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Chairperson: Doctor José Luı́s Brinquete Borbinha
Supervisor: Doctor David Manuel Martins de Matos

Member of the Committee: Doctor Bruno Emanuel da Graça Martins

January 2021





Acknowledgements

I would like to first thank my advisor, David, for all the support provided and for pushing me
to do better. Not only in this work, he contributed deeply to the way i face challenges and more
importantly, to my view of science. Throughout our many fruitful discussions, he always tried
to bring the best in me...

To all the friends that supported me along the way, to my family, and everyone at HLT that
always shared their knowledge and were always keen on explaining and giving more, i thank
you.

Lisboa, January 22, 2021
Duarte Teles





For my family and friends. . .





Resumo

Uma peça narrativa pode vir acompanhada de música como forma de enfatizá-la. Neste tra-

balho, abordamos o problema de modelação da estrutura temática da música para conteúdo

cinematográfico num cenário de streaming. Isto é concretizado por meio do mapeamento das

relações entre conjuntos de personagens e locais em diferentes janelas temporais, elementos

que afirmamos serem marcadores narrativos. Ao conectar situações semelhantes a partir da

música que lhes está associada, relacionamos eventos narrativos por meio de sua similtude

temática.

Apresentamos um método totalmente automático para gerar, a partir de um ou mais filmes

e dos seus meta dados (guião e legendas), uma versão de qualidade do áudio que é repro-

duzida, associado a um conjunto de etiquetas. Estas podem ser usados de forma a mapear a

narrativa do filme e, de forma mais geral, como uma verdade fundamental que pode ser apli-

cada a outros estudos. Generalizamos a verdade fundamental em termos da coocorrência de

etiquetas. Isto permite-nos ter uma perspectiva topológica das diferentes diretrizes narrativas

que ocorrem ao longo do filme.

Grupos de eventos semelhantes atuam como um ponto de ancoragem ao qual associamos

a música que é tocada. Por ter uma etiqueta singular para descrever grupos de caracterı́sticas

musicais, podemos construir associações entre estes grupos e dar-lhes nomes. Usamos estes

grupos para construir um mapa global de relações entre eventos cinematográficos semelhantes,

dadas as suas caracterı́sticas musicais compartilhadas.





Abstract

A narrative piece can be accompanied by music as a way of emphasizing it. In this work,

we approach the problem of modelling the thematic structure of music for film content in a

streaming scenario. This is achieved through the mapping of relationships between sets of

characters and locations in different time windows, elements that we claim to be narrative

markers. By connecting similar situations based on the music that is associated with them, we

relate narrative events though their thematic similarity.

We introduce a fully automatic method to generate, from one or more movies and their

metadata material (script and subtitles), a quality version of the audio that is played together

with a set of labels. These can be used to map the narrative of the movie and more generally,

as a ground truth that can be applied to other studies, acting as the semantic to the material

that they are associated with. We generalize the ground truth in terms of the co-occurrence of

labels. This allows us to have a higher level overview of the different narrative guidelines that

occur through the movie.

Clusters of similar events act as an anchor point in to which we associate the music that is

played. By having a hard label to describe groups of musical features, we can build associations

between these groups and give them names. We use these groups to build a global map of

relationships between similar movie events, given their shared musical characteristics.
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1Introduction
Music that accompanies a narrative, such as the case of music in films or operas, carries a

thematic structure that helps guide the visual content it is associated with. The music chosen

for a given conceptual representation carries specific features that imply that there is a mapping

between music and themes that underline a narrative. Building a structure that explains the

different thematic occurrences throughout a score allows assigning the key narrative points to

themes that most emphasise them. Music directors usually use their artistic sensibility to make

or choose music in accordance with the dramatic guidelines and narrative of the visual piece,

choices that often condition its success. The thematic structure created can vary in complexity

depending on the choice of music. An example of this can be seen in classical music: it can

be characterized by a broad spectrum of composition, not marked by a single beat that follows

the song or by a fixed mode, in contrast with pop music, that is characterized by tonality and

repetitions branching from popular music, that make it much easier to process computationally.

These aspects make classical music more challenging than other musical genres and so the

techniques that work for processing pop music may have worse performance when attempting

to segment or to find relevant transitions (Chai & Vercoe, 2005).

Regarding the musical stream timeline, different sound concepts may emerge, depending

on the director’s choice, such as the introduction of a specific musical segment that is played

every time a given character appears. Events like these motivate us to understand these pat-

terns and to develop a method that is able to identify thematic concepts in a musical stream as

well as to incorporate newly observed ones, producing a structure that explains these concepts

and is able to relate similar patters across the timeline.

1.1 Objectives

We assume a context where there is no prior information regarding the number of themes in

the music, choice that is motivated by the fact that thematic structure can vary greatly depend-



2 CHAPTER 1. INTRODUCTION

ing on the context of the narrative the music is following. Consequently, methods capable of

dealing with an unknown number of concepts are required. The structural analysis is aimed

at being done in an online setting with the goal of capturing the evolution and emergence of

concepts in the music, and how these relate to the story that is being told through the main

material. This aspect also allows to study: 1. how the observed concepts relate to previously

observed ones; 2. to follow the themes that are recurrent during the movies; 3. where they

are the most relevant; 4. to map the occurrences of similar musical events. Furthermore, when

using online methods, as data arrives, the model should be updated in order to reflect changes

made by new observations. This update, in cases where the volume of information received in

stream is too large to be kept in memory, is required to be done on a representation of the data

observed so far in the stream.

To achieve our goal, we aim at using density based methods as well as non-parametric

statistical ones. These prove more complex than traditional segmentation models and will be

used with the expectation of capturing patterns in the stream that other methods may not be

able to model.

1.2 Contributions

The main contributions of this work include:

• Integration of multiple tools for processing temporal data, including script and subtitle

alignment tool, script information extractor and audio alignment tool.

• Introduction of a fully automatic method to generate, from one or more movies, a quality

version of the audio that is played, given the corresponding soundtrack.

• Group movie events based on the co-occurrence of narrative information, specifically

characters and locations.

• Build a map of relationships between sets of similar movie events, based on their musical

similarity.
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1.3 Musical Meaning in Film Scores

Films, among other forms of content, because they encase a fictional world where a narrative

unveils, can have the dramatization of the its story complemented by music, as a way of elevat-

ing the narrative that it is being told. Some soundtracks are produced to create an atmosphere

so the viewer can be immersed in the world of the movie. It has qualities especially well-suited

to contribute to a films’ narrative, as mentioned by Gorbman (1987), where ”malleability, spa-

tial, rhythmic and temporal values bond shot to shot, the narrative event to meaning, spectator

to narrative and spectator to audience”.

In the particular case of music composed to serve visual content, musical meaning becomes

attached to the visual content and said meaning is retained by the observer when it is listened

to in a detached manner from its original format. This detached semantic allows a piece of

music, when paired with a piece of visual content such as a trailer or shot of a movie, different

from what it was originally produced for, to deliver a similar semantic than when paired with

its original counterpart. This property is used throughout many film instalments, whenever the

main character, object or location, among others, are introduced in a scene or play a major role

in it. There is an association between a given element in the film narrative and a corresponding

track, that creates an expectation that that element will take some type of part in the narrative,

whenever the music associated to that element is played.

1.3.1 Leitmotif

A motif corresponds to a recurring thematic event and in the musical domain, is called leitmo-

tif. It is defined as a musical theme that lets the audience identify distinct musical material and

relate it to a specific element in the story as a character or an object. It is the use of recurring

and interrelated melodies that leads them to operate within a dramatic work according to an

internal system of meanings linked to a narrative material. It can strengthen the connection to

the narrative therefore making the content more appealing by carrying a stronger message.

The meaning can be the same or change throughout the play to reflect development since it

not limited to an initial presence. Repetition and variation of melodic material help a leitmotif

score achieve coherency (Bernanke, 2008).
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1.3.2 Music in Film Scores

Films communicate (potentially) through a conjunction of visual and auditory signals. The mu-

sic embedded in the auditory signals brings a broader dramatization of the events happening

on screen. The narrative structure of a film is therefore deeply interconnected with the music

that complements it, thus making the analysis of the narrative aspects of a movie relevant to

understand how can music better emphasize these narrative aspects.

Seymour (1978) defines key concepts for the structure of a narrative. The author’s concepts

of kernel and satellite play a foundational role in the structure of narrative. Simply stated, a

kernel is an event that captures a key point of the cause-and-effect structure of the story being

told and a satellite is a non-key event that is a working out of a kernel. When applied to an

entire film, they can produce a set of cause-and-effect relationships that clarify the structural

role of all the events in that film.

Music can also locate a film’s setting geographically. Popular melodies and folk tunes can

conjure certain locations. Other musical devices can have a similar function. Depending on

instrumentation, a pentatonic scale can suggest either the Oriental or the Native American for

example, giving the film a tool to more easily change the narrative focus to a specific culture

(Marks, 1979).

Films often have different themes for different entities, locations, or objects. These may

be played in different variations, depending on the situation they represent, by changing the

instrumentation used. This type of dynamics show the importance of the leitmotif and how it

is impactful when transmitting ideas to the audience. There is an organization around abstract

concepts that helps shape the different leitmotifs. Because these characterize specific aspects

present in the movies, leitmotif occurrence is not uniform. The most popular themes in the

film will have their respective leitmotifs being played proportionally to their impact on the

narrative.

Marks (1979) also shows how film music is influenced by film genre. While genres have

signature musical paradigms, these do not exist discretely, but in constant interaction with one

another. Within a film, regardless of its dominant genre, narrative elements from other genres

are at work. This implies that the music for a film, despite being mainly influenced by a narra-

tive genre, carries influences from many others, as a way of complementing specific narrative
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segments. There are also accounts where music does not fall into a predefined paradigm im-

plying that this off-genre music works because of the familiarity with the conventions of the

other generic paradigms shared by both the composer and audience.

Finer grained dependences on music can also be found when looking at film music, to

induce specific emotions. An example of this is film’s music dependence on and development

of diatonic harmony. This concept is defined as chords or notes that relate to a certain key.

For example, the note D is diatonic to the key of C because it can be found in the C major

scale. Through the manipulation of this object, film music can create and deflate tension. The

manipulation of volume or density of sound can also impact and dramatize a given scene.

1.3.3 Diegetic Music

Diegetic music corresponds to music that is heard or produced in the fictional world of the film.

Although there is a possibility of extracting these from the stream and correlate them with the

culture of the character or characters that produce it, the number of examples present may

be insufficient for a data driven approach. Because our work deals mainly with film scores,

mostly made up of orchestral music, these songs will be treated as the rest of the audio tracks

and leitmotif extraction will be performed as well, along with the rest of the corpus.

1.4 Document structure

The rest of this document is structured in the following way: Chapter 2 overviews the related

work that connect to our goal. This includes types of pre-processing that can be applied to the

musical stream as well as state of the art models used for semantic extraction. It also covers

background on the density-based and non-parametric methods. Chapter 3 presents all the

steps taken to obtain and prepare the dataset. Finally, Chapter 4 presents the experimental

setup of our work, followed by Chapters 5 and 6 where we show and discuss the results of our

experiments and present some closing remarks, respectively.
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2Background and Related

Work

In this chapter, we first present material in the literature related with the different challenges

and goals of our work. We begin by exploring methods necessary to prepare the musical audio

for further processing. These include methods for feature extraction targeted to our domain

as well manners in which the audio can be portioned in similar segments. These aspects are

covered in Section 2.1.

We then cover work in the literature that has dealt with some of the obstacles that we

faced, including, novel class discovery, unsupervised clustering, and leitmotif classification, in

Section 2.2. Finally, Sections 2.3, 2.4 and 2.5 cover the background models proposed as solutions

to model estimation in our work that cover some of the work that utilizes these models.

2.1 Audio Pre-processing

The audio format we are working with is digital audio. A pre-processing step is required with

the goal of preforming feature extraction. We require these features to be able to capture the

harmonic, rhythmic, timbrel and sequence aspects of the music, as these help characterize a

given musical theme. The features can be used as individual frames of the audio or further

processing can be done in order to build audio segments or obtain structures such as chord-

grams, both more complex objects that carry information of the sequence of frames.

In the case where we are dealing with music produced by an orchestra, the changes in

timbre can be informative when attempting to extract semantically significant transitions. Key

instruments in the orchestra are predominant in some of the leitmotifs. Because this feature

allows us to distinguish instruments, similar patterns in the data are expected to be observed

with the recurrence of a leitmotif, when using this feature. Moreover, different fictional cul-

tures, in some cases due to the complexity of one’s culture, may use different scales, mirroring

what happens in real cultures, as it is the example of Asian and Western music. For a given
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movie, music can be composed, for example, using the full chroma scale, on the opposite of mu-

sic composed for another fictional cultures that may carry a different tonality of only 7 pitches,

for example, (Rone, 2018). This suggests that this feature might be discriminate for modelling

cultural aspects in music.

Choices following the literature baselines for either feature extraction or segmentation

(Theodorou, Mporas, & Fakotakis, 2014) are not all available to us. Most methods in the lit-

erature take into account the full music, an assumption that can’t be made in our context due

to the online setting. Nonetheless, some state of the art methods, although prohibitive in our

setting, are worth analysing as possible modifications can be done to bring these methods into

our setting.

The rest of this section covers some of the methods in the literature for both feature extrac-

tion and segmentation.

2.1.1 Feature Extraction

If the musical stream is composed of mostly orchestral music or songs, a special attention to the

features used is required since, as mentioned, extracting information from the audio is more

challenging, compared to pop music.

In this section, we look at the lower level pre-processing steps that can extract informa-

tion from the audio. There are multiple algorithms in the literature that attempt to discover

structural relations in timbre, loudness, or harmony and combinations of these.

2.1.1.1 Mel-frequency cepstrum (MFC)

The Mel-frequency cepstrum models the subjective pitch and frequency content of audio sig-

nals. The Mel scale relates the perceived frequency of a tone to the actual measured frequency.

It scales the frequency in order to match more closely what the human ear can hear. It is scaled

following Eq. (1):

Mel(f) = 2585 log10

(
1 +

f

700

)
(2.1)

where Mel(f) is the logarithmic scale of the normal frequency scale f . The first constant (2585)

is such that 1000Hz correspond to 1000 Mel, using a logarithmic scale with base 10. The sec-
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ond constant (700) corresponds to the corner frequency where the scale changes from linear to

logarithmic.

The MFCCs correspond to the coefficients that make up the MFC, and express the rate

of change in each of the spectral bands. These are closely related to the timbre of the audio,

making them relevant when trying to capture similarity between different instruments playing

the same frequencies. They are computed by following steps:

1. Take the Fourier transform of a signal.

2. Map the powers of the spectrum obtained above onto the Mel scale, using triangular

overlapping windows.

3. Take the logs of the powers at each of the Mel frequencies.

4. Take the discrete cosine transform of the list of Mel log powers, as if it were a signal.

5. The MFCCs are the amplitudes of the resulting spectrum.

2.1.1.2 Chromagram (Chroma)

Humans perceive musical pitches as similar if they differ by one or more octaves. A pitch

class corresponds to the set of all pitches that are a whole number of octaves apart. Chroma-

grams combine the frequency components in the Short-Time Fourirer Transform belonging to

the same pitch class and result in 12-dimensional representation corresponding to C, C#,D, D#,

E, F, F#, G, G#, A, A#, B in music. These consist of the twelve pitch spelling attributes as used

in Western music notation (A. K. Rasmussen, 2003).

Chroma features are used to aggregate, for a given local time window, all information that

relates to a given chroma into a single coefficient. Shifting the time window across the music

representation results in a sequence of chroma features, each expressing how the representa-

tion’s pitch content within the time window is spread over the twelve chroma bands.

2.1.1.3 Constant-Q Transform (CQT)

Discrete Fourier Transform decomposes the audio signal into equally-spaced frequencies and

provides corresponding intensities or amplitudes. The CQT is closely related and corresponds
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to logarithmically spaced filters, where the width of each filter k is a multiple of the previous

filter’s width:

δfk = 21/n · δfk−1 (2.2)

where δfk is the bandwidth of the kth filter and n is the number of filters per octave. The

logarithmic spacing of bins of CQT is well-suited for musical data, since it provides a higher

frequency resolution for low frequencies using many bins while rejecting higher frequencies

using less bins.

2.1.1.4 I-vectors

The i-vector technique from Dehak, Kenny, Dehak, Dumouchel, and Ouellet (2010) is widely

used in speaker recognition and verification. Assuming the audio space can be described by a

Gaussian Mixture Model (GMM) with C components, the authors define a super-vector m of

the C components that corresponds to the concatenated mean of every component. This GMM

is called universal background model (UBM).

The goal of the i-vectors is to, given an audio segment, reduce the change of the posterior

mean in the super-vector space when compared to the UBM. This can be modelled as:

µ−m = V y (2.3)

where µ is the posterior mean of the UBM, V is the eigenmatrix and y is the i-vector. y will have

a reduced dimensionality since it is assumed that an audio segment is only related to a subset

of the components of the UBM, thus indicating that we can have audio features that have lower

dimensionality and are approximately as representative as their full counterpart.

This technique allows us to perform a significant dimensionality reduction of our feature

space, hence eliminating noise in the data, since the segments evaluated against the UBM will

only produce variations in a subset of the model, indicating that the regions where that variance

was found are the regions that better describe the evaluated segment. For the musical context,

this method allows us to model musical sequence explicitly via a feature representation, infor-

mation that is important for our task. Regarding the implementation of this technique in our

work, the computation of the UBM must be taken into consideration. As we are in an online

context, the UBM can be either computed with a different orchestral music dataset, or it can be
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updated as new samples are observed.

2.1.1.5 Chords

A chord, in music, consists of any harmonic set of pitches consisting of multiple notes that are

played simultaneously. A special case of chords are arpeggios and broken chords, in which the

notes of the chord are played one after the other, rather than simultaneously. With automatic

chord detection, the goal is to estimate chords from the observed notes in symbolic or acoustic

form. Chord analysis is of interest because of its impact on harmonic content, a descriptive

mid-level feature of (Western) music.

One method for chord extraction is proposed by Müller, Goto, and Schedl (2012). Firstly,

the given audio piece is cut into frames and each frame is transformed into an appropriate

feature vector. Most recognition systems rely on chroma-based audio features. Secondly, a

matching method is used to map each chroma vector to a set of predefined chord models. One

possible set consists on the twelve major and twelve minor triads.

2.1.1.6 Pitch contours

In cases where musical tracks contain singing (both diegetic and not), this characteristic may be

an indicator of specific leitmotifs. Likewise, they can diverge greatly, since each of the cultures

present in a fictional world possesses a background that alters the characteristics of the song

and the themes in it. Like in the case of Chromagrams, where the scales used for the music of

a given culture may change, so does singing possess clear structural differences. The amount

of singing present in a film depends heavily on the type of soundtrack. For scored pieces,

this number may be smaller than cases where pop music is used, for example. It is because

of this aspect that using a feature that models singing aspects in particular, may improve the

expressiveness of the data we will feed to the leaning model.

Albeit this feature may bring more expressiveness when the musical score relies heavily on

singing pieces, such as the case of musicals, the number of tracks where music is present may

be small compared to the overall number of tracks, which may generate noise when multiple

features are used.

Panteli, Bittner, Bello, and Dixon (2017) focus on characterizing singing styles in folk and
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traditional music by developing contour feature that model pith and melody. To achieve this

goal, they use the extracted features to train a binary classifier to identify speech contours and

then split them from non-vocal ones. These are then used to create a dictionary of singing style

elements and each recording is summarized by a histogram with the proportion of each type

of contour. K-means is then preformed in order to group similar recordings. Style connections

are done a posteriori via metadata association.

Critically analysing these features, it is clear that global metrics can not be computed in

our case, due to the online setting of the problem, resulting in features that only capture local

behaviour such as local level changes of pitch via curve fitting, that summarize local direction

of pitch. As an alternative, the model can be trained a priori with another dataset so that

contours can be split on the fly, and used as features for our learning method, in an online

setting.

2.1.1.7 Sequence Modelling

So far in this work, in regards to feature extraction, we have looked only at low level features

and their aggregations, either by merging different descriptors or by building n-grams from

small sequences of features. One key aspect that is important to be modelled is the melodic

progression present in the audio, implying that we must be capable of modelling audio se-

quences. Another method for capturing such aspects is with the use of an autoencoder, so that

the underlying structure of an audio segment, in the form of an embedding, can then further

processed.

Amiriparian et al. (2017) follows this line of work of as they present a recurrent sequence

to sequence model for learning unsupervised representations from audio. The authors first

extract mel-spectrogram from the raw audio files and then proceed to train their proposed

architecture with the extracted features, that are viewed as time-dependent sequences of fre-

quency vectors. The learned representations of the spectrograms are then extracted for use as

feature vectors for the corresponding instances. The task approached by the authors is acoustic

event classification for the IEEE AASP challenge.

They use the extracted feature vectors to train a multi-layer-perceptron to preform the task.

Moreover, as the dataset from the challenge contained audio sample recorded in stereo, the

authors leveraged this aspect by repeating the aforementioned process on multiple channels
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and performing fusion at the end, in the form of concatenation of the mean, left, right and

difference features.

The architecture presented consists of an encoder RNN with Nl layers, each containing Nu

Gated Recurrent Units (GRUs), introduced by Chung, Gulcehre, Cho, and Bengio (2014). Their

final hidden states in each layer are concatenated into a one-dimensional vector. This vector can

be viewed as a fixed-length representation of a variable-length input sequence. This vector is

then passed through a fully connected layer with hyperbolic tangent activation. Finally another

multilayered decoder RNN, similar to the one used for encoding, is used to reconstruct the

original input sequence from the transformed representation. On the first time step, a zero

input is fed to the decoder RNN. During subsequent time steps t, the expected decoder output

at time t−1 is fed as input to the decoder RNN. The authors point out that this step accelerated

model convergence.

The outputs of the decoder RNN are passed through a single linear projection layer with

hyperbolic tangent activation at each time step, in order to map the decoder RNN output di-

mensionality to the target dimensionality. The weights of this output projection are shared

across time steps. In order to introduce greater short-term dependencies between the encoder

and the decoder, the decoder RNN reconstructs the reversed input sequence. The architecture

just mentioned can be seen in Figure 2.1.

Figure 2.1: Overview of the proposed recurrent autoencoder. Adapted from Amiriparian et al.
(2017).

Another mechanism that allows us to capture melody is proposed by Zalkow and Müller

(2020). Here, the authors goal is preforming cross-version music retrieval, that aims at identi-

fying all versions of a given piece of music. For this purpose, the authors propose two different

techniques to approach this problem: one is based on classical principle component analysis,
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and the other based on neural networks with triplet loss, both using a short audio fragment as

query. Moreover, this work is focused on western classical music, which brings it closer to our

work in terms of the dataset used.

Their approach is based on audio shingles, which are short sequences of feature vectors.

These are generated from audio recordings, which are represented by longer feature sequences

of variable length. In their work, the authors use chroma-based variant called CENS (chroma

energy distribution normalized statistics), which are chroma features with post-processing ap-

plied: First, each chroma vector is l1-normalized. Then, the resulting values of the chroma

features are aggregated by mapping logarithmically spaced value ranges to integer values.

Next, the chroma feature sequence is temporally smoothed. Finally, each chroma vector is then

l2-normalized. The authors argue that most important aspect of this post-processing is the

temporal smoothing, because it makes the features more robust against tempo differences.

An audio query is then taken and split into multiple overlapping audio shingles. The re-

trieval approach is tested in three different manners. The first is a brute force approach where

the shingle is compared directly with examples from an audio database, The second approach

applies principle component analysis to the shingles and then makes the comparison, and fi-

nally, the third approach uses CNN based network with triplet loss for dimensionality reduc-

tion. This triplet loss used an anchor shingle, a positive example, corresponding to another

interpretation of the same track and a negative example that is nor from the same piece or the

same interpretation. In terms of results the authors show that both methods of dimensionality

reduction benefit the task, with greater gains with the use of the CNN based network.

Despite showing results for their setup, this work cannot be fully adapted to our task.

We would require multiple interpretations of the soundtrack of the movies in other to apply

triplet-loss setup described, one of the key points from the work described.

2.1.2 Segmentation

All the features previously mentioned correspond to low level approaches to extract informa-

tion from the audio signal. These can be built upon and form segments. We can define seg-

ments as a unit of a segment structure, bounded in time and comparable. In the same sense, a

segment structure is a mental representation of music where segments are organized in either

groups, chains or holarchies (Rodrı́guez López, 2016). Specifically, structural segmentation fo-
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cuses on modelling temporal boundaries within an audio track that capture repetitions and

similarities. This can be further divided into two sub-problems: boundary detection and struc-

tural grouping. The first identifies the beginning and end of a segment and the second labels

the obtained segments based on acoustic similarity. For our task, we are interested on the first

sub-problem, as mentioned, since decisions about segments similarity will be taken later in the

learning process.

One could argue that structural segmentation could model the thematic structure of a mu-

sical stream. As we will see, the methods analysed here, although showing promising results

in their specific settings, do not offer solutions for jointly dealing with an unknown number of

concepts while at the same time being able to produce explanations of the observed ones.

Since we aim at building features that can encode information necessary to model leitmo-

tifs, the use of segments may prove more descriptive than lower level features. Temporally

close frames of a segment may provide more information that a sole frame in a bag-of-frames

scenario, as the latter does not account for the sequence of notes in the music, information that,

in our case, is relevant. As a result the set of features that can be extracted from structural

segments provide further information.

Nieto and Bello (2016) propose MSAF, a framework for structural music segmentation con-

taining the algorithms present in Table 2.1. They run a set of experiments where the algorithms

shown are tested with multiple features. They evaluate them using tow different metrics: hit-

rate, where estimated boundaries are considered hits if they fall within a time window from

reference, and using Pairwise frame clustering, that compares each pair of frames by checking

if they belong to the same cluster. In particular, for the case of boundary detection, the setup

consists of using the annotated dataset ”The Beatles TUT” (Mauch et al., 2009), following a

constant sampling rate and hop size.

This set of experiments thus gives us an overview of which algorithms preform better

with each set of features, and can give some insight for our experimental setups when using

the more common methods in the literature. Their results can be seen in Figure 2.2. Some

of the algorithms for boundary detection implemented in this framework, are unsupervised

and can function in our setting. In particular, the structural features and the checker-board

kernel methods are in these conditions, making Figure 2.2 an indicator how these methods

may behave in different conditions.
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Algorithms Boundary Grouping
2D-Fourier Magnitude Coeffs No Yes

Checkerboard Kernel Yes No
Constrained Cluster Yes Yes

Convex NMF Yes Yes
Laplacian Segmentation Yes Yes

Ordinal LDA Yes No
Shift Invariant PLCA Yes Yes
Structural Features Yes No

Table 2.1: Algorithms present in the MSAF tool and their roles, adapted from Nieto and Bello
(2016).

Figure 2.2: Boundary algorithm performance given the type of feature, adapted from (Nieto &
Bello, 2016).

On the opposite of the majority of the methods exposed above, that require the full music

in order to function, we require segmentation methods capable of dealing with an unknown

number of segments (unsupervised) and that are able to function in the online setting, basing

their decisions locally, given a time-window.

Krymova, Nagathil, Belomestny, and Martin (2017) present a procedure that detects

changes in the eigenspace structure of the constant-Q spectral representation given the degree

of explained variance. Their goal is to reconstruct the signal using a low rank approximation

via principle component analysis (PCA), so that the obtained signal carries only relevant infor-

mation. To achieve this, an intermediate pre-processing step is required where their proposed

segmentation method is used.

They represent the CQT-based time frequency as X ∈ CN×K where N is the number of

frames and K is the number of frequencies. This matrix is segmented into M non-overlapping

blocks. By applying PCA to matrix X they obtain matrix U that is the projection of M onto

orthogonal basis such that it represents a high amount of the total variance contained by the

original matrix. U is explained by the first n dimensions of the transformed space that represent
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most of said variance. With this, the dimensions on the projected space will capture most of the

temporally correlated harmonics and n is chosen as the number of dimensions that can capture

a large proportion of the total variance.

With this assumption, the authors break matrix U into two sub-blocks U1 ∈ RB1
m×K and

U2 ∈ RB2
m×K , where Bm is the number of frames in the matrix. They follow

R(k̂,W1,U1)−R(k̂,W1,U2) < δ (2.4)

where k̂ is the number of principal components, W1 is the projected matrix and δ is a

constant. The function R(k̂,W,U) corresponds to the variance ratio between W and U. The

authors argue that the value of δ is empirical but that higher values will lead to small number

of components.

McCallum (2019), attempting to circumvent the problem of lack of labelled data for the

segmentation task, proposes to solve this problem using unsupervised audio feature embed-

dings, the result of a method which aims at learning discriminative embedding features with-

out human annotated labels. They use unsupervised training of Convolutional neural network

(CNN) to obtain features for music segmentation that are more meaningful than lower level

features. By exploiting the fact that musical segments form contiguous regions in a stream and

that each musical label occurs in minor portion of a song, a sampling schema to create posi-

tive and negative examples to trains their model is used. This approach consists on sampling

features that occur close together based on implicit time proximity information.

Given this premise, they use an anchor beat ia, uniformly sampled from a set of beat indices

in the song denoted by {0..L−1}where L is the number of beats. A positive beat ip index and a

negative one, in, are then sampled from the distributions in Figure 2.3, so that a set of examples

that belong to the same segment as the anchor beat is obtained, while negative examples will

come from other segments.

A comparison between the log-amplitude of the 2D Fourier transform of the log-amplitude

of a 8-beat-long CQT segments is considered for every beat index. This comparison is pre-

formed to inform the sampling of positive and negative examples and decrease the number of

false positives. An Euclidean distance is measured between these CQT segments, two regular

beat intervals before and after ia, so that the side with minimum distance to ia is chosen to
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sample ip and the other one is used to sample in.

To test the produced embeddings, regarding the identification of the boundaries of the

segments, a self-similarity matrix (SSM) is constructed. The corresponding SSM is computed

as

S[i, j] =‖ f(xi[q, k])− f(xj [q, k]) ‖22 (2.5)

where xi[q, k] and xj [q, k] correspond to beat synchronous CQT frames centred at beats i and

j and f corresponds to the transformation function of the CNN. To detect the boundaries, a

checker-board kernel is convolved along the diagonal of the SSM, producing a novelty function.

This kernel can be written as the difference between a ”coherence” and an ”anti-coherence” ker-

nel. The first kernel measures the self-similarity on either side of the centre point (the diagonal

region) and will be high when each of the two regions is homogeneous. The second kernel

measures the cross-similarity between the two regions around the diagonal and will be high

when there is little difference across the centre point. The difference between the two values

estimates the novelty of the feature sequence at the centre point. The novelty is high when the

two regions are self-similar but different from each other.

Finally, boundaries are detected as peaks in the novelty function at time positions where

the kernel meets a transition between two contrasting blocks.

Figure 2.3: Sampling distribution for in and ip, for a given choice of ia. δp and δn are constants,
(McCallum, 2019).

This method, despite the unsupervised approach, may have a poor behaviour in our sce-

nario. Given that we are using classical music, there might be a poor estimation of the beat in-

dexes. Furthermore, the training of the model would have to be done with the full discography

or with a part of it so that we can achieve more representative segments which is not possible

in an online setting. A plausible modification is to use apply the model to local batches of the

musical stream.

Another possible approach is to perform blind segmentation where we produce segments
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of fixed size. Huang, Cheng, Li, Hautamäki, and Lee (2013) propose a method to label multi-

ple acoustic events contained in equal-length segments. The key point is the use of i-vectors

described earlier as features that model those segments. Since lower variance in some dimen-

sions of the i-vector indicates a close similarity to a subset of distributions in the UBM, distinct

events can be captured with this approach.

2.2 Methods for Semantic Extraction

Having proposed a set of representations for our corpus, either based on frames, segments, or

chords, these can now be applied to capture meaningful structure using a learning model.

The number of leitmotifs in the stream can grow indefinitely, leading to a problem of novel

class detection. In cases where it is impossible to know the entirety of the domain we are deal-

ing with, closed set methods cannot generalize well enough to model classes unobserved at

training time and prove insufficient to deal with concept discovery and model sparsity, since

observed patterns from a class may change or new concepts may emerge (Gama, Žliobaitė,

Bifet, Pechenizkiy, & Bouchachia, 2014; Parker & Khan, 2015; Masud, Gao, Khan, Han, & Thu-

raisingham, 2010). Moreover, when dealing with streaming data, multiple problems require

attention. In the first place, we cannot save the entire stream as practical memory issues would

arise implying that an abstraction of the data is required. It should, as accurately as possible,

capture the distribution of the observed domain. Secondly, a learning method should be able

to update, using just newly observed samples and a representation of the previously observed

data, also without the need of annotated data. In cases where data is generated at a large scale,

annotation or prior information regarding the data may be unavailable and thus the model

should be able to structure observations in an interpretable way, depending on the application.

Traditionally, solutions for novel class discovery are proposed based on clustering-based

approaches with the general premiss that samples close to each other in a generic space share

more similarity than ones further apart, although this principle fails in the high dimensional

scenario where sparsity is much higher.

One can look beyond this group of methods to others that provide actual characteriza-

tion of the statistical distribution of the data. With the work of Rudd, Jain, Scheirer, and Boult

(2017), both statistical information from the data and methods to deal with an unknown num-
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ber of classes are used. The authors’ goal is to perform image recognition (multiclass) in a open

set environment using open world decision boundaries, where these are used to separate know

classes from the unknown space effectively attempting to label samples from an underserved

class as such. This approach is based on extreme value theory (Coles, Bawa, Trenner, & Do-

razio, 2001), that dictates the form of the functions for the radial probability of inclusion of a

point with the respect of the class of another. The training set corresponds to a set of extreme

vectors (EV) that are related to the radial inclusion function modelling the probability of sample

inclusion. The notion of open risk space was introduced by Scheirer, de Rezende Rocha, Sap-

kota, and Boult (2012) and consists on the risk associated with labelling data far from known

training examples. The concept of selecting the points and distributions that best summarize

each class, i.e., are least redundant with respect to one another, the authors arrive to a prob-

abilistic representation of the class’s decision boundary characterized in terms of its extreme

vectors (EV), which provides an abating bound on open space risk, where data points further

away from the boundary are less likely to belong to a given class. Regarding their experimental

setup, they run the benchmarks with original setting on multi-class open set recognition on the

Letter dataset and open world recognition on ImageNet.

The authors’ approach is promising although it only labels unknown data as such, not

incorporating it in as a new class. Doing so, requires a retraining of the model.

Work in the topic of novel class detection has also been done in the field of signal process-

ing. Gharghabi et al. (2019) propose a domain-agnostic online segmentation model for multi-

dimensional time series. In this work, time series extracted from motion sensors, for example,

are analysed with the goal of identifying meaningful regime changes along a time series, such

as detection of the transitions between walking and running or of certain patterns in heart rate.

Hence, the semantics captured is shaped in the form of discrete classes. To achieve this, the

authors use similarity-join metric for time series. It receives a time series T as input and a

subsequence of length L, representing the size of the pattern, and returns two vectors. The

first corresponds to the Euclidean distance between the subsequence and its nearest neighbour

elsewhere in T (defined as MPValue). The second indicates the location of each of the nearest

neighbour of each element of the subsequence in the time series T (defined as MPIndex). These

two vectors lead to an annotated time series where one can derive the likelihood of a regime

change.



2.2. METHODS FOR SEMANTIC EXTRACTION 21

By leveraging the above aspects, the authors propose FLOSS. This method is composed of

two key components. An arc represents the ith entry in the MPIndex indicating the nearest

neighbour for the element at ith location. The second component, the Arc Curve (AC), is an

annotated version of the original time series where its ith index specifies how many nearest-

neighbour cross-over location i, i.e., how likely it is to be a regime change. If, at a location i,

the number of arcs that cross over is small, this indicates a change of regime. Furthermore,

since they are attacking an online problem, they use a sliding window where the Arc curve is

computed for that given segment. To solve the problem of updating the minimum distances

of the subsequence of the sliding window, when a point leaves it, the arc computation is done

only from elements further in the time series to ones that occur earlier than them.

Despite the difference in domain, the work described contains some similarities with ours.

In both cases there is a search for semantically relevant segments although, in this case, the

information extracted and the types of events that are detected are of much lower level than

the ones we are modelling. It is relevant to consider if FLOSS can be used in our case, either

directly from the audio signal, or with some of the features previously described. Capturing

local similarity in music is not a new approach by any means although the modifications taken

into account in this paper for the model to work in an online setting are prone to consideration.

Gjoreski and Roggen (2017) also focus on the discovery of activities such as running, walk-

ing or jumping, characterized by sensor signals. Their approach is based on agglomerative

clustering and aims at exploiting the temporal information in the signal. The methodology

consists on, at a given point in time, keeping a number of active clusters estimated by clus-

tering the frames of a given time window, so that multiple deviations can be clustered into

multiple temporally overlapping segments. The total number of clusters in the active pool

does not represent the total number of clusters, which is open ended. Each of these clusters

has a tolerance that gives the duration the cluster is allowed to exist without being updated

(merged or deleted), with the goal of modelling short outliers and a minimum duration that

discards the cluster if it was only present for a short period. Although it approaches a similar

problem, the parametrization used includes defining the number of active clusters at any given

time as well as the tolerance and minimum duration times. For our work, defining the num-

ber of active clusters in a time window is not desirable as its too restrictive, given that prior

knowledge about the expected number of clusters is not available.
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There as also been work done on bringing the modelling capabilities of neural networks,

specifically CNNs, into the field of incremental learning and novel class detection. This class of

models lack the robustness to deal with novel classes, due to the assumptions of closed world

datasets with a fixed number of categories. The work of Z. Wang, Kong, Changra, Tao, and

Khan (2019) focuses on addressing this challenge by leaning a feature representation such that

distribution of instances from the same class are discriminative enough in order to perform

label prediction, novel class detection, and subsequent model adaptation.

Their model is divided into three main components, a step that aims at transforming the

samples into a subspace where samples from the same class are closer to exemplars of each

class, a second step where novel-class instances are detected and a third step that updates the

model either by adding new classes or by updating existing ones. More specifically, the first

step is to train a network to transform the observed data points such that they are close to

a set of prototypes for each known class. This object is defined as a tuple p =< µ, d, w, ξ >

containing the mean of the network for a set of inputs xi ∈ ξ, µ, d corresponds to the sum

of squared Euclidean distances to µ, w is the size of ξ and ξ is a set of data points from the

same class. Because this method is designed to solve an incremental learning problem, the

prototypes are updated while the network is training, so that the final prototypes maximize

the distance between ones of different classes and minimize the distance to transformed data

points.

The second step focuses on novelty class detection. For this step, due to the assumption

of non-stationary data, the authors assume a Gaussian distribution for each known class and

use this to compute a statistic of the confidence of a data point belonging to a given class. If,

for a given threshold, the new data point is rejected by all classes, this data point is inserted

in a buffer. When the buffer is full, the true labels for the points are requested and the model

is incrementally updated, by retraining with the new data points, including the estimation

of the prototypes for each of the new classes observed. The authors argue that this process,

despite being slow, is minimized by the small size of the buffer, as the incremental update of

the network and prototype estimations are only done for a small number of samples at a time.

The main issue with this article is the use of true labels in the retraining step, in order to

update the classifier, as in our case, that type of information is not available. Moreover, there

is access to labelled data at training time, that will act as prior knowledge for the incremental
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updates, again not available in our setup.

Serra, Müller, Grosche, and Arcos (2014) propose a method for music structural annota-

tion using time series structured features and segment similarity. They aim at annotating the

structure of a music piece in an unsupervised way without employing explicit knowledge of

previously annotated pieces, by detecting temporal locations of segment boundaries and to as-

sess segment similarity based on repetitions. They achieve this by building a model that firstly

extracts tonal and harmonic features from the audio. They then transform these into a time

series of structured features from which they compute a novelty function whose peaks corre-

spond to boundaries. Finally, the resulting segments are compared in a pairwise fashion and

clustered.

More specifically, the information of each sample in the time series is improved by incorpo-

rating information from the sample’s recent past. This is achieved using delayed coordinates

where a sample xi is constructed following:

x̂ = [xTi x
T
i−τ · · · xT(m−1)τ ]T (2.6)

Eq. (6) corresponds to the concatenation of the feature at timestep i, by the previous fea-

tures down to (m− 1)τ where τ corresponds to a time delay and m is the total amount of infor-

mation being considered for the task (the dimensionality of the x̂). To assess the homogeneity

(passages of music that are consistent with some musical property such as rhythm, timbre or

harmony) and repetitions a recurrence plot is computed. It consists of a square matrixR whose

elements indicate pairwise similarity between samples. A subsequent step involves the cre-

ation of structural features. The authors represent the homogeneity and recurrences of R in a

time-lag matrix where correlation is measured between each sample and samples increasingly

further away in the time series, both past and future in the case of this article. This is done for

the purpose of incorporating homogeneity and repetition with correlation between samples.

The time-lag matrix is considered as a sample from a bi-variate distribution and in turn this

distribution represents the probability mass-function of time-lag recurrences. To approximate

this distribution, the time-lab matrix is convolved with a bi-variate rectangular Gaussian ker-

nel. This Gaussian kernel is computed as the product of two Gaussian windows corresponding

to the lag and time dimensions. These windows will influence how many columns are needed
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to represent the convolved time-lag distribution.

The estimated distribution can be seen as a time series along the time axis and structure fea-

tures are then defined as columns vectors. These encapsulate both homogeneity and repetition,

from the recurrence plot, as well as robustness against time and lag variations, due to the kernel

convolution. Finally, boundary detection is done by computing differences between successive

structure features. These values yield a one-dimension novelty curve where peaks correspond

to values above a given threshold and, at the same time, correspond to a global maximum of

a given window. Segment repetition is then evaluated using Qmax measure (Serra, Serra, &

Andrzejak, 2009). It is a generic and configurable time series similarity measure that exploits

the information contained in the traces of a recurrence plot.

The work described here is related to our own with the key distinction that an online setting

is not considered nor structure has the same meaning as in our case. The encoding of similarity

between data points should be embedded in the feature itself but can not benefit from statistics

done using the entire data set, as it is the case of the article described.

Work that resembles our own from the musicological perceptive is the one from (Krause,

Zalkow, Zalkow, Weiß, & Müller, 2020). In this paper, the authors conduct a case study on a

dataset covering 16 recorded performances of Wagner’s Ring of Nibelung, with annotations of

ten central leitmotifs. They build a neural network classification model and evaluate its ability

to generalize across different performances and leitmotif occurrences. These motifs constitute

the classes of the classification task. Furthermore, all motif occurrences were annotated by a

musicologist. In terms of the classification task, the authors define it problem of assigning a

given audio excerpt to a class according to the occurring leitmotif, discarding segments where

multiple occurrences of different leitmotifs happen in parallel.

A final key point in this work is the dual approach to the classification problem. The first,

the performance perspective, concerns variabilities across different performances, resulting

from different instrumental timbres, tempi, or other decisions made by the artists, that can lead

to the album effect. The second perceptive looks at the compositional or occurrence concerns in

regards to the diverse musical variabilities of leitmotif occurrences in the score. These two per-

spectives motivate the authors two perform two distinct slips on their corpus, the first, based

on the performance, select the three recordings with manually annotated measure positions

for the test set and three performances with automatically transferred measure positions for
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the validation set. The remaining ten performances are used for training. In this split, all sub-

sets comprise all occurrences of all motifs In contrast, for the occurrence split, they randomly

choose 80 of the occurrences for training and 10 each for the validation and test set.

The authors also study how temporal context (audio before and after the leitmotif se-

quence) affects classification and compare to a scenario where samples correspond to audio

segments with a motif attached. Overall results are lower with the second data split described

than for the first. Finally the authors introduce another setup where, due to the case where the

score contains regions with other or with no leitmotifs at all. In this setup, they introduce a

noise class to cover such scenarios. They show that despite the lower results, this class in not

detrimental to the task.

This work shows major similarities with our regarding some of its difficulties and goals,

specifically the identification of leitmotifs and the capability of producing a model that is able

to generalize across multiple interpretations of the same motif or score. Despite these similari-

ties, our task faces broader issues, as we do not posses such a fine grained annotation, nor the

the multiple interpretations of the same score. Particularly, the leitmotif can suffer modifica-

tions through the material it supports, but further interpretations of these changes may help a

learning model generalize each leitmotif better.

Effectively all the methods presented so far provide some insight on some of the method-

ologies available to us, either tackling the problem of novel class detection or the problem

structural discovery. Although they face the same family of problems, them methods presented

always make considerations regarding model adaptation, an incremental learning procedure

or the use of annotated data, effectively circumventing one or more of these issues. To this ef-

fect, the following chapter present methods that can be directly used in our context, proposing

solutions for the aforementioned problems simultaneously, without relaxing the problem in a

way that allows to circumvent the issues present in our work.

2.3 Density Estimation

Mixture models can a be a powerful tool to model uncertainty. They allows us to represent

specific parts of a domain. A mixture model can be seen as the weighed sum of individual
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probabilistic functions and formally defined as:

p(x|θ) =
K∑
i=1

πiF (x|θi) (2.7)

where K is the number of components in the mixture, πi is the weight of the component, θi

is the set of parameters of the probability distribution and F (.|θ) is the probability distribution

parametrized on θ. When using this model in an unsupervised setting, with the premiss that

each components approximates a class present in the domain, each sample has only a given

probability of belonging to each class, i.e., to a component of the mixture model.

There are two key aspects when using this model. First, there is a choice of the number

of components of the mixture model. This number influences how well modelled a partition

of the data is. Second there is a choice of the distribution F . How well the model is able to

explain the data depends on this choice given the underlying shape of the distribution of the

data. If the last is unknown, distributions that can model the variance in the observed data are

recommended, hence the Gaussian or the Student-t distributions are good candidates.

One method for approximating a mixture model to a density function is Kernel density

estimation (KDE). Generically, it is a method to estimate the probability density function of a

random variable. It is defined as:

f̂h =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

) (2.8)

where K is defined as a non-negative function that integrates to one, usually modelled

using a Normal density function. h corresponds to the smoothing parameter or bandwidth,

where higher values may lead to over-smoothing.

Based on the described concepts, Kristan et al. (2011) introduce the multivariate online

kernel density estimation method. Their goal is to approximate the distribution of the data,

explained by a GMM, given an online setting where samples, after observed and processed,

are discarded. The authors call this GMM the sample model. The proposed model is based on

two key points: the first is that the model is non-parametric in the sense that the number of

components is unknown a priori and can can grow given the observations. The second point is

that each new observation corresponds to a Dirac-delta function and, during online operation,
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each new sample is added to the sample model in the form a new component.

Because samples are assumed to be Dirac-deltas, if the no processing is done, the num-

ber of components grows linearly with the samples. This is unwanted, as little information

expandability is had when this occurs. To make sure that the number of components is able

to grow, but at the same rate as samples, a compression algorithm is used to approximate a

number of samples by a single distribution. Each component of the used GMM fits a portion of

the data and a KDE is then used to approximate the GMM to a probability distribution density

function.

The compression algorithm consists of two steps. The first revitalises the mixture by split-

ting components that are no longer good approximations of the data. The second merges

components that are sufficiently similar. Furthermore, as new data arrives, compressions pre-

formed at a given time may later become invalid and so a detailed model is maintained for

each component in the form of a two-component GMM. This model corresponds to the sim-

plest possible model that allows recovery from the mentioned problem. An overview of the

methodology can be seen in Figure 2.4.

Figure 2.4: (a) Overview of online KDE iteration. The sample model St−1 is updated with a
new observation zt. The optimal bandwidth is recalculated, and if the parameter allows, the
compression routine is called. This leads to a new sample model St. (b) Illustration of the
sample model St(sample distribution pS(x) along with the corresponding detailed models for
each of the components. Adapted from Kristan et al. (2011).

Critically evaluating this model, we can see that the main driving force of the model is

spatial location of the data. This dictates the number of components the model generates and if

we consider changing the distribution of the mixture model, this will directly impact how well

explained the data is.

Furthermore, the splinting and merging criteria are based on a distance measure and a

predefined threshold and do not reflect underlying uncertainty of splitting said components.
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Other rather relevant parameters we can modify, besides the choice of distribution, are the

compression thresholds, as the similarities between data points may be general enough that a

lower value can be used, resulting in a denser model, with a lower number of components. A

forgetting factor, also proposed by the authors, can also be modified. It causes a higher weight

to be given to younger samples than older ones when the compression routine is called. A

different threshold for younger and older components can also be implemented so that older

components are more resistant to change or outliers than younger ones.

There is a clear gain when using this model for our task. Since the number of leitmo-

tifs is unknown a priori, the non-parametric nature of this model is capable of dealing with

this aspect. Its explainability through the sample-model also proves adequate as the data is

approximated through distributions. Another important point is that we want the number

of components in the mixture model to approximate the number of leitmotifs in the musical

stream, which we assume to correspond to different classes. The KDE approach gives us no

guarantee of this approximation as the number of components may grow as much as needed

in order to produce a more accurate explanation of the data.

2.4 Dirichlet Process

The KDE approach faced the unknown number of clusters through density estimation. In the

case where we want to approximate the number of components in the mixture to the number of

classes (leitmotifs), we propose the use of the Dirichelet process and Bayesian machinery. This

model explicitly models the uncertainty of creating new clusters, in our case, new components.

These have shown good results in other domains such as the cases of topic modelling and

robotics (Nakamura, Ando, Nagai, & Kaneko, 2015; Nishihara, Nakamura, & Nagai, 2016).

The Dirichelet process (DP) is a member of the family of non-parametric stochastic pro-

cesses. Let (Θ, β) be a measurable space, with G0 a probability measure on that space. A

Dirichelet process DP(α0, G0) is a distribution of a random probability measure G over (Θ, β),

where α0 is a positive number, such that for any finite measurable partition of Θ, the random

vector (G0(A1), . . . , G0(Ar)) is distributed as a finite-dimensional Dirichelet distribution with

parameters (α0G0(A1), . . . , α0G0(Ar)) Eq. (9):

(G0(A1), . . . , G0(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)). (2.9)
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If G is a random probability measure with distribution given by the DP, then it can be

written as G ∼ DP(α0, G0) where G0 is a base measure that can be seen as a prior guess of

the data (Antoniak, 1974). α0 corresponds to the concentration parameter that gives the degree

of belief on G0 (Ferguson, 1973). The choice of base distribution will have a great impact on

the model performance and is guided by mathematical and practical convenience leading to

a choice that is conjugate with the underlying model, improving both computation time and

model simplicity (Görür & Rasmussen, 2010). Each draw from DP(α0, G0) delivers an infinite

object G that can be written as Eq. (10):

G =
∞∑
k=1

πkδθk (2.10)

where δθk is a probability measure concentrated at location θk with a weight πk. This character-

ization of G is one of the possible forms of describing an infinite mixture model as represented

in Figure 5.6a.

(a) (b) (c)

Figure 2.5: (a) A representation of a Dirichlet process mixture model as a graphical model.
(b) An equivalent representation of a Dirichlet process mixture model in terms of the stick-
breaking construction. (c) A finite mixture model representation. Adapted from Teh et al.
(2006).

So far, the DP was presented as a theoretical mathematical object. One important question

that we must answer is how do we know that such an object exists and how we can construct

and represent a DP. Teh et al. (2006); Hjort, Holmes, Müller, and Walker (2010); C. E. Rasmussen

(2000) present three such constructions where they show the existence of the DP: one based on

the stick breaking construction, one based on a Pólya urn model(equivalent to the Chinese

restaurant process (CRP)) and one based on a limit of finite mixture models. The various repre-

sentations of the DP are mathematically equivalent but their formulation differs because they

examine the problem from different points of view. We focus on the CRP which provides a sim-
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ple and computationally efficient way to construct inference algorithms for Dirichlet Process.

The CRP is a preferential attachment model that directly reflects the clustering of draws

from the DP. It is defined as a distribution over partitions and is explained by the following

metaphor. Consider a Chinese restaurant with an unbounded number of tables. When the

first customer arrives, he can randomly select one empty table (cluster), sit and order one dish.

Then, the second customer can either join with the first customer and share the dish, or he can

start a new table and order a new dish. In this way, when the nth customer arrives, he can

select one table from k occupied tables with probability proportional to the number of guests,

mk already seated there, or start a new table with probability proportional to α0. Formally, the

conditional probability can be written as :

CRP(θn|θ1, θ2, . . . , θn−1) =


mk

n−1+α if θk exists

α
n−1+α if θk is new

(2.11)

In this metaphor, the tables correspond to clusters and the dishes correspond to the parameters

of the distribution of each cluster.

This can be directly applied to a mixture model as a non-parametric prior distribution on

the components of the mixture model. Each table is a draw from G and we can define φi to be

the prior of the parameters of the distribution of a component of the mixture and can be written

as Eq (12):

φi | G ∼ G

xi | φi ∼ F (φi)
(2.12)

where F (φi) denotes the distribution of the observation xi parametrized by φi. φi is condition-

ally independent given G, and takes on values θi, following Eq. (11). This specification gives

us a method to increase the number of clusters while modelling the uncertainty of doing so.

Despite giving us a good method to grow the number of clusters in the data, the model

comes with some drawbacks that can be circumvented. Firstly, sampling methods are required

to estimate the predictive distribution and, as a closed form is not obtainable, its computation

may result in a large overhead depending on the inference method and its precision. Fur-

thermore, Markov Chain Monte Carlo (MCMC) methods generally require the full set of data
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points to function as it is the case of the standard Gibbs sampling method. The MCMC family

of methods corresponds to one of the most widely used methods for inference in the CRP as the

problem of finding the optimal cluster assignments translates into adding and removing mass

to each of the clusters (Neal, 2000). This becomes prohibitive in our setting, leading us to use

inference methods that can function in an online setting without maintaining all the samples in

memory.

Another issue we face is these models’ dependency on initialization, in the form of priors,

and since we have no prior information about the data in question, an update of the prior belief

must be done throughout time, solely based on the observed data.

A final remark we must point out is the inability of the model to model temporal infor-

mation given the baseline definition we gave. Because exchangeability of the data is assumed

when defining the CRP, the model, in its general form, does not account for the order of the

data, although it can produce clustering assignments in streaming data, in cases where se-

quence of observations is not relevant. To face this issue, for scenarios where modelling such

information is relevant, (Guo & Gong, 2017) propose a method to add temporal information

to the cluster estimation of the CRP by replacing mk in equation 2.11, that represents a count,

with the aggregate influence of the sample at timestep k. This is obtained from the samples in

the sliding window that have the same cluster assignment, i.e., the guest in the restaurant that

sit at the same table. This influence is computed via kernel density estimation of the samples

contained in the sliding window. In their work, the authors use a dynamic time window since

they aim at topic detection in social media where the amount of data per time step can increase

with the number of users. In our case, the sampling frequency from the audio file is constant

and so we can use a pre-defined window size.

Another extension to the DP is the Hierarchical Dirichelt Process (HDP) (Teh, Jordan, Beal,

& Blei, 2005). With the DP, draws from G0 are independent and identically distributed (i.i.d.)

and so components do not share samples. In a context where this type of modelling is desired,

such as the case of topic modelling, where we have multiple documents and want a distribution

of topics across documents, we might want to model the shared weight of topics across different

documents. This is achieved by samplingG0 itself from a DP. This hierarchy may have as many

levels as the ones required for a specific task.

In cases where the distribution of classes follows a particular pattern, extensions to the DP
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have been proposed to deal with data in these conditions. The Pitman-Yor process (PY) is a

two-parameter generalization of the DP that leads to heavier-tailed, power law distributions

for the frequencies of observed objects or topics (Pitman, Yor, et al., 1997; Teh, 2006; Sudderth

& Jordan, 2009). It is defined as PY (d, α0, G0) where d is a discount parameter between 0 and

1 and the rest of the parameters are as as described earlier. Going back to the metaphor of the

Chinese restaurant, the discount parameter benefits the creation of more tables and, as d grows

to one, that chance increases. It is expected to observe a higher number of tables, but with less

costumers in them. The conditional probability can then be modified from Eq. (2.11) as Eq.

(13):

CRP(θn|θ1, θ2, . . . , θn−1) =


mk−d
n−1+α if θk exists

α+d|k|
n−1+α if θk is new

(2.13)

where |k| corresponds to the number of tables already occupied by one or more costumers.

As mentioned in Section 2, the distribution of leitmotifs is not uniform. Regarding film

narrative, more emphasis is made on the main characters or themes of the movie than on sec-

ondary plots, that occur around the main ones. This is directly reflected on the film score,

where leitmotifs for the kernels of the narrative will have more occurrences, approximating a

power law behaviour. Because PY-process has been shown to produce clusters that follow this

type of behaviour, this extension of the DP may prove more accurate for our problem.

There is a need to compute the posteriors of the proposed Bayesian models. Because this

work is set in an online setting, inference methods that require the full set of points in order to

converge to an optimum, be it local or global, or that require iterating threw all the observed

points, are not available and so other alternatives must be studied.

The first mention is due to the streaming nature of the data we are analysing and the second

point is justified by the finite amount of memory we posses leading to the inability to store all

previous observations.

(L. Wang & Dunson, 2011; Crook, Gatto, & Kirk, 2018) propose an alternative to MCMC,

which allows approximate Bayes inference under one DP mixture by performing sequential

updates. Given the CRP setting, a new sample is allocated based on cluster that maximizes the

conditional probability of that sample belonging to a given cluster and it is assigned to a new

cluster if a statistic about the distribution of the data votes higher than any of the clusters. There
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is a clear trade-off between accurately estimating the predictive distribution and the speed in

we which they do so. This method much is faster than MCMC approaches although it requires

some prior information to build the initial statistics and is dependent on the permutation of

the data. Because of its speed the authors propose to run the model with different reshuffles of

the data and choose an ordering that maximizes the pseudo-marginal likelihood. For our con-

text this can not be implemented as we want to preserve information regarding the sequence,

leading us to run the inference process with just the sequence of observations from the musical

stream.

Another common approach in the literature for inference in the Bayesian setting is Vari-

ational inference. In variational inference, we specify a family Q of densities over the latent

variables. Each q(z) ∈ Q is a candidate approximation to the exact conditional. The goal is to

find the best candidate, the one closest in Kullback-Leibler divergence (KL) to the exact condi-

tional. It turns the problem of approximate inference into a problem of optimization, in order

to find the optimized member of Q, q∗.

However KL is written as Eq. (14):

KL(q(z)||p(z|x)) = E[log q(z)]− E[log p(z, x)] + log p(x) (2.14)

where x = x1:n is a set of observed variables and z = z1:m is a set of latent variables, with joint

density p(z, x), and where the term log p(x) is intractable. Because computing the KL is not

possible, an alternative object that is equivalent to the KL up to an added constant is optimized

instead:

ELBO(q) = E[log p(z, x)]− E[log q(z)] (2.15)

It corresponds to the negative of the KL from Eq (14), plus log p(x), which is constant with

respect to q(z). We can then state that minimizing the KL is equivalent to maximizing the

ELBO function. Examining the ELBO gives intuitions about the optimal variational inference.

The ELBO can be rewritten as as a sum of the expected log-likelihood of the data and the KL

divergence between the prior p(z) and q(z):

ELBO(q) = E[log p(x|z)]− KL(q(z)||p(z)) (2.16)
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The first term is an expected likelihood. It encourages densities that place their mass on config-

urations of the latent variables that explain the observed data. The second term is the negative

divergence between the variational density and the prior, encouraging densities close to the

prior. Thus, the variational objective mirrors the usual balance between likelihood and prior.

Having described the ELBO, the variational objective function that will find q∗, it is re-

quired to describe the the variational family Q. A commonly used family is mean field varia-

tional family. It assumes the latent variables are mutually independent and each governed by

a distinct factor in the variational density following:

q(z) =
m∏
j=1

qj(zj) (2.17)

Each latent variable zj is governed by its own variational factor, the density qj(zj). In

optimization, these variational factors are chosen to maximize the ELBO, Eq. (15).

Having both the specifications of the ELBO and of one the variational families that can

be used. The final step corresponds to an algorithm to solve the optimization problem. For

the specific context of DP mixture models, work in the literature as been done for adapting

the generic model just described into the particular setting of the DP. We will follow the work

of Tank, Foti, and Fox (2015) and Huynh and Phung (2017) in order to implement this type

of approximate inference in our problem. Both these methods propose variational inference

methods and optimization algorithms for cases of streaming data while using the DP.

2.5 Language-based Methods

Another approach that can benefit us is the use of n-gram models. Sequences of musical struc-

tures, either low level structures, like frames or notes, or higher level structures like chords or

segments, contain additional information because they happen close to each other and more

importantly, in sequence. With the premise that sequences of observations carry additional

information, we are able to derive a symbolic representation of the audio and use these in the

online context. The level at which we build the sequence will heavily impact what our model is

learning. For example, sequences of MFCC frames will model changes in timbre along a short

period of time.
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More specifically, methods derived from topic modelling and language models, in the con-

text of HDP have been used for speech segmentation. Raczyński and Vincent (2014) propose a

genre dependent topic model, for modelling chords that aims at predicting a genre of a music

using a distribution of chords.

Work has as also been done in the field of word segmentation from phoneme sequences

by Takeda, Komatani, and Rudnicky (2018). This work aims at building systems that can

acquire knowledge during their spoken interactions with human beings. Unknown or new

words can frequently appear even if we carefully prepare a vocabulary set in advance. To

combat this problem, the authors propose a model based on subword N-grams and subword

estimation using a vocabulary set, and posterior fusion of the estimation results of a Pitman-

Yor semi-Markov model (PYSMM) and their model. The PYSMM integrates both word-level

and character- (phoneme) level N-gram language models and then estimates the segmentation

labels of phonemes corresponding to word boundaries by updating both language models in

an unsupervised manner. A subword refers to a unit smaller than a word. If subword patterns

of vocabulary words are obtained from a given vocabulary set that does not include duplicated

words, then the subword N-gram model can capture better “word-level” segmentation pat-

terns as words than a phoneme Ngram model. Their proposed vocabulary model estimates the

subword pattern of a word in an unsupervised manner. Although the subword model is supe-

rior for detecting out of vocabulary words, it might degrade the sentence-level segmentation

accuracy. The estimation results of a PYSMM and their model are merged to take advantage of

both.

2.6 Summary

In this chapter, we reviewed and compared state-of-the-art models and systems that relate to

our task. We began by referring the most common approaches to feature extraction for musical

audio. Segmentation approaches were then mentioned as way of splinting the audio based

on the underlying features and work in the literature related to extracting and or grouping

information given a signal was covered.

We presented the background for the methods considered experimentally in our work. We

began by introducing the KDE method, an unsupervised online approach based on density
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estimation, that allows us to cluster data with an unbound number of groups. Much like it, the

family of the DP methods provide the same set of benefits, albeit, through a completely distinct

method of estimation. The final section of the chapter referred to language based methods as

possible approach to model and cluster feature data at a higher level.



3Dataset Preparation

The aim of this chapter is to cover pre-processing steps required for the construction and prepa-

ration of the source materials associated with audiovisual content analysed in this work. Data

was extracted from multiple sources, specifically, the audio from the movies themselves, their

scripts, the subtitles, the chapter information and finally their respective soundtracks. We

therefore do not have a single dataset, but a collection of distinct elements that make up the

material related to the movies.

We begin by presenting the dataset, followed by work towards obtaining the musical audio

played during the movies. The subsequent section then approaches how we obtain narrative

characterization of the events in the movie at any given time and that can characterize the audio

that is being played, from that point of view.

3.1 Dataset

We used the Complete Recordings of the movie adaptation of Tolkien’s The Lord of the Rings,

by Peter Jackson, containing the complete score for the extended versions of the films. The Lord

of the Rings score, composed by Howard Shore, accompanies almost entirely the films, where

each track was produced for a given segment of the movie with a thematic background em-

phasizing how the movie tells the story, therefore enriching it. The score was selected because

of the extensive work that has been done in the past analysing its compositional, structural,

cultural, and literature background. It was produced solely for the movies, taking inspiration

from the source material, the books. It offers around 13 hours of composed music that provide

substantial data to work with.

Because of the extensive literature available, concept discovery that is done on this music

can be interpreted with contextual story and cultural background, directly bridging the image

with the musicological aspects. This aspect will allows to compare the quality of the struc-
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ture created by our learning methods with the one agreed upon by the literature, giving us a

validation tool.

Howard Shore uses similar thematic material through all his work on the trilogy, leading to

an opportunity to study not only how the leitmotifs are used and related to each other but also

to study how do these relate to the visual, emotional and cultural aspects shown in the movies,

an analysis than has been done (not in a computation setting) by Young (2007); Adams (2010).

The composer took inspiration from the descriptions that are present in the books, mainly the in

depth descriptions of the inhabitants, the instruments used in each region (where each region

is associated to a fictional culture, that has different leitmotifs associated with) as well as poetry

that is sung by the characters, that show the importance of music within Tolkien’s novels. There

is also effort put into the novels, in order to deeply characterize the world which also leads to

greater cultural background, later used to compose the soundtrack. For example, the exert

”Doom, doom came the drum-beat and the wall shook . . . Another harsh horn-call and shrill

cries rang out” is depicted in the movie and is accompanied by a musical rich in drum sounds

showing a clear inspiration from Tolkien’s descriptions.

The music of each of the races in the fantasy world contrasts in terms of instruments, pitch,

and melody. These abrupt contrasts allows us to better isolate and capture each leitmotif of a

given culture because of the very distinct features.

Another relevant feature in Shore’s work is the presence of voice in some of the music

produced. It is restricted to some domains as it is the case of the Elven music or motifs related

with Sauron where there is a predominance of choirs. This feature further helps us to structure

the different motifs as the presence of voice is descriptive for specific ones.

Songs like “The Shire”, are played throughout the three instalments although with differ-

ent instrumentation, style, harmony, and melody while maintaining the same base structure.

One occasion where we can observe this difference is when Shore uses a flute to carry the vi-

olin melody line of the theme when ever Frodo, a character of the series, is reminisces about

the Shire, correlating this theme, in particular, with the character by changing the instrumenta-

tion used for that particular motif. Another example is the “horn-Shire” theme, a more heroic

version of the song, played with a French horn, that relates to the transformation of the hob-

bit characters. The motifs contained in each of the versions of the same songs differ due to

their specific use through out the three movies, while at the same time keeping and underlying
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similarity that can be described in terms of a hierarchy, where the base contains the constant

motifs and further branches explain specific modifications to the main theme. Cases like the

one described are one of the main objects of study for this work. There is a clear progression in

terms of the leitmotif composition through time, where leitmotifs introduced early on branch

into different ones to better follow the narrative that is being told.

3.2 Audio Preparation

For the dataset used, we have access of two versions of the audio data. The first corresponds to

the movie’s soundtrack. The second corresponds to the music that is played in the movies, that

for editing purposes, motivated by driving the story forward or other creative reasons, does

not correspond directly to the music in the official soundtrack. The music present in the movie

suffers distortions in terms of energy in scenes where the dialogue is to be more emphasized,

for example, as well as being accompanied by other sound effects, such as character dialogue,

battle scenes or world events. All these aspects contribute to a decrease in musical audio quality

when working with the music present in the movies, compared to the use of the audio from

the soundtrack. These aspects motivated us to find mechanism to increase the audio quality of

music in the movies.

An initial approach to this problem led us to experiment with source separation tools with

the goal of isolating the musical audio from the the other audio components. However, as we

were unable to successfully isolate the musical audio, we resorted to a solution based on audio

alignment. This choice was made so that we can retrieve a high quality audio version of the

music that is being played throughout the movies.

The tool implemented, based on Dynamic time warping (DTW), (Sakoe & Chiba, 1978),

takes 20 second audio fragments from the movie and aligns it with the highest score audio

fragment of the same length from the soundtrack. The algorithm’s score is computed taking

as input the chromagram of from the audio segment from the movie and the set of 20 second

fragments from each track in the soundtrack. A semi exhaustive search is conducted to find the

highest alignment score (a skip of 500ms was implemented to decrease the search space). This

is repeated for each movie so that less comparisons have to be made.

For this dataset, prior information that the music present in the movies was played in an
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order that was respected in the soundtrack. Taking this into account, an heuristic was included

when choosing the aligning segment from the obtained alinement’s rank. A percentage of the

total time of a track must be aligned before a segment from another track can be chosen.

With the alignment process established, each 20 second segment of the movie has a corre-

sponding segment of audio from the soundtrack associated with it. Nonetheless, it is important

to point out that this alignment is not perfect. Because of the noise that comes associated with

the music in the movie, this can, in many cases, distort the shape of the feature we extract

to perform the alignment, therefore negativity affecting it. The numeric values, metrics and

features described where chosen based on empirical evidence, such that the audio alignment

would be as accurate as possible.

3.3 Ground Truth and Metadata

We set as goal to capture relationships between narrative events that are similar in nature,

given their musical audio counterpart. It is important to define what these event are and how

we group them together, as these become the ground truth information from where we derive

our conclusions. For this purpose, this section approaches how we can derive a ground truth

from the metadata that accompanies the movies. Moreover, the approach that will be described

is not bound to our dataset. As long as the required material is available, this extraction process

can be applied to other audiovisual content.

We begin by extracting speaker and location information, for every instance through the

movie, from the scripts and subtitles that are part of our dataset. This was achieved with the

use of a tool for subtitle and script alignment, originally developed by Rosado (2016). For

the alignment of the script with the subtitles, they use the Needleman–Wunsch DP algorithm,

(Needleman & Wunsch, 1970). The algorithm finds an optimal path between two sequences,

and then, detects an optimal alignment between them. To use the algorithm with the script and

subtitles, first, the script’s dialogue and the subtitle’s dialogue are tokenized into words, and

then, a similarity matrix is created to compare whether or not each word is the same. After the

alignment, if the number of words matched between any two sentences is more than 50%, then

those sentences are considered to be equivalent. An example of the aliment being computed

can be seen in Figure 3.1.
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Since subtitles are time-indexed, any alignments with the subtitles stream is implicitly

shared with other time-indexed data, such as audio and video streams. This gives us a tool to

automatically retrieve pertinent information from the movie scrip. Originally, the tool would

only output the speaker for each line of dialogue but throughout this work, it was extended

so that the location information present in the script could also be retrieved. For clarification,

speaker information corresponds to the name of the characters that are speaking and the loca-

tions correspond the the fictional places present in the scenes of the movie.

It is important to mention that, as this process is automated, it suffers from algorithmic

errors that affect the quality of the produced match. This in turn, affects the quality of the

ground truth produced. Through testing of the tool, it was concluded that it’s output had a

high recall per alignment, meaning that there is a correct alignment between the subtitles and

the script, although the tool misses some of the matches resulting in an empty alignment, which

implicates that there are some characters or locations that may not appear as frequently due to

this error in alignment.

Figure 3.1: Example of alignment between subtitles and script.

Another key point in the construction of our ground truth is the use of scenes. Originally
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introduced by Lopes (2017), these are defined as the sequence of utterance or lines of a sin-

gle speaker and their use is aimed towards capturing the dialogue (consisting of one or more

subtitles) of a single character or set of characters that are very close in time, based on the times-

tamps of the subtitles. We based the scene construction criteria on the previous work, as the

authors expensively tested which values would fit scene creation best. The values used were

500ms as the maximum distance between two subtitles than belong in the same scene.

Rather than associating character and location at the subtitle level, to the corresponding

music segment, we use the scene as a way of aggregating this information. This higher abstrac-

tion level, allowing for the association of a longer piece of audio.

Having the metadata information associated with each scene, another key decision was

scene aggregation based on either the repetition of the exact same character(s) in distinct ad-

jacent scenes or the repetition of location in the same conditions, therefore establishing two

distinct ways of grouping information, each giving more weight to their specific aggregation

key (character or location).

The decision to aggregate scenes was based on the knowledge that there are pieces of audio

playing in the movie were the are no speakers present, implying that there is no annotation

available for these segments. In order to leverage the annotation present per scene to other

segments not covered by any subtitle and subsequently by any scene, we aggregate them as

mentioned above, so that segments of audio between scenes that share the same metadata

information may also share that annotation, thus increasing the overall amount of music that

has ground truth information associated with it.

Given the established aggregation possibilities, we opted towards aggregating scenes by

characters, as described above. We found this solution to be a good balance in terms of gran-

ularity of ground truth information being grouped. Aggregation by location resolved in very

long sets of scenes with different characters, as the narrative in the movie can take place in a

single location for a long period of time.

Finally, we point out a processing step in regards to location information present in the

ground truth. The locations present in the script and subsequently in the annotation corre-

spond to geographical locations from the fictional world. Due to the observation of fine grained

locations present through the scripts, that we considered to be of too much detail, we opted to

encase some of these locations into broader corresponding ones, always referring to the map
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to make such decisions. Moreover, it is important to note that this change was had-doc for this

particular dataset and possible to the existence of a detailed map of the world, that allowed us

to make informed decisions. Such change is possible for other datasets as long as geographical

information is present. In the case of the movies analysed, a map of the fictional world was first

introduced in Tolkien’s books and then later adapted for the movies, which we show in Figure

3.2. A list of the final locations used can be seen in Table 3.1.

Locations
1 TOWER OF CIRITH UNGOL
2 WEATHERHILLS
3 MAP
4 EPHEL DÚATH
5 EDORAS
6 FANGORN
7 HELM’S DEEP
8 ISENGARD
9 BREE
10 DIMHOLT
11 MORIA
12 PROLOGUE
13 THE MISTY MOUNTAINS
14 PELENNOR FIELDS
15 ROHAN
16 THE GREY HAVENS
17 SHELOB’S TUNNEL
18 PATHS OF THE DEAD CAVERN
19 WHITE MOUNTAINS
20 ITHILIEN
21 MINAS MORGUL
22 MORDOR
23 EMYN MUIL
24 HOBBITON
25 MINAS TIRITH
26 XXX-EAST
27 RIVENDELL
28 OSGILIATH
29 XXX–SOUTH
30 DUNHARROW
31 SHIRE
32 LOTHLÓRIEN

Table 3.1: List of locations selected as abstractions from finer grained ones.
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Figure 3.2: Map of the fictional world of the Lord of the Rings. From Tolkien (1991).
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3.4 Clustering Labels

This processing pipeline, described previously, leaves us with a set of metadata information

that is directly associated with each audio instance, i.e., for each set of aggregated scenes, we

have the corresponding music that is played in that time interval. Specifically, location and

character information. The two elements combined help characterize the narrative of the movie

at any given moment, thus being possible to view these as elements that characterize a situation

in the movie. There can then be an association between the audio and any of these items, either

one-to-one or one-to-many.

The leitmotifs and musical audio in general suffer modifications through the narrative.

This implies that the audio that is associated with a character or a location is not uniform

throughout the movies. For example, the music from Minas Tirith used in the first movie,

where Gandalf is present is very different in theme from the one present in the third movie,

with the same character. I can also be seen that the same pair charter-location hold different

narrative meaning in these two occasions and because of this difference, the underlying audio

also changes tone. These two aspects motivates to go beyond the association of a piece of audio

to pair character-location, as we find this association insufficient.

To cover this issue, we follow the approach of Chollet (2016), where the author relies on

matrix factorization to reduce the dimensionality of the target labels. This method makes use of

co-occurrence of the target labels, projecting the high-dimensionality target vectors. Formally

defining this technique, let M be the binary matrix of aggregated scenes I and labels L where

mij = 1 if ii contains label lj and mij = 0 otherwise. We then use matrix M to compute the

Pointwise Mutual Information Gain (PPMI) for the set of labels L, that we will denote as matrix

X . Let Li be the set of scenes associated with label li, the PPMI is defined as:

X(li, lj) = max

(
0, log

P (Li, Lj)

P (Li), P (Lj)

)
(3.1)

where P (Li, Lj) = |Li ∩ Lj |/|I| and P (Li) = |Li|/|I|. Intuitively, the PPMI gives us the

association measure between a pair of discrete outcomes x and y. In our case it measures the

association between aggregated scenes and a context by calculating the log of the ratio between

their joint probability and their marginal probabilities.
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X is then factorized using Singular Value Decomposition (SVD) in the form X ≈ UΣV .

Let Σd be the diagonal matrix containing the the top d singular values, and let Ud be the matrix

obtained from selecting the corresponding d columns fromU , we build the matrixCd = Ud·
√

Σd

that corresponds to the label factors in d dimensions. The item factors are obtained in similar

fashion defined by the matrix Fd = MT ·Cd. These two matrices encode the aggregated scenes

and labels in the same projected space, respectively. Thus, a distance measure can be used

to aggregate scene embeddings and labels. Similar labels are grouped in space, and at the

same time, scenes with similar sets of labels are close together. In Figure 3.3, we can how both

matrices project in a common space.

Figure 3.3: Crosses correspond to elements of the matrixCd. Dots correspond to items of matrix
Fd and are coloured given the cluster centroids they are closer to.

Clustering can be done in two distinct manners. The first is done by clustering aggregated

scene embeddings, corresponding to the rows of matrix Fd. Aggregations of these items can

be viewed as which aggregated scenes share similar labels. The second and more interesting

type of aggregation made possible in the cluster of label embeddings, belonging to the matrix

Cd. These clusters represent the metadata information that co-occurs, hence, that can be re-

lated explicitly. In our work, these labels can correspond to locations, characters and temporal

information in the form of movie chapters or a fixed temporal window. If one is to include
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these types of information as labels, we can encode which different aspects of the narrative and

merge them for a more meaningful representation of the narrative of the movies.

The introduction of the temporal window allows us to differentiate the same charters at

the same locations in different periods of the movie. This differentiation is wanted as due to

narrative aspects, the audio being played, in the same region can evolve pushing us to make

this type of distinction. Thought development, we experimented with the introduction of time

via chapter information and by fixed size temporal segments. We concluded experimentally

that 10 minute window segments created clusters where the items present were more compat-

ible. Moreover, this type of information is common to segment the narrative of movie. In disk

format of distribution of movie, it is common to have the notion of chapter information built

in. In the Lord of the Rings movies, these average around five minutes, length that we found to

be too short. By having temporal segments greater that chapter length we effectively grouping

this information.

Finally, the quality of the clusters produced is focal for the rest of this work. The number

and shape of the label clusters is very affected by the method used, thus it requires attention.

Clustering can be performed directly on the items of matrix Fd or on the labels of matrix Cd.

By doing this, we explicitly use the label embeddings to group aggregated scenes, as these are

only implicitly shaped by label co-occurrence.

Two approaches were considered for clustering the labels on the matrix Cd. The first was to

use KNN (k-nearest neighbours algorithm) with a number of clusters chosen empirically. This

corresponds to our hard clustering approach, in the sense that the only metric in question is

the distance between the label points. Because of these points, it presents two clear limitations:

the choice of k, the number of clusters, and the absence of modelling variance or uncertainty of

grouping labels together. To mitigate these limitations, a second clustering approach based on

the KDE model was considered. By training one KDE with label data, the number of clusters

grows has needed in order to build better explanation of the underlying data. Like wise, has

the mixture components that make up are Gaussian, the uncertainty of grouping labels is being

taken into account when building the clusters.

As the clusters were built using matrix Cd, it was necessary to cluster the items of matrix

Fd given the computed sets of labels. In the case of KNN model, the centroids were used to

label each item from Fd. In the KDE case, we assigned the cluster whose component yield the
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highest likelihood.

Regarding the clusters obtained with KDE model, we found that the number of clusters

was correlated with the dimensionality d of the SVD decomposition. The number of clusters

grew the higher the dimensionality. Moreover, label clusters that were more representative

of overall number of aggregated scenes preset in the movie presented a higher weight in the

corresponding mixture component. This relationship can be seen in Table 3.2.

Cluster ID Weight Time (minutes)
0 0.152318 64.25
1 0.0596026 23.916
2 0.0529801 19.5
3 0.0794702 11.583
4 0.0529801 8.25
5 0.0264901 7.75
6 0.0596026 8.416
7 0.0331126 23.916
8 0.0397351 28.666
9 0.0596026 20.833
10 0.0794702 38.333
11 0.0397351 52.0
12 0.0198675 11.0
13 0.0463576 20.833
14 0.0331126 8.083
15 0.013245 4.25
16 0.0728477 33.833
17 0.0397351 13.083
18 0.0264901 11.333
19 0.00662252 0.916
20 0.00662252 8.5

Table 3.2: Mixture weights per component and corresponding coverage of each cluster.

As a final clustering approach, for the case on KNN clustering, we set the dimensionality

of matrix factorization to 20, and number of clusters to 14. In the case of KDE approach, the

dimensionality of the matrix factorization was set to 5, yielding 21 clusters. Their projections

and coverage can be seen in Figures 3.4, 3.5, 3.6 and 3.7, respectively.
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Figure 3.4: Projection of Fd items coloured by KNN clustering onCd matrix.Crosses correspond
to the centroids of the clusters obtained.

Figure 3.5: Projection of Fd items coloured by KDE clustering on matrix Cd.
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Figure 3.6: Coverage of each cluster through the movies timeline. Clusters were generated
using KNN method.
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Figure 3.7: Coverage of each cluster through the movies timeline. Clusters were generated
using KDE method.
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3.5 Summary

We introduced the corpus used, consisting on the extended version of the Lord of the Rings

movies, the corresponding soundtracks, scripts and subtitles. Moreover, we refer how to in-

crease the quality of the musical audio from the movies by proposing an alignment method

with the respective soundtrack. We propose a method to associate metadata information to

musical segments from the movie by leveraging the alignment between the movie script and

the it’s subtitles, obtaining character and location information.

The concept of scene was introduced as a way of reducing the granularity of character and

location information. A subsequent aggregation step was applied as way of of both correct-

ing possible alignment errors between the scrip and the subtitles and as a way to expand the

ground truth window to more music segments in the movie that may occur in between scenes.

Temporal information is also added to the ground truth tag of each musical segment, so that

we can differentiate characters and locations in different moments of the narrative.

Finally we propose how we can aggregate similar situations, by using a method of matrix

factorization on the label space, in order to determine, based on the co- occurrence of characters

and locations across different time periods, what sets of labels share similar narrative context.

Two methods are used to solve this issue, one based on hard clustering using KNN algorithm

and a approach using KDE method where the number of cluster is also outputted by the model.



4Experimental Setup

In this chapter, we present our approach towards leaning relationships between situations with

the same narrative context, in an unsupervised fashion, given the soundtrack that accompanies

the movie narrative. We assume that different situations, defined in Chapter 3, as characters

in a given location and point in time, because of the co occurrences of these elements, share

similarities from the narrative point of view, thus sharing similar music. It is with the use of

these similarities that we can map, depending on the perceptual features used, how two event

scattered across the movies relate based on the audio that accompanies them.

In figure 4.1 a diagram of the pipeline of our work is showed. The last chapter covered the

initial steps displayed, specifically the steps of music alignment, metadata extraction, and label

clustering. This chapter covers the subsequent steps.

Figure 4.1: Diagram of the pipeline of our work.

The first part of this chapter covers the feature extraction step, necessary for all subsequent
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work processing the audio features. The rest of the chapter covers our approach to the con-

struction of the explanation of these audio relationships. To infer these, for each label cluster,

we fit a model to the corresponding audio features in order to obtain a statistical representation

of each cluster’s audio. This is done in two different manners: 1 a baseline approach using mul-

tivariate Gaussian distributions; 2 A construction on the baseline using KDE model. Finally we

describe how evaluation process was done.

4.1 Audio Setup

A pivotal choice in our work is the choice of which label clusters to use. The construction and

analysis of audio relationships are built on top of these and so, the method used to generate

the clusters must be weighted. Chapter 3 presented two alternatives for cluster computation.

One based on hard clustering where the choice of the number of clusters was made empirically

(so that the sets of labels inside the clusters and meaningful based on the knowledge of the

movies present) and one obtained via an unsupervised method that accounts for variance of

the labels present in each cluster. Based on these these two types of clustering approaches, the

experiments presented here take into account both clustering scenarios.

Another important choice is how we chose to model the musical audio. In the last chapter,

it was shown that the end result of of dataset preparation in terms of scene aggregation and

it’s respective audio were acoustic segments of distinct lengths with a set of narrative labels

as a direct correspondence. These segments, in many cases, were too large to process, being

in the order of minutes, aspect that motivated their split into smaller ones. By working with

smaller sized segments, we aimed at capturing pieces of melodic content with fewer notes,

which reduces both variability and complexity of the musicals segment and increases precision

when extracting feature information. We set the size of each audio segment to 5 seconds.

The audio from each aggregated scene was then split into 5 second segments, with padding

of zeros being added to segments that were smaller that the decided size. With audio segment

size stipulated, all feature extraction and processing was done at this level.
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4.2 Feature Extraction

The features selected were motivated by both the literature and the ability to distinguish, or-

chestral music in terms of timbre and tonal aspects. Specifically, the features extracted were

MFCC, Chroma, chords, and a combination of MFCC+Chroma. Mfcc and chroma features

were extracted with a fast Fourier transform (fft) window size of 2048, a hop length of 1024

between frames and a sampling rate of 22050 htz. Regarding MFCCs, the number of coeffi-

cients was set to 19: setting the number of coefficients to 20 and removing c0 coefficient (which

indicates the average power of the input signal). In terms of the chroma feature, 8 octaves were

considered and the number of ”chromas” per octave was set to 12. Normalization was applied

to the combination of Chroma and MFCC with respective variance, setting the mean to zero

and variance to one, since the numerical range of each feature is different.

For chord extraction, we followed the approach of Müller et al. (2012). The first step, con-

sisting of chormagram extraction, used the setup just described. The following steps generated,

for each 5 second audio segment, the set of chords from the from the corresponding twelve ma-

jor and twelve minor triads. As these correspond to discrete features, and to leverage additional

information from the set of chords in each audio segment, we computed the TF-IDF (term fre-

quency–inverse document frequency (Salton & McGill, 1986)). This gives us how important a

chord is to an audio segment given the collection of segments available.

The aforementioned features, however, do not take into account melody information as

they do not model sequence in any form. This issue was approached in two different manners.

The first was to take the mean and variance of the frames from each five second segment. The

second was to encode the audio sequence into an embedding with the use of an autoencoder

tool. Regarding the first choice, the mean poses as a relevant mechanism to model the overall

aspects of the audio segment. The variance was added in order to account for variation of

information in the audio segment. Both were computed by fitting a multivariate Gaussian to

each the set of frames for the segments being modelled. In terms of dimensionality, the diagonal

of the covariance matrix of the fitted Gaussian is used and it’s concatenated to the mean value

of the feature for the given segment.

Regarding the encoding of audio segments, the approach previously described in Chapter 2

was followed. For this setup, for each five second audio segment, the mel-spectrogram was
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extracted (with the same parametrization of the above features and 320 bins as suggested by

the authors) and fed to the autoencoding network, with the base parametrization proposed.

After training was complete, for each audio segment, the embedding was extracted from the

hidden layer connecting the encode and decode layers.

4.3 Computing Relationships

Three different scenarios were considered in this work, using the features pointed above and

the two types of clustering labels presented. As a baseline approach, for each label-cluster,

we fit a multivariate Gaussian to the audio features associated with the cluster, thus obtaining

the mean and variance values for the corresponding features, for each cluster. Relationships

between clusters were computed as distance between the distributions that model the audio

features of each cluster. We used the Bhattacharyya distance (Bhattacharyya, 1946) to compute

this association. This procedure was implemented for each set of features presented above and

with both types of label cluster generation.

A step up from these baselines was the replacement the Gaussian distribution with KDE

model. By doing this, we are effectively changing how we build the audio explanation for each

label cluster. To measure the distance between KDE model of each label cluster, we used the

Hellinger distance (Hellinger, 1909).

4.4 Assessment

The evaluation procedure looked at the distance between the underlying models of each label

cluster in order to assess if the distances reflect acknowledgeable relationships. For each setup,

we computed a distance matrix between all label clusters and built a chord diagram. In the

chord diagram, each entry corresponds to a label cluster and holds three outgoing edges corre-

sponding to the top three most relevant relationships. The width of each edge is proportional

to its relevance. Each edge was computed as the inverse of the distance between two label clus-

ters, so that closer edges, i.e., ones that share stronger relationships, appear with wider edges

in the chord diagram.

The work presented in this document is evaluated in a qualitative fashion, as it is challeng-
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ing to quantify if the associations captured by the top are meaningful without a ground truth

of said associations. It is because of this challenge that evaluation requires knowledge of the

movies and score of the Lord of the Rings, in order to assess if the relationships captured are

relevant. Furthermore, the assessment is also dependent on the features being used to char-

acterize the audio of each cluster. Depending on these, one can look at the audio segments

closest to the mean in the Gaussian case, or of higher probability function values, in the case

of the KDE model, to complement the relationship assessment and to answer what each model

is capturing. Therefore we also listen to these audio segments as part of our evaluation, to

determine, depending on the features used, what is being grouped together.

An example of chord diagram analysis can be seen in Figure 4.2. The diagram displays a

set of highlighted connections. These correspond to the most relevant relationships between

cluster 3 and all other clusters. By consulting the appendix, we can decode the cluster by the

most representative situations present in each cluster.

Figure 4.2: Top relationships computed between cluster 3 and all others. Thickness of edge
represents more weight.
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4.5 Summary

We presented how we built our experimental setup given all prior information regarding

dataset preparation. We showed the two manners in which we cluster situations in the la-

bel space, based on the conclusions of the previous chapter. We justify the length of the audio

segments used for all experiments. We then stated the details in parametrization in regards

to feature extraction, and proposed two alternatives to capture sequence information, one im-

plicitly based on a statistical distribution and one based on an autoencoding tool. Finally, we

showed how the distances between clusters were computed, for both the baseline and the KDE

approaches. The evaluation process was then described, focusing on the qualitative analysis of

the relationships computed.



5Experimental Results and

Discussion

We present all the relevant experiments and corresponding results, highlighting the impact of

using different features for our task as well as how changing the method used to model the

underlying audio features of each label cluster influences the identification of relationships

between these clusters. We begin my mentioning some of implementations necessary to build

and evaluate the experimental setup.

5.1 Implementation

We focus this section on the mention of the different implementations necessary thorough this

work. The tool for music alignment was built from scratch. It was necessary to implement all

the logic regarding the processing of both the movie and soundtrack datasets as well as the

heuristics for the alignment algorithm itself.

In regards to the tool for script and subtitle alignment, adaptations to the original tool was

necessary, so that more metadata information could be extracted from the script, and to facili-

tate post processing of the information extracted, in terms of regular expressions. The synchro-

nization of the higher quality audio segments, computed by the alignment tool, with metadata

information, was a necessary step that had to be built as well. A set of regular expression rules

was written, to transform the output of the scene-script aligner, into Pandas Dataframes, that

facilitated integration with the corresponding audio segments.

The creation of clusters of labels was done as a direct implementation of the work of Chollet

(2016), with both clustering methods being adapted to deal with the respective input.

Concerning the methods used for feature extraction, the library Librosa, (McFee et al.,

2015), was used. An exception to this was the adaptation of the work of Amiriparian et al.

(2017), in the case of the production of sequence embeddings, so it could function with our

dataset format, and the implementation of the chord extraction method, from Müller et al.
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(2012).

Finally, the experiments described in the experimental setup were all built in the context

of this work, as well as their evaluation. The KDE implementation was adapted so that we

could, using the Hellinger distance, measure the distances between the different models. A

implementation of the Bhattacharyya distance was also required to evaluate distances between

multivariate Gaussian distributions.

5.2 Results

This section showcases the computed distance matrices and respective chord diagrams for the

most relevant results, following the experimental setup previously described. We start by pre-

senting some of the baseline scenario. First of all, Figure 5.1 shows a baseline experiment done

using KNN clustering on the label side. The audio features of each label cluster, in this case

Chorma, were modelled by fitting a multivariate Gaussian.

(a) (b)

Figure 5.1: (a) Distance matrix computed using chroma features and with KNN clustering on
the label space. (b) Chord diagram of top relationships between clusters.

Figure 5.2 shows a second baseline experiment done using KNN clustering on the label

side. The audio features of each label cluster, in this case MFCC, were modelled by fitting a

multivariate Gaussian.
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(a) (b)

Figure 5.2: (a) Distance matrix computed using MFCC features and with KNN clustering on
the label space. (b) Chord diagram of top relationships between clusters.

Figure 5.3 shows a third baseline experiment done using KNN clustering on the label side.

The audio features of each label, in this case Chorma+MFCC, were modelled by fitting a mul-

tivariate Gaussian.

(a) (b)

Figure 5.3: (a) Distance matrix computed using Chroma+MFCC features and with KNN clus-
tering on the label space. (b) Chord diagram of top relationships between clusters.

Figure 5.4 shows a increment to the other baselines experiments. The clustering on the

label side was done using KDE clustering. The audio features of each label, in this case

Chorma+MFCC, were modelled by fitting a multivariate Gaussian to the data of each label

cluster.
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(a) (b)

Figure 5.4: (a) Distance matrix computed using Chroma+MFCC features and with KDE clus-
tering on the label space. (b) Chord diagram of top relationships between clusters.

For the setups where KDE model is used for clustering in the label space and as a model

of the audio of each cluster, the distance matrices do not contain the full scale of the Hellinger

distance (0−1). The choice to shorten the presented range was done so that relevant differences

between clusters would be more evident.

Figure 5.5 shows the first experiment done changing both the label cluster approach and

the way the audio features of each cluster are modelled. KDE clustering was used on the label

side. The audio features of each label, in this case Chorma+MFCC, were modelled by fitting a

KDE model.
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(a) (b)

Figure 5.5: (a) Distance matrix computed using Chroma+MFCC features and with KDE clus-
tering on the label space and KDE used model the underlying audio of each cluster. (b) Chord
diagram of top relationships between clusters.

Finally, Figure 5.6 shows an experiment done using KDE clustering on the label side. The

audio features of each label, in this case MFCC, were modelled by fitting a KDE model.



64 CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION

(a) (b)

Figure 5.6: (a) Distance matrix computed using MFCC features and with KDE clustering on the
label space, and KDE used model the underlying audio of each cluster . (b) Chord diagram of
top relationships between clusters.

5.3 Discussion

It is always possible to compute distances between clusters and the challenge of this evaluation

is to comprehend if these relationships in fact suggest that the music that is present in each of

label clusters is able to relate similar situations across the movies. The presented results goal is

to capture the differences that the clustering technique on the label side, together with how the

audio from each cluster is modelled, help improve the ability to map these relationships.

We begin by looking at our most simple setup, where hard clustering is used to produce the

label clusters and a multivariate Gaussian models the audio features in each one. The distance

matrix shows us that the majority of the connections between label clusters do not differ greatly

in size. Similarly, when using the KDE clusters and a Gaussian to model each cluster, the same

behaviour is noticed. This lead us to conclude that increasing the complexity of the method

used to create the ground truth is insufficient to obtain sufficient characterization of the label

clusters.

The agglomeration of relations on some of the clusters, as it is the case of clusters 0, 11 and

16 in 5.4 can be explained by reading into the cluster composition. Although the situations that

were aggregated share similarity from a narrative point of view, if the music range inside the

cluster is too large, it will bring distribution that model the cluster closer to all others. As a

concrete example, Figure 5.7 gives a higher insight into the content of cluster 0. The power law
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behaviour observed was found amongst all clusters and is another indicator of the statement

above. Cluster 0 presents elements from both the fellowship (Aragorn, Gimli, Legolas) and sec-

ondary characters that interact with them. These three character are predominant throughout

the three movie instalments and the audio that is shared is varied in theme. The same point

occurs in the case of Galadriel. The top occurrence, in the prologue location, contain music

from different themes, including ”The Ring”, ”The Ringwraiths”, and ”The Fellowship of the

Ring”, showing the vast variability inside a single label.

Figure 5.7: Content of label cluster 0. Labels are sorted by frequency. Longer bar indicates
higher frequency.

For further clusters inspection, we can refer to Tables A.2 and A.1 from the Appendix, that

show, for each cluster, the top four most occurring situations in that cluster. This is shown for
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both label clustering methods, KNN and KDE.

A mention can be made towards the difference in colour when inspecting the distance

matrix regarding the two lighter clusters, 11 and 12. Because their size is reduced compared to

other clusters such as cluster 1, the amount of differentiation is a lot smaller, thus pushing the

distance to diverge from other in the distance matrix. This observation is also corroborated by

to top audio segments on each of these clusters. Cluster 11 is located in a narrow section of the

third movie, where the music is predominately themed after battles (the scenes of the battle of

Minas Tirith). The specificity in theme is what sets these clusters aside from others.

In comparison to the other setups, the clusters obtained with KDE clustering on both the la-

bel side and the audio side revealed to be more differentiable. In regards to the distance matrix,

very dark spots, isolated from others, can be clearly seen, implying that the added complexity

when explaining the underlying audio of each clusters helps discriminate difference in the un-

derlying audio. This can be explained by the fact the each mixture component as well as the

underlying mixture contained in (composed of two Gaussian that work as a memory factor) are

able to model different areas of the feature space, not losing the relative importance of some

areas, compared to a single multivariate Gaussian.

When evaluating the chord diagrams for this setup, we can see that in comparison with

the baselines, the number of connections with some of the clusters diminishes. In Figure 5.4,

clusters 1 and 2 are very predominant and display connections with almost every other cluster,

something that is less apparent when using the KDE model. One example of label clusters

that share particular relevant connection is the case of clusters, 1, 8 and 20, in both Figures 5.6

and 5.5, that share relationships among them. When inspecting Table A.2 for the top labels

inside the cluster, we can see a connection between a cluster that heavily groups situation in

Hobbiton, connected to a cluster that groups events where Gandalf and Frondo co-occur, also

connected to events where Sam is present. With knowledge from the source material, we can

say that these charters and locations are highly connected and more importantly they share a

lot musical themes, in particular, the ones connected to the Shire. The fact that these relations

all occur in the top relations displayed by the chord diagram, imply that we can relate groups

on similar narrative situations using the underlying music that follows them.

As a final point, regarding the use of audio embedding, these caused numerical problems

when estimating both the multivariate Gaussian and the KDE model, not enabling us to follow
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the proposed experimental setup using these features.

5.4 Summary

We presented and discussed the experimental results for our work. We showed multiple setups

on how we can relate sets of similar narrative events based on the corresponding music and

how the changes in the models used affect how well we can interpret the the relationships

built.
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6Conclusions and Future

Work

Given the results discussed in Chapter 5, we now overview the major contributions of our

work, as well as discuss the limitations of the solutions proposed. We conclude by pointing

future work that can aim towards improving some of the limitations found.

6.1 Conclusion

We defined the goal of modelling the thematic structure of music for film content in a stream-

ing scenario through the mapping of relationships between sets of charters and locations in

different time windows, elements that we claim to be narrative markers. By connecting similar

situations based on the music that is associated with them, we relate narrative events though

their thematic similarity.

We presented the musicological aspects that give music the narrative properties and the

leitmotif as a key role in this aspect. The contributions of this work consist on the introduction

of a fully automatic method to generate, from one or more movies and their metadata material

(script, subtitles), a quality version of the audio that is played together with set of labels that

can be used to map the narrative of the movie and more generally, as a ground truth that can

be applied to other studies. We proposed a method to generalize the ground truth in terms

of the co-occurrence of labels. This allows us to have a higher level overview of the different

narrative guide lines that occur through the movie.

We then use these clusters of similar events as a way as an anchor point in to which we

associate the music that is played. By having a hard label to describe groups of musical features,

we can build associations between these groups and build a network of relationships.

We found that the KDE model allowed us to build a more detailed and complex repre-

sentation of the audio since since its parametrization is more complex compared to the two

parameters that shape a Gaussian distribution. Therefore, the relationships found were less
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prone to noise from the mean, when compared to baseline results.

Multiple challenges were identified: the complexity of the object we want to model and

how it can be captured with different levels of features; novel class detection without the use

of labelled data; what representations we can use to model the observed clusters.

In regards to the audio alignment tool, this can be seen as both a contribution and a limi-

tation to the work developed. Aligning the musical audio with the soundtrack brought us the

benefit of being able to work with high quality audio but at the same time introduced error in

the work pipeline. Through inspection of the audio segments aligned, the error was introduced

when the volume (translated to energy) of the music being played in the movie was, in many

cases, distorted by other audio events or lowered during a piece of dialogue resulting in a poor

alignment.

The method proposed for ground truth construction shares similar aspects. On one hand,

it brings the contribution of generating a set of labels that act as anchor points to the narrative

of the movie. On the other hand, it brigs the limitation where only musical segments that are

covered by the sets of aggregated scenes have an associated set of labels. Music fragments

outside these windows are not considered, which is leading us to not take full advantage of

our dataset.

In regards to the experimental setup conducted, we were able to map meaningful relation-

ships between groups of similar events and improvements were observed from the baselines,

showing a more complex explanation of the audio of each cluster did improve the overall un-

derstanding of the relationships present.

One of the goals established in the beginning of this work was the online setup. The work

done so far can be seen as a baseline towards the online setup. The construction of the ground

truth poses a particular issue, since, as the musical stream grows, so due the narrative contexts.

Regarding preliminary experiments in online setup, using the musical stream, the inter-

pretation of the results proved challenging. It is easy to point out that the clusters produced

are dependent on the features extracted from the audio, however, after inspection, the groups

constructed and the relations between them were not meaningful to describe relationships be-

tween similar narrative events.

A similar conclusion was made when attempting to use more descriptive models to explain
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the relationships between label clusters. We sought to use topic modelling techniques for this

purpose, as they give a richer description of relationships through the statistical importance of

each topic. Much like the previous scenario, the interpretation of each topic from the mixture

of topics is very challenging and the experiments conducted lacked this very interpretation in

order to build a coherent connection between narrative entities given the corresponding music,

thus motivating future work in this direction.

Finally, a point not addressed in the experimental setup was the use of Dirichelt process

methods. Although we take from these the advantage of the unbound number of cluster and

the ability to learn these in an online setting buy changing the sampling scheme, these methods

share the same challenges as topic modelling techniques (they can be seen as an extension

of models such as the LDA when we want to grow the number of topics). When building

clusters using just the audio, either in a stream scenario or not, the problem of cluster evaluation

emerges. As less complex setups such as the ones described above proved very challenging to

evaluate, this technique was not pursued in this work but is left as a possible tool to solve the

unbound number of clusters in future work.

A straight comparison to the state of art cannot be established, as to our knowledge, there

is no work in the same setup as ours. Although we can not find a direct comparison, we can

consider future work to several challenges faced through the development of our study, as we

will discuss bellow.

6.2 Future Work

The automatic alignment tool between the movie’s music and the corresponding soundtrack

poses as an element is this work that can have further improvement. The errors in align-

ment introduce noise on posterior analysis using this data, something that needs to be fur-

ther mitigated. Preliminary experiments were done with work with Spleeter, proposed by

Hennequin, Khlif, Voituret, and Moussallam (2020), that contains pre-trained models for vo-

cals/accompaniment separation, four stems separation (vocals, bass, drums and other) and

five stems separation with an extra piano stem (vocals, bass, drums, piano and other). Another

system tested was InaSpeechSegmenter (Doukhan, Carrive, Vallet, Larcher, & Meignier, 2018).

It is a CNN-based audio segmentation toolkit. It splits audio signals into homogeneous zones
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of music,speech and noise. Both system were tested as a way of circumventing the music noise

removal problem, but yielded poor results. These methods were not adapted to our particular

domain (western classical music), which motivates further work in source separation tools as

a possible solution to the increase in quality of the musical audio played.

As it was previously mentioned, music fragments with no corresponding labels associated

are discarded in our work. This aspect requires further attention, as to find a manner that

facilitates the inclusion of all music played throughout the movie.

Throughout this work, one of the ways to capture melody information from the musical

audio was via network encoding. There has been much work done in this area, although specif-

ically for our task, we were limited in terms of the dataset available. It can be seen as one of the

limitations of this work, the methodology used to capture sequence information. The results

using the autoencoder did not distance themselves from the other setups using different fea-

tures. We can argue that the architecture used was to general for the problem at hand and that

further work should be done trying to better capture the melodic aspects of classical music.

The work of Zalkow and Müller (2020) was considered for this purpose but unfortunately, the

dataset (composed of a vast number of scores of western classical music), is not available, not

allowing us to reproduce the results and use their setup and architecture to encode sequence

information.

By improving the way we encode melody information at the audio segment level, we can

come closer to capture leitmotifs present, thus improving how situations across the movie relate

based on the music played.



Bibliography

Adams, D. (2010). The music of the lord of the rings films: A comprehensive account of howard shore’s

scores. Alfred Music Van Nuys, CA.

Amiriparian, S., Freitag, M., Cummins, N., & Schuller, B. (2017). Sequence to sequence autoen-

coders for unsupervised representation learning from audio. In Proc. of the dcase 2017

workshop.

Antoniak, C. E. (1974). Mixtures of dirichlet processes with applications to bayesian nonpara-

metric problems. The annals of statistics, 1152–1174.

Bernanke, J. (2008). “howard shore’s ring cycle: The film score and its operatic strategy.” studyingthe

event film: The lord of the rings. New York: Manchester University Press.

Bhattacharyya, A. (1946). On a measure of divergence between two multinomial populations.
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ACluster decoding

In this appendix we include the decoding tables for both types of clustering sets of labels. First

we present, in Table A.1 the top four most occurring labels in each label cluster, using the KNN

clustering. We then present the same information for the label clusters obtain using the KDE

method in Table A.2.

Cluster Id Top 4 most frequent labels

0

[’SARUMAN’] - [’ISENGARD’] - 21

[’GANDALF’] - [’ROHAN’] - 25

[’ARAGORN’] - [’ROHAN’] - 29

[’GIMLI’] - [’ROHAN’] - 29

[’ARAGORN’] - [’ROHAN’] - 22

1

[’BOROMIR’] - [’XXX–SOUTH’] - 19

[’GANDALF’] - [’MORIA’] - 14

[’BOROMIR’] - [’XXX–SOUTH’] - 18

[’GANDALF’] - [’MORIA’] - 12

[’ARAGORN’] - [’DUNHARROW’] - 50

2

[’GOLLUM’] - [’EPHEL DÚATH’] - 23

[’GOLLUM’] - [’THE MISTY MOUNTAINS’] - 40

[’SAM’] - [’EMYN MUIL’] - 19

[’SAM’] - [’EPHEL DÚATH’] - 48

[’FRODO’] - [’EPHEL DÚATH’] - 52

3

[’GANDALF’] - [’MINAS TIRITH’] - 45

[’DENETHOR’] - [’MINAS TIRITH’] - 54

[’GATE GUARD’] - [’MINAS TIRITH’] - 51

[’GANDALF’] - [’MINAS TIRITH’] - 44

[’PIPPIN’] - [’MINAS TIRITH’] - 48
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4

[’SAM’] - [’HOBBITON’] - 64

[’BILBO’] - [’HOBBITON’] - 1

[’BILBO’] - [’HOBBITON’] - 2

[’GANDALF’, ’FRODO’] - [’HOBBITON’] - 3

[’SARUMAN’, ’GANDALF’] - [’ISENGARD’] - 4

5

[’SAM’] - [’OSGILIATH’] - 39

[’FARAMIR’] - [’ITHILIEN’] - 33

[’DENETHOR’] - [’OSGILIATH’] - 33

[’GOLLUM’] - [’ITHILIEN’] - 29

[’FARAMIR’] - [’ITHILIEN’] - 32

6

[’ARAGORN’] - [’MORDOR’] - 60

[’SAM’] - [’MORDOR’] - 59

[’ELROND’] - [’RIVENDELL’] - 32

[’ELROND’] - [’RIVENDELL’] - 9

[’ELROND’] - [’RIVENDELL’] - 10

7

[’SARUMAN’] - [’ISENGARD’] - 5

[’STRIDER’] - [’BREE’] - 6

[’FRODO’, ’BUTTERBUR’] - [’BREE’] - 5

[’FRODO’, ’PIPPIN’, ’SAM’, ’FARMER MAGGOT’, ’MERRY’] - [’SHIRE’] - 5

[’OLD HARRY’, ’FRODO’] - [’BREE’] - 5

8

[’TREEBEARD’] - [’FANGORN’] - 37

[’ARAGORN’] - [”HELM’S DEEP”] - 36

[’ARAGORN’] - [”HELM’S DEEP”] - 34

[’TREEBEARD’] - [’FANGORN’] - 26

[’ARAGORN’] - [”HELM’S DEEP”] - 38

9

[’GANDALF’] - [’ISENGARD’] - 41

[’SAM’] - [’WEATHERHILLS’] - 7

[’STRIDER’] - [’WEATHERHILLS’] - 7

[’TREEBEARD’] - [’ISENGARD’] - 41

[’DADDY TWOFOOT’, ’TED SANDYMAN’, ’GAFFER’, ’FRODO’] - [’HOBBITON’] - 3
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10

[’PIPPIN’] - [’MINAS TIRITH’] - 56

[’GOTHMOG’] - [’PELENNOR FIELDS’] - 55

[’GANDALF’] - [’MINAS TIRITH’] - 52

[’GANDALF’] - [’MINAS TIRITH’] - 55

[’MERRY’] - [’PELENNOR FIELDS’] - 57

11

[’GIMLI’] - [’MINAS TIRITH’] - 58

[’GANDALF’] - [’MINAS TIRITH’] - 58

[’SAM’] - [’TOWER OF CIRITH UNGOL’] - 58

[’ARAGORN’] - [’MINAS TIRITH’] - 58

[’SHAGRAT’] - [’EPHEL DÚATH’] - 54

12

[’GANDALF’] - [’EDORAS’] - 27

[’ARAGORN’] - [’EDORAS’] - 28

[’WORMTONGUE’] - [’EDORAS’] - 26

[’WORMTONGUE’] - [’EDORAS’] - 21

[’PIPPIN’] - [’EDORAS’] - 43

13

[’GALADRIEL’] - [’PROLOGUE’] - 0

[’GALADRIEL’] - [’LOTHLÓRIEN’] - 16

[’GALADRIEL’] - [’RIVENDELL’] - 32

[’GALADRIEL’] - [’LOTHLÓRIEN’] - 15

[’GALADRIEL’] - [’LOTHLÓRIEN’] - 17

Table A.1: Cluster decoding for label clusters computed with KNN method.
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Cluster Id Top 4 most frequent labels

0

[’GALADRIEL’] - [’PROLOGUE’] - 0

[’GALADRIEL’] - [’LOTHLÓRIEN’] - 16

[’ARAGORN’] - [’MORDOR’] - 60

[’ARAGORN’] - [”HELM’S DEEP”] - 34

1

[’BILBO’] - [’HOBBITON’] - 1

[’BILBO’] - [’HOBBITON’] - 2

[’GANDALF’, ’FRODO’] - [’HOBBITON’] - 3

[’FRODO’] - [’HOBBITON’] - 63

2

[’FARAMIR’] - [’ITHILIEN’] - 33

[’DENETHOR’] - [’OSGILIATH’] - 33

[’FARAMIR’] - [’ITHILIEN’] - 32

[’FARAMIR’] - [’MINAS TIRITH’] - 47

3

[’WORMTONGUE’] - [’EDORAS’] - 26

[’WORMTONGUE’] - [’EDORAS’] - 21

[’SARUMAN’] - [’ISENGARD’] - 21

[’WORMTONGUE’] - [’ROHAN’] - 28

4

[’SARUMAN’] - [’ISENGARD’] - 5

[’STRIDER’] - [’BREE’] - 6

[’FRODO’, ’BUTTERBUR’] - [’BREE’] - 5

[’OLD HARRY’, ’FRODO’] - [’BREE’] - 5

5

[’BOROMIR’] - [’XXX–SOUTH’] - 18

[’SAM’] - [’ITHILIEN’] - 29

[’GOLLUM’] - [’EMYN MUIL’] - 19

[’MERRY’] - [’DUNHARROW’] - 51

6

[’GOLLUM’] - [’EPHEL DÚATH’] - 42

[’SAM’] - [’TOWER OF CIRITH UNGOL’] - 58

[’MERRY’] - [’PELENNOR FIELDS’] - 57

[’GOLLUM’] - [’EPHEL DÚATH’] - 40
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7

[’SAM’] - [’EMYN MUIL’] - 19

[’SAM’] - [’MORDOR’] - 59

[’FRODO’] - [’ITHILIEN’] - 33

[’SAM’] - [’MORDOR’] - 60

8

[’GANDALF’] - [’MORIA’] - 14

[’FRODO’] - [’EPHEL DÚATH’] - 52

[’GANDALF’] - [’MORIA’] - 12

[’FRODO’] - [’EMYN MUIL’] - 19

9

[’ELROND’] - [’RIVENDELL’] - 32

[’GALADRIEL’] - [’RIVENDELL’] - 32

[’ELROND’] - [’RIVENDELL’] - 9

[’ELROND’] - [’RIVENDELL’] - 10

10

[’GANDALF’] - [’MINAS TIRITH’] - 45

[’SAM’] - [’EPHEL DÚATH’] - 48

[’DENETHOR’] - [’MINAS TIRITH’] - 54

[’GATE GUARD’] - [’MINAS TIRITH’] - 51

11

[’GANDALF’] - [’EDORAS’] - 27

[’GANDALF’] - [’ISENGARD’] - 41

[’GOLLUM’] - [’EPHEL DÚATH’] - 23

[’SARUMAN’, ’GANDALF’] - [’ISENGARD’] - 4

12

[’PIPPIN’] - [’EDORAS’] - 43

[’MERRY’] - [’ISENGARD’] - 39

[’PIPPIN’] - [’EMYN MUIL’] - 20

[’PIPPIN’] - [’ISENGARD’] - 39

13

[’BOROMIR’] - [’XXX–SOUTH’] - 19

[’GOLLUM’] - [’ITHILIEN’] - 29

[’GANDALF’] - [’THE MISTY MOUNTAINS’] - 24

[’GALADRIEL’, ’GOLLUM’] - [’PROLOGUE’] - 0



86 APPENDIX A. CLUSTER DECODING

14

[’SAM’] - [’WEATHERHILLS’] - 7

[’STRIDER’] - [’WEATHERHILLS’] - 7

[’ARWEN’] - [’XXX-EAST’] - 8

[’ARWEN’, ’STRIDER’] - [’RIVENDELL’] - 9

15

[’SARUMAN’] - [’ISENGARD’] - 16

[’SARUMAN’] - [’ISENGARD’] - 28

[’SARUMAN’] - [’ISENGARD’] - 31

[’SARUMAN’] - [’ISENGARD’] - 8

16

[’TREEBEARD’] - [’FANGORN’] - 37

[’ARAGORN’] - [’EDORAS’] - 28

[’GANDALF’] - [’ROHAN’] - 25

[’TREEBEARD’] - [’FANGORN’] - 25

17

[’FRODO’] - [’EPHEL DÚATH’] - 42

[’FRODO’] - [’EMYN MUIL’] - 20

[’SAM’] - [’THE GREY HAVENS’] - 63

[’FRODO’] - [’ISENGARD’] - 28

18

[’GOLLUM’] - [’THE MISTY MOUNTAINS’] - 40

[’SAM’] - [’OSGILIATH’] - 39

[’PIPPIN’] - [’OSGILIATH’] - 49

[’GOLLUM’] - [”SHELOB’S TUNNEL”] - 53

19

[’FRODO’, ’BILBO’] - [’SHIRE’] - 4

[’FRODO’] - [’THE GREY HAVENS’] - 63

[’FRODO’] - [’SHIRE’] - 63

[’FRODO’] - [’SHIRE’] - 1

20

[’SAM’] - [’HOBBITON’] - 64

[’GANDALF’] - [’HOBBITON’] - 4

[’GANDALF’] - [’MINAS TIRITH’] - 3

[’FRODO’, ’GANDALF’] - [’HOBBITON’] - 1

Table A.2: Cluster decoding for label clusters computed with KDE method.
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