X
Imp. 5

Imp. 6

((b)) Classification And Regression Trees

Table 9: Paired DeLong’s test results for each model - prediction of modified Rankin Scale at one year. Note:
The following models are not presented since there were no significant differences present: Logistic Regression,
Support Vector Machine, Random Forest, Extreme Gradient Boosting and k-Nearest Neighbours. The six different
imputations used: Imp. 1 - Mode/Median Imputation, Imp. 2 - Mode/Median Imputation taking into account
the dependence of a few variables, Imp. 3 - Hotdeck Imputation, Imp. 4 - K-Nearest Neighbours Imputation,
Imp. 5 - Decision Trees Imputation, Imp. 6 - Multiple Imputation.

and one-year mark are 0.8217 and 0.7537, respectively
meaning more data does not necessarily imply better
results. Moreover, although there is a clear distinction
between classifiers trained with only different machine
learning methods, the same cannot be said for classi-
fiers trained with only different imputation methods.
Finally, it was highlighted how important it is to choose
the right evaluation metric according to the problem’s
specificity. In the future we wish to improve our per-
formances by using more and richer records from the

Precise Stroke Database. By adding more patients and
with less missing data we hope to be able to answer
the question: which imputation method results better
for electronic health records and does this answer de-
pend on the machine learning method being used for
training.
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KNN

CART X X X X
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