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Abstract

A narrative piece can be accompanied by music as a way of emphasizing it. In this work, we approach the problem
of modelling the thematic structure of music for film content in a streaming scenario. This is achieved through the
mapping of relationships between sets of characters and locations in different time windows, elements that we claim
to be narrative markers. By connecting similar situations based on the music that is associated with them, we relate
narrative events though their thematic similarity.

We introduce a fully automatic method to generate, from one or more movies and their metadata material (script
and subtitles), a quality version of the audio that is played together with a set of labels. These can be used to map the
narrative of the movie and more generally, as a ground truth that can be applied to other studies, acting as the semantic
to the material that they are associated with. We generalize the ground truth in terms of the co-occurrence of labels.
This allows us to have a higher level overview of the different narrative guidelines that occur through the movie.

Clusters of similar events act as an anchor point in to which we associate the music that is played. By having a
hard label to describe groups of musical features, we can build associations between these groups and give them names.
We use these groups to build a global map of relationships between similar movie events, given their shared musical
characteristics.

1. Introduction

Music that accompanies a narrative, such as the case
of music in films or operas, carries a thematic structure
that helps guide the visual content it is associated with.
The music chosen for a given conceptual representation
carries specific features that imply that there is a map-
ping between music and themes that underline a narrative.
Building a structure that explains the different thematic
occurrences throughout a score allows assigning the key
narrative points to themes that most emphasise them. Mu-
sic directors usually use their artistic sensibility to make or
choose music in accordance with the dramatic guidelines
and narrative of the visual piece, choices that often condi-
tion its success. The thematic structure created can vary
in complexity depending on the choice of music. An exam-
ple of this can be seen in classical music: it can be charac-
terized by a broad spectrum of composition, not marked
by a single beat that follows the song or by a fixed mode, in
contrast with pop music, that is characterized by tonality
and repetitions branching from popular music, that make
it much easier to process computationally. These aspects
make classical music more challenging than other musical
genres and so the techniques that work for processing pop
music may have worse performance when attempting to
segment or to find relevant transitions (Chai and Vercoe,
2005).

Regarding the musical stream timeline, different sound
concepts may emerge, depending on the director’s choice,
such as the introduction of a specific musical segment that
is played every time a given character appears. Events

like these motivate us to understand these patterns and
to develop a method that is able to identify thematic con-
cepts in a musical stream as well as to incorporate newly
observed ones, producing a structure that explains these
concepts and is able to relate similar patters across the
timeline.

1.1. Objectives

We assume a context where there is no prior information
regarding the number of themes in the music, choice that
is motivated by the fact that thematic structure can vary
greatly depending on the context of the narrative the mu-
sic is following. Consequently, methods capable of dealing
with an unknown number of concepts are required. The
structural analysis is aimed at being done in an online
setting with the goal of capturing the evolution and emer-
gence of concepts in the music, and how these relate to the
story that is being told through the main material. This
aspect also allows to study: 1. how the observed concepts
relate to previously observed ones; 2. to follow the themes
that are recurrent during the movies; 3. where they are
the most relevant; 4. to map the occurrences of similar
musical events. Furthermore, when using online methods,
as data arrives, the model should be updated in order to
reflect changes made by new observations. This update, in
cases where the volume of information received in stream
is too large to be kept in memory, is required to be done on
a representation of the data observed so far in the stream.

To achieve our goal, we aim at using density based meth-
ods as well as non-parametric statistical ones. These prove
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more complex than traditional segmentation models and
will be used with the expectation of capturing patterns in
the stream that other methods may not be able to model.

1.2. Musical Meaning in Film Scores

Films, among other forms of content, because they en-
case a fictional world where a narrative unveils, can have
the dramatization of the its story complemented by music,
as a way of elevating the narrative that it is being told.
Some soundtracks are produced to create an atmosphere
so the viewer can be immersed in the world of the movie.
It has qualities especially well-suited to contribute to a
films’ narrative, as mentioned by Gorbman (1987), where
”malleability, spatial, rhythmic and temporal values bond
shot to shot, the narrative event to meaning, spectator to
narrative and spectator to audience”.

In the particular case of music composed to serve vi-
sual content, musical meaning becomes attached to the
visual content and said meaning is retained by the ob-
server when it is listened to in a detached manner from
its original format. This detached semantic allows a piece
of music, when paired with a piece of visual content such
as a trailer or shot of a movie, different from what it was
originally produced for, to deliver a similar semantic than
when paired with its original counterpart. This property
is used throughout many film instalments, whenever the
main character, object or location, among others, are in-
troduced in a scene or play a major role in it. There is
an association between a given element in the film narra-
tive and a corresponding track, that creates an expectation
that that element will take some type of part in the nar-
rative, whenever the music associated to that element is
played.

1.3. Document Structure

The rest of this document is structured in the following
way: Section 2 overviews the related work that connect
to our goal. This includes types of pre-processing that
can be applied to the musical stream as well as state of
the art models used for semantic extraction. It also cov-
ers background on the density-based and non-parametric
methods. Section 3 presents all the steps taken to obtain
and prepare the dataset. Finally, Section 4 presents the
experimental setup of our work, followed by Section 5 and
6 where we show and discuss the results of our experiments
and present some closing remarks, respectively.

2. Background and Related Work

In this Section, we first present material in the literature
related with the different challenges and goals of our work.
We begin by exploring methods necessary to prepare the
musical audio for further processing. These include meth-
ods for feature extraction targeted to our domain as well
manners in which the audio can be portioned in similar
segments.

We then cover work in the literature that has dealt with
some of the obstacles that we faced, including, novel class
discovery, unsupervised clustering, and leitmotif classifica-
tion, as well as the background models proposed as solu-
tions to model estimation in our work that cover some of
the work that utilizes these models.

2.1. Audio Pre-processing

The audio format we are working with is digital audio.
A pre-processing step is required with the goal of preform-
ing feature extraction. We require these features to be able
to capture the harmonic, rhythmic, timbrel and sequence
aspects of the music, as these help characterize a given mu-
sical theme. The features can be used as individual frames
of the audio or further processing can be done in order to
build audio segments or obtain structures such as chord-
grams, both more complex objects that carry information
of the sequence of frames.

In the case where we are dealing with music produced
by an orchestra, the changes in timbre can be informative
when attempting to extract semantically significant tran-
sitions. Key instruments in the orchestra are predominant
in some of the leitmotifs. Because this feature allows us to
distinguish instruments, similar patterns in the data are
expected to be observed with the recurrence of a leitmo-
tif, when using this feature. Moreover, different fictional
cultures, in some cases due to the complexity of one’s cul-
ture, may use different scales, mirroring what happens in
real cultures, as it is the example of Asian and Western
music. For a given movie, music can be composed, for
example, using the full chroma scale, on the opposite of
music composed for another fictional cultures that may
carry a different tonality of only 7 pitches, for example,
(Rone, 2018). This suggests that this feature might be
discriminate for modelling cultural aspects in music.

2.2. Methods for Semantic Extraction

The number of leitmotifs in the stream can grow indef-
initely, leading to a problem of novel class detection. In
cases where it is impossible to know the entirety of the do-
main we are dealing with, closed set methods cannot gen-
eralize well enough to model classes unobserved at training
time and prove insufficient to deal with concept discovery
and model sparsity, since observed patterns from a class
may change or new concepts may emerge (Gama et al.,
2014; Parker and Khan, 2015; Masud et al., 2010). More-
over, when dealing with streaming data, multiple problems
require attention. In the first place, we cannot save the en-
tire stream as practical memory issues would arise imply-
ing that an abstraction of the data is required. It should,
as accurately as possible, capture the distribution of the
observed domain. Secondly, a learning method should be
able to update, using just newly observed samples and a
representation of the previously observed data, also with-
out the need of annotated data. In cases where data is
generated at a large scale, annotation or prior information
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regarding the data may be unavailable and thus the model
should be able to structure observations in an interpretable
way, depending on the application.

One can look beyond this group of methods to others
that provide actual characterization of the statistical dis-
tribution of the data. With the work of Rudd et al. (2017),
both statistical information from the data and methods to
deal with an unknown number of classes are used. The au-
thors’ goal is to perform image recognition (multiclass) in
a open set environment using open world decision bound-
aries, where these are used to separate know classes from
the unknown space effectively attempting to label samples
from an underserved class as such. This approach is based
on extreme value theory (Coles et al., 2001), that dictates
the form of the functions for the radial probability of in-
clusion of a point with the respect of the class of another.

Work in the topic of novel class detection has also
been done in the field of signal processing. Gharghabi
et al. (2019) propose a domain-agnostic online segmenta-
tion model for multi-dimensional time series. In this work,
time series extracted from motion sensors, for example, are
analysed with the goal of identifying meaningful regime
changes along a time series, such as detection of the tran-
sitions between walking and running or of certain patterns
in heart rate. Hence, the semantics captured is shaped in
the form of discrete classes. To achieve this, the authors
use similarity-join metric for time series. It receives a time
series T as input and a subsequence of length L, represent-
ing the size of the pattern, and returns two vectors. The
first corresponds to the Euclidean distance between the
subsequence and its nearest neighbour elsewhere in T (de-
fined as MPValue). The second indicates the location of
each of the nearest neighbour of each element of the subse-
quence in the time series T (defined as MPIndex). These
two vectors lead to an annotated time series where one can
derive the likelihood of a regime change.

Gjoreski and Roggen (2017) also focus on the discovery
of activities such as running, walking or jumping, char-
acterized by sensor signals. Their approach is based on
agglomerative clustering and aims at exploiting the tem-
poral information in the signal. The methodology consists
on, at a given point in time, keeping a number of active
clusters estimated by clustering the frames of a given time
window, so that multiple deviations can be clustered into
multiple temporally overlapping segments. The total num-
ber of clusters in the active pool does not represent the
total number of clusters, which is open ended. Each of
these clusters has a tolerance that gives the duration the
cluster is allowed to exist without being updated (merged
or deleted), with the goal of modelling short outliers and a
minimum duration that discards the cluster if it was only
present for a short period.

There as also been work done on bringing the mod-
elling capabilities of neural networks, specifically CNNs,
into the field of incremental learning and novel class de-
tection. This class of models lack the robustness to deal
with novel classes, due to the assumptions of closed world

datasets with a fixed number of categories. The work of
Wang et al. (2019) focuses on addressing this challenge by
leaning a feature representation such that distribution of
instances from the same class are discriminative enough
in order to perform label prediction, novel class detection,
and subsequent model adaptation.

Serra et al. (2014) propose a method for music struc-
tural annotation using time series structured features and
segment similarity. They aim at annotating the structure
of a music piece in an unsupervised way without employ-
ing explicit knowledge of previously annotated pieces, by
detecting temporal locations of segment boundaries and
to assess segment similarity based on repetitions. They
achieve this by building a model that firstly extracts tonal
and harmonic features from the audio. They then trans-
form these into a time series of structured features from
which they compute a novelty function whose peaks cor-
respond to boundaries. Finally, the resulting segments are
compared in a pairwise fashion and clustered.

Work that resembles our own from the musicological
perceptive is the one from (Krause et al., 2020). In this
paper, the authors conduct a case study on a dataset cov-
ering 16 recorded performances of Wagner’s Ring of Ni-
belung, with annotations of ten central leitmotifs. They
build a neural network classification model and evaluate its
ability to generalize across different performances and leit-
motif occurrences. These motifs constitute the classes of
the classification task. Furthermore, all motif occurrences
were annotated by a musicologist. In terms of the classi-
fication task, the authors define it problem of assigning a
given audio excerpt to a class according to the occurring
leitmotif, discarding segments where multiple occurrences
of different leitmotifs happen in parallel.

This work shows major similarities with our regarding
some of its difficulties and goals, specifically the identifica-
tion of leitmotifs and the capability of producing a model
that is able to generalize across multiple interpretations
of the same motif or score. Despite these similarities, our
task faces broader issues, as we do not posses such a fine
grained annotation, nor the the multiple interpretations
of the same score. Particularly, the leitmotif can suffer
modifications through the material it supports, but fur-
ther interpretations of these changes may help a learning
model generalize each leitmotif better.

Effectively all the methods presented so far provide some
insight on some of the methodologies available to us, ei-
ther tackling the problem of novel class detection or the
problem structural discovery. Although they face the same
family of problems, them methods presented always make
considerations regarding model adaptation, an incremen-
tal learning procedure or the use of annotated data, ef-
fectively circumventing one or more of these issues. To
this effect, the following chapter present methods that can
be directly used in our context, proposing solutions for the
aforementioned problems simultaneously, without relaxing
the problem in a way that allows to circumvent the issues
present in our work.
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2.3. Density estimation

Mixture models can a be a powerful tool to model un-
certainty. They allows us to represent specific parts of a
domain. A mixture model can be seen as the weighed sum
of individual probabilistic functions and formally defined
as:

p(x|θ) =

K∑
i=1

πiF (x|θi) (1)

where K is the number of components in the mixture, πi
is the weight of the component, θi is the set of parameters
of the probability distribution and F (.|θ) is the probability
distribution parametrized on θ. When using this model
in an unsupervised setting, with the premiss that each
components approximates a class present in the domain,
each sample has only a given probability of belonging to
each class, i.e., to a component of the mixture model.

There are two key aspects when using this model. First,
there is a choice of the number of components of the mix-
ture model. This number influences how well modelled a
partition of the data is. Second there is a choice of the
distribution F . How well the model is able to explain the
data depends on this choice given the underlying shape of
the distribution of the data. If the last is unknown, distri-
butions that can model the variance in the observed data
are recommended, hence the Gaussian or the Student-t
distributions are good candidates.

One method for approximating a mixture model to
a density function is Kernel density estimation (KDE).
Generically, it is a method to estimate the probability den-
sity function of a random variable. It is defined as:

f̂h =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K(
x− xi
h

) (2)

where K is defined as a non-negative function that in-
tegrates to one, usually modelled using a Normal den-
sity function. h corresponds to the smoothing parame-
ter or bandwidth, where higher values may lead to over-
smoothing.

Based on the described concepts, Kristan et al. (2011)
introduce the multivariate online kernel density estimation
method. Their goal is to approximate the distribution of
the data, explained by a Gaussian Mixture Model (GMM),
given an online setting where samples, after observed and
processed, are discarded. The authors call this GMM the
sample model. The proposed model is based on two key
points: the first is that the model is non-parametric in the
sense that the number of components is unknown a priori
and can can grow given the observations. The second point
is that each new observation corresponds to a Dirac-delta
function and, during online operation, each new sample is
added to the sample model in the form a new component.

There is a clear gain when using this model for our task.
Since the number of leitmotifs is unknown a priori, the
non-parametric nature of this model is capable of dealing

with this aspect. Its explainability through the sample-
model also proves adequate as the data is approximated
through distributions. Another important point is that
we want the number of components in the mixture model
to approximate the number of leitmotifs in the musical
stream, which we assume to correspond to different classes.
The KDE approach gives us no guarantee of this approx-
imation as the number of components may grow as much
as needed in order to produce a more accurate explanation
of the data.

2.4. Dirichlet Process

The KDE approach faced the unknown number of clus-
ters through density estimation. In the case where we want
to approximate the number of components in the mixture
to the number of classes (leitmotifs), we propose the use
of the Dirichelet process and Bayesian machinery. This
model explicitly models the uncertainty of creating new
clusters, in our case, new components. These have shown
good results in other domains such as the cases of topic
modelling and robotics (Nakamura et al., 2015; Nishihara
et al., 2016).

The Dirichelet process (DP) is a member of the family
of non-parametric stochastic processes. Let (Θ, β) be a
measurable space, with G0 a probability measure on that
space. A Dirichelet process DP(α0, G0) is a distribution
of a random probability measure G over (Θ, β), where α0

is a positive number, such that for any finite measurable
partition of Θ, the random vector (G0(A1), . . . , G0(Ar)) is
distributed as a finite-dimensional Dirichelet distribution
with parameters (α0G0(A1), . . . , α0G0(Ar)) Eq. (9):

(G0(A1), . . . , G0(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)).
(3)

The various representations of the DP are mathemati-
cally equivalent but their formulation differs because they
examine the problem from different points of view. We
focus on the CRP which provides a simple and computa-
tionally efficient way to construct inference algorithms for
Dirichlet Process.

The CRP is a preferential attachment model that di-
rectly reflects the clustering of draws from the DP. It is
defined as a distribution over partitions and is explained
by the following metaphor. Consider a Chinese restau-
rant with an unbounded number of tables. When the first
customer arrives, he can randomly select one empty table
(cluster), sit and order one dish. Then, the second cus-
tomer can either join with the first customer and share
the dish, or he can start a new table and order a new dish.
In this way, when the nth customer arrives, he can select
one table from k occupied tables with probability propor-
tional to the number of guests, mk already seated there,
or start a new table with probability proportional to α0.
Formally, the conditional probability can be written as :

CRP(θn|θ1, θ2, . . . , θn−1) =

{
mk

n−1+α if θk exists
α

n−1+α if θk is new
(4)
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In this metaphor, the tables correspond to clusters and the
dishes correspond to the parameters of the distribution of
each cluster.

2.5. Language Based Methods

Another approach that can benefit us is the use of n-
gram models. Sequences of musical structures, either low
level structures, like frames or notes, or higher level struc-
tures like chords or segments, contain additional informa-
tion, because they happen close to each other and more
importantly, in sequence. With the premise that sequences
of observations carry additional information, we are able
to derive a symbolic representation of the audio and use
these in the online context. The level at which we build
the sequence will heavily impact what our model is learn-
ing. For example, sequences of MFCC frames will model
changes in timbre along a short period of time.

More specifically, methods derived from topic modelling
and language models, in the context of HDP have been
used for speech segmentation. Raczyński and Vincent
(2014) propose a genre dependent topic model, for mod-
elling chords that aims at predicting a genre of a music
using a distribution of chords.

Work has as also been done in the field of word segmen-
tation from phoneme sequences by Takeda et al. (2018).
This work aims at building systems that can acquire
knowledge during their spoken interactions with human
beings. Unknown or new words can frequently appear even
if we carefully prepare a vocabulary set in advance. To
combat this problem, the authors propose a model based
on subword N-grams and subword estimation using a vo-
cabulary set, and posterior fusion of the estimation re-
sults of a Pitman-Yor semi-Markov model (PYSMM) and
their model. The PYSMM integrates both word-level and
character- (phoneme) level N-gram language models and
then estimates the segmentation labels of phonemes corre-
sponding to word boundaries by updating both language
models in an unsupervised manner.

3. Dataset Preparation

The aim of this section is to cover pre-processing steps
required for the construction and preparation of the source
materials associated with audiovisual content analysed in
this work. Data was extracted from multiple sources,
specifically, the audio from the movies themselves, their
scripts, the subtitles, the chapter information and finally
their respective soundtracks. We therefore do not have a
single dataset, but a collection of distinct elements that
make up the material related to the movies.

We begin by presenting the dataset, followed by work
towards obtaining the musical audio played during the
movies. The subsequent section then approaches how we
obtain narrative characterization of the events in the movie
at any given time and that can characterize the audio that
is being played, from that point of view.

3.1. Dataset

We will use the Complete Recordings of the movie adap-
tation of Tolkien’s The Lord of the Rings, by Peter Jack-
son, containing the complete score for the extended ver-
sions of the films. The Lord of the Rings score, composed
by Howard Shore, accompanies almost entirely the films,
where each track was produced for a given segment of the
movie with a thematic background emphasizing how the
movie tells the story, therefore enriching it. The score was
selected because of the extensive work that has been done
in the past analysing its compositional, structural, cul-
tural, and literature background. It was produced solely
for the movies, taking inspiration from the source material,
the books. It offers around 13 hours of composed music
that provide substantial data to work with.

Because of the extensive literature available, concept
discovery that is done on this music can be interpreted
with contextual story and cultural background, directly
bridging the image with the musicological aspects. This
aspect will allows to compare the quality of the structure
created by our learning methods with the one agreed upon
by the literature, giving us a validation tool.

Howard Shore uses similar thematic material through
all his work on the trilogy, leading to an opportunity to
study not only how the leitmotifs are used and related to
each other but also to study how do these relate to the vi-
sual, emotional and cultural aspects shown in the movies,
an analysis than has been done (not in a computation set-
ting) by Young (2007); Adams (2010). The composer took
inspiration from the descriptions that are present in the
books, mainly the in depth descriptions of the inhabitants,
the instruments used in each region (where each region is
associated to a fictional culture, that has different leit-
motifs associated with) as well as poetry that is sung by
the characters, that show the importance of music within
Tolkien’s novels. There is also effort put into the novels,
in order to deeply characterize the world which also leads
to greater cultural background, later used to compose the
soundtrack. For example, the exert ”Doom, doom came
the drum-beat and the wall shook . . . Another harsh horn-
call and shrill cries rang out” is depicted in the movie and
is accompanied by a musical rich in drum sounds showing
a clear inspiration from Tolkien’s descriptions.

3.2. Audio preparation

For the dataset used, we have access of two versions
of the audio data. The first corresponds to the movie’s
soundtrack. The second corresponds to the music that is
played in the movies, that for editing purposes, motivated
by driving the story forward or other creative reasons, does
not correspond directly to the music in the official sound-
track. The music present in the movie suffers distortions
in terms of energy in scenes where the dialogue is to be
more emphasized, for example, as well as being accompa-
nied by other sound effects, such as character dialogue,
battle scenes or world events. All these aspects contribute
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to a decrease in musical audio quality when working with
the music present in the movies, compared to the use of
the audio from the soundtrack. These aspects motivated
to increase the audio quality of music in the movies.

An initial approach to this problem led us to experiment
with source separation tools with the goal of isolating the
musical audio from the the other audio components. How-
ever, as we were unable to successfully isolate the musical
audio, we resorted to a solution based on audio alignment.
This choice was made so that we can retrieve a high quality
audio version of the music that accompanies the movies.

The tool implemented, based on Dynamic time warping
(DTW), (Sakoe and Chiba, 1978), takes 20 second audio
fragments from the movie and aligns it with the highest
score audio fragment of the same length from the sound-
track. The algorithm’s score is computed taking as input
the chromagram of from the audio segment from the movie
and the set of 20 second fragments from each track in the
soundtrack. A semi exhaustive search is conducted to find
the highest alignment score (a skip of 500ms was imple-
mented to decrease the search space). This is repeated for
each movie so that less comparisons have to be made.

For this dataset, prior information that the music
present in the movies was played in an order that was
respected in the soundtrack. Taking this into account, an
heuristic was included when choosing the aligning segment
from the obtained alinement’s rank. A percentage of the
total time of a track must be aligned before a segment
from another track can be chosen.

With the alignment process established, each 20 second
segment of the movie has a corresponding segment of audio
from the soundtrack associated with it. Nonetheless, it is
important to point out that this alignment is not perfect.
Because of the noise that comes associated with the music
in the movie, this can, in many cases, distort the shape
of the feature we extract to perform the alignment, there-
fore negativity affecting it. The numeric values, metrics
and features described where chosen based on empirical
evidence, such that the audio alignment would be as accu-
rate as possible.

3.3. Ground Truth and Metadata

We set as goal to capture relationships between narra-
tive events that are similar in nature, given their musical
audio counterpart. It is important to define what these
event are and how we group them together, as these be-
come the ground truth information from where we derive
our conclusions. For this purpose, this section approaches
how we can derive a ground truth from the metadata that
accompanies the movies. Moreover, the approach that will
be described is not bound to our dataset. As long as the
required material is available, this extraction process can
be applied to other audiovisual content.

We begin by extracting speaker and location informa-
tion, for every instance through the movie, from the scripts
and subtitles that are part of our dataset. This was

achieved with the use of a tool for subtitle and script
alignment, originally developed by Rosado (2016). For
the alignment of the script with the subtitles, they use the
Needleman–Wunsch DP algorithm, (Needleman and Wun-
sch, 1970). The algorithm finds an optimal path between
two sequences, and then, detects an optimal alignment be-
tween them. To use the algorithm with the script and sub-
titles, first, the script’s dialogue and the subtitle’s dialogue
are tokenized into words, and then, a similarity matrix is
created to compare whether or not each word is the same.
After the alignment, if the number of words matched be-
tween any two sentences is more than 50%, then those
sentences are considered to be equivalent. An example of
the aliment being computed can be seen in Figure 1.

Since subtitles are time-indexed, any alignments with
the subtitles stream is implicitly shared with other time-
indexed data, such as audio and video streams. This gives
us a tool to automatically retrieve pertinent information
from the movie scrip. Originally, the tool would only out-
put the speaker for each line of dialogue but throughout
this work, it was extended so that the location information
present in the script could also be retrieved. For clarifica-
tion, speaker information corresponds to the name of the
characters that are speaking and the locations correspond
the the fictional places present in the scenes of the movie.

It is important to mention that, as this process is au-
tomated, it suffers from algorithmic errors that affect the
quality of the produced match. This in turn, affects the
quality of the ground truth produced. Through testing of
the tool, it was concluded that it’s output had a high recall
per alignment, meaning that there is a correct alignment
between the subtitles and the script, although the tool
misses some of the matches resulting in an empty align-
ment, which implicates that there are some characters or
locations that may not appear as frequently due to this
error in alignment.

Another key point in the construction of our ground
truth is the use of scenes. Originally introduced by Lopes
(2017), these are defined as the sequence of utterance or
lines of a single speaker and their use is aimed towards
capturing the dialogue (consisting of one or more subtitles)
of a single character or set of characters that are very close
in time, based on the timestamps of the subtitles. We
based the scene construction criteria on the previous work,
as the authors expensively tested which values would fit
scene creation best. The values used were 500ms as the
maximum distance between two subtitles than belong in
the same scene.

Rather than associating character and location at the
subtitle level, to the corresponding music segment, we use
the scene as a way of aggregating this information. This
higher abstraction level, allowing for the association of a
longer piece of audio.

Having the metadata information associated with each
scene, another key decision was scene aggregation based
on either the repetition of the exact same character(s) in
distinct adjacent scenes or the repetition of location in the
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Figure 1: Example of alignment between subtitles and script.

same conditions, therefore establishing two distinct ways
of grouping information, each giving more weight to their
specific aggregation key (character or location).

The decision to aggregate scenes was based on the
knowledge that there are pieces of audio playing in the
movie were the are no speakers present, implying that
there is no annotation available for these segments. In or-
der to leverage the annotation present per scene to other
segments not covered by any subtitle and subsequently
by any scene, we aggregate them as mentioned above,
so that segments of audio between scenes that share the
same metadata information may also share that annota-
tion, thus increasing the overall amount of music that has
ground truth information associated with it.

Given the established aggregation possibilities, we opted
towards aggregating scenes by characters, as described
above. We found this solution to be a good balance in
terms of granularity of ground truth information being
grouped. Aggregation by location resolved in very long
sets of scenes with different characters, as the narrative
in the movie can take place in a single location for a long
period of time.

Finally, we point out a processing step in regards to
location information present in the ground truth. The
locations present in the script and subsequently in the
annotation correspond to geographical locations from the
fictional world. Due to the observation of fine grained lo-
cations present through the scripts, that we considered to
be of too much detail, we opted to encase some of these
locations into broader corresponding ones, always refer-
ring to the map to make such decisions. Moreover, it is
important to note that this change was had-doc for this
particular dataset and possible to the existence of a de-
tailed map of the world, that allowed us to make informed
decisions. Such change is possible for other datasets as
long as geographical information is present.

3.4. Clustering Labels

This processing pipeline, described previously, leaves us
with a set of metadata information that is directly asso-
ciated with each audio instance, i.e., for each set of ag-
gregated scenes, we have the corresponding music that is
played in that time interval. Specifically, location and
character information. The two elements combined help

characterize the narrative of the movie at any given mo-
ment, thus being possible to view these as elements that
characterize a situation in the movie. There can then be
an association between the audio and any of these items,
either one-to-one or one-to-many.

The leitmotifs and musical audio in general suffer mod-
ifications through the narrative. This implies that the au-
dio that is associated with a character or a location is not
uniform throughout the movies. For example, the music
from Minas Tirith used in the first movie, where Gandalf
is present is very different in theme from the one present
in the third movie, with the same character. I can also be
seen that the same pair charter-location hold different nar-
rative meaning in these two occasions and because of this
difference, the underlying audio also changes tone. These
two aspects motivates to go beyond the association of a
piece of audio to pair character-location, as we find this
association insufficient.

To cover this issue, we follow the approach of Chollet
(2016), where the author relies on matrix factorization
to reduce the dimensionality of the target labels. This
method makes use of co-occurrence of the target labels,
projecting the high-dimensionality target vectors. For-
mally defining this technique, let M be the binary matrix
of aggregated scenes I and labels L where mij = 1 if ii
contains label lj and mij = 0 otherwise. We then use
matrix M to compute the Pointwise Mutual Information
Gain (PPMI) for the set of labels L, that we will denote
as matrix X. Let Li be the set of scenes associated with
label li, the PPMI is defined as:

X(li, lj) = max

(
0, log

P (Li, Lj)

P (Li), P (Lj)

)
(5)

where P (Li, Lj) = |Li ∩ Lj |/|I| and P (Li) = |Li|/|I|.
Intuitively, the PPMI gives us the association measure be-
tween a pair of discrete outcomes x and y. In our case it
measures the association between aggregated scenes and a
context by calculating the log of the ratio between their
joint probability and their marginal probabilities.

X is then factorized using Singular Value Decomposition
(SVD) in the form X ≈ UΣV . Let Σd be the diagonal
matrix containing the the top d singular values, and let Ud
be the matrix obtained from selecting the corresponding
d columns from U , we build the matrix Cd = Ud ·

√
Σd

7



that corresponds to the label factors in d dimensions. The
item factors are obtained in similar fashion defined by the
matrix Fd = MT · Cd. These two matrices encode the
aggregated scenes and labels in the same projected space,
respectively. Thus, a distance measure can be used to
aggregate scene embeddings and labels. Similar labels are
grouped in space, and at the same time, scenes with similar
sets of labels are close together. In Figure 2, we can how
both matrices project in a common space.

Figure 2: Crosses correspond to elements of the matrix Cd. Dots
correspond to items of matrix Fd and are coloured given the cluster
centroids they are closer to.

Clustering can be done in two distinct manners. The
first is done by clustering aggregated scene embeddings,
corresponding to the rows of matrix Fd. Aggregations of
these items can be viewed as which aggregated scenes share
similar labels. The second and more interesting type of ag-
gregation made possible in the cluster of label embeddings,
belonging to the matrix Cd. These clusters represent the
metadata information that co-occurs, hence, that can be
related explicitly. In our work, these labels can correspond
to locations, characters and temporal information in the
form of movie chapters or a fixed temporal window. If one
is to include these types of information as labels, we can
encode which different aspects of the narrative and merge
them for a more meaningful representation of the narrative
of the movies.

The introduction of the temporal window allows us to
differentiate the same charters at the same locations in dif-
ferent periods of the movie. This differentiation is wanted
as due to narrative aspects, the audio being played, in the
same region can evolve pushing us to make this type of
distinction. Thought development, we experimented with
the introduction of time via chapter information and by
fixed size temporal segments. We concluded experimen-
tally that 10 minute window segments created clusters
where the items present were more compatible. Moreover,
this type of information is common to segment the narra-
tive of movie. In disk format of distribution of movie, it
is common to have the notion of chapter information built
in. In the Lord of the Rings movies, these average around
five minutes, length that we found to be too short. By

having temporal segments greater that chapter length we
effectively grouping this information.

Finally, the quality of the clusters produced is focal for
the rest of this work. The number and shape of the label
clusters is very affected by the method used, thus it re-
quires attention. Clustering can be performed directly on
the items of matrix Fd or on the labels of matrix Cd. By
doing this, we explicitly use the label embeddings to group
aggregated scenes, as these are only implicitly shaped by
label co-occurrence.

Two approaches were considered for clustering the labels
on the matrix Cd. The first was to use KNN (k-nearest
neighbours algorithm) with a number of clusters chosen
empirically. This corresponds to our hard clustering ap-
proach, in the sense that the only metric in question is
the distance between the label points. Because of these
points, it presents two clear limitations: the choice of k,
the number of clusters, and the absence of modelling vari-
ance or uncertainty of grouping labels together. To miti-
gate these limitations, a second clustering approach based
on the KDE model was considered. By training one KDE
with label data, the number of clusters grows has needed
in order to build better explanation of the underlying data.
Like wise, has the mixture components that make up are
Gaussian, the uncertainty of grouping labels is being taken
into account when building the clusters.

As the clusters were built using matrix Cd, it was neces-
sary to cluster the items of matrix Fd given the computed
sets of labels. In the case of KNN model, the centroids
were used to label each item from Fd. In the KDE case,
we assigned the cluster whose component yield the highest
likelihood.

Regarding the clusters obtained with KDE model, we
found that the number of clusters was correlated with the
dimensionality d of the SVD decomposition. The number
of clusters grew the higher the dimensionality. Moreover,
label clusters that were more representative of overall num-
ber of aggregated scenes preset in the movie presented a
higher weight in the corresponding mixture component.

As a final clustering approach, for the case on KNN clus-
tering, we set the dimensionality of matrix factorization to
20, and number of clusters to 14. In the case of KDE ap-
proach, the dimensionality of the matrix factorization was
set to 5, yielding 21 clusters.

4. Experimental Setup

In this chapter, we present our approach towards leaning
relationships between situations with the same narrative
context, in an unsupervised fashion, given the soundtrack
that accompanies the movie narrative. We assume that
different situations, defined in Chapter 3, as characters
in a given location and point in time, because of the co
occurrences of these elements, share similarities from the
narrative point of view, thus sharing similar music. It is
with the use of these similarities that we can map, de-
pending on the perceptual features used, how two event
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scattered across the movies relate based on the audio that
accompanies them.

In figure 3 a diagram of the pipeline of our work is
showed. The last chapter covered the initial steps dis-
played, specifically the steps of music alignment, metadata
extraction, and label clustering. This chapter covers the
subsequent steps.

Figure 3: Diagram of the pipeline of our work.

The first part of this chapter covers the feature extrac-
tion step, necessary for all subsequent work processing the
audio features. The rest of the chapter covers our ap-
proach to the construction of the explanation of these au-
dio relationships. To infer these, for each label cluster, we
fit a model to the corresponding audio features in order
to obtain a statistical representation of each cluster’s au-
dio. This is done in two different manners: 1 a baseline
approach using multivariate Gaussian distributions; 2 A
construction on the baseline using KDE model. Finally
we describe how evaluation process was done.

4.1. Audio Setup

A pivotal choice in our work is the choice of which label
clusters to use. The construction and analysis of audio
relationships are built on top of these and so, the method
used to generate the clusters must be weighted. Chapter
3 presented two alternatives for cluster computation. One
based on hard clustering where the choice of the number of
clusters was made empirically (so that the sets of labels in-
side the clusters and meaningful based on the knowledge of
the movies present) and one obtained via an unsupervised
method that accounts for variance of the labels present in
each cluster. Based on these these two types of cluster-
ing approaches, the experiments presented here take into
account both clustering scenarios.

Another important choice is how we chose to model the
musical audio. In the last chapter, it was shown that the
end result of of dataset preparation in terms of scene ag-
gregation and it’s respective audio were acoustic segments
of distinct lengths with a set of narrative labels as a di-
rect correspondence. These segments, in many cases, were
too large to process, being in the order of minutes, aspect

that motivated their split into smaller ones. By working
with smaller sized segments, we aimed at capturing pieces
of melodic content with fewer notes, which reduces both
variability and complexity of the musicals segment and in-
creases precision when extracting feature information. We
set the size of each audio segment to 5 seconds.

The audio from each aggregated scene was then split into
5 second segments, with padding of zeros being added to
segments that were smaller that the decided size. With
audio segment size stipulated, all feature extraction and
processing was done at this level.

4.2. Feature Extraction

The features selected were motivated by both the lit-
erature and the ability to distinguish, orchestral music in
terms of timbre and tonal aspects. Specifically, the fea-
tures extracted were MFCC, Chroma, chords, and a com-
bination of MFCC+Chroma. Mfcc and chroma features
were extracted with a fast Fourier transform (fft) window
size of 2048, a hop length of 1024 between frames and a
sampling rate of 22050 htz. Regarding MFCCs, the num-
ber of coefficients was set to 19: setting the number of
coefficients to 20 and removing c0 coefficient (which in-
dicates the average power of the input signal). In terms
of the chroma feature, 8 octaves were considered and the
number of ”chromas” per octave was set to 12. Normaliza-
tion was applied to the combination of Chroma and MFCC
with respective variance, setting the mean to zero and vari-
ance to one, since the numerical range of each feature is
different.

For chord extraction, we followed the approach of Müller
et al. (2012). The first step, consisting of chormagram
extraction, used the setup just described. The following
steps generated, for each 5 second audio segment, the set
of chords from the from the corresponding twelve major
and twelve minor triads. As these correspond to discrete
features, and to leverage additional information from the
set of chords in each audio segment, we computed the TF-
IDF (term frequency–inverse document frequency (Salton
and McGill, 1986)). This gives us how important a chord
is to an audio segment given the collection of segments
available.

The aforementioned features, however, do not take into
account melody information as they do not model sequence
in any form. This issue was approached in two different
manners. The first was to take the mean and variance of
the frames from each five second segment. The second was
to encode the audio sequence into an embedding with the
use of an autoencoder tool. Regarding the first choice, the
mean poses as a relevant mechanism to model the overall
aspects of the audio segment. The variance was added in
order to account for variation of information in the audio
segment. Both were computed by fitting a multivariate
Gaussian to each the set of frames that for the segments
being modelled. In terms of dimensionality, the diagonal
of the covariance matrix of the fitted Gaussian is used and
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it’s concatenated to the mean value of the feature for the
given segment.

Regarding the encoding of audio segments, the approach
previously described in Chapter 2 was followed. For
this setup, for each five second audio segment, the mel-
spectrogram was extracted (with the same parametriza-
tion of the above features and 320 bins as suggested by
the authors) and fed to the autoencoding network, with
the base parametrization proposed. After training was
complete, for each audio segment, the embedding was ex-
tracted from the hidden layer connecting the encode and
decode layers.

4.3. Computing Relationships

Three different scenarios were considered in this work,
using the features pointed above and the two types of clus-
tering labels presented. As a baseline approach, for each
label-cluster, we fit a multivariate Gaussian to the audio
features associated with the cluster, thus obtaining the
mean and variance values for the corresponding features,
for each cluster. Relationships between clusters were com-
puted as distance between the distributions that model
the audio features of each cluster. We used the Bhat-
tacharyya distance (Bhattacharyya, 1946) to compute this
association. This procedure was implemented for each set
of features presented above and with both types of label
cluster generation.

A step up from these baselines was the replacement the
Gaussian distribution with KDE model. By doing this,
we are effectively changing how we build the audio ex-
planation for each label cluster. To measure the distance
between KDE model of each label cluster, we used the
Hellinger distance (Hellinger, 1909).

4.4. Evaluation

The evaluation procedure looked at the distance be-
tween the underlying models of each label cluster in order
to assess if the distances reflect acknowledgeable relation-
ships. For each setup, we computed a distance matrix be-
tween all label clusters and built a chord diagram. In the
chord diagram, each entry corresponds to a label cluster
and holds three outgoing edges corresponding to the top
three most relevant relationships. The width of each edge
is proportional to it’s relevance. Each edge was computed
as the inverse of the distance between two label clusters,
so that closer edges, i.e, ones that share stronger relation-
ships, appear with wider edges in the chord diagram.

The work presented in this document is evaluated in a
qualitative fashion, as it is challenging to quantify if the
associations captured by the top are meaningful without
a ground truth of said associations. It is because of this
challenge that evaluation requires knowledge of the movies
and score of the Lord of the Rings ,in order to assess if the
relationships captured are relevant. Furthermore, the as-
sessment is also dependent on the features being used to
characterize the audio of each cluster. Depending on these,

one can look at the audio segments closest to the mean in
the Gaussian case, or of higher probability function val-
ues, in the case of the KDE model, to complement the
relationship assessment and to answer what each model
is capturing. Therefore we also listen to these audio seg-
ments as part of our evaluation, to determine, depending
on the features used, what is being grouped together.

An example of chord diagram analysis can be seen in
Figure 4. The diagram displays a set of highlighted con-
nections. These correspond to the most relevant relation-
ships between cluster 3 and all other clusters.

Figure 4: Top relationships computed between cluster 3 and all oth-
ers. Thickness of edge represents more weight.

5. Experimental Results and Discussion

We present all the relevant experiments and correspond-
ing results, highlighting the impact of using different fea-
tures for our task as well as how changing the method
used to model the underlying audio features of each la-
bel cluster influences the identification of relationships be-
tween these clusters. We begin my mentioning some of
implementations necessary to build and evaluate the ex-
perimental setup.

5.1. Results

This section showcases the computed distance matri-
ces and respective chord diagrams for the most relevant
results, following the experimental setup previously de-
scribed. We start by presenting some of the baseline sce-
nario. First of all, Figure 5 shows a baseline experiment
done using KNN clustering on the label side. The audio
features of each label cluster, in this case Chorma, were
modelled by fitting a multivariate Gaussian.

Figure 6 shows a increment to the other baselines ex-
periment. The clustering on the label side was done using
KDE clustering. The audio features of each label, in this
case Chorma+MFCC, were modelled by fitting a multi-
variate Gaussian to the data of each label cluster.

For the setups where KDE model is used for clustering
in the label space and as a model of the audio of each
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(a) (b)

Figure 5: (a) Distance matrix computed using chroma features and with KNN clustering on the label space. (b) Chord diagram of top
relationships between clusters.

(a) (b)

Figure 6: (a) Distance matrix computed using Chroma+MFCC features and with KDE clustering on the label space. (b) Chord diagram of
top relationships between clusters.

cluster, the distance matrices do not contain the full scale
of the Hellinger distance (0 − 1). The choice to shorten
the presented range was done so that relevant differences
between clusters would be more evident.

Figure 7 shows the first experiment done changing both
the label cluster approach and the way the audio features
of each cluster are modelled. KDE clustering was used on
the label side. The audio features of each label, in this case
Chorma+MFCC, were modelled by fitting a KDE model.

5.2. Discussion

It is always possible to compute distances between clus-
ters and the challenge of this evaluation is to comprehend
if these relationships in fact suggest that the music that
is present in each of label clusters is able to relate similar
situations across the movies. The presented results goal
is to capture the differences that the clustering technique
on the label side, together with how the audio from each
cluster is modelled, help improve the ability to map these
relationships.

We begin by looking at our most simple setup, where
hard clustering is used to produce the label clusters and
a multivariate Gaussian models the audio features in each
one. The distance matrix shows us that the majority of the

connections between label clusters do not differ greatly in
size. Similarly, when using the KDE clusters and a Gaus-
sian to model each cluster, the same behaviour is noticed.
This lead us to conclude that increasing the complexity of
the method used to create the ground truth is insufficient
to obtain sufficient characterization of the label clusters.

The agglomeration of relations on some of the clusters,
as it is the case of clusters 0, 11 and 16 in 6 can be
explained by reading into the cluster composition. Al-
though the situations that were aggregated share similar-
ity from a narrative point of view, if the music range in-
side the cluster is too large, it will bring distribution that
model the cluster closer to all others. As a concrete ex-
ample, Figure 8 gives a higher insight into the content of
cluster 0. The power law behaviour observed was found
amongst all clusters and is another indicator of the state-
ment above. Cluster 0 presents elements from both the
fellowship (Aragorn, Gimli, Legolas) and secondary char-
acters that interact with them. These three character are
predominant throughout the three movie instalments and
the audio that is shared is varied in theme. The same point
occurs in the case of Galadriel. The top occurrence, in the
prologue location, contain music from different themes, in-
cluding ”The Ring”, ”The Ringwraiths”, and ”The Fel-
lowship of the Ring”, showing the vast variability inside a
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(a) (b)

Figure 7: (a) Distance matrix computed using Chroma+MFCC features and with KDE clustering on the label space and KDE used model
the underlying audio of each cluster . (b) Chord diagram of top relationships between clusters.

single label.

Figure 8: Content of label cluster 0. Labels are sorted by frequency.
Longer bar indicates higher frequency.

A mention can be made towards the difference in colour
when inspecting the distance matrix regarding the two
lighter clusters, 11 and 12. Because their size is reduced
compared to other clusters such as cluster 1, the amount
of differentiation is a lot smaller, thus pushing the distance
to diverge from other in the distance matrix. This obser-
vation is also corroborated by to top audio segments on
each of these clusters. Cluster 11 is located in a narrow
section of the third movie, where the music is predom-
inately themed after battles (the scenes of the battle of
Minas Tirith). The specificity in theme is what sets these
clusters aside from others.

In comparison to the other setups, the clusters obtained
with KDE clustering on both the label side and the audio
side revealed to be more differentiable. In regards to the
distance matrix, very dark spots, isolated from others, can
be clearly seen, implying that the added complexity when
explaining the underlying audio of each clusters helps dis-
criminate difference in the underlying audio. This can be
explained by the fact the each mixture component as well
as the underlying mixture contained in (composed of two
Gaussian that work as a memory factor) are able to model
different areas of the feature space, not losing the relative
importance of some areas, compared to a single Gaussian.

When evaluating the chord diagrams for this setup, we
can see that in comparison with the baselines, the num-
ber of connections with some of the clusters diminishes.
In Figure 6, clusters 1 and 2 are very predominant and
display connections with almost every other cluster, some-
thing that is less apparent when using the KDE model.
One example of label clusters that share particular rel-
evant connection is the case of clusters, 1, 8 and 20, in
Figure 7, that share relationships among them. When in-
specting the top labels inside the cluster, we can see a con-
nection between a cluster that heavily groups situation in
Hobbiton, connected to a cluster that groups events where
Gandalf and Frondo co-occur, also connected to events
where Sam is present. With knowledge from the source
material, we can say that these charters and locations are
highly connected and more importantly they share a lot
musical themes, in particular, the ones connected to the
Shire. The fact that these relations all occur in the top
relations displayed by the chord diagram, imply that we
can relate groups on similar narrative situations using the
underlying music that follows them.

As a final point, regarding the use of audio embedding,
these caused numerical problems when estimating both the
multivariate Gaussian and the KDE model, not enabling
us to follow the proposed experimental setup using these
features.
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6. Conclusions and Future Work

Given the results discussed in Section 5, we now
overview the major contributions of our work, as well as
discuss the limitations of the solutions proposed. We con-
clude by pointing future work that can aim towards im-
proving some of the limitations found.

6.1. Conclusion

We defined the goal of modelling the thematic structure
of music for film content in a streaming scenario through
the mapping of relationships between sets of charters and
locations in different time windows, elements that we claim
to be narrative markers. By connecting similar situations
based on the music that is associated with them, we relate
narrative events though their thematic similarity.

We presented the musicological aspects that give music
the narrative properties and the leitmotif as a key role in
this aspect. The contributions of this work consist on the
introduction of a fully automatic method to generate, from
one or more movies and their metadata material (script,
subtitles), a quality version of the audio that is played
together with set of labels that can be used to map the
narrative of the movie and more generally, as a ground
truth that can be applied to other studies. We proposed
a method to generalize the ground truth in terms of the
co-occurrence of labels. This allows us to have a higher
level overview of the different narrative guide lines that
occur through the movie.

We then use these clusters of similar events as a way as
an anchor point in to which we associate the music that
is played. By having a hard label to describe groups of
musical features, we can build associations between these
groups and build a network of relationships.

We found that the KDE model allowed us to build a
more detailed and complex representation of the audio
since since its parametrization is more complex compared
to the two parameters that shape a Gaussian distribution.
Therefore, the relationships found were less prone to noise
from the mean, when compared to baseline results.

Multiple challenges were identified: the complexity of
the object we want to model and how it can be captured
with different levels of features; novel class detection with-
out the use of labelled data; what representations we can
use to model the observed clusters.

In regards to the audio alignment tool, this can be seen
as both a contribution and a limitation to the work de-
veloped. Aligning the musical audio with the soundtrack
brought us the benefit of being able to work with high
quality audio but at the same time introduced error in the
work pipeline. Through inspection of the audio segments
aligned, the error was introduced when the volume (trans-
lated to energy) of the music being played in the movie
was, in many cases, distorted by other audio events or
lowered, resulting in a poor alignment.

The method proposed for ground truth construction
shares similar aspects. On one hand, it brings the con-
tribution of generating a set of labels that act as anchor
points to the narrative of the movie. On the other hand, it
brigs the limitation where only musical segments that are
covered by the sets of aggregated scenes have an associ-
ated set of labels. Music fragments outside these windows
are not considered, which is leading us to not take full
advantage of our dataset.

In regards to the experimental setup conducted, we were
able to map meaningful relationships between groups of
similar events and improvements were observed from the
baselines, showing a more complex explanation of the au-
dio of each cluster did improve the overall understanding
of the relationships present.

One of the goals established in the beginning of this work
was the online setup. The work done so far can be seen
as a baseline towards the online setup. The construction
of the ground truth poses a particular issue, since, as the
musical stream grows, so due the narrative contexts.

Regarding preliminary experiments in online setup, us-
ing the musical stream, the interpretation of the results
proved challenging. It is easy to point out that the clusters
produced are dependent on the features extracted from the
audio, however, after inspection, the groups constructed
and the relations between them were not meaningful to
describe relationships between similar narrative events.

A similar conclusion was made when attempting to use
more descriptive models to explain the relationships be-
tween label clusters. We sought to use topic modelling
techniques for this purpose, as they give a richer descrip-
tion of relationships through the statistical importance of
each topic. Much like the previous scenario, the interpreta-
tion of each topic from the mixture of topics is very chal-
lenging and the experiments conducted lacked this very
interpretation in order to build a coherent connection be-
tween narrative entities given the corresponding music,
thus motivating future work in this direction.

Finally, a point not addressed in the experimental setup
was the use of Dirichelt process methods. Although we
take from these the advantage of the unbound number
of cluster and the ability to learn these in an online set-
ting buy changing the sampling scheme, these methods
share the same challenges as topic modelling techniques
(they can be seen as an extension of models such as the
LDA when we want to grow the number of topics). When
building clusters using just the audio, either in a stream
scenario or not, the problem of cluster evaluation emerges.
As less complex setups such as the ones described above
proved very challenging to evaluate, this technique was not
pursued in this work but is left as a possible tool to solve
the unbound number of clusters in future work.

A straight comparison to the state of art cannot be es-
tablished, as to our knowledge, there is no work in the
same setup as ours. Although we can not find a direct
comparison, we can consider future work to several chal-
lenges faced through the development of our study, as we
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will discuss bellow.

6.2. Future Work

The automatic alignment tool between the movie’s mu-
sic and the corresponding soundtrack poses as an element
is this work that can have further improvement. The er-
rors in alignment introduce noise on posterior analysis us-
ing this data, something that needs to be further miti-
gated. Preliminary experiments were done with work with
Spleeter, proposed by Hennequin et al. (2020), that con-
tains pre-trained models for vocals/accompaniment sep-
aration, four stems separation (vocals, bass, drums and
other) and five stems separation with an extra piano stem
(vocals, bass, drums, piano and other). Another system
tested was InaSpeechSegmenter (Doukhan et al., 2018). It
is a CNN-based audio segmentation toolkit. It splits au-
dio signals into homogeneous zones of music,speech and
noise. Both system were tested as a way of circumventing
the music noise removal problem, but yielded poor results.
These methods were not adapted to our particular domain
(western classical music), which motivates further work in
source separation tools as a possible solution to the in-
crease in quality of the musical audio played.

As it was previously mentioned, music fragments with
no corresponding labels associated are discarded in our
work. This aspect requires further attention, as to find a
manner that facilitates the inclusion of all music played
throughout the movie.

Throughout this work, one of the ways to capture
melody information from the musical audio was via net-
work encoding. There has been much work done in this
area, although specifically for our task, we were limited in
terms of the dataset available. It can be seen as one of the
limitations of this work, the methodology used to capture
sequence information. The results using the autoencoder
did not distance themselves from the other setups using
different features. We can argue that the architecture used
was to general for the problem at hand and that further
work should be done trying to better capture the melodic
aspects of classical music. The work of Zalkow and Müller
(2020) was considered for this purpose but unfortunately,
the dataset (composed of a vast number of scores of west-
ern classical music), is not available, not allowing us to
reproduce the results and use their setup and architecture
to encode sequence information.

By improving the way we encode melody information
at the audio segment level, we can come closer to capture
leitmotifs present, thus improving how situations across
the movie relate based on the music played.
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