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Abstract

The overall purpose of the work lies on the coupling of two optimisation procedures for the main fields of study,
the aerodynamics and the topology layout of an aerofoil, by means of different open-source resources, SU2 and
Calculix respectively, capable to provide robust and efficient simulations in both studied fields. The RAE 2822 ge-
ometry used to test the open-source software is the 2D benchmark case for transonic viscous aerodynamic pro-
files, with the wing-box as a geometric constraint. The aerofoil has been initially drag-minimised for two differ-
ent configurations, Mach number M = 0.729 at an angle of incidence α= 2.31◦ and M = 0.730 at α= 2.79◦
while setting a fixed lift constraint using the Free-Form Deformation methodology; afterwards, the Bi-directional
Evolutionary Topology Optimisation was applied to the optimised shape inside the Calculix environment. A mi-
gratory procedure of the obtained data was required by the topology analysis from the aerodynamic output so as
to apply the pressure loads on the aerofoil’s surface as concentrated loads. Then, a sequential coupling strategy
was followed since the aerodynamic optimisation represented an improvement to the general pressure distribu-
tion and, subsequently, it represented a diminishing of two orders of magnitude below for the loading state and
the final displacements. Conclusively, the sequential coupling has proved to be beneficial as the aerodynamic
improvement allowed the inner layout to redistribute in a more efficient way, reducing its inner surface to 25%
of the original one, while providing a robust and structurally sound design.
Keywords: Aerodynamic Optimisation, CFD, RAE 2822, Topology Optimisation, Calculix, SU2

I Introduction

The term ’efficiency’ in the aeronautical industry is
gaining more and more weight every passing year as,
apart from leading a transversal innovation across
all the engineering fields, it is always trying to reach
the excellence and perfectionism of its science. Apart
from performance efficiency the new aircraft designs
have to cope with two of the hardest enemies of the
human specie and the world itself have had to face,
the climate change and the environmental resources
management.

Nevertheless, it is not explicitly necessary to rearrange
the actual concept of an aircraft so as to provide more
efficient designs. Within them, the most renowned
areas of improvement are found in the geometry opti-
misation features [1] [2], combustion and gas exhaust
systems [3], and the weight reduction target [4].

In this work two optimisation approaches will be fol-
lowed and applied to the RAE 2822 aerofoil consider-
ing the study to be bi-dimensional. Moreover, it has
been decided to apply a geometric constraint in the

study, the one based on the wing-box position in the
aerofoil. Both approaches pretend to reduce the fuel
consumption but following two alternative paths. One
of them is optimising the aerodynamics of the aerofoil
by modifying its geometry for specific flow conditions,
thus reducing the required thrust power to provide
the motion to the aircraft, while the other procedure
works in rearranging the material inside the aerofoil
aiming at the highest stiffness-to-weight ratio and,
therefore, the lowest lift force required to fly the air-
craft.

To do so, a sequential approach has been followed.
This means that the optimisations are not carried out
in parallel. Instead, the aerofoil shape is initially re-
designed recurring to Aerodynamic Shape Optimisa-
tion, followed by a Topology Optimisation of its inner
structure.

Finally, the optimal aerodynamic results joined with
the inner, more efficient, structural layout will be anal-
ysed, filtering the positive output gained from the
study and proposing new future milestones for the
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community.

II Background

The present work is based on a Computational Fluid
Dynamics approach towards the aerodynamics and
the shape optimisation of the geometry, followed by
a topology optimisation of the inner structure of the
aerofoil. Hence, a brief introduction of the govern-
ing equations and their numerical implementations is
presented.

A. Aerodynamics: Governing Flow Equations

The flow’s behaviour is modelled by an approximate
methodology, the so called Reynolds Averaged Navier-
Stokes (RANS) equations, specifically using the turbu-
lent model provided by Spalart and Allmaras [5], be-
cause of its simplicity and accuracy. The final formu-
lation for the RANS model is described in a differential
form [6] as follows:



∂ (U)

∂t
+∇·Fc −∇·Fv −Qφ =ℜ (U) inΩ, t>0,

uΩ = 0 on S,
∂T

∂n
= 0 on S,

(W+) =W∞ on Γ∞

(1)

where U are the conservative variables given by
U = {

ρ,ρv,ρE
}
, being ρ the density, v the flow’s speed

and E the internal energy of the system respectively,
ℜ is the numerical residual and the respective con-
vective and viscous fluxes (∇·Fc ,∇·Fv ), Ω is the tridi-
mensional domain separated from a far-field compo-
nent Γ∞ and its flow conditions W∞, an adiabatic wall
boundary S which represents the aerofoil body and Q

represents the source term.

B. Gradient Based Methodology: Discrete Adjoint
Approach for the aerodynamic optimisation

In each of the volumes cells of the CFD domain there
is a certain number of variables that shape the final re-
sult of the setup. By performing small perturbations to
those variables, it is possible to evaluate sensitives that
these have on a studied objective function. In aerody-
namics, it is common to use the Gradient-based opti-
misation algorithm to make use of sensitivity analysis
[7][8], specially when using the adjoint method. This
procedure can deal with a large number of input vari-
ables to work with. To begin with, a specific total vari-
able must be selected for the study, called the objec-
tive function L, for instance, lift, drag or moment co-
efficients. L depends on the flow variables of the study
(solution), u, and the design variables (or parameters),

D, which represent the modifications in the original
state. Then, the sensitivity formulation is defined as:

dL

dD
= ∂L

∂D
+ ∂L

∂u

∂u

∂D
(2)

Sensitivity is basically the output obtained when
analysing the effect that an independent parameter
has on a dependant one by means of its uncertainty
(in this case, the difference to an original value). By
compiling all sensitivities in a matrix format, one pro-
duces the Jacobian matrix of a given function L to a set
of inputs D [7]. The flow solution must be constrained
after the sensitivity analysis as it is required to be con-
verged.

From this point, once the sensitivity formulation has
been described, the adjoint method is applied [9].
Defining the adjoint variables matrix asΨ, the adjoint
solution is only dependant of the objective function L
and not from the design parameters D and that there
is an adjoint solution for each objective function that
has been defined. Then, a linear system is obtained
which complexity depends on the number of the de-
sign variables:

[
∂R

∂u

]T
Ψ=−

[
∂L

∂u

]T
(3)

and embedding it to the final form of the sensitivity
formulation (or total derivative), the final form is:

dL

dD
= ∂L

∂D
+ΨT ∂R

∂D
(4)

C. Parametrisation technique: Free-Form Defor-
mation

In this work, the Free-Form Deformation (FFD)
methodology is used. It is a technique developed by
Sederberg in [10] to model solids and has its recogni-
tion not only due to its versatility, but also since it does
not manipulate directly the geometry of the object, in
opposition of other parametrisation techniques, but
the lattice of a certain space in the domain where the
object is embedded. For two-dimensional cases the
box looks like a rectangle and like a cube for 3D cases.

The formulation deals with some vectorial and spatial
embedding and deformations. If a point X with coor-
dinates (x1, x2, x3) is embedded into a new reference
frame s, t, p, ends up being defined as (5):

X = X0 + sS+ tT+pP (5)
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From this point, the FFD box must be constrained and
defined in the new coordinates as well as the embed-
ded geometry. The original and unperturbed control
points, (P 0

l ,m,n), then can be defined. The next step is
to introduce the deformation by a parameter µl ,m,n

whose dimension considers the 3-axis movement.
From this point, every control point is deformed by
the latest parameter such as:

Pl ,m,n = P0
l ,m,n +µl,m,n (6)

meaning then that the final parametrisation is defined
as:

X f f d =
L∑

l=0

M∑
m=0

N∑
n=0

bL,M ,N
l ,m,n (s, t , p)Pl ,m,n

(
µl ,m,n

)
(7)

D. Optimisation Framework

Aerodynamic optimisation is the process of providing
the most efficient solution for a given objective func-
tion (f), while coping with a set of inequality (g) and
equality (h) constraints by a set of design variables . A
general view of the problem can be defined as [11]:

Minimise f (D) ← Objective function w.r.t. D

Subject to

{
g j (D) ≤ 0 j = 1,m

hk (D) = 0 k = 1,n

(8)

E. Solid Mechanics: Governing Material Equa-
tions

Regarding the science behind the case of study, the
aerofoil is going to be considered to behave inside the
elastic region of the material, specifically inside the
linear region, then, it will follow the Hooke’s law, which
implies a proportional relation between the stresses
(σ) and the correspondent strains (ε) by means of the
constitutive matrix C .

σi j =Ci j kl εkl (9)

The stresses can be written as the Cauchy stresses that
follows the Hooke’s law form is expressed as follows
[12]:

σ=λtr (ε)I+2µε (10)

where I is the rank-2 identity tensor while λ and µ are
the Lamé constants written as a function of the bulk
modulus K, and shear modulus G. As Lamé constants

are not given for each of the materials, equation (10)
can be arranged by using the Young’s modulus E and
the Poisson ratio ν relation (eq. (11)) with the previous
constants. Thus, the final expression is the one from
equation (12):


λ= Eν

(1+ν)(1−2ν)

µ= E

2(1+ν)

(11)

σ= Eν

(1+ν)(1−2ν)
tr (ε)I+ E

(1+ν)
ε (12)

F. Topology Optimisation.

For the topology optimisation, the Bi-directional Evo-
lutionary Structural Optimisation (BESO) algorithm as
provided in [13] is used due to its usual applicability
for these types of problems. This algorithm is in fact an
improvement procedure from the development made
by [14] for the Evolutionary Structural Optimisation.
The main difference between the procedures named
above is that the former not only removes mass of the
geometry, but it also can add it.

The BESO methodology removes the low-stressed ar-
eas of a domain which is understood to be inefficient
and adds material when it is strictly necessary to pro-
vide a higher stiffness to the structure. For the initial
proposal, a ’hard-kill’ method was used, which uses
a rejection/addition ratio, cr r /car , to mark as remov-
able/immovable the ones below it. This rejection cri-
teria uses the von Mises stress of a cell, σv M

e , and com-
pares it with a threshold, σv M

max , which could be a max-
imum or a prescribed value, thus:

{
σv M

e ≤ cr rσ
v M
max → Element removal

σv M
e ≥ carσ

v M
max → Element addition

(13)

The followed procedure tries to find the stiffest geom-
etry for a given volume, one of the most common ten-
dencies for the topology optimisation. The objective
is to minimise the strain energy (thus the compliance)
for a given volume fraction, by attributing material or
void to each element of a previously defined mesh of
the structure. A standard formulation of this problem
is as follows:

Minimise C = 1

2
fT u = 1

2

N∑
i=1

ui
T K ui

Subject to V F i n −
N∑

i=1
Viχi = 0

χi ∈ {0,1}

(14)
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where C is the mean compliance of the structure and
u and f are the displacement and load vectors respec-
tively, V F i n denotes the target volume fraction, Vi , is
the volume of each element, N is the total amount of
elements and χ is the binary description of the pres-
ence of mass, being 0 a void and a 1 a filled state.

III Implementation

A. Aerodynamics

i. CFD Simulation Framework

The selected geometry is the RAE 2822 aerofoil, de-
signed specifically for transonic regimes where a
shockwave is present, specially at the Reynolds num-
ber for which the simulation is going to be established
(Re = 6.5e6). This Reynolds number is selected due
to the availability of experimental data [15] to validate
the obtained results. Then, the flow conditions of the
case study are defined by the Reynolds and Mach num-
ber, Re = 6.5 ·106 and M = 0.729 respectively, with an
angle of incidence of α= 2.31◦.

The mesh has been designed considering: the con-
straints applied at the boundaries of the domain such
that they do not have a noticeable influence on the
results [16] [17]; mesh quality parameters (e.g. ele-
ment’s orthogonality and flow alignment); the track-
ing of the y+ magnitude so as to represent in the study
the present phenomena in the boundary layer; and by
setting a far-field boundary condition.

From this point, a C-type mesh domain with 53492 el-
ements was generated, dividing the layout into 5 re-
gions: 4 structured regions including the more exter-
nal parts from the aerofoil’s location and the wake; and
an unstructured distribution surrounding the studied
geometry. Moreover, a mesh refinement was applied
at the boundaries of the aerofoil, converting the grid
into a structured distribution and densifying the num-
ber of variables inside the boundary layer aiming at a
wall-grid spacing of 1 ·10−6c. A general view of the lay-
out can be observed in Figures (1) and (2).

Figure 1: Grid accounted for the extraction of the re-
sults.

Figure 2: View of the boundary layer refinement.

Thereafter and by using the open-source CFD tool
SU2, the results can be extracted in terms of pres-
sure coefficient distribution. In Figure (3) an accu-
rate similitude between both methodologies [15] can
be noted.

Figure 3: Pressure coefficient of the simulation and the
one from the experimental setup.

Concerning the lift and drag aerodynamic coefficients,
in Table 1 are presented the numerical results, as well
as the experimental ones.

Table 1: Comparison between the numerical and the
experimental results for the RAE 2822 aerofoil

Cl Cd
Present Work 0.7164 137.4

Experimental Work [15] 0.7436 127.0
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The selected mesh has been considered by means of
a trade-off between the computational costs the CFD
simulation involves and the academic purpose of the
work. The error in the lift coefficient compared to the
experimental setup is low (3.66%) but it is possible
to notice yet the difference in drag counts, approxi-
mately a 7%, but, for the purpose of this work and the
limited interval of available time, it is considered to be
acceptable, knowing that more accurate results could
be obtained then by using finer meshes.

ii. Aerodynamic Shape Optimisation

After the CFD environment has been set up, the opti-
misation framework is defined. SU2 software uses the
Sequential Least SQuares Programming (SLSQP) mod-
ule from SciPy library of Python for the minimisation
procedure of a given objective function. By coupling
the open-source packages NumPy [18] and SciPy [19]
the resulting optimisation procedure in SU2 is numer-
ically and computationally efficient and robust.

The idea behind the process comes from a modifica-
tion of the Lagrangian multipliers for an optimisation
process, the Karush-Kuhn-Tucker [20], and provides
a global optimal by satisfying the conditions build by
the objective function, the design variables and the
equality and inequality constraints. The solver will
be testing new geometries until convergence criterion
has been reached.

The main goal of the project was to optimise the aero-
foil by means of its efficiency (lift-to-drag ratio). How-
ever, the test gave as an output only a 0.15% of im-
provement. This means that the aerofoil, for this
specific flow conditions and wing-box constraint, is
quite optimised. In order to explore the potentiality of
the aerodynamic shape optimisation, two case studies
were defined. Both aiming at drag minimisation of the
same constrained aerofoil for a constant lift coefficient
at different angles of attack. In Table 2 are shown the
initial values of Cl and Cd for the two studied cases.

Table 2: Case studies for the RAE 2822 aerofoil anal-
ysed and optimised in the work.

Initial Cl Initial Cd
Re = 6.5 ·106; M = 0.729; α= 2.31◦ 0.7164 137.4
Re = 6.5 ·106; M = 0.730; α= 2.79◦ 0.8030 183.6

B. Adjoint Methodology

For the aerodynamic shape optimisation, the aerofoil
must fit inside the designed deformation box without
intersecting any of the control points nor the connect-

ing lines but the closer, the better. In that way, the de-
formation of the control nodes would have more in-
fluence in the geometry closer to it. The RAE 2822
shape must consider the presence of the wing-box
constraint. Usually it is considered to be located be-
tween 0.25c - 0.75c, therefore, the control points in this
interval will not serve as a design variables as no move-
ment or deformation can be applied to them. In Fig-
ure (4), the RAE 2822’s wing-box is defined in red.

Figure 4: Control Points identification

C. Solid Mechanics

Once the aerodynamic optimisation results are ob-
tained, the pressure distribution along the surface of
the aerofoil is an input for the Finite Element Method-
ology (FEM). The structural layout shown in Figure (5)
refers to the selected design for the wing-box structure
and the skin of the aerofoil which is, afterwards, going
to be used as a constraint for the topology analysis.
Firstly, a skin thickness of 0.002c is imposed to the ge-
ometry and, secondly, a thickness-related constraint
of 0.008c for the wing-box geometry conservation in
the topology analysis is added.

Figure 5: Graphical representation of the RAE 2822
case of study complemented with the aerofoil and
wing-box skins.

The load applied to the structure is the pressure dis-
tributed throughout the aerofoil surface. This load is
given by SU2 which provides data for each node of the
surface mesh as an output. A pre-processing analysis
should be done to translate the output file obtained by
SU2 to the one read by the Calculix software.

As the pressure was discretised in the nodes, the loads
should follow the same behaviour. Therefore, the load
should be applied to the node where its correspondent
pressure value was obtained. To do so, the second
space variable is defined using the initial geometry
lines between nodes. By coupling the halves of the
previous segment and the following one coming from
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the primary geometry, a balanced and accurate repre-
sentation is achieved. In addition, the pressure value it
is not applied then in the node, but in the new formed
line following the direction of its normal vector. Then,
the sign of the vectorial force depends on the magni-
tude of the pressure, being towards the inner structure
when the pressure is positive and outwards when the
pressure is negative. This process is illustrated in Fig-
ure (6).

Figure 6: Methodology used to apply concentrated
loads from discrete pressure values.

In Figure (6), initial nodes are marked in blue and
the geometry is represented by black dashed lines.
Then, the distance between nodes is also provided
with the variable d xp(node1,node2). The pre-processing
before the FEM analysis consists in dividing the initial
segments in their mid-point, as seen with the dotted
lines in red, subsequently there are the new segments
which connect the mid-nodes and save the informa-
tion in the d xi variable, which has also its own normal
vector n̂i . Therefore, and showed by the brackets, the
pressure value from the specific node is applied along
that surface defined by (d xi ×1c) ·n̂i . A representation
of this methodology result is shown in Figure (7).

Figure 7: Pressure field translated into loads for the
RAE 2822 case of study.

Initially, and because of the mesh dependence fea-
ture, the results vary in distribution along with the
mesh quality and quantity, so the first task carried out
was to find a mesh distribution able to provide con-
sistent results and practically not influenced by the
number of nodes. Different meshes were built and
their results in terms of von Mises stresses, σV M , and
displacements d, are shown in Figure (8). Because

of the acceptable computational cost involved and a
better expected accuracy in the results, the highest
density mesh, with 77144 elements, has been selected
for the study.

Figure 8: Structural variables’ evolution with the num-
ber of nodes.

D. Topology Optimisation

The topology study conditions are initially defined
by the minimisation of the compliance-to-weight ra-
tio (maximisation of the stiffness-to-weight ratio), the
specific constraints of the case study and the avoid-
ance of instabilities such as the checkerboard layout
[21]. Therefore, a removal rate of 3 was considered to
be adequate, thus each iteration the solver provides a
3% state lighter than the previous.

The aim of the procedure is to evaluate the differ-
ent layouts given for a set of weight constraints (Fig-
ure (9)), which were defined to be: 50%, 35%, 25%
and 10%. Not only the material modification rates
are important but also the values of the magnitudes
which they apply for. For instance, the material re-
moval value has been set to 4% of the total mass while
the additive one is 1%, therefore, the stated 3% gen-
eral removal state. The sensitivity filter used is the
one defined by simple, which uses the neighbouring
cells as an averaging magnitude method that avoids
the checkerboard phenomena. Then, that filter radius
ranges from 8-10 times the mesh element size (0.01c).
This selected parameters have been extracted by an
experimental list of setups, which have provided the
meaningful information so as to reach the stated goals
of the process.

Figure 9: Material layout distribution for the general
case study, considering 50%, 35%, 25% and 10% mass
constraint reduction targets.

6



IV Results

A. Aerodynamic Optimisation

As stated previously, two case studies were aerody-
namically optimised by fixing the lift coefficient and
minimising the produced drag. Moreover, the wing-
box area was also set as fixed, thus any shape mod-
ifications should appear at the leading and trailing
edges.

i. Case 1: Re = 6.5 ·106; M = 0.729; α= 2.31◦

The optimised solution for the case of study involves
small deformations which, despite small, reduced the
drag coefficient by 13.9% as it can be seen from Table
3.

Table 3: Aerodynamic Coefficients for the optimised
aerofoil’s shape.

Shape Cl Cd counts

Original 0.7164 137.40
Optimised 0.7164 118.23

When analysing the pressure distribution shown in
Figure (10), it is possible to observe that even for small
modifications in shape the pressure distribution sub-
stantially changes. The magnitude of the highest de-
formation is 0.1%c, thus the sensitivity of the changes
in the geometry have significant weight towards the fi-
nal result. Note that the solver, in order to reduce the
drag while constraining the lift, tries to slow down the
flow when getting closer to the formation of the shock-
wave so as to absorb some of the kinetic energy of the
flow and, as the counterpart, this speed decrease is ad-
justed close to the leading edge by providing more cur-
vature, thus a higher pressure gradient.

Figure 10: Pressure coefficient comparison.

ii. Case 2: Re = 6.5 ·106; M = 0.730; α= 2.79◦

For the second case study, in Table 4, it is possible
to appreciate a 29.04% reduction of the drag coeffi-
cient, higher than for the previous case. The geomet-
ric changes in the leading edge increased while keep-
ing the conditioning of the shockwave’s occurance by
lowering the speed in that sub-region.

Table 4: Aerodynamic coefficients for the second case
optimised aerofoil’s shape.

Shape Cl Cd counts

Original 0.803 183.62
Optimised 0.803 130.29

Regarding the pressure coefficient distribution, Fig-
ure (11), along the aerofoil, there is a higher peak of
suction closer to the leading edge than in Figure (10).
As well as in the previous case, the greater magnitude
of the modifications of the geometry is in the order of
0.5%c (if the chord was defined as 1 meter, the defor-
mation would be 5 mm) thus is not easily noticed.

Figure 11: New pressure coefficient distribution com-
parison for the α= 2.79◦ case.

B. Structural Results

For the (non-)optimised cases, a completely-filled
aerofoil geometry has been studied in terms of the
suffered displacements and stresses due to the pres-
sure loading in order to see which was the influence
the aerodynamic shape change had in the solid me-
chanics field. In this section, a visual and numerical
comparisons are provided for each of the two studied
cases.

i. Case 1: Re = 6.5 ·106; M = 0.729; α= 2.31◦

When aerodynamically optimising the aerofoil’s
shape, the stress and displacements distributions in-
side the aerofoil change completely, not only in mag-
nitudes, as it can be seen in Table 5, but also in its
location. In Figure (12) the von Mises stress distribu-
tion is compared while the displacements behave in a
non-influential interval.

Table 5: Structural parameters comparison between
the optimised and the non-optimised aerofoil’s ge-
ometries.

Geometry σmax
v M [Pa] |dmax | [c]

Original 2.63 ·106 1.47 ·10−5

Optimised 7.48 ·104 1.19 ·10−6

Decreased to a % 2.85% 8.1%
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(a)

(b)

Figure 12: (a) Von Mises stress distribution for the case
study and (b) von Mises stress distribution for the op-
timisation one.

Regarding the von Mises stresses, the maximum value
has substantially decreased in 97%, from 2.63 MPa to
74.8 kPa, while the stress distribution has moved to-
wards the trailing edge, where it has the lowest mate-
rial density.

i. Case 2: Re = 6.5 ·106; M = 0.730; α= 2.79◦

An analog feature is reproduced for the second study
case (Table 6 and Figure (13)):

Table 6: Structural parameters comparison between
the optimised and the non-optimised aerofoil’s ge-
ometries.

Geometry σmax
v M [Pa] |dmax | [c]

Original 2.51 ·106 1.40 ·10−5

Optimised 3.72 ·104 4.03 ·10−7

Decreased to a % 1.49% 2.88%

(a)

(b)

Figure 13: (a) Von Mises stress distribution for the sec-
ond case study and (b) von Mises stress distribution
for the optimisation one.

The new stress distribution represents a 1.48% of the
loading state for the initial case, reaching a maximum
value of 37.2 KPa and a displacement of 0.403 µc. It is
worth to note how very small changes in the surface
of the aerofoil when optimising the geometry have a
great influence on the stress distribution.

C. Aerodynamic and Structural Optimisations

In terms of the purpose of this work, the sequential ap-
proach has been selected, as it provides insightful in-
formation about the benefits the coupling has on the
future performance of the case study. Therefore, the
aerodynamics subject was developed initially and fol-
lowed by the structural one, both including their re-
spective optimisation procedures. Once the optimal
solution is found by the solver, the output can be anal-
ysed. In Figure (14), there is a graphical representation
of the followed methodology.

Figure 14: Sequential approach algorithm followed in
this work.

i. Case 1: Re = 6.5 ·106; M = 0.729; α= 2.31◦

Regarding the optimised geometries given by the
topology optimisation solver, the 25% weight con-
straint (Figure (15)) seems to be an ideal shape for the
design as, it is noticeably efficient in terms of mass
reduction but not as simple and fragile-looking as in
lighter cases. In order to avoid ruptures or unexpected
failures, it is better to reinforce the general layout even
though the final weight is higher.

Figure 15: Weight reduction target: 25%.
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It is worth to point out how the Failure index (FI) of
Figure (16a) is two orders of magnitude lower than
in the non-aerodynamically optimised case, meaning
that, from a first approach, the structure should per-
fectly withstand the loading state. In terms of stresses
(Figure (16b)), the structure finds itself in a more re-
laxed situation, because the pressure loads are soft-
ened when aerodynamically optimised and also ab-
sorbed in the leading edge region due to the appear-
ance of new material. Apart from this latest state-
ment, note how the inner stresses have a higher value
than in the completely material-filled aerofoil (but in
the same magnitude’s interval), as expected since the
main purpose of the topology optimisation is to redis-
tribute the loads towards specific regions of the geom-
etry while removing the unnecessary ones.

(a)

(b)

Figure 16: (a) Failure index distribution and (b) von
Mises stress distribution for the optimisation of the
case study for a 25% mass reduction.

ii. Case 2: Re = 6.5 ·106; M = 0.730; α= 2.79◦

Aiming at higher modifications in the geometry, a sec-
ond case study was selected, in which the flow condi-
tions were modified. The reason behind this new strat-
egy is to translate into topological modifications of the
inner structure of the aerofoil.

Figure 17: Weight reduction target: 25%.

Regarding the optimal reduction target, following the
same explanation for the optimisation of the general
case study, the 25% target seems to be adequate (Fig-
ure (17)). Despite the general layout has changed, an
analog truss structure as in the previous studied case
was obtained (note the results in Figure (18)).

(a)

(b)

Figure 18: (a) Failure index distribution and (b) von
Mises stress distribution for the optimisation of the
second case study for a 25% mass reduction.

The main lessons learnt from the study are: (i) the
well-behaved output obtained by the sequential cou-
pling; (ii) the noticeable influence that a single param-
eter has in the final layout, using the BESO method;
(iii) and that, for 2D aerofoils only aerodynamically
loaded, a high percentage of material removal can be
obtained.

V Conclusions

This research aimed at coupling both aerodynamic
and structural designs of aerofoils using efficient op-
timisation tools such as aerodynamic shape optimi-
sation and topology optimisation. Firstly, based on
the analysis carried out along the process to reach the
stated target, it allowed to conclude that this field has
capabilities to develop highly-influential new designs.

In terms of the aerodynamics, the study has shown
that, for very small geometric modifications, notice-
able changes in the behaviour were found. For in-
stance, the shockwave was softened even for small
shape changes of 0.1%c, leading to considerable drag
reductions of 13.9% for M = 0.729 and α = 2.31◦ and
29.04% for M = 0.730 and α = 2.79◦. Then, the re-
search has shown that, by improving the aerodynamic
behaviour of the aerofoil, the structure stress state is
alleviated.

Discussing then the inner topology distribution, the
BESO method has shown to be a robust and practical
optimisation method as it not only removes material
from the geometry but it also adds and redistributes
it along aiming at the better and compliant design.
Therefore, this tool can be considered very powerful
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not because of the numerical and computational re-
sources but the free-choice design it offers.

Future Work and Recommendations

As future work, it is recommended to expand the case
described in this work, beginning with the creation
of an flight envelope including the different sets of
aerodynamic-modified geometries for a 2-D aerofoil.
Next and, in order to start from a more realistic and
functional study, new geometrical constraints should
be defined. Then, the case can be expanded to the
tridimensional space, thus a wing and all the systems
it is related to. By doing so, a noticeable increase in dif-
ficulty of the computational process will be required
but, using the knowledge of the open-source commu-
nity and the commercial tools, these drawbacks can be
surpassed.
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