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Resumo

O objetivo geral da tese consiste no acoplamento dos processos de otimização aerodinâmica e estru-

tural recorrendo a diferentes programas de código aberto, SU2 e Calculix, capazes de fornecer sim-

ulações robustas e eficientes nestes dois campos. A geometria usada para testar o código aberto

é o perfil alar RAE 2822, caso de referência 2D para regimes aerodinâmicos viscosos transónicos,

com um caixão de torção a restringir a sua forma no processo de otimização. A resistência aerod-

inâmica foi inicialmente minimizada para duas configurações diferentes, M = 0.729 at α = 2.31◦ e

M = 0.730 at α = 2.79◦ para uma sustentação constante usando o método Free-Form Deformation.

Posteriormente é utilizado uma otimização topológica "Bi-directional Evolutionary" de forma a otimizar

no ambiente Calculix a estrutura interna do perfil alar previamente otimizado. De modo a aplicar o

carregamento obtido na otimização aerodinâmica à estrutura para a otimizar topologicamente, foi de-

senvolvido um processo de transferência de carregamentos aerodinâmicos. A seguir, uma estratégia

de acoplamento sequencial foi aplicada, pois a otimização aerodinâmica representou uma melhoria na

distribuição geral de pressão, a qual consequentemente representou uma diminuição em duas ordens

de magnitude do estado de tensão e os deslocamentos finais. Em conclusão, o acoplamento sequen-

cial provou ser benéfico, pois a melhoria aerodinâmica permitiu que o estrutura interna se redistribuísse

de forma mais eficiente, reduzindo o seu volume interno para 25% do inicial, ao mesmo tempo que

proporciona uma estrutura robusta e segura.

Palavras-chave: Aerodynamic Optimisation, CFD, RAE 2822, Topology Optimisation, Calculix,

SU2
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Abstract

The overall purpose of the work lies on the coupling of two optimisation procedures for the main fields

of study, the aerodynamics and the topology layout, by means of different open-source resources, SU2

and Calculix respectively, capable to provide robust and efficient simulations in both studied fields. The

RAE 2822 geometry used to test the open-source software is the 2D benchmark case for transonic

viscous aerodynamic profiles, with the wing-box as a geometric constraint. The aerofoil has been initially

drag-minimised for two different configurations, M = 0.729 at α = 2.31◦ and M = 0.730 at α = 2.79◦

while setting a fixed lift constraint using the Free-Form Deformation methodology; afterwards, the Bi-

directional Evolutionary Topology Optimisation was applied to the optimised shape inside the Calculix

environment. A migratory procedure of the obtained data was required by the topology analysis from the

aerodynamic output so as to apply the pressure loads on the aerofoil’s surface as concentrated loads.

Then, a sequential coupling strategy was followed since the aerodynamic optimisation represented an

improvement to the general pressure distribution and, subsequently, it represented a diminishing of

two orders of magnitude below for the loading state and the final displacements. Conclusively, the

sequential coupling has proved to be beneficial as the aerodynamic improvement allowed the inner

layout to redistribute in a more efficient way, reducing its inner surface to a remarkable value of 25%

from the original one, while providing a robust and structurally sound design.

Keywords: Aerodynamic Optimisation, CFD, RAE 2822, Topology Optimisation, Calculix, SU2
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fluid dynamics, thermal analysis and wave propagation.
xii
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thesis, this entry refers to the set of airfoil shapes for air-
craft designed by this committee. xii, 3
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mises a quadratic version of the objective function sub-
ject to a linearised form of the constraints.. xii, 47
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Chapter 1

Introduction
The term ’efficiency ’ in the aeronautical industry is gaining more and more weight every passing year

as, apart from leading a transversal innovation across all the engineering fields, it is always trying to

reach the excellence and perfectionism of its science. Apart from performance efficiency the new air-

craft designs have to cope with two of the hardest enemies of the human specie and the world itself

have had to face, the climate change and the environmental resources management. This engineering

sector is evolving towards a clean energy resource point of view, a high-efficient design and towards the

leadership of future environmentally-friendly technologies in the society. In that way, companies such

as AIRBUS [1], which has emerged recently in the news because of their new hydrogen-powered com-

mercial aircraft concepts which aim a 50% emission reduction, pretend to drive the new investigations

of aeronautics towards the consideration of the previous aspects as a primary cause of their work.

Nevertheless, it is not explicitly necessary to rearrange the actual concept of an aircraft so as to provide

more efficient designs, even though it is preferred if they are born from a more beneficial idea. By

improving the different technologies embedded in the process, it is possible to reach the specified high

goals in terms of the new aeronautical field, thus a broad range of possibilities are available for the

community to discover, investigate and bring them to life.

Within them, the most renowned areas of improvement are found in the geometry optimisation features

[2] [3], combustion and gas exhaust systems [4], and the weight reduction target [5].

In this work, two optimisation approaches will be followed and applied to the RAE 2822 aerofoil consid-

ering the study to be bi-dimensional. Moreover, it has been decided to apply a geometric constraint in

the study, the one based on the wing-box position in the aerofoil. Both approaches pretend to reduce

the fuel consumption but following two alternative paths by just reordering and removing material areas

of the aerofoil, yet making it compliant to the structural and aerodynamic requirements. One of them is

optimising the aerodynamics of the aerofoil by modifying its geometry for specific flow conditions thus

reducing the required thrust power to provide the motion to the aircraft, while the other procedure works

in rearranging the material inside the aerofoil aiming at the highest stiffness-to-weight ratio and, there-

fore, the lowest lift force required to fly the aircraft.

1



To do so, a sequential point of view has been followed. This means that the optimisations are not carried

out in parallel or at the same time, where the optimisation sensitivities are mixed between fields of study,

thus any modification may affect on the other physical case, but, initially, developing a new and more

efficient aerofoil’s shape which is afterwards going to be ’filled’ with material in the structural study. Then,

as the outer geometry has already been optimised for the case study, its inner material layout is also

going to be modified so as to optimise even more the definition of the aerofoil.

Finally, the optimal aerodynamic results joined with the inner, more efficient, structural layout will be

analysed, filtering the positive output gained from the study, and proposing new future milestones for the

community.

1.1 Topic Overview

When referring to aeronautics, different uses of the optimisation procedure have been given by the

community the last 60 years [6], but not only in the aeronautical field, but also the automotive [7], civil

structures [8] or even medical devices [9]. A key parameter is the aerodynamic behaviour of the design,

thus its variables as well, such as the drag, lift and pitching moment. Therefore, the optimisation proce-

dure has reached this field of study and numerous investigations have been deployed by the engineers

and scientists. Initial discoveries where found while studying the aerofoil (and/or the wing) of an aircraft

for specific flow conditions [10], but nowadays the methodology has expanded towards other parts of the

aircraft such as the position of the engine’s nacelle [11].

From this point, where the target of optimisation is fixed, the mathematics behind the diverse procedures

need to be described as specific techniques are more suitable for different cases. For instance, three

main methodologies arise. The simplest from the implementation point of view is the finite difference

method, but for heavy loaded simulations, the procedure results to be inefficient because of what the

computational cost implies. Behind this last statement is found the gradient-based methodology which,

in order to avoid those computational limitations, uses a different perspective of the problem. The other

technique, the gradient-free method, faces a negative characteristic of the gradient-based procedures

for certain cases. For studies where there is a baseline design which provides a continuous geometry,

it is feasible to provide the gradient (derivative) of the objective function related to the independent vari-

ables so as to, afterwards, apply deformations to the initial shape. But, for the latter technique, the user

can avoid using polynomials or splines and carry a general-purpose (domain independent) search for a

local optimal and, afterwards, by mimicking the genetic algorithms which use mutations and crossovers,

a global optimal is obtained [12] [13] by studying the memory distribution in the computer for the ’parents’

and applying the modifications. In this thesis, the gradient-based technique is going to be employed as

the used software provides the capabilities to obtain an optimal redistribution of an initial design, while

the gradient-free procedure lies out from the scope of the thesis.
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Hereafter, the gradient-based algorithm analyses a fluid domain variable (solution) in terms of indepen-

dent parameters. For instance, if an optimisation of the lift-to-drag ratio is intended, this is going to be

defined as the state variable, while the sensitivities are going to be given by the design variables which,

as an example, can be different locations of the aerofoil. From this point, the adjoint solution is obtained

by applying the mathematics behind the procedure. This technique provides afterwards the local optimal

which follows the gradient direction or, in other words, where to move the design parameters to improve

the previous state, while the distance to travel is provided by an one-dimensional search in the line for a

acceptable modification, until the optimal is reached [14].

Then, specific methods are created for certain tasks and, for flow conditions, the adjoint method is a

reliable candidate [15] [16]. This method gathers the idea behind the gradient-based theory and specifi-

cally adapts towards the studied situation. One way to move towards the gradient-based technique is by

using the adjoint solution, which starts from a flow solution state where an objective function is obtained

e.g. lift or drag. By using the definition of the independent variables, which tend to be the variation of

the position of certain control points distributed and embedded inside the mesh, the gradient is obtained.

Nevertheless, inside the gradient-based adjoint methodology, two different techniques can be applied.

Both of them require from the gradients calculation, but their collecting is different. From a first approach,

the studied geometry can be understood to be the independent variable of the setup, meaning that the

system of equations must be solved by including the residual function (in terms of the control points)

inside the definition of the equations and, afterwards, solve the linear system. This is what is called

the Continuous Adjoint Method (CAM). It has been demonstrated [17] that, for a numerous number of

design variables, it is not efficient. This reason induced the application of a new technique, the Discrete

Adjoint Methodology (DAM) which, instead of defining the residual or cost function along the boundary,

the discretisation of the flow variables is applied directly to the field equations. In that case, the direct

numerical inversion is avoided, which may be adequate for costly computational processes involving

substantial number of design variables.

For instance, the work done by Alfonso Bueno-Orovio et al. in [18] describes the methodology and nu-

merical implementation of the CAM into the Spalart-Allmaras turbulence model for the same case study

of this thesis, the RAE 2822 aerofoil, and a whole wing model, the ONERA-M6. In this study, the fluid

equations in the adjoint process are treated as a set of Partial Differential Equations (PDE) meaning that

the control function is the geometry shape itself. Examples of the DAM can be found in the work done

by Marian Nemec and Michael J. Aftosmis in [19] where a NACA 0012 profile is lift-constrained and drag

minimised, complemented with another test regarding the optimisation of the lift-to-drag ratio for a model

of the Apollo reentry capsule.
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As seen previously in all the methodologies described, there are different paths to reach a specific goal.

Then, the definition of this control points also might be described using different procedures. On one

hand, there are the parametrisation techniques, involving a continuous line defined by a set of weighted

points and, on the other hand, the Free-Form Deformation (FFD) technique which embeds a specific

shape to optimise inside a box or a cube, depending on the volumetrical character of the study, by

means of a set of boundary nodes. Both of them apply the sensitivity analysis in all of the defined new

nodes and, afterwards, its correspondent modification which is going to lead the reshape of the geom-

etry by means of, again, parametrisation techniques. The main difference between both methodologies

is that using a FFD, the user has a wider range of possibilities as it is not constrained by the weighting

factors of the nodes defining the aerofoil’s shape [20].

The study done by Sam Teherkhani et al. in [7] provides an example of an aerodynamic design of the

light bar of a police car using the Bézier curves as a parametrisation technique while, for the latter,

Olivier Amoignon et al. in [21] uses the FFD method to minimise the produced drag at a constant lift

state of a transonic swept wing.

Structural optimisation sets as a target the maximisation of the material resources to fulfill a defined

constraint. In [22] three main categories of optimisation are defined. The first of them, and probably the

more general perspective of the problem, is the shape’s design which has to be adapted to the needs of

the environment. Certain geometries may have better performances by just this ’visual’ focus. Following,

there is the size of the component. It refers to not only satisfying the initial constraints, but optimising as

well the amount of resources involved. Finally, once the general product is obtained and sized, a more

accurate output can be extracted by analysing its inner layout, trying to reduce the amount of material

while redistributing the loads to other regions of the layout while being inside the safety behaviour. By

doing so, an fully-functional and optimal design would be obtained reducing the cost and the material

involved.

To do so, a few recent techniques appeared in the state of the art. The first investigation was done by

Bendsøe [23] in 1989 where he first applied the density-based approach for a solid isotropic material in

different setups. Actually, one of the most common and used techniques is the stated previously, which

is called Solid Isotropic Material with Penalisation (SIMP). Following, there is the Evolutionary Structural

Optimisation (ESO), developed by O. Querin, Y.M. Xie and G.P. Steven [24] in 1993. The foundations

of both techniques are quite the same. One parameter of the study is set to be optimised (e.g. Young

modulus) and a density variable is generated. The latter provides information about the material state

of the finite element inside the geometry boundary, being null when its void and one when filled. From

this point, the optimisation is developed by a sensitivity analysis as it was stated before. This one gives

the solver the information regarding the weight the element has in the optimisation process and then, in

terms of the previous result, the layout is modified by means of the general volume constraint.
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Regarding the SIMP methodology, the sensitivity analysis adds a penalisation factor to the element

material density which has a secondary impact on the design variable sensitivity as it regulates their

structural weight in the layout, thus the amount of removed material. Pedro Gomes and Rafael Pala-

cios [25] from Imperial College London applied this technique into a fully-coupled aerodynamic and

stiffness-based topology optimisation of a compliant aerofoil thus introducing the fluid-structure inter-

action science. They as well describe two different strategies, the first one using a more aerodynamic

profile as an initial state followed by the inverse procedure, where, initially, the inner layout is optimised.

The same technique may be applied but using a different perspective as starting point, as it can be seen

in the job done by Gabrielle Capasso et al. in [26], where, instead of using a global parameter as the

stiffness is, they focus on local quantities, which in this case is the stress magnitude. The path to be

followed then depends on the input parameter the topology optimisation receives.

The ESO technique applies a gradual removal rate of inefficient material when reaching a global opti-

mum. Therefore, a removal rate is set by the user and the less efficient elements are suppressed and,

afterwards, a new structural analysis recalculates the parameters for the new layout. The work done

by Liang Xia et al. in [27] apart from applying the ESO method to a wide variety of tests, they also

reformulate the problem by adding a bidirectional character to the evolution, meaning that not only the

material can be removed but added. The reason behind this is that, after an iteration is carried out

and a certain amount of elements are deleted, it is not possible to regenerate the structure thus miss-

ing probably more efficient designs including the previously suppressed layout. After this modification of

the technique’s main idea, other scientists have as well tried the new formulation such as in [24] and [28].

Research has been done and new innovations, in terms of the topological and aerodynamic studies, are

starting to be implemented in the aeronautical industry. A general perspective of the actual procedures

and applications is gathered in the work done by Ji-Hong Zhu et al. in [29], were, for instance, the

topological optimisations of an aircraft engine’s pylon, an aircraft fuselage and the support for a 4-

satellite component are provided among others procedures. Following a more detailed point of view, in

terms of the topological optimisation in the aeronautical field, Airbus with Altair Engineering provide in

[30] the application of this methodology to the design of the wing ribs, then it should be highlighted that

the described optimisation is already expanding towards the actual components setup. Moreover, an

aerodynamic optimisation is coupled in the analysis to an aeroelastic-born case in the study made by K.

Maute et al. [31] where, apart from dealing with a mixing of sensitivities between fluid-induced structural

loads, the material behaviour is considered to behave inside the non-linear response, thus forcing the

analysis to use a coupled strategy between optimisations and, consequently, a higher-degree of difficulty

is involved.
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1.2 Motivation and Goals

In terms of the fluid dynamics simulations, the actual state of the art of commercial and open-source

software show high-fidelity and powerful tools to provide realistic and useful data, in which the physics

behind the phenomena are showcased along the CFD study. Then, from this point where practically

the biggest improvements are reached from the computational procedures and techniques, new ideas

should arise in order to bring new glows of development in this field.

This is why, while waiting for the whole scientist community to bring this jump in improvement, the aero-

nautical sector has had to restructure itself so as to provide small steps of development for the actual

state of its science. Therefore, the aerodynamic shape optimisation is one of the bridges built to bring

a knowledge expansion until more efficient and powerful computational research is implemented in the

society.

The aim of the thesis is then, the use of this quite recent methodology to improve a bi-dimensional aero-

dynamic shape, specifically the RAE 2822 aerofoil, for certain transonic flow conditions with different

goals i.e. lift-to-drag ratio maximisation and drag minimisation at a constant lift constraint, and a geo-

metrical constraint, defining the wing-box. Then, a more developed and improved geometry is created

by using the open-source software resources.

Nevertheless, the thesis takes one step forward and couples the aerodynamic efficiency output with

the material and structural layout improvement aiming to achieve the highest stiffness-to-weight ratio,

leading towards an optimal use of the involved material resources, the improvement of air-navigation

procedures and the impact it has as well in the aerodynamics study, as the material optimisation is

directly linked with the energy management of the vehicle.

1.3 Thesis Outline

The fluid dynamics and structural theoretical basis, where the computational approaches emerge from,

are described in Chapter 2, followed in Chapter 3 by the CFD software used, its methods and the vali-

dation of the extracted results. Then, in Chapter 4 and by following an analog scheme as in the previous

chapter, the structural mesh verification and the BESO principles which will lead the investigations are

presented. In Chapter 5, the aerodynamic results are unveiled and analysed and the first optimisation is

carried out. Next section is Chapter 6, where the structural results are plotted and, finally, the coupling

between both optimisation methodologies is shown in Chapter 7. Once the thesis’ goals are reached, in

Chapter 8, the conclusions are described while including the future work of the subject.
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Chapter 2

Theoretical notes
2.1 Aerodynamics

In this chapter of the thesis, the physics behind the case study are described and, afterwards, the com-

putational implementation is commented. For the first feature, the flow’s behaviour is modelled by an

approximate methodology, the so called Reynolds Averaged Navier-Stokes (RANS) equations, specif-

ically using the turbulent model provided by Spalart and Allmaras [32], because of its simplicity and

accuracy. For the latter, the approach will drive towards not the general theory behind its implementa-

tion, but the one used in the SU2 software, as it provides a general optimisation framework in its design.

Then, the computational fluid dynamics weight of the thesis is going to lean on their methodologies due

to the coupling’s simplicity of the required techniques.

After the initial conditions results are obtained, the idea behind this field of study in the thesis lies in the

optimisation of the first setup so as to reach a specific goal or target. Therefore, in this section, the set

of techniques involved in that procedure are also included.

2.1.1 Reynolds Averaged Navier-Stokes equations

Following the comments made above, RANS equations were deemed to be adequate for the report’s

purposes, but before immersing ourselves in the simulation parameters of SU2 (section 3.3), a brief

introductory theoretical description of the case study is presented, aiming at the full understanding of

the physics and further selected simulation features. Thereafter, the general fluid equations for the

flow’s continuity and momentum conservation are presented, which are the well-known Navier-Stokes

equations [33]:

∂ρ

∂t
+∇· (ρu) = 0 (2.1)

∂ρu

∂t
+u ·∇(ρu) =−∇p +µ∇2u+ρb (2.2)
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being ρ the fluid density, µ the dynamic viscosity, p the pressure, u = (ux , uy , uz) the fluid velocity and b

a body force. From this point, the RANS equations must be found and furthermore described. For clarity

purposes, the notation is changed to index notation.

∂ui

∂xi
= 0 (2.3)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
+ ∂

∂x j

(
µ

ρ

ui

x j

)
(2.4)

Following the theoretical notes provided by the University of Stanford [34], the Reynolds-averaged quan-

tities are defined, in which Ui is the mean time-averaged velocity and u’ is the fluctuating component:

ui (xk , t ) =Ui (xk )+u′ (xk , t ) (2.5)

Ui (xk ) = lim
T→∞

1

T

∫ T

0
u (xk , t )d t (2.6)

Knowing that, for time-averaged approach the unsteady term from equation (2.4) disappears and ap-

plying equations (2.5) and (2.6) to it, the general equations for a time-averaged approach are obtained,

noting that the term u′
i u j is the Reynolds stress tensor, which account for the total stress tensor in the

turbulent fluctuations for the RANS equations:

∂Ui

∂xi
= 0 (2.7)

U j
∂Ui

∂x j
=− 1

ρ

∂p

∂xi
+ ∂

∂x j

(
µ

ρ

Ui

x j

)
+
∂
(
−u′

i u j

)
∂x j

(2.8)

One way to relate the Reynolds stress tensor with the known averaged quantities is by using the Boussi-

nesq relationship, which, in a simply way, relates the tensor with the velocity gradients using what is

known as the eddy dynamic viscosity µτ (in Spalart-Allmaras [32] nomenclature, it is used the kinematic

viscosity (ντ = µτ/ρ)), being it an scalar value. It is necessary to point out that there are other ways to

approach the translation of the tensor, such as the Reynolds Stress Transport models, but for simplicity

and effectiveness, the Boussinesq model is applied:

−u′
i u j = 2

µτ

ρ
Si j = 2

µτ

ρ
· 1

2

(
∂Ui

∂x j
+ ∂U j

∂xi

)
= µτ

ρ
·
(
∂Ui

∂x j
+ ∂U j

∂xi

)
(2.9)
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2.1.2 Spalart-Allmaras turbulence model

From this point, different authors have proposed a set of strategies capable of solving the transport

equations. The most known models are the Spalart-Allmaras (SA) (1eq) [32], κ−ε (2eq) [34], κ−ω (2eq)

[34] or the Baldwin-Barth (1eq) [35]. In this work, SA is chosen. This one has been especially developed

for aerodynamic purposes and mixes the viscous sublayer information, with the logarithmic formulation

as a function of the y+ value.

U j
∂Ui

∂x j
=− ∂

∂xi

(
p

ρ

)
+ ∂

∂x j

(
µ

ρ

Ui

x j

)
+ ∂

∂x j

(
(µ+µτ)

ρ

∂Ui

∂x j

)
(2.10)

For this new approach, new nomenclature is used. For instance, the turbulent Prandtl number σ, empir-

ical constants in the turbulent model, e.g. cb1, and the measure of the deformation factor S. If equation

(2.9) is recalled, and the eddy’s viscosity ντ is the central variable, it is possible to obtain a transport

equation by an empirical way if the total or material derivative is applied to the parameter and then, it is

equaled to a production term and a diffusion one:

Dντ
Dt

= ∂ντ

∂t
+Ui

∂ντ

∂xi
(2.11)

As ντ is a scalar term, the deformation tensor ∂Ui
∂xi

must be a scalar value as well. This deformation

tensor is also known by the variable Si j . From this point, the production (of eddies) term is defined via

the vorticity Ωi j and, for the diffusion phenomena, it can be described by the gradient:

Si j =
√

2Ωi jΩi j (2.12)

Ωi j =
(
∂Ui

∂x j
+ ∂U j

∂xi

)
(2.13)

Diffusion−→∇·
(ντ
σ

∇ντ
)

(2.14)

As it is not stated that the integral of ντ along the boundaries should be conserved, a non-conservative

parameter is added. Something similar happens with the two-equation models, which end up having

this kind of relation. Therefore, by this analogy, SA [32] reformulated the diffusion term (2.14) in order to

obtain the new transport equation:

Dντ
Dt

= cb1Sντ+ 1

σ

[∇· (ντ∇ντ)+ cb2 (∇ντ)2] (2.15)

Near the wall region and for high Reynolds numbers, SA could demonstrate by a dimensional analysis

that the starting point of the eddies’ destruction started at a specific distance from the wall combined by

other parameters described as −cw1(ντ/d)2, where d is the distance to the wall and cw1, an empirical

constant related to the destruction term near the wall. When the distance is much higher than the shear

layer, this term vanishes thus representing the non-influenced behaviour of the flow.
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It is stated in [32], that the previous equation shows accurate results in the logarithmic layer1 but it

shows a weak skin friction coefficient in the outer part of the layer then, the free flow. To correct it, the

dimensionless multiplier fw is defined, and it refers to an experimental calibrator for the destruction term

in the outer region of the boundary layer, being null at the free flow regime and 1 in the log-layer. A

second term is added but, in this case, for the production phenomena, the cb2. The resulting equation

is:
Dντ
Dt

= cb1Sντ+ 1

σ

[∇· (ντ∇ντ)+ cb2 (∇ντ)2]− cw1 fw

[ντ
d

]2
(2.16)

where the graphical representation is depicted in Figure (2.1):

Figure 2.1: Law of the wall representation. Extracted from [36].

The left-hand side of the equation represents the transport model for the eddy viscosity and must equal

to the production term, followed by the diffusion one and ending with the destruction term, respectively.

As well as other coefficients present in equation (2.16), it can be described by the next set of parameters

where: g is a limiter effect calibrator; cw3 a skin friction calibrator; r is a control function calibrator; l is

the mixing length; uτ is the friction velocity; cw2 is a slope limiter for the destruction term; and κ is the

Kárman constant.

fw = g

[
1+ c6

w3

g 6 + c6
w3

]1/6

(2.17)

g = r + cw2
(
r 6 − r

)
(2.18)

cw1 = cb1/k2 + (1+ cb2)/σ (2.19)

l ≡
√
ντ/S (2.20)

S = uτ/(kd) (2.21)

vτ = uτkd (2.22)

r ≡ ντ

Sk2d 2 (2.23)

1(also known as "law of the wall") (Figure (2.1)). The velocity of a point inside the boundary layer for a turbulent flow follows a
proportional relationship with the logarithmic value of the distance between the stated point and the closest point in the wall [36].
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Near-wall treatment

All the previous development has not considered the viscous sublayer neither the buffer zone2. It is

known that the eddy viscosity in the log-layer can be defined as ντ = κyuτ [32], being y the height. In

order to extend it to the wall, a new parameter is generated, ν̃, which basically describes a linear be-

haviour of the transport quantity until the wall boundary. This last parameter equals ντ except in the

viscous sub-layer. An intermediate variable, χ, that represents the ratio between these two transport

quantities, χ= ν̃/ν, it is used.

Following the statement made in Mellor and Herring [38] regarding the behaviour of the previous ratio

from the wall to the log-layer, χ is defined as χ = κy+ and knowing from [32] that ντ = κyuτ, two new

coefficients allow us to represent the near wall behaviour, being fv1 and cv1, log-layer calibrators:

ντ = ν̃ fv1 (2.24)

fv1 = χ3

χ3c3
v1

(2.25)

Moreover, the production term needs also to be adapted by introducing a production calibrator in the

log-layer, fv2:

S̃ ∼= S + ν̃

κ2d 2 fv2 (2.26)

fv2 = 1− χ

1+χ fv1
(2.27)

That previous definition allows the production term to follow the log-layer behaviour all the way to the

wall (S̃ = uτ/(κy)). Analysing then the previous statements, one can check the ν̃ is null in the ground as

S̃ is singular, therefore, the logarithmic formulation couples all along the layer. Bounding together the

last definitions with equation (2.16), the general one-equation turbulence model from Spalart-Allmaras

is given by:

Dν̃

Dt
= cb1S̃ν̃+ 1

σ

[∇· ((ν̃+ν)∇ν̃)+ cb2 (∇ν̃)2]− cw1 fw

[
ν̃

d

]2

(2.28)

2Space found between the viscous sub-layer description and the logarithmic one, where neither laws describe the phenomena. It
is usually found between y+ = 5 and y+ = 30 [37]
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Laminar region and trip term

If more accuracy is desired, the user can still implement the discerning between a separated shear layer

and the recirculation region after the creation of the boundary layer and bound them together when

inevitable via two trips, one that separates and the other which destroys the boundary between both, as

it can be seen in Figure (2.2).

Figure 2.2: Schematic of a laminar-separation bubble. Extracted from [39]

It is necessary to point out that the first term regarding the layers has a turbulent behaviour. The final

and general formulation is given in equation (2.29). For further details, check [32].

∂ν̃

∂t
+u j

∂ν̃

∂x j
= cb1

(
1− fv2

)
S̃ν̃+ 1

σ

[
∂

∂x j

(
(ν̃+ν)

∂ν̃

∂x j

)
+ cb2

∂ν̃

∂x j

∂ν̃

∂x j

]
−

[
cw1 fw − cb1

κ2
fv2

](
ν̃

d

)2
(2.29)

The computational implementation in SU2 for the Spalart-Allmaras equation follows the model presented

in Turbulence Modeling Resource [40] of the Langley Research Center from NASA which is the one de-

scribed before in equation (2.29).

2.1.3 Sensitivity analysis

One of the thesis’ targets is to be able to find an optimal geometry for an aerofoil in specific flow con-

ditions. From now on, in this theoretical chapter where the fluid behaviour has been described already,

the focus is turned to the optimisation procedure.

For instance, in each of the volumes cells of the domain there is a certain number of variables that shape

the final result of the setup. Design variables affect the established objective function and constraints,

thus knowing how design variables affect the objective function and constraints, it can be used as a

feature where useful information can be extracted.

This information is required in gradient-based algorithms, which for heavy computational simulations

such as CFD is normally preferable to gradient-free algorithms such as genetic algorithms, as the one
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used in the study by M. Lohry et al. [13]. By performing small perturbations to each design variable,

it is possible to evaluate sensitives that these have on the objective function and constraints. This pro-

cess can be carried out using the finite differences method, which is the most common procedure for

sensitivity analysis. However, for large problem such as those involving high fidelity CFD analyses, the

application of the finite differences method might become expensive from the computational point of

view.

To improve the numerical efficiency of the optimisation, adjoint methods are now becoming more com-

mon, where sensitivities are already coded in the analysis solver [41]. Specifically for aerodynamics, it is

common to use the gradient-based functions as a tool to produce the sensitivity model. This procedure

can deal with a large number of input variables to work with and the required computational cost is not

really demanding, as it gives only one output as a solution. But, to begin with, a specific total variable

must be selected for the study, the objective function L, for instance, lift, drag or moment coefficients.

As in [42], L depends on the flow variables of the study (solution) u, and the design variables (or param-

eters), D, which represent the modifications in the original state. Afterwards, the sensitivity formulation

is defined:

dL

dD
= ∂L

∂D
+ ∂L

∂u

∂u

∂D
(2.30)

Sensitivity is basically the output obtained when analysing the effect that an independent parameter has

on a dependant one by means of its uncertainty (in this case, the difference to an original value). In

equation (2.30) turns out to be a Jacobian matrix, which expresses the variation of an input function at

each differentiable point, and one sensitivity term. Consider the number of input and output variables as

Ni and No, respectively:

∂L

∂D
=


∂L1

∂D1
. . .

∂L1

∂DNi
...

. . .
...

∂LNo

∂D1
. . .

∂LNo

∂DNi

 (2.31)

Moreover, the flow solution must be constrained after the sensitivity analysis as it is required to converge.

In other words, if any modification or disturbance is applied to the flow variables, the final variation of the

residual R is null when totally converged, thus:

r = R (u((D) ,D) = 0 (2.32)

dr

dD
= ∂R

∂D
+ ∂R

∂u

∂u

∂D
= 0 (2.33)

The problematic arises when trying to compute the term that involves the gradient of the variables from

the actual solution (u) of the flow with respect to the design variables (D), ∂u/∂D in equation (2.30).
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By imposing the residual constraint of the sensitivity, equation (2.33), and substituting by imposing the

residual constraint in equation (2.30), one yields to the final formulation of the procedure, equation (2.35),

presented in the works made by the authors of references [15] [42]:

− ∂R

∂D
= ∂R

∂u

∂u

∂D
(2.34)

dL

dD
= ∂L

∂D
− ∂L

∂u

[
∂R

∂u

]−1 ∂R

∂D
(2.35)

From this point, once the sensitivity formulation has been described, the adjoint method must be applied

by defining the adjoint variables matrix as Ψ, such in equation (2.36):

Ψ=−∂L

∂u

[
∂R

∂u

]−1

(2.36)

Note that the adjoint solution is only dependant of the objective function L and not of the design pa-

rameters D and that there is an adjoint solution for each objective function that has been defined. By

manipulating the latest equation, a linear system is obtained which complexity depends on the number

of the design variables:

[
∂R

∂u

]T

Ψ=−
[
∂L

∂u

]T

(2.37)

Embedding it to the final form of the sensitivity formulation (or total derivative), the final form is:

dL

dD
= ∂L

∂D
+ΨT ∂R

∂D
(2.38)

2.1.4 Parametrisation techniques

Parametrisation is the procedure used to define a geometry with a certain quantity of independent pa-

rameters by a mathematical approach. Its appearance is due to the computational approaches followed

towards the design stages of a component, specially for the implementation of curves and surfaces. The

most common techniques in the aerofoil’s shape modelling can be grouped into: Bézier curves [43], the

Non-Uniform Rational B-Splines, also known as NURBS [44], Hicks-Henne [45] bump functions and the

Free-Form Deformation box (FFD) [46].

In this work, FFD methodology is used. This technique provides better accuracy in results while using a

fewer amount of design variables compared with the other presented procedures. In fact, by basing the

procedure in an already existing geometry, the slight deformations applied by the technique demonstrate

better convergence ratio and smoothness. The latter feature is provided by analysing the sensitivity

values of the control points, which is beneficial in terms of costs and effectiveness [20].

14



Free-Form Deformation box

The Free-Form Deformation technique was developed by Sederberg in [46] to model solids and it has

its recognition because of its versatility and that, oppose to other parametrisation techniques, it does not

manipulate directly the geometry of the object but the lattice of a certain space in the domain where the

object is embedded. For two-dimensional cases, the box looks like a rectangle and like a cube for 3D

cases. FFD can treat all kind of surfaces and has no interference with the meshes used in a diverse

variety of engineering problems as the FFD also deforms it. The latest statement has attracted interest

in terms of optimisation design features as just one grid is needed to provide an optimal final design. Of

course, the deformation must be controlled so as to check its accuracy and realistic representations of

the physical phenomena.

The formulation deals with some vectorial and spatial embedding and deformations. If a point X with

coordinates (x1, x2, x3) is embedded into a new reference frame ŝ, t̂, û, ends up being defined by equation

(2.39) as shown in Figure (2.3a):

X = X0 + sŝ+ t t̂+uû (2.39)

(a) s,t,u Coordinate system. Extracted from [46]. (b) FFD definition. Extracted from [46].

Figure 2.3: Free-Form Deformation Box definition.

From this point, the FFD box must be constrained and defined in the new coordinates, where the original

and unperturbed control points (P 0
l ,m,n) are defined with white dots along the closed box. Therefore, the

control points are defined by their location in the axis: l = 0, . . . ,L, m = 0, . . . , M and n = 0, . . . , N such as in

Figure (2.3b):

The next step is to introduce the deformation in a parameter, µl ,m,n , whose dimension considers the

3-axis movement, thus 3× (L +1)× (M +1)× (N +1). From this point, every control point is deformed by

the latest parameter such as:

Pl ,m,n = P0
l ,m,n +µl,m,n (2.40)
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Then, the new parametric map is constructed with 1D Bernstein basis polynomials following the defini-

tion of Figure (2.3a) [47].

bL
l (s) =

(
L

l

)
(1− s)(L−l )sl (2.41)

bM
m (t ) =

(
M

m

)
(1− t )(M−m)t m (2.42)

bN
n (u) =

(
N

n

)
(1−u)(N−n)un (2.43)

therefore, the final parametrisation is defined as,

X f f d =
L∑

l=0

M∑
m=0

N∑
n=0

bL,M ,N
l ,m,n (s, t ,u)Pl ,m,n

(
µl ,m,n

)
(2.44)

Once the formulation has been described, the properties of the box only influence the inner objects,

thus the Bernstein polynomials and, as a matter of fact, all the piecewise segments joined to describe

the geometry keep being constrained to remain continuous and smooth. Another aspect to consider,

specially in this project, is that FFD allows the user to provide individual local displacement to specific

nodes while keeping the box structure together.

Koshakji et al in [48] describe the theory behind the formulation made by Sederberg [46] in the 80’s and

they add as well a variety of examples in which an optimisation to its shape has been carried out. For a

similar path as the one followed in this thesis regarding the aerodynamic shape optimisation, Duvigneau

[49] expresses, step-by-step, which is the theory behind the chain of algorithms that should be applied in

order to optimise a geometry and, at the end of his document, he also applies the described knowledge

into research cases so as to provide specific results for certain cases of study.

2.1.5 Mesh deformation

For problems in which certain components of it are movable, such as aero-elastic phenomena or rotatory

parts, the mesh has to be modified so as to follow the events and its respective information. It is then

highly important to control the deformation of the grid nodes, keeping the solving procedure robust and

efficient, apart from being able to embed all the required physical features. In the optimisation procedure,

there will be also modifications in the mesh as the control points are subjected to the sensitivity analysis,

but it requires a "translation" from the adjoint solution towards the respective displacements of the nodes.

The SU2 environment provides a general coupling of the whole optimisation procedure, which includes

the CFD simulation, the gradient-based adjoint method and the following geometry modification that also

includes a mesh rearranging. Then, this software uses what is known to be the spring mesh deformation
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procedure, which, recalling [50], considers each of the edges of the cell as a spring that follows the linear

behaviour of Hooke’s law for the node’s displacement. Then, the equilibrium length is considered to be

equal to the original edge’s length and the stiffness of the spring, ki j = 1, between nodes i and j. If the

force applied is defined along with the spring’s stiffness:

~Fi =
vi∑

j=1
ki j (~q j −~qi ) (2.45)

ki j = 1√(
~x j −~xi

) · (~x j −~xi
) (2.46)

where ~qi and ~q j refer, respectively, to the displacements of the spring in node i and j, Fi is the force

applied at node i and vi is the number of nodes which assembly an edge with the studied one (i.e. node

i). Then, the force equilibrium is applied at each node so as to find the new displacement of node i by

an iterative procedure:

~qk+1
i =

∑vi
j=1 ki j~qk

i j∑vi
j=1 ki j

(2.47)

so when the displacement is obtained, the new position can be extracted by:

~xk+1
i =~xk

i +~qk+1
i (2.48)

To understand how it works, at a specific time t, there is an existing configuration for the boundary, B,

and the distribution of stresses. At the following time-step, the boundary B has moved to B’ following

the physics of the setup. In [51], one of the precursors for the mesh deformation algorithms, the authors

recommended to provide a control in the produced deformations by following 3 steps. The first, consid-

ers constraining a positive value of its volume, while the second is based on treating the new mesh so

as to eliminate extremely deformed cells and its respective nodes. Finally, the number of nodes should

be again compatible with the initial discretisation; therefore, the mesh should be enriched to recover the

suppression of the previous cells.

The first topic to deal with is the mesh movement. For instance, after applying the adjoint solver, small

perturbations have been applied to the geometry of the model and, by imposing the equilibrium of forces

and the spring methodology [41], the new node positions for the deformed case are available, thus, by

applying the spring-analogy equations (2.45) with (2.47) at the original grid points, the deformed mesh

is obtained.

The stated deformations are saved in spaces of memory called shape matrices M, related between them

by this linear equation: M2 = AM1, where A is the deformation matrix. To control the volume constraint,

the deformation matrix can be expressed by a pure rotation matrix (unitary), U, and a parameter which

controls the cell distorsion, also expressed in a matrix way, which is P. Therefore, A = PU
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The eigenvalues of P represent the modes of distorsion of the cell so, if the eigenvalue is larger than

one, the cell is stretching, while if it is smaller, it is compressing. Then, if the distorsion is too drastic, the

eigenvalue tend to be null. Therefore, any following deformation will create negative volumes. To avoid

this, weighting coefficients are used in order to limit the deformation. Furthermore, those eigenvalues

are also used to control the mesh quality thus the second phase of the deformation study.

Once the deformation has been applied and checked by the quality parameters, the coarsening is the

next topic to deal with. In that stage, the nominated cells to be eliminated are analysed and, if they

should be erased, the vertices of the shortest of its edges are made coincident. Therefore, the number

of nodes in the mesh decreases by one for each deleted cell, making it coarser than the original.

Finally, once the non-profitable cells are removed, there are different schemes used to refine the final

mesh. In [41], the study carried by [52] is implemented, which presents an algorithm to provide a robust

and accurate solver for deformations in unstructured meshes.

In Figure (2.4), the information is given by the edges instead of considering the nodes. During the CFD

computation, the quality of the edges is stored so as to apply, afterwards at the mesh adaptation proce-

dure, the modification regarding the stated quality. If the quality threshold is exceeded, a subdivision of

the edge is applied. For instance, for a quadrangular mesh design, the division provided at the edge will

represent a change in the cell discretisation from quadrangular to triangular. Tetrahedral examples are

shown in Figure (2.4), extracted from [52].

Figure 2.4: Tetrahedral subdivisions provided by the algorithm designed by Biswas [52].

This quality parameter uses two criteria [53]: the first is based on the results obtained by the CFD solver

and the second is the number of divisions or adding nodes stated in the previous paragraph. The initial,

when there is a region of the fluid domain with high gradients, it is considered that the same region has

an influential error. Therefore, this error quantification can be described by the difference, in magnitude,

of the velocity (∆qi ) between two continuous cells, multiplied by a length scale factor computed by the

ratio between the length of the element, li , and a reference one, lr . Then, considering the second factor

for the new discretisation, r is selected: |Ei | =
(

li

lr

)1/r ∣∣∆qi
∣∣
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2.2 Structures

The second field of study of the thesis is the computational approach towards the structural analysis of

a component. Here, analyses of the stresses, displacements and force reactions are studied in order

to describe and verify the behaviour of the design. During this theoretical section of the document, the

hypothesis of the study plus the phenomena description is going to be presented by following the limits

established in the scope of the thesis. To begin with, the ideas behind the notes that will follow below,

are closely related with the methodologies used in the software Calculix and an open-source code for

topology optimisation named as BESO developed by František Löffelmann in [28], as it is involved in this

project for the structural analysis.

Regarding the science behind the case study, the aerofoil is going to be considered to behave inside the

elastic region of the material, specifically inside the linear region, which implies a proportional relation

between the stresses and the correspondent strains.

Since the weight parameter in aeronautics gains plenty of attention, the procedure of optimisation will

drive through the best stiffness-to-weight ratio, which basically minimises the compliance of the model

or, in other words, the overall flexibility. To do so, the open-source code uses the Bi-directional Evolu-

tionary Structural Optimisation (BESO) method, developed by Y.M. Xie and X. Huang [54], a variant of

the proposed work done initially by the same author and O. M. Querin in 1998 [24]. Hence, another

consideration for the study is the isotropic distribution inside the body, which assumes an equal material

behaviour in all the directions and points of a volume.

2.2.1 Elastic behaviour of the model

Ideally, in order to set the conditions for the elastic analysis, it should be considered the material con-

ditions, defined by: the material unit vector M ; the Cauchy stresses σ; the displacements u and the

reference stress situation, σR. By forcing the behaviour to follow the elasticity rules stated above, a

general definition is obtained:

f (σ,σR,u,M1,M2,M3) = 0 (2.49)

but it is usually considered that the reference state represents the stress-free condition and that the

material follows an isotropic behaviour, thus Mi = 0. Then:

f (u) =σ (2.50)

where in that case, the stress loading only depends on the deformation state.
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Next step is finding the relation between the 6 independent stresses and the nine independent compo-

nents of the motion, εkl .

σi j =Ci j kl εkl (2.51)

From this point, by recalling the procedure followed in [55], Hooke’s law for isotropic materials should be

embedded inside the elastic theory of a solid. Then, to begin with, the Cauchy stress is directly related

with the deformation gradient and this latter should not be expressed dependant of the coordinates. This

strain tensor must be then symmetric and is composed by a volumetric component, εM , and a distortion

behaviour one, ε‘
i j , related with the shear phenomena. If linear behaviour hypothesis are applied, a

relation between the Cauchy stresses σi j , the Kronecker3 delta, δkl , and the deformation gradient, ukl ,

can be found. Then, the description of the strain is as follows:

εi j = εMδi j +ε′i j (2.52)

The volumetric deformation can be expressed by the trace of the strain tensor while the deviatoric strain

tensor is obtained by using the general strain tensor and the volumetric one such as follows:

εM = εkk

3
= ε11 +ε22 +ε33

3
(2.53)

ε′i j = εi j − εkk

3
δi j (2.54)

then,

εi j =
(

1

3
εkkδi j

)
+

(
εi j − 1

3
εkkδi j

)
(2.55)

Aiming at a direct relation between the elastic modulus E and the strain definition, the bulk modulus K

and the shear modulus G are used. The former expresses the response of a material to loads applied

to the axial direction, and the latter describes the material response to cutting stresses (shear). Then,

the general form of the Cauchy stress that follows the Hooke’s law form is expressed [55]:

σ=λtr (ε)I+2µε (2.56)

where I is the rank-2 identity tensor while λ and µ are the Lamé constants defined by:

λ= K − 2

3
µ

µ=G
(2.57)

As Lamé constants are not given for each of the materials, equation (2.56) can be arranged by using the

3Mathematical function which involves two variables, i and j. Its formulation is: δi j =
{

0 if i 6= j ,

1 if i = j .
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Young’s modulus E and the Poisson ratio ν relation (eqs. (2.58) with the previous constants. Thus, the

final expression is the one from equation (2.59):

λ= Eν

(1+ν)(1−2ν)

µ= E

2(1+ν)

(2.58)

σ= Eν

(1+ν)(1−2ν)
tr (ε)I+ E

(1+ν)
ε (2.59)

2.2.2 (B)ESO methodology

The Bi-directional Evolutionary Structural Optimisation provided by [28], is an improved procedure from

the development made by [24] in the Evolutionary Structural Optimisation as it does not usually suffer

from mesh-dependency and divergence failures. The main difference between the procedures named

above is that the former, the bi-directional, not only removes mass of the geometry, but it also can add

mass. The latter technique did not consider the removed mass in the previous iteration for the following

ones, thus once it is removed to a more optimised geometry, it cannot be reused again. Therefore, a

possible more optimised state may be neglected.

The idea behind the ESO methodology is the material removing of less stressed areas of a certain

domain, which leads to a more efficient layout of the structure. For the BESO procedure, it is possible to

recover already deleted low-stressed cells, specially the ones that surround a highly-stressed demanded

region. More information regarding both techniques is presented below.

Evolutionary Structural Optimisation

The first documentation provided for this method was the book written by Xie, Querin and Steven in the

early 90’s [24] as an idea to reproduce the optimisation procedure for an efficient design carried out by

the environmental figures such as shells or apples.

As it was stated in the introduction of this subsection, the ESO methodology removes the low-stressed

areas of a domain which it is understood to be inefficient. From this point, a doubt arises. Which should

be the rate of removal or the conditions to be satisfied so as to consider the cell as inefficient? For the

initial proposal a ’hard-kill’ method was used, which uses a rejection ratio (cr r ) to mark as removable

the ones below it. This rejection criteria used the von Mises stress of a cell and it was compared with a

threshold, which could be a maximum or a prescribed value, thus:

σv M
e ≤ cr rσ

v M
max (2.60)

but, as most computational procedures, a stable solution is not yet found thus an iterative process should

be done.
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Then, this cycle of element removal is carried out by using the same rejection ratio until a convergent

state is found which, in other words tend to say that no other cells are inefficient and the remaining

ones are critical for the well-behaviour of the geometry. It is also possible to provide an evolutionary

rejection criteria (cer ) to be able to remove more mass of the object by adding it to the general one:

cnew
r r = cer +col d

r r . Then, a new stable state is found. An example of the ESO procedure is found in Figure

(2.5), where an optimal solution for a square hanging object under its own weight is provided. Note the

resemblance with nature, in this case with an apple.

Figure 2.5: ESO solutions for an object hanging under its own weight. Extracted from [27].

Bi-directional Evolutionary Structural Optimisation

This modification of the ESO methodology intended to provide the most-optimal efficient state for a

topology optimisation procedure, as the previous could lead to an efficient layout but not the best as

some of the removed regions, which were not available for the solver afterwards, may have lead to a

better distribution. Therefore, the ideas behind the procedure are the same, but including the mass

addition problem to the equation as shown in equation (2.61).


σv M

e ≤ cr rσ
v M
max →Element removal

σv M
e ≥ carσ

v M
max →Element addition

(2.61)

A secondary effect of this procedure is that the user can start from a certain and random layout that

complies with the case’s loading conditions and, from the iterative process, it can obtain the efficient

model totally different from the initial one. X. Yang [56] shows how, for two opposite initial cases, a full

filled mass domain and a slender shape, the same optimal solution is found.

The solver by itself is going to understand that the more optimal solution is the one with less mass, thus

applying holes to the layout is always intended. Then, the finer the mesh, the higher the amount of holes,

which may lead to a mesh instability and dependence, also know as the ’checkerboard’ layout.
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A. Díaz and O. Sigmund in [57] initially came up with this common phenomena as it appeared in the

majority of the layout optimisations. This feature is characterised by a periodic distribution of void and

solid cells, i.e. ones and zeros, representing a similar shape as the checkerboard. This is the result of a

numerical instability and it must not be accepted as a solution for the optimisation.

In most cases where the checkerboard analogy applies, the final structure will not be compliant not even

a solution of the problem. Then, the user can avoid it by limiting the solver’s behaviour, such as the

perimeter control term, which provides an extra restriction.

This feature occurs when discretising the model and applying the minimisation of the compliance con-

straint. It is, for instance, usual for topology optimisation problems to use 4-nodes cells. In that case, as

the work uses binaries, the strain for this type of setup can result being ε11 = ε22 = 1 and ε12 = ε21 = 0 and

periodic along the domain, thus the stated pattern.

To avoid the phenomena, filters are applied. O. Sigmund in [58] gave a formulation to modify the sensi-

tivities ∂ f /∂ρ by averaging a set of neighbouring cells:

ρi
∂ f new

∂ρi
= 1∑N

j=1 H j

N∑
j=1

H jρ j
∂ f

∂ρ j
(2.62)

where H j is a weight factor and N is the set of elements for which the distance between centers ∆(i , j ),

is smaller than an specific radius rmi n , being the studied center, i, and the neighbours, j. A visual

representation for a rmi n = 2R filter radius can be seen in Figure (2.6).

Figure 2.6: Elements participating in the filtering for element i. Extracted from [59]

On one hand, note that the area has been increased as well as the number of computing nodes. This

interval of distances avoids to use directly the cell nodes, which gave inconsistencies, and is defined by:

H j = max
(
0,rmi n −∆(i , j )

)
(2.63)
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then, by applying this feature, the sensitivities inside the domain are averaged, meaning that the distri-

bution of zeros and ones is modified towards a more balanced domain in order to be structurally sound

and avoiding the checkerboard distribution. For instance, the stiffness of the void elements changes to

a higher magnitude, thus a solid but weak component.

On the other hand, a second drawback of the topology optimisation procedures, apart from the checker-

board layout, is that the solution may be worse and worse at each iteration driving the process towards a

divergent behaviour. It usually happens when the objective function is a material property, thus it is rec-

ommended to define the volume modification as the objective function, then an objective volume. One of

the solutions for the divergence tendency, found by the same authors of [54], was to modify the obtained

sensitivity values by using previous iterations values of the element studied so as to re-accommodate

the tendency, thus stabilising the process. It is recommended then to use the sensitivity value of the

previous iteration and average it with the actual one:

αi t
e = αi t

e +αi t−1
e

2
(2.64)

The formulation of the methodology depends on the case study, which should consider which is the ob-

jective to maximise/minimise and how the algorithm is going to apply the mass modifications along the

domain. Then, by finding the stiffest geometry for a given volume, one of the most common tendencies

for the topology optimisation, the procedure is going to be explained.

To begin with, the strain energy of the volume is minimised, thus the compliance parameter follows.

The design variables are the mesh elements, as they face their own optimisation by adding or removing

mass, while the constraint is the element’s volume. Gathering the last statement into an equation:

Minimise C = 1

2
fT u = 1

2

N∑
i=1

ui
T K ui

Subject to V F i n −
N∑

i=1
Viχi = 0

χi ∈ {0,1}

(2.65)

where C is the mean compliance of the material and u and f are the displacement and load vectors

respectively. The target value is the volume modification V F i n , established by the user and dependant

of each of the domain elements Vi , where N is the total amount of cells and χ is the binary description

of the presence of mass, being 0 a void and a 1 a filled state.

When an element’s mass is modified, the variation of the mean compliance or the total strain energy can

be obtained. This change is also understood to be the elementary strain energy:

αe
i =∆C = 1

2
ui

T K ui (2.66)
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being αe
i the sensitivity of the element and ui and K the element displacement vector and stiffness ma-

trix respectively.

Note that for void elements, the sensitivity is null, αe
i = 0, as they are not involved in the analysis and it

may be where the checkerboard layout appear. It is then when the filter should be applied by using the

nodal sensitivity of the node. This node’s sensitivity is defined as an average of the elements’ sensitivity

surrounding it.

By recalling the general filter provided by [60] in equation (2.62), authors of the BESO method provided

the adaptation for its own procedure:

αi =
∑M

j=1 w
(
ri j

)
αn

j∑M
j=1 w

(
ri j

) (2.67)

where M is the number of neighbouring nodes in the sub-domain and w
(
ri j

)
is a linear weighing factor

as a function of the distances between nodes, ri j , and the minimal radium, rmi n :

w
(
ri j

)= rmi n − ri j wher e j = 1,2, . . . , M . (2.68)

In order to take profit of the method, the minimal ri j should be higher than half of the element length.

Usually, values between 1 and 3 are recommended [23].

To clarify the methodology, is always helpful to provide the general flowchart as it is presented in Figure

(2.7):

Figure 2.7: General flowchart for the BESO methodology.
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Chapter 3

CFD Methodology

The initial implementation of a methodology in the thesis should be based on the fluid dynamics field, as

it is the one responsible for transmitting the loads to the structure. Therefore, the initial setup is going

to be described and complemented with the different developed techniques followed so as to obtain

results. In that case, a geometry for the study is commented and followed by the conditions at which it

is going to be subject to. Moreover, the different techniques adopted to obtain results will be described,

including the software used and the set of ideas which drive the analysis to the specific goal.

3.1 Case study introduction

The goal of this part of the project is to be able to optimise the aerodynamics of any aerofoil’s shape by

using the software SU2. To start with, the simulation must be carried out with accuracy and respecting

the output results from the reality, thus experimental data. Then, using a common geometry, it is recom-

mended to compare the results with the state of the art and, therefore, the validation of the code can be

reached so as to continue afterwards with the optimisation feature.

The SU2 software suite uses the Finite Volume Method (FVM) [41] to solve the PDE for the RANS equa-

tions and its corresponding application towards the adjoint methodology. The FVM procedure considers

the volume integrals of the fluid model as surface integrals, thus analysing the fluxes between elements.

By doing so, a conservative and consistent procedure is followed. Moreover, the user can distinguish

between centered and upwind schemes and explicit or implicit time integration methods, apart from the

availability for the user to choose features regarding robustness and convergence tools.

The RAE 2822 aerofoil has been previously studied by influencing organizations in the world and in a

wide variety of conditions, such as NASA and the Imperial College London. It has been a common topic

in scientific articles regarding the computational fluid dynamics science, for instance, the studies carried

out by Roberto Palacios and Pedro Gomes in [25] and the [61].
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This aerofoil, showed in Figure (3.1), is designed for transonic regimes of flight, so the shockwave phe-

nomena is intended to be withstand and, moreover, it is understood to be one of the standard testcase

to study turbulent phenomena in CFD simulations.
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RAE2822 Aerofoil geometry

Figure 3.1: Geometry of the RAE 2822 aerofoil in dimensionless coordinates respect to the chord.

As was stated before, the selected geometry is the RAE 2822 aerofoil, designed specifically for transonic

purposes where a shockwave is present, specially at the Reynolds number for which the simulation is

going to be established (Re = 6.5e6). This Reynolds number is selected due to the availability of exper-

imental data to validate the obtained results. In the following table, Table 3.1, a summary of the flow

conditions is presented.

Table 3.1: Case study flow conditions

Mach Reynolds Angle of Attack Temperature Pressure

0.729 6.5 ·106 2.31◦ 288.15 K 101325 Pa

Once one notices the flow features, it is clear to point out that the flow for the specified Reynolds number

is going to be turbulent and probably an interference between the shockwave and the boundary layer is

going to appear. Therefore, aiming at simplicity and low computational costs, the RANS equations were

ran by using the one-equation Spalart-Allmaras [32] turbulence model.

On one hand, the y+ value must be revised so as to check the correct approach of the script written and

the current computational process during the simulation. On the other hand, the post-process must be

decided from the beginning as it intends to show up the stated objectives of the current study.
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In this case, for the CFD approach, the lift and drag coefficients (Cl −Cd ) together with the y+ value must

be all tracked in order to, afterwards, provide the sufficient tools to carry out the aerodynamic shape

optimisation in section 2.1.3, using the discrete-adjoint methodology, and the interaction of the loads

between the fluid and the structure, aiming at the topology optimisation of the inner part of the aerofoil.

3.2 Mesh generation

The first critical point in a CFD simulation, in order to obtain realistic results with the lowest compu-

tational cost, is the design of a mesh. This feature provides the solver with the physical phenomena

foundations, then, a good definition and simplicity, is going to facilitate the operations and the avoidance

of errors, such as the non-representation of the physics behind the study, divergence of the solution or

the amount of required effort.

The software used in the study is Gmsh developed by Christophe Geuzaine and Jean-François Remacle,

which it is an open-source tool capable to describe a geometry in 2D and 3D, and it also provides a func-

tion that, via own algorithms, generates the grid which afterwards is going to be used, for instance, by

the CFD solvers. All of these features are defined by the user and therefore, the generation can be

adapted to the goals of the project.

To begin with, the aerofoil’s geometry data must be obtained so as to be applied inside the geometry

module in Gmsh. Data can be obtained from UIUC Airfoil database [62], which provides a discretisation

of the geometry using a cosine distribution towards the leading and trailing edges. Nevertheless, Gmsh

cannot read the output file of the discretisation so it needs to be translated to *.geo input format.

Once the points are read by the geometry module, using a Spline, a Bézier curve or straight lines be-

tween points, it is possible to bound the dots into a line (2D geometry). Next step relies on defining the

fluid domain, which for a good development, different considerations must be kept in mind.

These considerations are: the physical domain boundary’s interference; the boundary conditions; and

the shape coupling with the aerofoil’s geometry. The first has been demonstrated by Spalart et al. in

[63] and gathered as a theoretical review in [64], that the size of the domain can influence the results as

it can be considered as a restriction for the flow’s behaviour. The next one must represent correctly the

physical problem which is being studied. The latter, is directly related with the grid generation and the

parameters which it works, for instance, the orthogonality of the cells, the avoidance of embedding cells

with others and, the most important, the coupling with the solver’s numerical scheme. Depending on the

selected one, the data can come from an edge, a point or by a combination of both.
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Gmsh also offers the user the capacity to decide how their meshing algorithms must aim for, for instance,

the RAE 2822 aerofoil requires the tracking of the particles next to the shape’s boundary and the down-

stream flow that comes afterwards. Moreover, as the domain is large compared with the aerofoil’s size,

the outer areas, less influenced by the perturbation of the element, can be defined in a coarser form,

thus diminishing then the number of cells and the computational cost.

From that point, infinite ways of meshing can be selected but, the user must be able to decide the one

with more optimal results. Different approaches can be used: a very dense mesh with small control

volumes along domain, ensuring the fidelity of the model with the reality but increasing the computa-

tional costs; declare different sub-areas inside the domain and meshing them with the specific number

of divisions aiming for good accuracy but decreasing the previous effort.

The counterpart of the latter, which is the most used one, is that it requires a verification process of the

output values by analysing the mesh dependence in the results. This is why every single CFD simulation

needs a validation of the used mesh. This topic is discussed forward in the document, specifically in

section 3.4. Finally, in Figure (3.2), the used grid domain can be checked.

Figure 3.2: General view of the grid

For the correct discretisation of the boundary layer, a specific refinement from a triangular unstructured

mesh to a quadrangular structured one has been done, as it can be seen in Figures (3.3a) and (3.3b).

(a) View of the boundary layer refinement. (b) Zoom in the leading edge discretisation.

Figure 3.3: Mesh refinement surrounding the aerofoil.
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It can be clearly seen which areas of the domain gather more importance and how small are the cells

in the boundary layer subregion. Moreover, one can notice that outside of the boundary layer region,

the mesh is unstructured. The reason behind this, is that the SU2 software can deal perfectly with

unstructured meshes and, in that case where it is difficult to keep the orthogonality of the cells when

coupling the aerofoil’s geometry with the surrounding grid, it is preferred. Nevertheless, by applying the

BoundaryLayer function of Gmsh, the orthogonality is kept at the most critical region, near the aerofoil.

3.3 Approach towards the simulation

In order to carry out the simulation and to see the results, a script has to be written as a configuration file

(*.cfg) and then, the SU2_CFD *.cfg terminal command must be run. A summary of the script is defined

in Table 3.2.

FUNCTION COMMAND FUNCTION COMMAND

SOLVER RANS CONV_NUM_METHOD_TURB SCALAR_UPWIND

KIND_TURB_MODEL SA MUSCL_TURB NO

MARKER_HEATFLUX ( AEROFOIL, 0, 0 ) TIME_DISCRE_TURB EULER_IMPLICIT

MARKER_FAR ( FARFIELD ) OBJECTIVE_FUNCTION DRAG

MARKER_PLOTTING ( AEROFOIL ) CONV_NUM_METHOD_ADJFLOW JST

MARKER_MONITORING ( AEROFOIL ) MUSCL_ADJFLOW NO

NUM_METHOD_GRAD WEIGHTED_LEAST_SQUARES ADJ_SHARP_LIMITER_COEFF 3.0

CFL_NUMBER 10 SLOPE_LIMITER_ADJFLOW VENKATAKIRSHNAN

CFL_ADAPT NO ADJ_JST_SENSOR_COEFF ( 0.0, 0.01 )

ITER 12000 CFL_REDUCTION_ADJFLOW 0.8

LINEAR_SOLVER BCGSTAB TIME_DISCRE_ADJFLOW EULER_IMPLICIT

LINEAR_SOLVER_ERROR 1E-6 FROZEN_VISC_CONT YES

LINEAR_SOLVER_ITER 10 CONV_CRITERIA RESIDUAL

MGLEVEL 0 CONV_RESIDUAL_MINVAL -7

LINEAR_SOLVER_PREC LU_SGS CONV_STARTITER 20

REF_ORIGIN_MOMENT_X 0.25 DEFORM_LINEAR_SOLVER FGMRES

REF_ORIGIN_MOMENT_Y 0.00 DEFORM_STIFFNESS_TYPE INVERSE_VOLUME

REF_ORIGIN_MOMENT_Z 0.00 DV_KIND FFD_CONTROL_POINT_2D

REF_LENGTH 1.00 DV_MARKER ( AEROFOIL )

REF_AREA 1.00 FFD_DEGREE (30,1,0)

CONV_NUM_METHOD_FLOW ROE FFD_CONTINUITY 2ND_DERIVATIVE

MUSCL_FLOW YES FFD_ITERATIONS 500

SLOPE_LIMITER_FLOW VENKATAKIRSHNAN FFD_TOLERANCE 1E-12

VENKAT_LIMITER_COEFF 0.05 VISUALIZE_SURFACE_DEF YES

JST_SENSOR_COEFF ( 0.5, 0.02 ) OPT_OBJECTIVE DRAG * 0.01

TIME_DISCRE_FLOW EULER_IMPLICIT OPT_CONSTRAINT NONE

Table 3.2: General view of the user’s SU2 script features
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3.4 Mesh convergence study

The procedure used in this study contemplated different aspects to check that the results represent a

realistic phenomena. Initially, the information provided by the flow must be gathered and to do so, a y+

tracking along the aerofoil wall is needed. Once it has been accepted, in order to validate the rest of

the mesh and the obtained results, a comparison with the experimental data for the first study, from the

report [65] is done. From this point, in Table 3.3 the reader can check which are the different meshes

used and how accurate they are.

Table 3.3: Resume of mesh properties

MESH # nodes Grid # nodes Aerofoil max{y+} Cl Cd counts

Coarse 43322 200 0.405 0.6737 138.8

Medium 53492 220 0.105 0.7164 137.4

Fine 75130 240 0.103 0.7205 130.2

Fine (Improved) 85098 240 0.103 0.7215 130.5

Experimental - - - 0.7436 127.0

The medium mesh option is the one selected for the thesis, considering the trade-off between the compu-

tational costs it involves and the academic purpose of the work. The error in the lift coefficient compared

to the experimental setup is low (3.66%) but it is possible to notice yet the difference in drag counts,

approximately a 7%, but, for the purpose of this work and the limited interval of available time, it is

considered to be acceptable, knowing that more accurate results could be obtained then by using finer

meshes. More details of the mesh are found in Figure (3.4).

Figure 3.4: Grid accounted for the extraction of the results.
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3.5 Free-Form Deformation box

To optimise a rigid shape of a geometry, one of the most common technique used is the Free-Form

Deformation (FFD) procedure, which is able to modify the initial position of the object by embedding

another geometrical shape. Any modification at the free-form control points, will act as a movement in

the original shape.

For the aerodynamic shape optimisation, the aerofoil must fit inside the designed deformation box with-

out intersecting any of the control points (CP) nor the connecting lines, even though the closer, the better.

In that way, the deformation of the CP would have more influence in the geometry closer to it. Therefore,

the designed FFD box is represented in Figure (3.5).

Figure 3.5: Distribution of the Control Points for the Free-Form Deformation box.

An example of a modified aerofoil is the one presented in Figure (3.6), where only one CP has been

deformed and no wing-box constrain has been applied. It is possible to note how a simple movement on

a CP has an influence towards the position of the neighbouring ones so as to comply with the geometrical

continuity formulation of the model (e.g. splines or Bézier curves).

Figure 3.6: Deformation of the FFD by one CP and the aerofoil embedded inside.

Once the basis of the deformation methodology have been presented, the focus should be redirected

again towards the case study. Recalling the information stated in section 3.1, the RAE 2822 shape must

consider the presence of the wing-box constraint. Usually, it is considered to be located between 0.25c

- 0.75c, therefore, the control points in this interval will not serve as a design variable as no movement

or deformation can be applied to them. In Figure (3.7), the RAE 2822’s wing-box is defined in red.

Figure 3.7: Wing-box structure constraint.
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After the constraint, only the leading and trailing edge (LE and TE) geometries can be modified. On

one hand, it should be noted that the source with higher influence in the domain, regarding the aerody-

namic coefficients, is the shockwave appearance, as it can be seen in the studies [66] and [67], which

unfortunately is found inside the wing-box constraint, meaning that the main root for optimisation of the

aerofoil’s shape is inaccessible. On the other hand, studying the LE and TE can also reproduce a big

improvement towards the design features as it is going to be shown in section 5.2.

3.6 Adjoint methodology

In this section, the sensitivities of the adjoint method are going to be analysed and discussed so that,

afterwards, it can be understood how the deformation in the geometry has been carried out. From this

point, surface sensitivities are presented for the actual case study and, following them, a brief description

of their meaning and forward procedures are given. Before that, the control points identification is

presented:

Figure 3.8: Control Points identification

The sign of the sensitivity parameter is the result of the influence that has a modification of an input

parameter (vertical movement of the CP in the case study) into the output (lift-to-drag ratio) one, for

example, a positive axis displacement input will lead to a negative variation of the output. To check this

phenomena, the sensitivity has been plotted for each of the control points in Figure (3.9) but note that the

first 15 CP refer to the lower side of the aerofoil while the rest refer to the upper side. One can notice that

the values presented represent how influential are the present nodes in the aerofoil’s geometry to the

studied objective function, the lift-to-drag ratio. One can understand that near the trailing edge the influ-

ence is higher than those in the leading edge and the rest of the aerofoil, which are nearly non-influential.

Figure 3.9: Sensitivity behaviour for the lift-to-drag ratio for each control point.
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Chapter 4

Structural methodology
In this chapter of the thesis, the first steps of the aerofoil structural analysis are going to be established

and presented. The target is to set the general case study, with its corresponding definition and simula-

tion components, and how the methodologies to obtain significant results, are going to be implemented.

4.1 Case study

Once the aerodynamics results are obtained, the pressure distribution along the surface of the aerofoil

can be used as an input to Finite Element Methodology (FEM) implementation. A skin thickness of

0.002c is imposed to the geometry previously defined. A graphical representation of its application is

shown in Figure (4.1).

Figure 4.1: Graphical representation of the RAE 2822 case study complemented with the aerofoil and
wing-box skins.

The structural layout refers to the selected design for the wing-box structure, according to the method-

ology process presented in section 3.5, and to the skin of the aerofoil which is, afterwards, going to be

used as a constraint for the topology analysis. Moreover, by referring to Figure (3.7), a thickness-related

constraint of 0.008c for the wing-box geometry conservation in the topology analysis is added.

An aluminum alloy is chosen as the material for this study, due to its wide application in aeronautics [68]

[69]. The starting structural properties and characteristics employed in this study are summarised in

Table 4.1.

Table 4.1: Aerofoil structural properties and initial surface.

Material Elastic Modulus E [GPa] Poisson’s coefficient ν Density ρm[K g /mş] Surface Saer o[c2]

Aluminum alloy 6061 68.9 0.33 2700 0.03086
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A model has been designed again using Gmsh, with an interval between 75000 and 80000 triangular el-

ements which their value depend on the geometry. Note that the element’s size is in the order of 0.001c.

After the mesh is generated, Calculix provides a FEM solver that enables the user to analyse any given

structure such as the one studied here. Before running the FEM solver, the boundary conditions should

be established. These consist not only of the loads applied to the structure, but also the physical con-

strains applied to it.

The load applied to the structure is the pressure distributed throughout the aerofoil surface. This load is

given by SU2, which provides data for each node of the surface mesh as an output. A pre-processing

analysis should be done to translate the output file obtained by SU2 to the one read by the Calculix soft-

ware, which is based on a data file written in the format code *.inp and used as an input for engineering

problems. To do so, a Matlab® script was written to provide this input file, which is attached at the end

of this document in case the reader is interested.

Initially, and specifically if the used CFD mesh provides a disordered nodes’ distribution, it is recom-

mended to modify that initial file. Therefore, the steps to be followed depend on the procedure to be

used and, for this thesis, there are just pressure values at the nodes. Thus it would be appropriate to

modify them such that proper loads are transferred to the structural mesh.

Then, two options arose and in terms of the Calculix nomenclature, the CLOAD and the DLOAD. The

first one uses concentrated loads at the specific nodes and with their correspondent vector direction,

while the second applies a pressure value at a certain line/surface (2D or 3D). It may seem clear, that

the easiest path to be followed, is the latter, but because of the studied case it may not be possible or

just be too complex. The reasons behind this is that to apply the DLOAD technique, the nodes should

be contiguous to each other, thus following a sequential positioning. In the majority of the cases, that

depends on the meshing software and methodology used.

In the studied case, a mesh refinement along the trailing edge was needed for the CFD analysis and

this modification lead to a more complex output file. Moreover, the DLOAD used as a space variable the

line (in 2D) which connected the two nodes and, since the aerofoil geometry was defined as a polyline

(spline) for simplicity and accuracy purposes, there was not any specific segment that acted as a bridge

between nodes. The only solution then was to use the edge created by the meshing algorithm but for a

approximately 80000 elements it is clearly inefficient.

From this point, it was clear that the methodology should keep the nodal character of the CFD output, but

a modification to the pressure values should be done. First of all, it is clear that surfaces are needed to

translate pressure distributions to loads thus, as the case is bi-dimensional, the third-axis direction was

established as the unity. Subsequently, the second direction needed would be the segment involving the

nodes.
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The next task to be accomplished is the positioning of the load itself. As the pressure was discretised

in the nodes, the loads should follow the same behaviour. Therefore, the load is applied in the node

where its correspondent pressure value was obtained. To do so, the second space variable is defined

using the initial geometry lines between nodes. By coupling the halves of the previous segment and the

following one coming from the primary geometry, a balanced and accurate representation is achieved.

In addition, the pressure value is not applied then in the initial node, but in an similar and close location

inside the new formed line and, by following the direction of its normal vector. Then, the sign of the

vectorial force depends on the magnitude of the pressure, being towards the inner structure when the

pressure is positive and vice versa. A graphical support is shown in Figure (4.2).

Figure 4.2: Methodology used to apply concentrated loads from discrete pressure values.

In Figure (4.2), initial nodes are marked in blue and the geometry is represented by black dashed lines.

Then, the distance between nodes is also provided with the variable d xp(node1,node2). The pre-processing

before the FEM analysis consists in dividing the initial segments in their mid-point, as seen with the dot-

ted lines in red, subsequently there are the new segments which connect the mid-nodes and save the

information in the d xi variable, which has also its own normal vector n̂i . Therefore, and showed by the

brackets, the pressure value from the specific node is applied along that surface defined by (d xi ×1c)·n̂i .

A representation of the results is shown in Figure (4.3).
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Figure 4.3: Pressure field translated into loads for the RAE 2822 case study.
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One can note the influence that the shockwave has on the load distribution along the upper surface,

specifically around the x-coordinate 0.5c and 0.6c. The reason behind this is the flow’s speed reduction,

thus the increase of the pressure magnitude. Moreover, all the loads follow each of the normal vectors

obtained by the discretisation procedure illustrated in Figure (4.2) and how the lower surface magnitudes

are higher than the upper ones, leading to an upwards lift force.

Once the migratory procedure of the surface pressure from the CFD environment to the FEM is done,

the implementation of the Calculix script should be defined. First of all, the mesh provided by the Gmsh

software needs to be adapted to the *.inp format style. To do so, the physical groups should be defined

previously in the Gmsh environment and then export the mesh file as the stated format. By doing so, it

is simpler and easier to define the boundary conditions and the constraints of the setup.

The constraints of the model have been applied at the wing box, forcing null displacements at its internal

faces as it can be seen in green in Figure (4.4) apart from the thickness-related threshold of 0.008c

specified previously for the topology optimisation process.

Figure 4.4: Fixed faces constraint at the wing-box.

4.2 Verification of the structural mesh

The procedure used in this study follows the same path as the one described for the aerodynamic’s

case. Then, different aspects were contemplated to check that the results represent a realistic phenom-

ena. Initially, and because of the mesh dependence feature, the results vary in distribution along with

the mesh quality and quantity, so the first task carried out was to find a mesh distribution able to provide

consistent results and practically not influenced by the number of nodes.

After that, a convergence study on the mesh size was done by comparing the main variables of the study,

which are the displacements suffered by the structure and the stress distribution which may lead to cer-

tain failures. Six different meshes were built and their results are shown in Table 4.2 and Figure (4.5).

Because of the acceptable computational cost involved and a better expected accuracy in the results,

the mesh with 77144 elements has been selected for the study.
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Table 4.2: Resume of mesh properties

MESH # nodes σM AX
V M [MPa] abs(Max-Displacement) [10−6 c]

Coarse 20812 3.78 91.8

Medium 31532 1.36 5.15

Fine 60916 2.24 8.82

Fine (Improved) 67184 2.51 14.5

Extra-Fine 73640 2.59 14.7

Extra-Fine (Improved) 77144 2.63 14.7

Figure 4.5: Structural variables’ evolution with the number of nodes.

4.3 BESO procedure and the selected variables.

The Bi-Directional Evolutionary Structural Optimisation (BESO), which it is graphically described in Fig-

ure (2.7), a few parameters should be selected in order to start the process. Take into consideration that

the output results given by the solver are completely dependent of those (e.g. filter radius and mass

removal ratio among others) thus an infinite value of possibilities may arise from one general case study.

During this chapter of the thesis, a general review of the effects that one parameter has along the opti-

misation is going to be given and complemented with its general considerations for its use.

To begin with, the user must setup the constraints for which the optimisation is aimed. Inside the BESO

code [28] developed for Calculix, there is: the mass (or volume) constraint, which is common for all this

type of studies; the structural optimisation parameter, which can be chosen between: the maximisation

of the stiffness (minimisation of the compliance), the failure index, minimisation of the buckling phenom-

ena or the maximisation of the heat flow; the sensitivity filter to avoid the checkerboard layout; and the

material ratios.
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In order to achieve the targeted value for the weight reduction parameter, the mass addition and removal

ratios are defined. Therefore, if the mass of the object has to be decreased, the proportion of these two

ratios should be balanced towards the extraction of mass. Depending on the magnitude of the difference

between ratios, more or less iterations are going to be required by the solver, but note that the higher the

difference between ratios the harsher the convergence evolution. Moreover, sometimes the mass target

may not be reached due to structural failures, thus the code by itself provides the more stable and com-

patible solution with the structural and lower mass constraint, such as on cases shown in Figures (4.6)

and (4.8), where its correspondent convergence graphs show their final insufficient mass magnitude.

The first parameter used to check the behaviour of the optimisation is the filter radius, but initially the set

of different filters should be presented, as it has been done in Table 4.3.

Table 4.3: List of filters used in the BESO script provided by [28]

Filter type Description Main influence

Over Nodes Filtering using the Heaviside step function over ge-

ometric nodes providing binary results

Neighbour cells

Over Points Filtering using the Heaviside step function over

mesh points providing binary results

Neighbour cells

Simple The one described in section 2.2 where the sensi-

tivity value is obtained by averaging the ones from

the neighbouring cells

Neighbour cells

Dilate Sensitivity The density of the element e takes the maximum of

the densities in the surrounding nodes. Then, it can

only set to solid conditions

Radius range after sensitivity domain

Erode Sensitivity Opposite form of the Dilate filter, thus a minimisation

is aimed and void conditions are given inside the

specified radius

Radius range after sensitivity domain

Open Sensitivity Erosion filter followed by the Dilation one Radius range after sensitivity domain

Close Sensitivity Dilation filter followed by the Erosion one Radius range after sensitivity domain

Open-Close or Close-Open Sensitivity Used to obtain minimum hole size and structural de-

tail. Then, 4 filter operations are required

Radius range after sensitivity domain

Combine Combination of the close and open filters Radius range after sensitivity domain

For further detail on filters, check the work made by Sigmund, O. [70].

Following the BESO authors [28] way of working, the simple filter is going to be applied along all the

optimisations. Then, for the selected approach, the mesh elements size should be considered as is an

approximate idea about the extension of the solid elements sensitivities towards the void ones. From

this point, it is necessary to point out that the larger the parameter the higher it would be the result of its

influence and vice-versa.

Initially, a fixed mass removal ratio of -2 and two different radius have been selected. The first one

considers an area of radius 0.01c (approximately 10 times the mesh element’s length) while the sec-

ond, 0.005c. Then, it is expected that the latter has a finer distribution of solid elements. Moreover, the
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chosen material has been randomly selected to be polypropylene, just for demonstration purposes, and

a 90% weight reduction is aimed. This initial threshold of the weight reduction has been set by under-

standing that, in order to demonstrate the effect the BESO variables have, it requires a less constrained

path to develop completely, thus allowing the software to produce noticeable changes. Nevertheless, in

the future sections of the thesis, different volume constraints will be shown.

From this point and by checking Figures (4.6-4.9), the influence of the filter can be understood. Initially,

the mass-reduction procedure will be checked until a final solution is achieved. By then, a graph showing

the solution’s convergence will be plotted and, afterwards, a review will be provided.

(a) Iteration 20. (b) Iteration 40.

(c) Iteration 60. (d) Final iteration.

Figure 4.6: Topology optimisation procedure development for the case study using polypropylene, mass
constraint of 10% and filter radius of 0.01c.

Figure 4.7: Mass convergence using polypropylene, mass constraint of 10% and filter radius of 0.01c.
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(a) Iteration 25. (b) Iteration 50.

(c) Iteration 100. (d) Last iteration.

Figure 4.8: Topology optimisation procedure development for the case study using polypropylene, mass
constraint of 10% and filter radius of 0.005c.

Figure 4.9: Mass convergence using polypropylene, mass constraint of 10% and filter radius of 0.005c.

Note that the value shown in the graph regarding the mass magnitude is a representative value of the

amount of remaining aerofoil’s surface1. Check that for the polypropylene material using the same mass

constraint and different filter radius, just the case of the 0.005c length filter radius reaches the targeted

surface constraint (∼ 0.003086c2).

Then, the thicker filter radius would provide an insufficient weight reduction state when reached the final

iteration. Therefore, the selection of the material and the properties within it are also a field of study. For

the other case, a finer filter may lead to a more accurate state as the solver has more availability (less

1The BESO software considers: mass =V olume ·ρmat , where ρmat is the average density between the void and filled elements,

being ρvoi d = 0 and ρ f i l l = 1, thus ρmat =
∑N

i (ρvoi d +ρ f i l l )

N
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constraints) to remove and create elements inside the domain. Then, it is possible to reach a lower final

mass. For instance, for the case shown in Figure (4.8), the final surface is 0.011833c2 while for Figure’s

(4.6) is 0.003086c2, both with starting point 0.03086c2, meaning an approximate difference of 75%. It is

also possible to distinguish the influence of the filter’s radius in the latest scheme for each of the simula-

tions by looking at the generated truss structure at the proximity of the leading edge.

Nevertheless, from Figures (4.7) and (4.9) it can be concluded that, for a smaller filter radius, the number

of iterations required to reach convergence increases as more diversity of states can be achieved.

Hereafter, having in mind already the effects of the selected material and the sensitivity filter radius, the

ratio between the added and removed mass is studied. As the geometry of the aerofoil starts by being

completely filled, the mass removal ratio should be higher than the adding one, but the influence of them

at each iteration is going to be analysed.

Moreover, in order to just note the influence the mass removal ratios have in the process, the initial

conditions from which this exploratory study started (mass removal target of 90% and filter of radius

0.01c) are going to be applied, even though better results could be obtained by, for instance, reducing

the filter radius. Then, beginning with a ratio of -2, followed by a ratio of -8 and ending with a ratio of -15,

in Figures (4.10-4.13) the extracted results will be plotted and checked.

(a) Iteration 20. (b) Iteration 40. (c) Last Iteration.

Figure 4.10: Topology optimisation procedure development for the case study using polypropylene, mass
constraint of 10%, filter radius of 0.01c and mass ratio of -2.
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(a) Iteration 10. (b) Iteration 20. (c) Last Iteration.

Figure 4.11: Topology optimisation procedure development for the case study using polypropylene, mass
constraint of 10%, filter radius of 0.01c and mass ratio of -8.

(a) Iteration 10. (b) Iteration 20. (c) Last Iteration.

Figure 4.12: Topology optimisation procedure development for the case study using polypropylene, mass
constraint of 10%, filter radius of 0.01c and mass ratio of -15.

(a) (b) (c)

Figure 4.13: Mass convergence using polypropylene, mass constraint of 10%, filter radius of 0.01c and
mass ratio of: (a) -2, (b) -8, (c) -15.

The first aspect to point out from the volume removal evolution is that, by comparing Figure (4.6) and

(4.10), which both of them have the same properties, the final solution is totally different. The reason be-

hind this lies not in the mass removal ratio but the values used to define it. For instance, in Figure (4.6)’s

case, the removal magnitude is 0.03 and the adding one is 0.015, while for the other case, they are 0.02

and 0.01 respectively.
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This unbalance in the final solution is generated by the conditioning properties of the material modifiers,

as for each of the iterations, they try to reach the target specified by the user. Therefore, an adequate

ratio should be procured as it can provide a more efficient layout design.

Moreover, the higher the ratio the lower the number of iterations required to find a final state. Neverthe-

less, as it can be seen in Figure (4.13), a more softer and continuous evolution is achieved in this specific

rate. This means that a wider field of topology options are available. Furthermore, by having a higher

ratio of mass removal, the final weight of the object may not be the smaller value, as it tends to force the

generation of void elements and thicker structures are generated until there is no more available mass

to remove following the established ratio. In Figure (4.13a), the achieved value is 0.0189c2, a remaining

magnitude of 61.24%. For a ratio of -8, the resulting volume value is 0.0187c2, a remaining magnitude of

60.59%, and, finally, for the -15 removal ratio, 0.0194c2, a remaining magnitude of 62.86%. Therefore, it

is necessary to point out that none of the cases reached the volume constraint target but that the higher

the ratio, the faster but less accurate the solution is.

On one hand, a reason that may be laying behind this underachieved target is the value of the mass

addition ratio. If it is too low, the solver by itself has difficulties to recover all the needed voids to become

solid and then stiffer. Then, a balance should be found between both ratios and it only can be done by

a list of experimental setups.

On the other hand and, as a counterpoint of the increased ratio of removal, the skin’s failure index (FI)

increases drastically. For the highest removal ratio, Figure (4.12), the FI is two times higher than the

yield stress parameter of the polypropylene material (σPP
yi eld = 35 MPa). Therefore, the solution is totally

unaccepted for the established conditions. Differently for the other two cases, the provided solutions are

inside the material resistance domain. For the intermediate, F I ≈ 50%, and, for the softer, F I ≈ 20%. All

of the maximum values were reached in the skin layer. These values are completely dependant on the

selected material, thus more efficient magnitudes could be obtained by an exhaustive study regarding

the mechanical properties of the element.

As a concluding remark from this exploratory study, which will lead to the future study of the main

purpose of the thesis, a stronger and more resistant material will be used so as to reach the volume

constraint of a 90% mass reduction, even though its density may be higher. The maximum value for

the mass removal target is set to a 10% as, for values below this magnitude, the remaining surface

expressed random non-connected inner structures, thus not a converged final solution. Moreover and

aiming at a simpler design with thicker truss structures in the inner distribution, a filter radius of 0.01c,

which represents 8-10 times the mesh element size, will be selected. Then, a mass removal ratio of 4%

and the additive of 1% are set to obtain the desired results regarding the established targets.
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Chapter 5

CFD Results

In this section of the document, the CFD results obtained along the project are going to be presented

and described. Initially, the reader is going to be introduced towards the flow behaviour for the selected

case study and afterwards, a step-by-step analysis for the aerodynamic shape optimisation methodology

is presented.

5.1 Flow simulation

Once the mesh has been validated, one can provide the obtained results and compare them with the

experimental data. In that case, for validation purposes, the pressure coefficient of the simulation and

the one from the experimental setup [71], validated by the NPARC Validation Organization are compared

in Figure (5.1).

Figure 5.1: Pressure coefficient of the simulation and the one from the experimental setup.

45



It is possible to see the similitude between results and where the shockwave appears, which is approx-

imately at the x-axis position of 0.55c. In Figures (5.2) and (5.3), the behaviour of the flow surrounding

the RAE 2822 aerofoil is given.

Figure 5.2: Pressure coefficient distribution along the aerofoil.

Figure 5.3: Mach distribution along the aerofoil.

From the last figures regarding the pressure coefficient and the Mach’s number distribution, it is possible

to note where the shockwave appears and how it modifies the behaviour. That shockwave position slows

down the flow to values below Mach 1 and, afterwards, as the pressure gradient provided by the aero-

foil’s geometry is positive, the flow’s speed further reduces. Moreover, one can see that, even though

the appearance of the discontinuity, the boundary layer does not separate.

Focusing in the trailing edge region, the boundary layer thickness grows with the positive pressure

gradient provided by the geometry but at the ultimate vertex, the upper and lower flows, tend to be

driven in the same direction.
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5.2 Optimised aerofoil’s shape

SU2 software incorporates in its environment the capability to couple the whole CFD optimisation frame-

work. To do so, SU2 gathers a set of scripts involving the CFD, the adjoint and the mesh deformation

analysis by using the Sequential Least SQuares Programming (SLSQP) module from the SciPy library

of Python for the minimisation procedure of a given objective function. By coupling the open-source

packages NumPy and SciPy the resulting optimisation procedure in SU2 is numerically and computa-

tionally efficient and robust. The features of both libraries can be found in [72] and [73] respectively.

The idea behind the process comes from a modification of the Lagrangian multipliers for an optimisation

process, the Karush-Kuhn-Tucker [74], which by default is set at 10−10, and provides a global optimal

by satisfying the conditions build by the objective function, the design variables, the equality constraints

and a convex function state.

In order to proceed with the optimisation procedure, the python script must be defined so as to execute

a recurrent set of functions which include the CFD analysis, the geometry checks, the adjoint method-

ologies, deformations of the FFD and the general mesh and then the application to the original shape.

The solver will be testing new geometries until convergence criterion has been reached.

The main goal of the project was to optimise the aerofoil by means of its efficiency (lift-to-drag ratio),

which is one of the most interesting from the aeronautical point of view. However, the test gave as an

output only a 0.15% of improvement. This means that the aerofoil, for this specific flow conditions and

wing-box constraint, is quite optimised and that there is a balance in the final result between the changes

in the lift coefficient and the drag one. In order to avoid this type of ’loop’ in the efficiency optimisation,

it has been decided that for this case study, the lift is going to be established as fixed while the variable

to optimise is going to be the drag produced by the aerofoil. The value of the lift coefficient is the one

output from the simulation, Cl = 0.7164.

The optimised solution for the case study involves small deformations (seen in blue in Figures (5.5a) and

(5.5b)) near both aerofoil’s edges. Despite small, these changes reduced the drag coefficient by 13.9%

as it can be seen from Table 5.1. The convergence behaviour is also presented below, in Figure (5.4).

Table 5.1: Aerodynamic Coefficients for the optimised aerofoil’s shape.

Shape Cl Cd counts

Original 0.7164 137.40

Optimised 0.7164 118.23
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Figure 5.4: Cl and Cd variations along the shape optimization process

Peaks in the Cl and Cd variations in Figure (5.4) are caused by the optimisation algorithm when search-

ing for solutions further away from the original, which may lead to divergence. That is why the script

incorporates a scaling factor for the objective function and for the gradient methodology.

(a) Shape modification at the leading edge. (b) Shape modification at the trailing edge.

Figure 5.5: Shape modifications applied in the original RAE 2822 aerofoil.

When analysing the pressure distribution shown in Figure (5.6), it is possible to observe that even for

small modifications in shape the pressure distribution substantially changes. The magnitude of the

largest deformation is 0.1%c, thus the sensitivity of the changes in the geometry have plenty of weight

towards the final result. Note that the solver, in order to reduce the drag while constraining the lift, tries

to slow down the flow when getting closer to the formation of the shockwave so as to absorb some of the

kinetic energy of the flow and, as the counterpart, this speed decrease is adjusted close to the leading

edge by providing more curvature, thus a higher pressure gradient.
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Figure 5.6: Pressure coefficient comparison.

The shock was soften by the optimised shape as can be seen from both Mach and pressure distributions

in Figures (5.7) and (5.8).

Figure 5.7: Mach distribution for the Initial vs. Optimised aerofoils.
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Figure 5.8: Pressure coefficient field surrounding the aerofoil for the drag-optimised case.

The objective function in this new test case is not the same as in the original one. Before, it was the

lift-to-drag ratio while in this case is the drag coefficient at a constant lift. Then, a new sensitivity analysis

is presented in Figures (5.9) and (5.10):

Figure 5.9: Sensitivity behaviour for the drag coefficient for each control point.

It is important to point out that: (1) the magnitude of the sensitivities is now different than in the previous

case (see Figure (3.9)) due to the new objective function; (2) the regions which present higher sensitivi-

ties to the objective function are now wider, especially in the upper surface where the shock occurs. The

wing-box area still has a significant responsibility for the drag generation, specially at the upper surface

where the shock-wave appears but it is not an option to modify.

As well as in the lift-to-drag sensitivity analysis, the trailing edge seems to be responsible for a noticeable

part of the produced drag and, by looking at the general shape of the aerofoil (Figure (3.1)), it should

be due to the change given in pressure values when the upper and lower flows converge in that area.

Then, this aerofoil region is expected to be changed by the optimisation algorithm.

50



Figure 5.10: Sensitivity for the Cd along the surface of the aerofoil.

In order to see more drastic changes in the geometry, another study is going to be carried out. For

instance, the ninth case from [65] with the correction stated in [75]: angle of attack is increased from

2.31◦ to 2.79◦; and the Mach number changes to M = 0.730. Moreover, drag minimisation is set objective,

while maintaining lift fixed.

Shape optimisation for M = 0.730 and α= 2.79◦

On one hand, in Table 5.2 it is possible to appreciate a 29.04% reduction of the drag coefficient, higher

than the previous case. On the other hand, the geometric changes in the leading edge, Figure (5.12a)

in blue, increased while keeping the conditioning of the shockwave’s occurance by lowering the speed

in that sub-region. In the trailing edge, Figure (5.12b), an analog change from Figure (5.5b) is made.

Moreover, one can see that the solution has converged after 63 iterations in Figure (5.11)

Table 5.2: Aerodynamic coefficients for the second case optimised aerofoil’s shape.

Shape Cl Cd counts

Original 0.803 183.62

Optimised 0.803 130.29

The reason behind this higher reduction in the drag coefficient comes from its dependence with the

angle of attack and the increase of the flight condition speed. Therefore, so as to soften the interaction

between the aerofoil’s geometry and the airflow, a re-adjustment of the initial contact conditions in the

leading edge is done by the optimisation algorithm, clearly seen in Figure (5.12a).
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Figure 5.11: Cl and Cd variations along the shape optimization process for α= 2.79◦

(a) Second case shape modification at the leading edge. (b) Second case shape modification at the trailing edge.

Figure 5.12: Shape modifications applied for the second case in the original RAE 2822 aerofoil.

Regarding the pressure coefficient distribution, Figure (5.13), along the aerofoil, there is a higher peak

of suction closer to the leading edge than in Figure (5.6) and the position of the shockwave has not

been practically modified, although softened. That decrease in pressure close to the leading edge can

be understood by looking at Figure (5.12a) as the geometry modification leads to a higher pressure

gradient. As well as in the general case, the greater magnitude of the modifications of the geometry is

in the order of 0.5%c (if the chord was defined as 1 meter, the deformation would be 5 mm) thus is not

easily noticed.
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Figure 5.13: New pressure coefficient distribution comparison for the α= 2.79◦ case.

The new flow distribution along the aerofoil in the domain is shown in Figures (5.14) and (5.15) in terms of

Mach and pressure coefficient distribution, respectively. Note the higher suction phenomena happening

at the upper surface close to the leading edge and how the shockwave is softer than in the previous

cases.

Figure 5.14: Mach distribution for the Initial vs. Optimised aerofoils.
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Figure 5.15: Pressure coefficients field surrounding the aerofoil for the drag-optimised case.

Regarding the behaviour of the CP towards the sensitivity analysis, for a higher angle of attack, the sen-

sitivity has changed by terms of the maximum magnitude and introduced new sub-regions with higher

influence, meaning that there is more availability to optimise the aerofoil. The results shown in Figure

(5.16) follow the same tendency as in the work done by Economon et al. [16] for the same aerofoil and

flow conditions. However, keep in mind that in this section of the thesis, not all the aerofoil’s geometry

has been discretised with the control points since the wing-box area is fixed.

Note that the upper surface has a major influence inside the optimisation process, which was expected

as the shockwave carries along with it a key drag creation impact, and, moreover, a peak of this sensi-

tivity is found between CPs 17 and 22 (Figure (3.8)), just before the wing-box area constraint and the

flow discontinuity occurance . Furthermore, the leading edge in both upper and lower surfaces also has

its influence, but mostly related to the constant lift constraint even though a benefit by means of drag

reduction is also going to be obtained as the optimisation focuses in this specific element.

Figure 5.16: Sensitivity behaviour for the drag coefficient for each control point.
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Keep in mind that the aircraft weight reduces during flight, thus lift coefficient is also reduced during flight

(unless a constant CL strategy is fixed by increasing the angle of attack). This makes an ideal case for

morphing the shape of the aerofoil during the flight to seek for the minimum drag possible throughout the

entire cruise segment (which can be extended to the remainder of the mission segments). In addition,

the reader has had the chance to see how influential are the small-scale deformations in the aero-

dynamic behaviour, which, by using computational methods, an unique efficient solution may be found

while, contrary for wind-tunnel testing, it is not unreachable but extremely time and resources consuming.

Moving forward in the thesis development and as an introductory description, the behaviour of the struc-

ture then has a key influence in the aerodynamic behaviour. If the deformations suffered by the material

which made the wing shape are found inside the interval specified at the optimisations shown in this

section, none of the improvements provided by the process are going to be useful, thus, for the mate-

rial selection and structural conduct, it is essential to consider and involve the previous study in their

constraints so as to couple two designs in an efficient way.
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Chapter 6

Structural results

The next field of study for the thesis is the structural point of view of the aerofoil. In this section, the

geometry is going to be analysed so as to check its compliance with the loads for which it is subjected

to. To do so, and by considering initially an elastic behaviour, the stress distribution and the general

displacements are going to be studied and, afterwards, the topology optimisation procedure is going to

be applied and studied to the base cases.

6.1 Results

Once the methodology for the structural analysis has been defined, by recalling the information de-

scribed in chapter 4, the stresses and the displacements can be plotted and commented. To begin

with, and in order to group the plain main two-axial stresses so as to check the elastic behaviour of

the component, it has been decided to plot the von Mises stresses, Figure (6.1). As the case follows a

two-dimensional reference, only three components of the Cauchy stress tensor are not null, being them

σx , σy and τx y . Then, to obtain the von Mises stress, the principal directional stresses are used:

σV M =
√

(σ1 −σ2)2 + (σ2 −σ3)2 + (σ3 −σ1)2

2
(6.1)

where:



σ1 =
σx +σy +

√
(σx −σy )2 +4τ2

x y

2

σ2 = 0

σ3 =
σx +σy −

√
(σx −σy )2 +4τ2

x y

2

(6.2)
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obtaining afterwards the 2D definition of the von Mises general stress:

σV M =
√
σ2

x −σxσy +σ2
y +3τ2

x y (6.3)

Note that the most demanding phenomena occurs around the leading edge wing-box boundary, specially

at the corners of it because of the stress-concentration factor (that is why the wing-box corners have

been rounded), not because of the shockwave appearance nor the pressure distribution itself. When

embedding an object inside a flow, the first intrusion which will be the stagnation point, suffers from a

higher pressure value on its boundary because of the flow’s speed reduction. Therefore, at the leading

part of the aerofoil there is a higher structural demand due to the pressure’s distribution. Moreover, the

obtained magnitudes are lower than the elastic failure parameters of the selected material (Aluminum al-

low 6061 σyi eld = 276MPa). Thus this distribution can deal perfectly with the flight conditions established.

Figure 6.1: Von Mises distribution for the RAE 2822 case study.

Differently for the displacements in Figure (6.2), the maximum value is found at the leading edge of the

aerofoil, which is expected as it is the most further way from the non-displacement constraint applied

at the wing-box, analog to the standard case of a cantilever beam. Nevertheless, the magnitude of the

displacement is small (∼ 10µc) and will not have a direct influence in the aerodynamic behaviour.
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Figure 6.2: Displacements for the RAE 2822 case study.

From this point, and by checking the stress distribution inside the aerofoil plus the micro-displacements

generated, one can guess that there is unnecessary material in this model. This is why a topology

optimisation is actually applied to just use the optimal and necessary quantity of material in order to

make the design efficient. The goal is to reduce weight such that few fuel is consumed, thus being more

efficient from the operational/performance point of view.

In this case study, as one of the most critical parameters in the aeronautical field is the weight of the

component, the structural safety of the aerofoil is being modified and analysed following a minimising

procedure for the weight of the aerofoil. For instance, the following descriptions and results are directed

towards the maximisation of the structural stiffness-to-weight ratio, also known as the minimisation of the

compliance-to-weight of the object. Therefore, the expected results will show structural voids in differ-

ent inner areas of the aerofoil which do not have a noticeable influence on the stiffness of the geometry,

meaning that they can be neglected as the rest of the structure can absorb perfectly the respective loads.

Moreover, the topology study was carried out using the same Aluminum-6061 material stated previously

in Table 4.1 as it has a wider interval of safety rather than other materials named in section 4. In Figure

(6.3) the path followed by the solver in order to reach the specific weight goals of the optimisation is

shown.
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(a) Weight reduction target: 50%. (b) Weight reduction target: 35%.

(c) Weight reduction target: 25%. (d) Weight reduction target: 10%.

Figure 6.3: Topology optimisation procedure development for the case study.

Note that the wing-box constraint and the skin have been untouched by the solver and that the primor-

dial structure lies just below the skin of the aerofoil, then, to avoid large deformations due to pressure,

inner truss structures are required. Given the chosen mesh definition, the optimised structure is neither

smooth nor easy to manufacture, thus a post-processing is required. On the upper side of the wing-box

surface, a more reinforced structure is needed following the stress distribution showed in Figure (6.1),

which could be solved by stringers. Even though the stresses are similar in the leading edge, connected

bars have been understood to be the most optimal element to withstand the loads transferred by the skin.

Apart from that, the trailing edge inner areas are empty. It does not mean that it should be designed in

such a way but any structure in that sub-region is negligible towards the final behaviour thus avoidable.

Nevertheless, this void should be filled with a lighter material or other attachments so as to maintain the

aerodynamic shape of the aerofoil; then, a secondary material could carry that function.

Regarding the optimised geometries given by the solver, the 25% weight constraint looks like an ideal

shape for the design as, it is noticeably efficient in terms of mass reduction but not as simple and fragile-

looking as the 10% case. To demonstrate its proper design, the following set, shown in Figures (6.4)

and (6.5), analyses the failure index of the structure and the von Mises stress distribution. Note how,

for the highest weight reduction target, the FI is higher and some parts of the resulting structure suffer

from high demanding stresses, specially at the upper-left part of the aerofoil. In order to avoid ruptures

or unexpected failures, it is better to reinforce the general layout even though the final weight is higher

as one can observe in the result shown in Figure (6.5b).
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(a)

(b)

Figure 6.4: (a) Failure index distribution and (b) Von Mises stress distribution of the test case for a 10%
mass reduction.

(a)

(b)

Figure 6.5: (a) Failure index distribution and (b) Von Mises stress distribution of the test case for a 25%
mass reduction.
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Chapter 7

Coupling between the optimised

designs
In order for the approach to be completely efficient and useful in both of the studied fields, one should

consider its interrelation. This means that one optimised result may not be compliant with the other

optimisation target. For instance, an aerodynamically shape modification may lead to weak regions for

the structure to withstand the loads of the flight regime, thus a common analysis is aimed so as to check

the safety envelope. From this point, two methodologies arise.

On one hand there is what is known to be a sequential approach, for which, after the first optimisation

procedure has been done for one of the targets, a second optimisation is carried out for a different goal.

On the other hand and, in order for the final result to be more accurate, the optimisation procedure

should be coupled, meaning that both techniques should be ran at the same time. In other words, when

an optimised aerodynamic case is being done, another line of the code must check the compliance of

the element per iteration, as any modification in the structure of the aerofoil is going to modify the flow’s

behaviour. Therefore, this procedure must be followed if the conditions at which the aerofoil is under will

imply big sensitivities in both fields, such as in cases of aeroelasticity or thin surfaces.

In terms of the purpose of the work and, due to the simplicity the sequential approach offers plus the

improvements it gives for both of the analysed fields, this process provides insightful information and

results to be efficient, knowing that a coupled strategy would represent a more realistic case study and

provide better accuracy, but at the cost of computational resources and complexity.

In the case of the thesis, a drag minimisation has been done using the SU2 software followed by a

topology optimisation carried out by means of an open-source script provided by F. Löffelmann in [28].

Therefore, initially the aerodynamics subject is going to be developed and followed by the structural one,

which both include the respective optimisation procedures. Once the optimal is found by the solver, the

output can be analysed. In Figure (7.1) there is a graphical representation of the followed methodology.
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Figure 7.1: Sequential approach algorithm followed in this work.
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Sequential approach: RAE 2822, M = 0.729 and alpha = 2.31◦

Following the optimisation done in section 5.2 for the aerodynamic shape, the new load distribution has

been applied to the optimised shape in Figure (7.2). Note that, compared to the general case, Figure

(4.3), the upper loads adopted a more continuous distribution, downloading the magnitude at the lead-

ing edge and softening the shock. It couples then with the description provided in Figure (5.6) for the

optimised pressure coefficient distribution regarding the new pressure gradients and their meaning.
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Figure 7.2: Pressure loads for the RAE 2822 first optimisation of the case study.

By checking the new-state stress distribution and displacements in Figures (7.3) and (7.4), the general

view of the results do not seem analog to the ones provided above in the general case study basically

because the modifications given by the aerodynamic-optimiser were quite specific. Moreover, the mag-

nitudes have changed as it is a new case study.

Regarding the von Mises stresses, the maximum value has substantially decreased in 97%, from 2.63

MPa to 74.8 kPa. This modification should be a reference for future work as, because of the study set-

tings, the sequential approach has delivered an interesting final output for the coupling step.

Note that, the stress distribution has moved towards the trailing edge, where it has the lowest material

density. If Figure (6.1) and (7.3) are compared, the pressure loads are softened all along the aerofoil’s

surface driving towards a less demanded structural state.
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Figure 7.3: Von Mises distribution for the first optimisation done to the RAE 2822 case study for the
aerofoil.

Figure 7.4: Displacements for the first optimisation done to the RAE 2822 case study for the aerofoil.

The higher stresses are located at the thinner part of the aerofoil. Those higher stresses are two or-

ders of magnitude lower than in the non-optimised aerodynamic case, thus, no large deformations are

expected. Actually, the maximum displacement magnitude in Figure (7.4) for the optimised shape is

∼ 92% lower. It can be said that the aerodynamic optimisation has provided a far more relaxed state to

the aerofoil and that the coupling of optimisations have reached an ideal as, both have been improved

without entering in conflict with each other.

Following the thesis’ structure, the topology optimisation for the latest case comes now presented. By

using the stated parameters regarding the sensitivity filter and mass ratios (r f i l = 0.01c, ∇m =−3%), the
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different weight constraint output solutions are provided in Figure (7.5).

(a) Weight reduction target: 50%. (b) Weight reduction target: 35%.

(c) Weight reduction target: 25%. (d) Weight reduction target: 10%.

Figure 7.5: Topology optimisation procedure development for the optimisation of the case study.

In this latter case, there is one main difference in the topology between the general case and the aerody-

namically optimised one. In the latter, no reinforcement elements are required inside the region between

the upper surface and the wing-box area. Its main function was to provide stiffness to avoid high defor-

mations and failures because of the shockwave apparition, whose pressure variation loads should be

taken into consideration and, as the geometry has been previously optimised by providing a softer flow

transition result, their presence may be neglected.

As the studied case suffers now from a higher loading state in the trailing edge, that area has had to be

reinforced while the opposite occurs at the front of the aerofoil. Therefore, at the trailing edge, the skin

is connected to the wing-box corners and a skin-reinforcement is required

Moreover, the 10% weight reduction target provides a weak solution as it seems to be ’unfinished’.

Therefore, as in chapter 6, the ideal optimised layout is considered to be the one that has the 25%

weight constraint, thus the following figures refer to the failure index and von Mises distribution of that

specified case.
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(a)

(b)

Figure 7.6: (a) Failure index distribution and (b) Von Mises stress distribution for the optimisation of the
test case for a 25% mass reduction.

It is worth to point out how the FI of Figure (7.6a) is two orders of magnitude lower (σa6061T
yi eld = 276 MPa)

than in Figure (6.5a), meaning that, from a first approach, the structure can perfectly withstand the

loading state, considering as well an interval of more demanding situations. In terms of stresses, the

structure finds itself in a more relaxed situation, not only because what was stated when describing

Figure (7.3) but also because the absorption of loads due to the appearance of material in the leading

edge region. Apart from this latest statement, note how the inner stresses have a higher value than

in the completely material-filled aerofoil (but in the same magnitude’s interval), which makes sense as

the main purpose of the topology optimisation is to redistribute the loads towards specific regions of the

geometry while removing the unnecessary ones.
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Sequential approach: RAE 2822, M = 0.730 and alpha = 2.79◦

Aiming at higher modifications in the geometry, a second case study was selected, in which the flow

conditions were modified. The reason behind this new strategy is to follow the modifications in the flow,

structural behaviour and, at the end, the topology optimisation results in order to see if, for different se-

tups, there were drastic changes or similar ones. Depending on the conclusion, a general aerodynamic

and topology optimised aerofoil geometry could be provided for a certain flight regimes making it more

available. Therefore, as in the development followed above, a comparison of the loads obtained by the

nodal pressures for the general case and the optimised one is provided in Figure (7.7) and, afterwards,

its structural analysis is presented.
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Figure 7.7: Pressure loads distributions. (a) General case. (b) Optimised case.

As the initial setup is different from the general case study of the thesis, the expected behaviour should

be a variant. The fact of having a higher angle of attack has changed the pressure distribution along the

aerofoil. Check visually in Figures (6.1) and (7.8) how similar are the loads applied in the leading edge,

where the primordial effects should be present because of the change of the angle of attack.

From this point and, as it can be seen in Figures (7.8) and (7.9), the most stress-demanded part of

the aerofoil is close to the corner points at the wing-box closer to the leading edge, reaching again the

magnitude of 106 Pa. Regarding the behaviour of the displacements, they have an analog distribution as

in the previous case, being more noticeable in the leading edge.
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Figure 7.8: Von Mises distribution for the second RAE 2822 case study for the aerofoil.

Figure 7.9: Displacements for the second RAE 2822 case study for the aerofoil.

Once the geometry has been optimised to reduce the produced drag at a constant lift value, a new

loading state is produced (Figure (7.7b)), which again provides an unbalance between the two surfaces

of the aerofoil. It can be checked in Figures (7.10) and (7.11), that the final state is totally optimised

again in both fields of study, the fluid and solid mechanics. Regarding the stress distribution, it repre-

sents a 1.48% of the loading state for the initial case, reaching a maximum value of 37.2 KPa and a

displacement of 0.403 µc. It is worth to note how very small changes in the surface of the aerofoil when

optimising the geometry have a great influence on the stress distribution.
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Figure 7.10: Von Mises distribution for the second optimisation done to the RAE 2822 case study for the
aerofoil.

Figure 7.11: Displacements for the second optimisation done to the RAE 2822 case study for the aerofoil.

Once the aerodynamic optimisation provides its output geometry, the topology optimisation follows.

Therefore, new states for the weight reductions (50%, 35%, 25% and 10%) are given in Figure (7.12).

First of all, note the difference the distribution has in the leading edge region compared to the previous

optimisation case shown in Figure (7.5). In this actual case, the geometry has been modified in a more

neutral way, balancing the upper and lower surfaces, while in the previous, the geometry is yet influenced

by an uneven load distribution due to the specific angle of attack of the study characteristics. Regarding

the optimal reduction target, following the same explanation for the optimisation of the general case

study, the 25% target seems to be adequate. Therefore, the stress and failure index studies will be based
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in that specific geometry which its main purpose is to demonstrate the feasibility of the topologically

optimised structures.

(a) Weight reduction target: 50%. (b) Weight reduction target: 35%.

(c) Weight reduction target: 25%. (d) Weight reduction target: 10%.

Figure 7.12: Topology optimisation procedure development for the optimisation of the second case study.

Again and, as a consequence of the aerodynamic optimisation of the loads dependency from the shock-

wave, structural reinforcements are not strictly required for the main structure in between the wing-box

and the upper surface of the aerofoil and only by holding and coupling the corners of the wing-box with

the aerofoil’s skin, a resistant component is obtained, with the capability to withstand higher loads. From

this point, in Figure (7.13), the analog plots regarding the failure tendency and stresses are presented.

(a)

(b)

Figure 7.13: (a) Failure index distribution and (b) Von Mises stress distribution for the optimisation of the
second test case for a 25% mass reduction.
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By comparing Figure (7.10) and (7.13b), it is possible to note that the loading state has been increased

again from the filled aerofoil as there is less material facing the stresses. Nevertheless, in this case

where the highest stresses were found in the trailing edge, they have been reduced because of the use

of two bars at the leading edge, which aim a more balanced distribution and gather part of the loading

state of the geometry, while dealing perfectly with the transferred loads as the FI in Figure (7.13a) shows.

In conclusion, the main arguments to export from the study are: (i) the well-behaved output obtained

by the sequential coupling; (ii) the noticeable influence a single parameter of the BESO method has in

the final layout; (iii) and that, for 2D aerofoils only loaded by the aerodynamic loads, a high percentage

of material removal can be obtained. Nevertheless, this study has been designed by a set of specific

features that led to the final solutions shown. Therefore, a wider horizon of solutions may be found by

other users by continuing or expanding the content shown in this thesis.
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Chapter 8

Conclusions and Future Work

In this last chapter, the general and final conclusions reached along this study are drawn and presented,

followed by recommendations and suggestions for future work.

8.1 Concluding remarks

This research aimed at coupling both aerodynamic and structural designs of aerofoils using efficient

optimisation tools such as aerodynamic shape optimisation and topology optimisation. Firstly, based on

the analysis carried out along the process to reach the stated target, it allowed to conclude that this field

has capabilities to develop to highly-influential new designs, as it is built from a wide set of aspects and

parameters which are able to propose new steps towards improvement. For instance, different optimi-

sation setups can be chosen for both fields such as the mathematics behind the optimisation method

and the inner parameters which define their computational implementation. Secondly, when defining

a wing-box geometrical constraint, the optimisation algorithm is not allowed to change shape on that

region, regardless of its potential to further improve the aerodynamic design. Another aspect to highlight

are the results. Since the aerodynamic optimisation allowed for a pressure distribution that reduces the

stress on the structure, a field coupled optimisation methodology was not used. Finally, it is important

to point out the limits of the study, as a simplified option of the reality was used when using a bidimen-

sional object without other restrictions which could be found inside the flight envelope, other wing-box

constraints and the use of an empirical model for the fluid dynamics computation.

In terms of the aerodynamics, the study has shown that, for very small geometric modifications, notice-

able changes in the behaviour were found. For instance, the shockwave was softened even for small

shape changes of 0.1%c, leading to considerable drag reductions of 13.9% for M = 0.729 and α = 2.31◦

and 29.04% for M = 0.730 and α= 2.79◦. This phenomena, even though it came from the aerodynamics,

could have had a direct influence on the general optimisation procedure since it has an impact on the

structural behaviour in terms of stress and displacement. Nevertheless, the research has shown that, by
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improving the aerodynamic behaviour of the aerofoil, the structural loading state is benefited. In terms of

the von Mises stress distribution and displacements magnitude, it has decreased to a 3% reduction state

and to a magnitude of two orders below the first study case respectively, which represent a magnitude

of three orders fewer than the aerodynamic-born displacements; for the second test case, the von Mises

maximum stress distribution decayed by 1.48% and three orders of magnitude for the displacements.

This aftermath was expected as the total pressure was reduced from the aerodynamic optimised shapes.

The initial idea behind the scope of the thesis was a general optimisation coupling strategy, but the com-

plexity it involved required a large amount of time and resources. Then, since the sequential approach

represented a promising and a high degree of improvement for both studied engineering fields, the the-

sis path was reoriented towards the sequential perspective of the problem setup.

It can be concluded that the whole filled aerofoil is not practical nor effective, and that the designers, for

this case study, dispose from the capability to rearrange the inner layout of material aiming at a more

efficient and less resource-demanding configuration. Discussing then the inner topology distribution, the

BESO method has shown to be a robust and practical optimisation method as not only removes material

from the geometry but it also adds and redistributes it along all the iterations aiming at the better design

by being compliant. Moreover, it offers the capability to set different parameters which are going to lead

the path to the final design, meaning that the user disposes with free-choice matter to plan and drive the

wanted component towards his idea in mind. Therefore, this tool can be considered very powerful not

because of the numerical and computational resources but the free-choice design it offers.

From the analysed mass constraints for the material removal, by using the Aluminum 6061T, the higher

material reduction reached a 10% of the initial mass, although its final geometrical output looked weak.

Therefore, by approaching the case with a conservative view, the 25% constraint was selected to imple-

ment the new structural study, so as to check that it can deal with the loading state and that the BESO

algorithm has provided a robust result. From this point, the study has shown that the topology optimisa-

tion procedure, in order to be able to remove the unnecessary mass, redistributes the inner stresses of

the initial filled aerofoil towards the creation of truss structures while reducing the maximum magnitude

shown in the non-optimised case as the layout finds by itself a more balanced state. Moreover, the reli-

ability of the final optimised shape is secure when the study shows that the geometry is found inside the

safety interval behaviour of the material, highlighting the orders of 10−2 for the non-optimised topology

structures and 10−4 for the opposite ones, when the unity is for the maximal stress loading without failure

and null is the non-loaded state.
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At the end of the day, the software used provides an idea of the path that should be followed in order

to reach specific optimisations targets, but as specified along the thesis, further post-processing work

has to be done. For instance, once the aerodynamic shape is optimised, it is only for a specific flight

conditions, thus it does not consider the whole flight envelop. Therefore, the technique described in this

thesis could be implemented, for instance, into designing the range of modifications that a morphing

geometry aerofoil should accomplish along the flight situation to be efficient at all stages. Moreover,

apart from the aerodynamic point-of-view, more topology setups should be analysed aiming the struc-

tural compliance in the situations described above and, as it is demonstrated in the thesis, the mesh

roughness provides to specific elements higher stresses than the ones they realistically support, thus

improved outputs could be obtained by using finer meshes and/or keep performing topology optimisa-

tions after the previous optimised solution has been put through a new geometry redesign in terms of

the optimised case.

8.2 Recommendations and Future Work

As previously introduced before, as future work is recommended to expand the case described in this

thesis, beginning with the creation of the flight envelope graph including the different sets of aerodynamic-

modified geometries for a 2-D aerofoil. Next and, in order to start from a more realistic and functional

study, new geometrical constraints should be defined and the ones set previously in the state of the art,

complemented. Then, the case can be expanded to the tridimensional space, thus a wing and all the

systems it is related to. By doing so, a noticeable increase in difficulty of the computational process will

be required but, using the knowledge of the open-source community and the commercial tools, these

drawbacks can be surpassed.
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Appendix A

Matlab® script used to connect SU2

with Calculix

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % %
3 %% %%%%%%%%%%%%%%%%%% AUTHOR: ISAAC GIBERT MARTINEZ %%%%%%%%%%%%%%%%%
4 %%%%%%%%%%%%%%%%%%%%% DATE: NOVEMBER 2020 %%%%%%%%%%%%%%%%%
5 % %
6 %% MASTER THESIS: %%
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % %
9 % AERODYNAMIC OPTIMISATION OF A CONSTRAINED AEROFOIL'S SHAPE %

10 % COUPLED WITH AN OPTIMISATION OF ITS INNER STRUCTURAL TOPOLOGY %
11 % %
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 % %
14 %%%%%%%%% SCRIPT DEVELOPED TO PROCESS THE DATA FROM SU2 %%%%%%%%%
15 %%%%%%%%% (*.csv) FILE INTO CALCULIX (ABACUS *.inp) ENVIRONMENT %%%%%%%%%
16 % %
17 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
18 %% INSTITUTO TECNICO LISBOA IST %%
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20
21 clear all
22 clc
23
24 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
25 %% Data Acquisition from SU2 using Paraview to provide the CSV file
26 surfDATA = readtable('CSVFile.csv', 'HeaderLines', 1);
27 surfaceData = table2array(surfDATA);
28
29 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
30 %% Data treatment and post−processing
31
32 % Add/Remove/Modify the problematic aerofoil nodes
33
34 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
35 %% New *.geo file for GMSH as some nodes have been moved/removed/modified
36
37 % GEOMETRICAL DIFFERENTIATION FOR POST−PROCESSING PURPOSES
38 wingboxUP = [surfaceData(65:137,12), surfaceData(65:137,13)];
39 wingboxLOW = [surfaceData(268:340,12), surfaceData(268:340,13)];
40
41 % GENERATION OF *.TXT FILE CONTAINING THE NODES POSITION FOR GMSH
42 fileID2 = fopen('SurfaceTOGeoFile_MCinit.txt','w');
43
44 % PRINTING OF VALUES:
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45 for i=1:length(surfaceData)
46 % −−−−−−−−−−− ALL NODES CHARACTERISATION %
47 % −−−−−−− formatSpec => Point(ID_NODE) = {x, y, z, Size}; −−−−−−−− %
48 compt = i;
49 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f, 0, Size};\n', ...
50 surfaceData(i,24), surfaceData(i,12), surfaceData(i,13));
51 end
52
53 for i=1:length(wingboxUP)
54 % −−−−−−−−−−− UPPER WING−BOX NODES CHARACTERISATION %
55 % −−−−−−−−−−− formatSpec = Point(i) = {x, y, z, Size}; −−−−−−−−−− %
56 compt = 1000; % NEW 'ID_NODE' FOR CLARITY PURPOSES
57 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f − dist, 0, Size};\n', ...
58 compt+i, wingboxUP(i,1), wingboxUP(i,2));
59 % 'dist' is the vertical translation from the aerofoil
60 % surface nodes to the wing−box
61 end
62
63 for i=1:length(wingboxLOW)
64 % −−−−−−−−−−− UPPER WING−BOX NODES CHARACTERISATION %
65 % −−−−−−−−−−− formatSpec = Point(i) = {x, y, z, Size}; −−−−−−−−−− %
66 compt = 2000; % NEW 'ID_NODE' FOR CLARITY PURPOSES
67 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f + dist, 0, Size};\n', ...
68 compt+i, wingboxLOW(i,1), wingboxLOW(i,2));
69 % 'dist' is the vertical translation from the aerofoil
70 % surface nodes to the wing−box
71 end
72
73 % CLOSE GENERATED *.TXT FILE
74 fclose(fileID2);
75
76 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
77 %% Pre−Processing of the CFD results
78 % Final separation between upper and lower sides of the aerofoil
79 % The values '200' and '201' depend on the used mesh
80 upperData = surfaceData(1:200,:);
81 lowerData = surfaceData(201:end,:);
82
83
84 % Sort by x−position in both sides
85 % UPPER
86 [~,s] = sort(upperData(:,12));
87 A = upperData(s,:);
88 upperData = A;
89 % LOWER
90 [~,r] = sort(lowerData(:,12));
91 B = lowerData(r,:);
92 lowerData = B;
93
94 % SAVING pressure loads for each of the nodes from the classified data
95 pvalue_UP = upperData(:,16);
96 nodesID_UP = upperData(:,24);
97
98 pvalue_LOW = lowerData(:,16);
99 nodesID_LOW = lowerData(:,24);

100
101 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
102 %% Position vectors used for obtaining the force by the pressure values
103
104 % INITIALISATION OF THE ARRAYS
105 SEGMENTUp = zeros(length(lowerData)−1, 1); % Segment length variable
106 normalUp = zeros(length(lowerData)−1, 2); % Normal vector variable
107 % USE OF THE PREVIOUS DATA
108 xUp = upperData(:,12);
109 yUp = upperData(:,13);
110 lengtharrayUP = (length(upperData));
111
112 for i=1:(lengtharrayUP−1)
113 dxUp = xUp(i+1) − xUp(i); % X−Distance
114 dyUp = yUp(i+1) − yUp(i); % Y−Distance
115 alpha = dyUp/dxUp; % Angle
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116 cosAlpha = cos(alpha);
117 sinAlpha = sin(alpha);
118
119 x = dxUp*dxUp;
120 y = dyUp*dyUp;
121 dist = x + y;
122 SEGMENTUp(i) = sqrt(dist); % Length of the Segment
123
124 xnorm = dyUp;
125 ynorm = −dxUp;
126 nx = xnorm/SEGMENTUp(i);
127 ny = ynorm/SEGMENTUp(i);
128 normalUp(i,:) = [nx, ny]; % Normal Vector of the Segment
129 end
130
131 % −−−−−−−−− ANALOG PROCEDURE FOR THE LOWER SIDE NODES −−−−−−−− %
132 SEGMENTLow = zeros(length(lowerData)−1, 1);
133 normalLow = zeros(length(lowerData)−1, 2);
134
135 xLow = lowerData(:,12);
136 yLow = lowerData(:,13);
137 lengtharrayLow = (length(lowerData));
138
139 for i=1:(lengtharrayLow−1)
140 dxLow = xLow(i+1) − xLow(i);
141 dyLow = yLow(i+1) − yLow(i);
142 alphaLow = dyLow/dxLow;
143 cosAlphaL = cos(alphaLow);
144 sinAlphaL = sin(alphaLow);
145
146 xL = dxLow*dxLow;
147 yL= dyLow*dyLow;
148 lengthSegL = xL + yL;
149 SEGMENTLow(i) = sqrt(lengthSegL);
150
151 xnormL = dyLow;
152 ynormL = −dxLow;
153 nxL = xnormL/SEGMENTLow(i);
154 nyL = ynormL/SEGMENTLow(i);
155 normalLow(i,:) = [nxL, nyL];
156 end
157
158 % −−−−−−−−− ANALOG PROCEDURE FOR THE BOUNDARY NODES −−−−−−−− %
159 % Leading Edge
160 dxLE = xUp(1) − xLow(1);
161 dyLE = yUp(1) − yLow(1);
162 alphaLE = dyLE/dxLE;
163 cosAlphaLE = cos(alphaLE);
164 sinAlphaLE = sin(alphaLE);
165
166 xLE = dxLE*dxLE;
167 yLE= dyLE*dyLE;
168 lengthSegLE = xLE + yLE;
169 SEGMENTLE = sqrt(lengthSegLE);
170 xnormLE = −dyLE;
171 ynormLE = dxLE;
172
173 nxLE = xnormLE/SEGMENTLE;
174 nyLE = ynormLE/SEGMENTLE;
175 normalLE = [nxLE, nyLE];
176
177 % Trailing Edge
178 dxTE = xUp(end) − xLow(end);
179 dyTE = yUp(end) − yLow(end);
180 alphaTE = dyTE/dxTE;
181 cosAlphaTE = cos(alphaTE);
182 sinAlphaTE = sin(alphaTE);
183
184 xTE = dxTE*dxTE;
185 yTE = dyTE*dyTE;
186 lengthSegTE = xTE + yTE;
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187 SEGMENTTE = sqrt(lengthSegTE);
188 xnormTE = dyTE;
189 ynormTE = dxTE;
190
191 nxTE = xnormTE/SEGMENTTE;
192 nyTE = ynormTE/SEGMENTTE;
193 normalTE = [nxTE, nyTE];
194
195 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
196 %% Load provided by the pressure
197 % It is considered that the pressure is applied at the correspondent node
198 % but the surface used to apply the load is the sum of the halves of the
199 % contiguous segments: LENGTH = (X1 + X2)/2
200 % ( NODE_I−1 ) <~~~~~X1−−−−−> ( NODE_I ) <−−−X2~~~> ( NODE_I+1 )
201 % Moreover, the 2nd dimension is considered to be the unity as the case is
202 % 2D::: F = P * A = P * avg(dist) * 1
203
204 % ARRAYS INITIALISATION
205 LoadUP = zeros(1,lengtharrayUP);
206 LoadLOW = zeros(1,lengtharrayLow);
207 LoadUP_X = zeros(1,lengtharrayUP);
208 LoadUP_Y = zeros(1,lengtharrayUP);
209 LoadLOW_X = zeros(1,lengtharrayLow);
210 LoadLOW_Y = zeros(1,lengtharrayLow);
211
212 % −−−−−−−−−−−−−−−−−−−−−−−−− Leading Edge Nodes −−−−−−−−−−−−−−−−−−−−−−−−−−−%
213
214 avgDistLEUp = SEGMENTLE/2 + SEGMENTUp(1)/2;
215 LoadUP(1) = −pvalue_UP(1)*avgDistLEUp;
216
217 avgDistLELow = SEGMENTLE/2 + SEGMENTLow(1)/2;
218 LoadLOW(1) = −pvalue_LOW(1)*avgDistLELow;
219
220 LoadUP_X(1) = LoadUP(1)*normalLE(1,1);
221 LoadUP_Y(1) = LoadUP(1)*normalLE(1,2);
222 LoadLOW_X(1) = LoadLOW(1)*normalLE(1,1);
223 LoadLOW_Y(1) = LoadLOW(1)*normalLE(1,2);
224
225 % −−−−−−−−−−−−−−−−−−−−−−−−−− Trailing Edge Nodes−−−−−−−−−−−−−−−−−−−−−−−−−−%
226
227 avgDistTEUp = SEGMENTTE/2 + SEGMENTUp(end−1)/2;
228 LoadUP(end) = −pvalue_UP(end)*avgDistTEUp;
229
230 avgDistTELow = SEGMENTTE/2 + SEGMENTLow(end−1)/2;
231 LoadLOW(end) = pvalue_LOW(end)*avgDistTELow;
232
233 LoadUP_X(end) = LoadUP(end)*normalTE(1,1);
234 LoadUP_Y(end) = LoadUP(end)*normalTE(1,2);
235 LoadLOW_X(end) = LoadLOW(end)*normalTE(1,1);
236 LoadLOW_Y(end) = LoadLOW(end)*normalTE(1,2);
237
238 % −−−−−−−−−−−−−−−−−−−−−−−−−− For the Rest of the Nodes −−−−−−−−−−−−−−−−−−−%
239
240 for i=2:(lengtharrayUP−1)
241 avgDistUP = SEGMENTUp(i−1)/2 + SEGMENTUp(i)/2;
242 LoadUP(i) = pvalue_UP(i)*avgDistUP;
243
244 LoadUP_X(i) = LoadUP(i)*normalUp(i,1);
245 LoadUP_Y(i) = LoadUP(i)*normalUp(i,2);
246
247 PXu(i) = pvalue_UP(i)*normalUp(i,1);
248 PYu(i) = pvalue_UP(i)*normalUp(i,2);
249 end
250
251 for i=2:(lengtharrayLow−1)
252 avgDistLOW = SEGMENTLow(i−1)/2 + SEGMENTLow(i)/2;
253 LoadLOW(i) = −pvalue_LOW(i)*avgDistLOW;
254
255 LoadLOW_X(i) = LoadLOW(i)*normalLow(i,1);
256 LoadLOW_Y(i) = LoadLOW(i)*normalLow(i,2);
257
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258 PXl(i) = pvalue_LOW(i)*normalLow(i,1);
259 PYl(i) = pvalue_LOW(i)*normalLow(i,2);
260 end
261
262 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
263 %% Writing the *.txt file
264
265 % NEW *.TXT FILE USED AS AN INPUT FOR CALCULIX NOMENCLATURE (ABACUS *.INP)
266 fileID = fopen('Su2_to_Calculix_LOADS.txt','w');
267
268 for i=1:lengtharrayUP
269
270 % −−−−formatSpec = 'Node%.0f, axis−direction, Magnitude%6.1f \n'; −−− %
271 fprintf(fileID, '%.0f, 1, %8.4f \n', nodesID_UP(i,1), LoadUP_X(i));
272 fprintf(fileID, '%.0f, 2, %8.4f \n', nodesID_UP(i,1), LoadUP_Y(i));
273 end
274
275 for i=1:lengtharrayLow
276
277 % −−−−formatSpec = 'Node%.0f, axis−direction, Magnitude%6.1f \n'; −−− %
278 fprintf(fileID, '%.0f, 1, %8.4f \n', nodesID_LOW(i,1), LoadLOW_X(i));
279 fprintf(fileID, '%.0f, 2, %8.4f \n', nodesID_LOW(i,1), LoadLOW_Y(i));
280 end
281
282 % SAVE AND CLOSE GENERATED FILE
283 fclose(fileID);
284
285 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
286 %% TOPOLOGY OPTIMISATION −−−−−−−−−> INCLUDES:
287 % AEROFOIL SKIN for topology optimisation BOUNDARY CONSTRAINT ::> 2mm
288 % WING−BOX SKIN for topology optimisation BOUNDARY CONSTRAINT ::> 2mm
289
290 % Save data into new variables
291 skinUP = [upperData(4:184,12), upperData(4:184,13)];
292 skinLOW = [lowerData(4:181,12), lowerData(4:181,13)];
293 distSkin = 0.002;
294
295 % RE−OPEN GMSH GEOMETRIC INPUT FILE TO PRINT THE SKIN CONSTRAINT
296 fileID2 = fopen('SurfaceTOGeoFile.txt','w');
297
298 % FIRST node UPPER (LE) needs a different treatment
299 fprintf(fileID2, 'Point(6000) = {%.8f + distSkin, %.8f, 0, Size};\n',...
300 skinUP(1,1), skinUP(1,2));
301 skinU(1,:) = [upperData(1,12) + 0.4*distSkin, upperData(1,13)− 0.4*distSkin];
302
303 % GENERAL UPPER NODES
304 for i=2:length(skinUP)
305
306 % −−−−−−− formatSpec = Point(i) = {x, y, z, Size}; −−−−−−−− %
307 compt = 6000; % NEW 'ID_NODE' FOR CLARITY PURPOSES
308 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f − distSkin, 0, Size};\n',...
309 compt+i, skinUP(i,1), skinUP(i,2));
310 skinU(i,:) = [skinUP(i,1), skinUP(i,2) − distSkin]; % VERTICAL DISPL.
311 end
312
313 % FIRST node LOWER (LE) needs a different treatment
314 fprintf(fileID2, 'Point(7000) = {%.8f + distSkin, %.8f, 0, Size};\n',...
315 skinLOW(1,1), skinLOW(1,2));
316 skinL(1,:) = [lowerData(1,12)+ 0.4*distSkin, lowerData(1,13)];
317
318 % GENERAL LOWER NODES
319 for i=2:length(skinLOW)
320 % formatSpec = Point(i) = {x, y, z, Size};
321 compt = 7000; % NEW 'ID_NODE' FOR CLARITY PURPOSES
322 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f − distSkin, 0, Size};\n',...
323 compt+i, skinLOW(i,1), skinLOW(i,2));
324 skinL(i,:) = [skinLOW(i,1), skinLOW(i,2) + distSkin]; % VERTICAL DISPL.
325 end
326
327
328 % GMSH GEOMETRIC INPUT FILE TO PRINT THE WING−BOX SKIN CONSTRAINT
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329 for i=1:length(wingboxUP)
330
331 % −−−−− formatSpec = Point(i) = {x, y, z, Size}; −−−−− %
332 compt = 8000; % NEW 'ID_NODE' FOR CLARITY PURPOSES
333 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f − distWB, 0, Size};\n', ...
334 compt+i, wingboxUP(i,1), wingboxUP(i,2)); % VERTICAL DISPL.
335 end
336
337 for i=1:length(wingboxLOW)
338
339 % −−−−− formatSpec = Point(i) = {x, y, z, Size}; −−−−− %
340 compt = 9000; % NEW 'ID_NODE' FOR CLARITY PURPOSES
341 fprintf(fileID2, 'Point(%.0f) = {%.8f, %.8f + distWB, 0, Size};\n', ...
342 compt+i, wingboxLOW(i,1), wingboxLOW(i,2)); % VERTICAL DISPL.
343 end
344 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
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