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Abstract

Traditional methods for generating a Bird’s Eye View (BEV) are accurate for flat surfaces, but errors
are introduced when slopes or protruding objects are present. This thesis aims to investigate different
methods using Generative Adversarial Networks (GAN) to generate a BEV from 4 vehicle-mounted
fisheye cameras, and to improve on traditional methods. I present two different model approaches, and
a data collection and processing procedure. In the first approach, state-of-the-art models (Pix2pixHD,
CycleGAN, AttentionGAN) are used to generate the BEV images. In the second, I propose a multi-input
model, not only to generate the BEV images, but also to estimate corrected homography matrices. It
was not possible to generate a BEV with current state-of-the-art Generative Adversarial Networks, given
only fisheye images. Nonetheless, it is shown that without greatly increasing the methods’ complexity,
similar approaches yield promising results. In particular, Spatial Transformer modules demonstrate a
strong potential in aiding a GAN to learn a correct mapping to the BEV.
Keywords: Bird’s Eye View, Generative Adversarial Networks, Spatial Transformer Networks,
Homography.

1. Introduction

Increasing concern with safety in mobility, together
with costumers’ interest in connectivity [18], has
been shifting automotive manufacturers’ efforts to-
wards research and development in information
technologies. As a result, many of them have led
the field in intelligent technology solutions for safe
mobility and ease of driving, in particular in au-
tonomous driving.

Autonomous systems in vehicles need to accu-
rately perceive and understand their surrounding
environment in order to perform safe and efficient
driving. Cameras are an inexpensive and popu-
lar sensor choice for these systems, and if paired
with computer vision techniques, they can provide
a great amount of information about the environ-
ment. Among the different types of cameras, fisheye
cameras stand out for achieving high angles of view.
This makes them ideal to capture the close prox-
imity environment. By mounting four 180 degrees
wide fisheye cameras on each side of the vehicle,
it is easy to gain 360 degrees coverage of the sur-
rounding environment, with some overlapping areas
between adjacent cameras.

Although cameras can provide information in the
2-dimensional image plane, they lack information
about the real-world coordinates. By assuming a

flat earth approximation, a perspective transform is
often applied to project image pixels to the ground
plane. The method of applying this perspective
transform is commonly referred to as Inverse Per-
spective Mapping (IPM) [16]. And this results in
a top-down view, also known as Bird’s Eye View
(BEV). This resulting projection provides informa-
tion on the real-world coordinates of the elements
on the ground plane. As the IPM method assumes
a flat earth approximation, the objects protruding
out of the ground plane, slopes and irregularities
in the road surface will be incorrectly mapped to
the BEV image during the IPM projection. Addi-
tionally, when using the IPM for the generation of
a BEV in multi-camera systems other issues also
arise, such as misalignments between the different
views, mostly due to accuracy errors in camera cal-
ibration.

BEV images can be utilised within tasks such
as lane detection [19], road marking detection [17],
free space computation [4], and path planning [33].
Since the relevant elements for these tasks are
mostly present in the ground plane, the IPM ap-
proximation is usually sufficient enough to be used
in these applications. An accurate mapping to the
BEV could not only improve the performance and
reliability of the previously mentioned tasks, but
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also allow for tasks where objects like other vehi-
cles, obstacles and pedestrians are accurately de-
tected and located in the real-world coordinates.

With the advancement of deep learning tech-
niques, Generative Adversarial Networks (GANs)
[5] have been able to learn the mapping between
images of two different domains. By exploring sim-
ilar methods for the generation of the BEV from
4 fisheye camera images, a more accurate mapping
could be achieved.

1.1. Objectives

The main objective of this work is to investigate dif-
ferent methods using Generative Adversarial Net-
works to generate a BEV from 4 vehicle-mounted
fisheye cameras, and evaluate the capabilities of
these networks to learn the correct mappings. In
particular, we aim to generate a BEV image where
all objects are correctly represented without distor-
tions, and the stitching between the different fish-
eye images is seamless. This work also aims to find
an efficient data collection procedure, and evaluate
which data is best suited for learning.

Furthermore, with this work we aim to find meth-
ods that reduce the need for time-consuming tasks,
such as the estimation of parameters necessary to
compute the IPM, the alignment and the stitching
of the different views.

1.2. Outline

Four sections will follow this introduction. Section
2 includes an overview of related work to the gen-
eration of BEV images. In section 3 we present the
the approaches taken in this work. The data collec-
tion and processing process used to build the neces-
sary datasets is explained, as well as the approaches
taken in this work to reach the objectives. Sec-
tion 4 presents the results produced by the neural
network models, which are analysed and discussed.
And section 5 presents the conclusion to the thesis
and possible future work.

2. Related Work

Several works have taken a geometry-based ap-
proach to the generation of the BEV. In [29] and [13]
the authors proposed methods to align and stitch
the different views in multi-camera systems. In [20],
data from a laser range finder is fused with images
from the cameras, so that the IPM is not computed
in the regions where obstacles are present. And in
[11], a mono visual odometry algorithm is used to
obtain the vehicle motion, in order to correct the
IPM.

In the last few years many works emerged on
Image Generation and Translation with the rise of
GANs [6]. With the latest works employing atten-
tion modules that allow for the translation of im-
ages that require holistic and large shape changes

[26], [12], but are still restricted to perform aligned
appearance transformations. BridgeGAN [32] uses
a GAN in conjunction with the IPM to bridge the
large gap between the frontal view and the BEV.

In [10], the authors proposed a Spatial Trans-
former module that transforms the input images to
improve performance on classification tasks. In [28]
and [30] similar ideas to the Spatial Transformer
were used to perform novel view synthesis. The
work presented in [3] employs Spatial Transformer
modules together with a GAN model to generate
a BEV from a single frontal view, resulting in a
higher quality BEV compared with the one gener-
ated solely through IPM.

The works [32] and [3] are the closest to ours,
however these only generate the BEV for a single
view. As far as we are aware, our work is the first
to use multi-input GAN models to generate a single
BEV from 4 different views.

3. Method

Most CNN models take only one image as input.
In order to combine images from multiple cameras
mounted on a vehicle, two procedures can be taken:
use as input the 4 camera images concatenated
along their channel dimension; or combine the 4
images in a 2 by 2 grid, as to create a single image.
However, for the task at hand, this would result in
spatial inconsistency between the input and the out-
put images, because of the way convolutional layers
operate (information in particular locations of the
input is mapped to approximately the same location
of the output). Therefore, other solutions had to be
found. The first solution was to use popular GAN
models, which are all single-input, and use as input
a pre-processed BEV image from the 4 camera im-
ages by using the IPM technique. The second was
to create a multi-input GAN model, with integrated
Spatial Transformer modules to ensure spatial con-
sistency. In this section, we will present these two
different GAN-based approaches. But before, the
data collection and processing procedures used to
create a dataset are explained in detail.

3.1. Data Collection

The first step in creating a dataset from scratch is
the data collection. In order to collect the necessary
images we used a Volvo XC90 test car and a DJI
Mavic drone. The Volvo test car was equipped with
four fisheye cameras (which record synchronously),
one in the front badge, one in each of the side-
mirrors and one in the tailgate, meaning that each
camera is pointing in a different direction and full
360 degrees coverage can be achieved. The DJI
drone was equipped with a camera mounted on a
stabilisation gimbal, which was set to point directly
down.

The recording procedure involved driving the test
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car at relatively slow speeds i.e., less than 30 km/h,
on various parking lots, and having the drone fol-
lowing the car directly above, with the camera
pointed straight down, at an altitude relative to the
ground of around 50 meters. The position of the
drone had to be controlled manually, which meant
that it wasn’t always directly over the test car nor
at the same altitude. That led to the need of recti-
fying the drone frames in a later processing stage.

3.2. Data Processing
The goal of processing the drone frames was to cor-
rect each one: to centre the test car in the frame;
align the test car symmetry line with the vertical
axis of the frame; crop the image to keep the scale
of the image fixed in relation to the test car; and
to pair the frames with the images from the test
car fisheye cameras. To achieve this, an algorithm
using the OpenCV library was developed. The im-
ages resulting from the first three correction steps
mentioned, can be visualised in Fig. 1.

The algorithm to rectify the drone images and
synchronise them with the test car images can be
portioned in 3 main stages: parameter extraction
by manual point and Region of Interest (ROI) se-
lection; tracking with optical flow and rectifying;
synchronising and saving.

Figure 1: Images of the same frame after different
rectifying steps. (A) - Original frame; (B) - Frame
after alignment and centring; (C)- Frame after crop-
ping.

The first frame that is fed to the algorithm will
follow the first stage, parameter extraction by man-
ual point and ROI selection. Here the user has to
identify and manually select two points on the frame
that correspond to the test car extremities that be-
long to its symmetry line. These points will then be
used to calculate the angle γ relative to the vertical
axis, the length (in pixels) l and the midpoint pixel
coordinates C between the points. In this process,
given two points in the image coordinate system,
A(xA, yA) and B(xB , yB), that form the line seg-

ment AB, represented in Fig. 2, the parameters γ,
l and C can be easily calculated:

l =
√

(xB − xA)2 + (yB − yA)2 (1)

C = (
xA + xB

2
,
yA + yB

2
) (2)

(xB , yB) = (xA + l sin(γ), yA − l cos(γ)) (3)

γ = arctan2(
xB − xA
yA − yB

) (4)

Figure 2: Definition of the image coordinate system,
representation of the points A and B, and parame-
ters γ, l and C in relation to the test car.

By using this process to calculate γ, l and C, from
a set of two known points, we can easily perform the
necessary correction for any given frame.

These first calculated parameters, from the man-
ually selected points will serve to rectify the first
frame and to pre-rectify all of the following frames.
This means that now only the changes from this
first rectified frame need to be tracked, and that
can be done automatically. But first, in order to
track the changes in orientation, position and scale
of the test car relative to the first frame, a new set
of two good points to track needs to be selected.
Here the user will not select the points, but instead
define two ROIs over the test car. The ShiTomasi
Corner Detection algorithm [22] will be ran on the
ROIs and select the best points for tracking.

After the first frame, all the frames will follow
the procedures in stage two. Where optical flow
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is calculated, by the Lucas–Kanade method [15],
on the current frame with the coordinates from the
previous set of tracking points, and output a new
set of tracking points. From this new set, new pa-
rameters, reflecting the changes from the previous
frame, are calculated and then full rectification of
the frame can be completed.

At stage three the drone frames are matched with
a set of 4 fisheye camera images that correspond
to the same scene. This is done by resorting to
timestamps from the images and checking for each
fisheye images set, the drone image that is closest
in time to it, and pairing them together.

The images from the test car fisheye cameras were
also pre-processed into two more classes of images,
which we will refer to as: Undistorted and Classic
BEV. In the Undistorted set, the distortion caused
by the fisheye camera lenses is removed, and in the
Classic BEV image, the images from each individ-
ual camera are projected onto the ground plane (us-
ing IPM), stitched together and blended to form a
single BEV image, as seen in Fig. 3. This pre-
processing is outside of the scope of this thesis, as
these processes were already developed and imple-
mented by Volvo Cars.

Figure 3: IPM generated BEV, or Classic BEV

3.3. Single-Input Model
As first approach, we propose the use of popular
single-input GAN models. Due to the large gap be-
tween the fisheye camera views and the BEV, an
pre-generated BEV, through IPM, will instead be
used as input to the networks. This will be the
Classic BEV, mentioned in the previous section, as
it covers the same spatial region as the desired tar-
get output image.

A study using several models was conducted to
determine if the current state-of-the-art GAN mod-
els could correct the distortions and errors intro-
duced by the IPM, camera calibration and stitch-
ing when generating the Classic BEV images, and
at the same time retain the capacity to generate
the ground plane details and improve on the overall
image quality.

Four models were trained: Pix2pix [9],
Pix2pixHD [27], CycleGAN [31] and Atten-
tionGAN [26]. Each of these models fall into one of
three different categories. Pix2pix and Pix2pixHD
are supervised GAN models, CycleGAN is an
unsupervised GAN model and AttentionGAN is
a unsupervised GAN model that uses attention.
With this, we aimed to evaluate which type of GAN
model is best suited to the problem in question
and to the given data.

Each model was either implemented according to
the respective paper or trained using the official
publicly available implementation. For training we
used all the default hyperparameters and no alter-
ations to the architecture or loss functions of the
models were done.

3.4. Multi-Input Model

For the second approach, we propose a multi-input
model, which takes as input 4 Undistorted images
from the 4 fisheye cameras, and outputs a BEV im-
age. Drawing inspiration from [3], we integrate Spa-
tial Transformer modules to ensure spatial consis-
tency. And due to its simplicity and extensive use in
image-to-image translation tasks we also based our
core architecture on the popular Pix2pixHD model
[27].

3.4.1 Generator

While our generator follows the traditional
downsample-bottleneck-upsample architecture, in
order to build an architecture for multiple inputs
and one output, our model has separate input paths
for each input image. Each path is composed of a
series of downslampling layers and at least a Spatial
Transformer Residual (STRes) block [3], that con-
tains a Spatial Transformer module [10] followed
by at least a single ResNet block [7]. The intuition
behind the use of the STRes block, was ”that the
slight blurring that occurs as a result of each per-
spective transformation is restored by the ResNet
block that follows it” [3]. The Spatial Transformer
module can be placed at any location in the net-
work, therefore several locations were considered,
as seen in generator diagram presented in Fig. 4.
These locations will be later discussed.

The features from each input path are then con-
catenated into a single feature map, which is then
convoluted through a modified ResNet block to re-
duce the number of channels of the output feature
map. From here the feature maps go through a
series of upsampling layers until the network ends
with the tanh() activation function.

3.4.2 The Spatial Transformer Module

The goal of using the Spatial Transformer (ST)
module is to ensure spatial consistency between the
feature maps and the respective ground truth. The
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ST module tries to ensure this spatial consistency
by learning transformations that are approximate
to a projection of the image pixels from the Undis-
torted images to the ground plane. A ST is a fully
differential module that can be easily integrated
into any existing model and is composed by three
components: the Localisation Network, the Grid
Generator and the Sampler.

The Localisation Network task is to estimate
transformation matrix parameters θestim, from an
input volume I. It is represented, in our case, by a
simple Convolutional Neural Network (CNN), but it
could also be any state-of-the-art classification net-
work, for example EfficientNet [25], as long as we
regress to the right number of parameters needed
for the transformation we want to do. In our case,
we want to estimate an homography matrix, there-
fore we regress the CNN to 8 parameters. The Grid
Generator generates a grid of coordinates in the in-
put I, corresponding to each pixel from the output
O. The Sampler uses the parameters of the transfor-
mation and applies it to the input I, using bi-linear
interpolation, resulting in an output volume O.

A ST module is not trivial to train for large per-
spective transformations. To stabilise its training,
we define an initial transformation matrix, θinit,
with an approximate parameterisation of the de-
sired homography matrix, and multiply it with
θestim, which is the matrix estimated by the ST,
to calculate a final homography, θ. The following
equation represents the matrix multiplication:

θ = θestim · θinit (5)

An θinit was estimated for each fisheye camera.
This estimation was done by selecting four approx-
imately corresponding points on a matching pair
of images, composed of an Undistorted image and
a Drone image (we assume that the Drone images
plane is a good approximation to the ground plane).
Using these points, it is possible to arrive at a ho-
mography estimation. The same θinit was used for
each model.

This way, θestim is actually learning a perturba-
tion to correct θinit. Which means that θestim needs
to take the form of an identity matrix at initialisa-
tion. In order to get this initialisation, the weights
of the last layer of the Localisation Network are ini-
tialised with zeros and the bias with the identity
matrix.

3.4.3 Discriminator

The discriminator used is the same as in [27]. It
is a multi-scale discriminator, meaning that it is
actually composed of 3 discriminators that have
the same architecture. Each discriminator will be
trained for a different scale, ”specifically, we down-
sample the real and synthesised high-resolution im-
ages by a factor of 2 and 4 to create an image pyra-
mid of 3 scales” [27]. This downsampling is achieved
through a simple average pooling operation, with
stride of 2. The discriminators have a fully convo-
lutional architecture [14], which is also commonly
referred to as ”PatchGAN”.

Figure 4: Architecture of the multi-input model generator network. The number of filters is represented
for each block.
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3.4.4 Losses
Our objective function is the same as in [3], which
in term stems from [27]. It is composed of an ad-
versarial loss LGAN , a feature matching loss LFM

and a perceptual loss LV GG.
The adversarial loss LGAN , is defined as:

LGAN (G,D) = E(x,y)∼Pdata(x,y)[logD(y, x)]+

Ey∼Pdata(y)[log(1− logD(y,G(y)))]
(6)

where E denotes the expected value, G the gen-
erator and D the discriminator.

By using the multi-scale discriminators, D1, D2,
D3, together with the generator, G, the learning
objective becomes:

In the perceptual loss, Eq. 7, a VVG16 [23] pre-
trained network is used. Feature maps from inter-
mediate layers of the network are extracted for both
the real, and generated images, and the difference
between them is calculated using the L1-distance.
This encourages the generated image and real image
to have similar low and high-level feature represen-
tations extracted from loss network.

LV GG(G) = E(x,y)∼Pdata(x,y)

n∑
i=1

1

wi
||V GG(i)(x)−

V GG(i)(G(y))||
(7)

Here, y is the input/label image and x is the
real/target image. The weight variable, wi = 2n−i,
is used to scale the importance of each layer, i, used
in the loss, both in Eq. 7 and 8, where n is the num-
ber of intermediate layers utilised, and it was set at
4.

The feature matching loss, Eq. 8, is related to
perceptual losses, but instead of using an auxiliary
network, the feature maps are directly extracted
from intermediate layers of the discriminators.

LFM (G,Dj) = E(x,y)∼Pdata(x,y)

n∑
i=1

1

wi
||D(i)

j (y, x)−

D
(i)
j (y,G(y))||

(8)

By using the multi-scale discriminators, D1, D2,
D3, together with the generator, G, the full learning
objective becomes:

Ltotal = min
G

((
max

D1,D2,D3

∑
j=1,2,3

LGAN (G,Dj)
)

+

λFM

∑
j=1,2,3

LFM (G,Dj) + λV GGLV GG(G)

)
(9)

where λFM and λV GG are empirically set at 5
and 2, respectively.

3.4.5 Architecture Variations
Three different variations of the generator architec-
ture were studied. In each different architecture,
the variations consisted of modifying where the spa-
tial transformer modules were located. In order to
maintain the same learning capacity across the dif-
ferent models, the number of ResNet blocks was
kept constant.

In the first variation (STN1-Encoder) the ST
module is placed at the start of the network, thus
transforming the input image before any convolu-
tion operation. Therefore, the input to the rest of
the network will already be aligned with the ground
truth, but it misses features that are only present
in the Undistorted image. In the second variation
(STN1-Bottleneck), we place the ST module at the
start of the bottleneck, to perform the appropriate
transformation of the feature maps encoded from
the input images. For the third variation (STN3-
Bottleneck), we followed the approach in [3]. This
means placing a ST module before each ResNet
block, in the bottleneck of the network, to perform
incremental transformations to the ground plane,
Fig. 5.

Figure 5: Visualisation of 3 incremental transfor-
mations applied to a Undistorted frontal image.

3.4.6 Implementation Details
Each model was trained for 250000 iterations with a
batch size of 1, which was enough for the results to
converge. Usually these models should be trained
for more iterations but overfitting was already being
observed before 250000 iterations. The Learning
Rate is initially set at 0.0001, after 125000 iterations
a linear scheduler decayed the learning rate to 0, at
250000 iterations. The input image size was set at
512x512.

3.5. Evaluation
Evaluation of generated images from GANs is a
difficult problem [2]. With many works relying
in qualitative perceptual studies and quantitative
measures. Due to time constraints we did not per-
form a qualitative perceptual study, and instead re-
lied on two of the most popular quantitative mea-
sures, the Frechet-Inception Distance (FID) and the
Kernel-Inception Distance (KID).

The Frechet Inception Distance (FID) [8] score
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was proposed as an improvement over the Inception
Score [21]. As with the Inception Score, the FID
score uses the Inception v3 classification model [24]
to capture features from an input image. The In-
ception v3 model is then run for two collections, one
containing the real images, and another containing
the generated images. The features of each collec-
tion are then summarised as a multi-variate Gaus-
sian. Then the distance between these two multi-
variate Gaussian distributions is calculated using
the Frechet distance. A lower FID score indicates
that generated images more closely match the sta-
tistical properties of real images.

The recently proposed Kernel-Inception Distance
(KID) [1], computes the squared Maximum Mean
Discrepancy between the feature representations of
real and generated images. The feature represen-
tations are again extracted from the Inception v3
model. In contrast to the FID score, KID has an
unbiased estimator, which makes it more reliable,
especially when there are fewer test images than
the dimensionality of the inception features. As
it is with FID, a lower KID score indicates that
generated images more closely match the statistical
properties of real images.

To run these measures an evaluation dataset was
defined. This dataset contains 159 images, all taken
from the same isolated route that was not seen by
the models during training.

Besides evaluating the different GAN models,
we also evaluate how well the models could learn
to generate a BEV given different sets of data.
For this, 3 different training datasets were created.
Each dataset was created in order to present a dif-
ferent degree of difficulty. Dataset 3 presents the
scenarios that should be easiest for the model to
learn, while Dataset 1 presents the scenarios that
should be the most challenging, as it contains fea-
tures that are harder to learn, such as poles and
overhead trees, that are less present in Dataset 1
and 2.

In order to evaluate how the different datasets
affect the models learning of the BEV, the same
model, Pix2pixHD was trained for 250000 iterations
for each of the three different datasets.

4. Results

4.1. Dataset

The results from the dataset evaluation, described
in the previous section, where the same model was
trained with different datasets, are presented in the
following table.

FID KID
Dataset 1 1.587837524 24.40750003
Dataset 2 1.8459935 30.11656404
Dataset 3 1.964971619 32.08196163

Table 1: FID and KID score for the different
datasets trained on the Pix2pixHD model.

From table 1, we note that the model trained
on Dataset 1, which should have been the most
challenging dataset, performed the best. While the
model trained on Dataset 3, which should have been
the least challenging dataset, performed the worst.
The explanation that we find for these results is
that all models overfitted the data. With Dataset
3, which has the least amount of images thus over-
fitting the most and performing worse. Dataset 2
and Dataset 1 followed with better results as these
contained more data and overfitted less.

Unfortunately, the only conclusion that we can
arise from this study, is that the datasets didn’t con-
tain enough images to train these models without
causing overfitting. This is, the models will learn
to translate the images in the training set well, but
have difficulty to generalise with unseen data.

4.2. Sinlge-Input Model
When evaluating the results from the first approach,
it is possible to take several findings. From table
2, where the evaluation scores are presented, it is
noted that Pix2pixHD obtained the best score by a
large margin, outperforming all the other models in
both the ground plane details and on the generation
of other cars, being able to remove most of the dis-
tortions from the other cars and mapping then to
correct position, and represent well defined road de-
tails (we must also note that Pix2pixHD was trained
with a larger size image). Pix2pix performed the
worse, generating very blurry images. CycleGAN
and AttentionGAN obtained similar scores, with
the latter obtaining a marginally better score.

FID KID
Pix2pix 4.264246216 78.70054245
Pix2pixHD 1.425966034 22.57144451
CycleGAN 3.478949585 64.3399477
AttentionGAN 3.465979309 64.1622901

Table 2: FID and KID score for the different single-
input models trained on Dataset 1.

4.3. Multi-Input Model
From the model variations described in section
3.4.5, all were able to generate a BEV from the 4
Undistorted images. However, the overall quality of
the generated images remained relatively low. We
believe that this is mostly due to model overfitting,
which is caused by the reduced amount of training
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Figure 6: Samples from 5 different scenes, (A) to (E), generated by the three different model variations
(STN3-Bottleneck, STN1-Bottleneck, STN1-Encoder), and the respective ground truth.

data and the lack of data augmentation. Another
reason could be the size of the input images, that
is 4 times smaller than the images that are used to
generate the Classic BEV. Nevertheless, it is still
possible to compare the different model variations
and consequently, take away conclusions.

From the generated images, it is possible to assess
two main characteristics of the generated images:
how well the ground plane and road markings de-
tails are represented, and how the distortions from
the other cars are corrected.

When observing the ground plane details in Fig.
6, the STN1-Encoder variation was the one that
was able to generate them with more similarity to
the ground truth, this is particularly observable at
scene (C), where most of the road markings at the
bottom and top-left corner of the image are gen-
erated, while for the other variations it is harder
to make out those details. Also, in scene (A), on
the left side of the image the road details are again
more accurately portrayed on the variation STN1-
Encoder. Comparing STN1-Bottleneck and STN3-
Bottleneck, it is possible to observe that the lat-
ter is able to reproduce details better, as seen in
scene (A) and (B), where the small dark drain on
the left side of the image is faintly generated with
STN3-Bottleneck, while it is not generated at all

with STN1-Bottleneck. We argue that this differ-
ence is due to the incremental transformation per-
formed on STN3-Bottleneck.

When looking at how the other cars are gen-
erated, all variations generate similar results, al-
though it is noticeable that the STN1-Encoder
model variation generated cars are slightly more
blurry and incorrectly shaped, compared with the
other variations.

We also verified that the ST modules are gen-
erally able to correct the initial homography to
a transformation that will align the images more
closely with the ground truth. Although, when
training the STN1-Encoder model, sometimes the
ST module would completely fail to learn a rea-
sonable transformation, which would happen after
an weight update deviated the estimated transfor-
mation by a large amount from the correct one.
Nonetheless, this could be solved by decreasing the
learning rate, which would stabilise the learning
process.
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FID KID
STN3-Bottleneck 2.10153244 36.19625866
STN1-Bottleneck 2.234797058 37.92501092
STN1-Encoder 2.124474487 36.25893891

Table 3: FID and KID score from our multi-input
model variations.

From the scores in table 3, STN3-Bottleneck per-
formed the best and STN1-Bottleneck performed
the worse. We interpret that the better score for
STN3-Bottleneck is due to a combination of good
ground plane details, and better representation of
other cars. While, the STN1-Bottleneck model was
penalised for the lack of ground plane details and
the STN1-Encoder model was favoured for its bet-
ter representability of the ground plane details.

5. Conclusions
Generating a Bird’s Eye View (BEV) with cur-
rent state-of-the-art Generative Adversarial Net-
works (GANs), given only fisheye images proved to
not be yet possible. Nonetheless, it is shown that
without greatly increasing the methods complexity,
similar approaches yield promising results. In par-
ticular, Spatial Transformer (ST) modules demon-
strate a strong potential in aiding a GAN to learn
a correct mapping to the BEV.

Of the two proposed methods, both the single-
input and the multi-input approaches presented vi-
able options and produced similar results. The
single-input approach is simpler in its implemen-
tation, but its potential is limited by the informa-
tion contained a BEV generated through traditional
methods. On the other hand, the multi-input mod-
els using ST modules are harder to train, but their
possibilities are still very much open for future ex-
perimentation.

By training paired and unpaired GAN models,
it is observed, that although paired models re-
sult in overall higher quality and better metric
scores, unpaired models demonstrate higher accu-
racy at generating ground plane details. Our multi-
input model was only implemented in a paired con-
figuration, consequently, we believe that an un-
paired/unsupervised implementation should also be
explored.

Our multi-input models showed that is possible
to generate a BEV, with reasonable quality, from
4 undistorted images, by resorting to ST modules
that ensure spatial consistency. Of the model varia-
tions, the STN1-Encoder was able to generate bet-
ter ground plane details, although for this model
the ST module was more unstable while training.
On the other hand, the STN3-Bottleneck better
corrected the other cars distortions and was eas-
ier to train. Therefore, it is recommended that a
model combining both variations is explored. Such

model would contain ST modules both in the en-
coder and in the bottleneck of the generator, and
follow a U-Net style architecture [?] with skip con-
nections. Also, only simple CNN architectures were
used for the localization networks in the ST mod-
ules, which proved to be sufficient. Nonetheless, we
believe that other architectures are to be explored
in order to stabilize the training process.

This study also stresses how crucial a large quan-
tity of data is to avoid model overfitting. While
the recorded 6276 samples proved to be enough to
conduct comparative studies, a dataset containing
at least 15000 samples is recommended to train a
robust model, capable of inferring in parking lot
scenarios.
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