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Abstract

For many decades after the invention of the quark model by Murray Gell-Mann and, independently,
George Zweig in 1964, there was no evidence that hadrons are formed from anything other than the
simplest combinations of quarks and antiquarks. In the last decade, however, in an explosion of data
from hadron colliders, many recently observed states do not fit into this picture: exotic hadrons. They
can be explained if the new mesons contain two quarks and two antiquarks (tetraquarks), while the
baryons contain four quarks plus an antiquark (pentaquarks). The theoretical explanations for these
pentaquark states take two divergent tracks: tightly bound objects, or loosely bound “molecules”
formed of a meson and a baryon. The goal of this thesis project is to calculate pentaquark states
in QCD within the Bethe-Salpeter formalism and make predictions for these observed LHCb states
made of light and charm quarks. The main objective is to solve, numerically, a two-body equation for
a meson-baryon system, which couples the relevant channels in the equation. In our approach, the
interaction between the meson-baryon molecule is shaped by one-boson exchanges.

Keywords: Bethe-Salpeter equations, coupled channel equation, exotic hadrons, pentaquarks.

1. Introduction

In recent years, with an explosion of data from
hadron colliders, particle physicists have seen a re-
markable boost in the knowledge of baryons and
mesons in the heavier sector (1–4 ), and some of
these recently observed states do not fit into the
quark model picture for hadrons, where mesons are
made of a quark-antiquark pair, and baryons of
three quarks. This leads to their categorization as
exotics due to their divergent characteristics from
the ordinary states. It can be assumed that lower-
mass exotic mesons are constituted of four (anti-
)quarks, called tetraquarks, and baryons of five
(anti-)quarks named pentaquarks (5 ). Mainly, ex-
otics are found in the charmonium regions (cc), mo-
tivating the new configurations depicted in Figure
1. Recently, a new exotic particle was discovered,
suggesting a cccc composition (6 ).

Several theoretical models for exotic states have
been developed and take divergent assumptions:
tightly bound particles with four or five con-
stituents, or loosely bound “molecules” like the
deuteron but made of hadrons (7 ). The fact that
exotic baryons also appear close to thresholds mo-
tivates a molecular picture for pentaquark states as
well.

Progress in this field also ties into precision mea-
surements of the fundamental properties of hadrons,

for instance, the pion, proton, and neutron, and
other simple nuclei to compare with the theoretical
calculations and allow for a quantitative description
of their internal structure.
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Figure 1: Schematic representation of the possible
tetraquark and pentaquark configurations.

After 50 years without robust experimental can-
didates for pentaquarks, in 2015 a short-lived pen-
taquark was observed through the decay of unstable
particles in the LHCb experiment at CERN (1 ), by
studying the decays of Λ0

b → J/ψK−p, particularly
the spectrum of the J/ψp decay mode mass. The
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LHCb collaboration established the existence of two
pentaquark states constituted by ccuud, making
them “charmonium” pentaquarks

In 2019, combining the data from Run 1 and Run
2 and having a better resolution near the peaks,
(4 ), the LHCb collaboration discovered a third pen-
taquark, labeled as Pc(4312)+, which was observed
with a statistical significance of 7.3σ. There is also
5.4σ evidence that the mass peak in the Run 1 data
associated with Pc(4450)+ actually consists of two
peaks, which suggests that these correspond to two
different pentaquarks, Pc(4440)+ and Pc(4457)+.
In these fits, Pc(4380)+ can neither be confirmed
nor contradicted. The results are represented in
Figure 2. The three peaks are narrow, which means
that the pentaquark particles have relatively long
lifetimes before they decay, suggesting that these
states resemble molecules holding a baryon and a
meson bound together by a residual strong force,
as represented by the molecules in Figure 1.

Figure 2: Fit to the weightedmJ/ψp distribution, which
is used to determine the central values of the masses and
widths of the P+

c states. The mass thresholds for the

Σ+
c D

0
and Σ+

c D
∗0

final states are superimposed (4 ).

2. Bound state equations
Bound states appear as poles in the n-point Green
functions, which encode hadron properties. In par-
ticular, a meson corresponds to a pole in the four-
point and a baryon in the six-point Green functions,
G(2) and G(3), or correspondingly in the scattering
matrices, T (2) and T (3). In the Euclidean metric,
the total momentum at the pole P 2 = −M2 corre-
sponds to the bound state mass, M , which is deter-
mined by solving the corresponding Bethe-Salpeter
Equation (BSE) (8, 9 ).

2.1. Dyson’s equations
In order to derive the BSE, the starting point is the
generalized Dyson equation for the n-point Green
functions G(n) or equivalently for the n-point scat-
tering matrix T (n), given by:

G(n) =G
(n)
0 +G

(n)
0 K(n)G(n) ,

G(n) =G
(n)
0 +G

(n)
0 T (n)G

(n)
0 ⇔

⇔ T (n) = K(n) +K(n)G
(n)
0 T (n)

(1)

where G
(n)
0 is the product of n disconnected dressed

quark propagators, G(n) is the amputated and con-
nected part of the n-point functions, K(n) corre-
sponds to the n-point scattering kernel, and T (n) is
the connected and fully amputated scattering ker-
nel. The last equation in (1) is depicted in Figure
3 - left.

Then, at the pole, the corresponding BS wave
function Ψ is the residue of the Green function G(n)

and the BS amplitude Γ is the residue of the scat-
tering matrix T (n),

G(n) → N ΨΨ

P 2 + M2
, T (n) → N ΓΓ

P 2 + M2
,

Ψ =G
(n)
0 Γ ,

(2)

where P is the total momentum at the pole, and N
is the normalization constant that depends on the
spin of the resulting particle.

Inserting equation (2) into the Dyson equations
(1), we identify the pole in G and T by compar-
ing the residues on both sides of the equations that
yield the homogeneous equation at the pole, either
formulated in terms of the wave function Ψ or the
amplitude Γ:

Ψ(n) = G
(n)
0 K(n)Ψ(n), Γ(n) = K(n)G

(n)
0 Γ(n). (3)

This is called the Bethe-Salpeter Equation. In order
to solve this equation, one needs knowledge of the
propagators Si and the kernel.

For example, the Bethe-Salpeter equation for a
quark-antiquark bound state is the particular case
of equation (3) for n = 2. If we drop for now the
flavor and color indices, the equation is given by:

Γ
µj
αβ(p, P ) =

∫
q

Kαγ,δβ(p, q, P )
{
S(q+)Γ(q, P )µjS(q−)

}
γδ

(4)

where S(q) is the quark propagator, whose general
form is given in eq. (5). The momenta are defined
as q+ = q + ηP and q− = q − (1 − η)P , with η
being the momentum-partioning. The greek letters
represents the Dirac indices and µj the Lorentz in-
dices. This equation is schematically represented in
Figure 3 - right.

The most general form of a Green function follows
from the Lorentz invariance, so one can expand the
correlation functions in Lorentz-invariant dressing-
functions and Lorentz-covariants tensors that in-
herit the symmetries of G:
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Figure 3: The Dyson equation (1) for a four-point scattering matrix (left). Schematic representation of the
bound-state equation for the BS amplitude at the pole position (right).

Gµν...αβ...(pn) =

N∑
i=1

fi (p21, p
2
2, p1 · p2, . . .) τµν...i,αβ...(pn) , (5)

where fi are the Lorentz invariant dressing func-
tions that only depend on invariant quantities, and
τi are the Lorentz-covariant tensors that depend on
all momentum variables.

For example, the quark propagator is deduced
from the Lorentz invariance in the following way:
the propagator can only depend on two Dirac struc-
tures {I, /p} since the remaining ones have wrong
parity when including the γ5 matrix. Thus, the
most general structure with these tensors is given
by:

S(p) =
Zf (p2)

p2 +M(p2)2
(−i/p+M(p2)) , (6)

where M(p2) is the quark mass function and Zf (p2)
the renormalization function.
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Figure 4: Schematic representation of the possible pen-
taquark pictures: 5-body system (top), and meson-
baryon configurations with quark exchanges or hadronic
exchanges (bottom). The latter is the model used in our
calculations.

3. Pentaquarks
A pentaquark system constitutes a five-body prob-
lem, which is difficult to solve on technical grounds,
considering the large number of independent mo-
menta and tensor structures in the equation. How-
ever, the problem can be simplified to a two-body
system where the pentaquark is described as a
“molecule” made of a baryon and a meson as shown
in Figure 4. A formal analogy is the reduction
of the three-body problem for baryon to a quark-
diquark picture, which also results in a two-body

system with fermion (quark) and boson (diquark)
constituents (10, 11 ).

In the case of pentaquarks, the degrees of freedom
are mesons and baryons, where hadronic exchanges
give the interaction kernel.

3.1. Propagators, kernels, and vertices
The meson and baryon propagators are taken to be
free propagators. The pseudoscalar-meson, vector-
meson and baryon propagators are then given by

DP (q) =
1

q2 +M2
P

, Dµν
V (q) =

1

q2 +M2
V

Tµνq ,

S(q) =
−i/q +M2

b

q2 +M2
b

,

(7)

where q is the momentum of the particle, M is the
mass, and Tµνq =

(
δµν − qµqν

q2

)
is the transverse

projector.
The vertex interactions have to conserve the

quantum numbers, including, for example, spin and
isospin. Consequently, the particles exchanged have
to be bosons to conserve spin and their quark con-
tent has to be qq, with q = u, d or c to conserve
isospin and be color neutral. Lastly, depending
on the spin of the meson that is considered in
the molecule, the exchanged mesons can be scalar,
pseudoscalar and vector. Each vertex has an as-
sociated coupling constant, denoted by αi, i = 1, 2,
where 1 stands for the baryon-boson interaction and
2 for the meson-boson one. The coupling constants
enter the kernel, and they measure the strength of
that individual interaction. In our simple model,
these couplings are assumed to be equal in all ver-
tices. Ideally, the couplings’ values could be calcu-
lated self-consistently from QCD through the con-
struction of the relevant invariant transition matrix
elements by mediating the transition between the
three hadrons, for example by triangle diagrams on
the vertices (12 ).

The interaction kernels are given by the product
of the vertex tensors and the scalar factor 1/(k2 +
m2), where k is the momentum of the exchanged
particle and m its mass. The one-boson-exchange
kernels are written as:

Scalar exchanges:

KPP (k) =
α

k2 +m2
, Kµν

V V (k) =
α δµν

k2 +m2
, (8)
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Vector exchanges:

KPP (k) =
iαγµkµrel
k2 +m2

, Kν
PV (k) =

α εµνδγγµkγqδ−
k2 +m2

, (9)

Pseudoscalar exchanges:

Kν
PV (k) =

αγ5k
ν
rel

k2 +m2
, Kµν

V V (k) =
α εµνδγγ5p

γ
− q

δ
−

k2 +m2
,

(10)

where krel is the relative momentum between the
two pseudoscalar particles. The first superscript
identifies the initial meson and the second the me-
son after the boson being exchanged. P means
pseudoscalar and V vector meson, and α corre-
sponds to the product of the coupling constants at
each vertex, α = α1α2.

The structure of the kernels where the vector me-
son after the exchange is converted into a pseu-
doscalar meson, KV P , is the same as in the KPV

case. The only difference is in the relative momen-
tum, which is always defined between the two pseu-
doscalar particles.

3.2. Coupled channel equation
Having established all ingredients beforehand - the
propagators and kernels -, we are in a position to
solve the Bethe-Salpeter equation that couples all
relevant channels of the system. The resulting equa-
tion has the same structure as eq. (3). In this case
S is the baryon propagator and the meson propaga-
tors (D) are defined in eqs. (7). The BSE is written
as

Γµa,αβ(p, P ) =

∫
q

{
Kµν
ab (p, q, P )Sb(q+)×

×Γγb (q, P )
}
αβ
Db

νγ(q−) ,

(11)

where the index a stands for the initial channel and
b for the intermediate state. The indices µ, ν and
γ are the Lorentz indices, where we combine pseu-
doscalar and vector constituents into Lorentz in-
dices µ = 0 . . . 4. p± is the external momenta of the
propagators and q± is the internal momenta.

3.3. Pentaquark system
We model the pentaquark by a meson-baryon
molecule and include all channels that can form a
ccuud content. There are two possible combinations
for the initial and final states:

(cc) + (qqq) or (cq) + (cqq) ,

where q means a light quark, u or d, which are the
same since we assume isospin symmetry, and c is a
charm quark. These two possibilities for the molec-
ular configurations are given in Figure 1. For in-
stance, a possible molecule is formed by the meson
D (cq) and the baryon Σc (cqq). For the exchanged

particles, we consider the light mesons σ, ρ and π
(∼ qq), and the charmed mesons D and D

∗
(cq).
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Figure 5: Possible channels and exchanged particles
for the pentaquark system. Gray solid lines represent
a general meson and solid black lines a fermion; the
blue line is a generic interaction. Each kernel of the
four channels has the structure represented in the first
diagram.

The possible channels and exchanged particles
are presented in Figure 5. The interactions be-
tween ηcp and J/ψp (a = 2, b = 2) are suppressed
since light quarks can only couple to c via quark-
disconnected (and thus OZI-suppressed) diagrams,
which is the reason why they are not considered in
our calculations. However, other channels can fluc-
tuate into these through two-loop diagrams justify-
ing why even though the ηcp and J/ψp thresholds
are lower, they are not the dominant contributions
to the pentaquark states. The ΛcD system has the
suitable quark content to form a pentaquark state,
however it was found to be repulsive (13 ).

The natural quantum numbers for bound states
made of JP = (1/2)+ baryons (Σc, p) and mesons

with JP = 0− (D, ηc) or 1− (D
∗
, J/ψ) are JP =

(1/2)− and (3/2)−. In the following we only con-
sider the (1/2)− case, for simplicity.

4. Numerical techniques

We want to solve a Bethe-Salpeter equation for
a two-body system with JP = (1/2)− with a
one-boson exchange. Thus, we start by working
out the BSE for the first channel (Σc{D,D

∗} ↔
Σc{D,D

∗}), only. The structure of the kernels and
propagators is the same for each channel; hence,
in the following equations the channel indices are
omitted. Furthermore, we assume that the ex-
changed particles have already been summed up
when the coupling constant αab,ex is multiplied in
the kernel with the factor 1/(k2 + m2), which is
the only quantity that depends on the exchanged
particle.
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To solve the BSE, the BS amplitudes (given
in eq. (11)) and the wave functions defined as
χνb,αβ(q, P ) =

{
Sb(q+) Γγb (q, P )

}
αβ
Dνγ
b (q−) are ex-

panded into Lorentz scalar functions fi and gi, and
Dirac basis elements τµi,αβ :

Γµαβ(p, P ) =

8∑
i=1

fi(p
2, z, P 2) τµi,αβ(p, P ) ,

χµαβ(q, P ) =

8∑
j=1

gj(q
2, z′, P 2) τµj,αβ(q, P ) .

(12)

There are eight basis elements, where the first
two describe the Dirac and Lorentz structure of
the pseudoscalar part and the rest the vector part.
The Dirac basis elements result from a particular
representation of the symmetry properties of the
state under parity and spin. For numerical conve-
nience, we use an orthonormal basis such that fi
and gi are obtained directly by projection. The
orthonormal basis elements obey the following or-
thonormality property: 1

2Tr
{
τµi (p, P ) τµj (p, P )

}
=

δij , where τµi (p, P ) is the conjugate basis element,
constructed in such a way that makes the basis or-
thonormal. Accordingly, there are eight Lorentz
scalar functions fi and gi that depend on all possi-
ble Lorentz invariant momentum variables and in-
herit the symmetries of the amplitudes and wave
functions. Therefore, the quantities Γµ and χµ are
completely defined by these covariants.

Then, we expand the BS amplitudes and wave-
functions in the basis τi(p, P ) and project into
τ j(p, P ) to obtain the dressing functions of the am-
plitudes and the wavefunctions.
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Figure 6: Pictorial representation of the BSE given
in eq. (11).

The basis expansion results into an 8×8 matrix
that corresponds to the distinct kernels of each
channel. For instance, in Figure 5, the kernel of the
ΣcD−ΣcD diagram of the first channel (a = b = 1)
corresponds to KPP

ij , where i, j = 1, 2 since the me-

son D is a pseudoscalar meson, while the kernel of
the second diagram ΣcD − ΣcD

∗
is KPV

ij , where

i = 1, 2; j = 3...8 since the meson D
∗

is a vector.
Then, one implements the expansion and projec-

tion in eq. (12) to χµαβ(q, P ) to obtain the propa-
gator dressing functions. In the same way as the

kernel, the expansion results into an 8×8 matrix.
There are no mixed propagators, so one only has the
baryon by pseudoscalar-meson propagator product,
given by GPPij , and the product of the baryon by the

vector meson, written as GV Vij . For instance, ΣcD

corresponds to GPPij , where i, j = 1, 2 since D is a

pseudoscalar propagator, and ΣcD
∗

to GV Vij , where

i, j = 3...8 since D
∗

is a vector meson.
For later convenience, we expand the kernel Kij

and the propagator Gij into Chebyshev polynomi-
als of the second kind which hold the dependence
on the angular variables z and z′. Thereafter, the
full matrix is calculated by multiplying the kernel
and the propagator matrices, and performing the
integration over the momentum variables leads to
the following equation:

fim(p2) =
∑
jn

∫
dq2Kikmr(p

2, q2, P 2)Gkjrn(q2, P 2)︸ ︷︷ ︸
KQ
ijmn(P

2)

fjn(q2) ,

(13)

where KQijmn(P 2) is the full kernel matrix that de-
fines each channel. The index Q stand for the dis-
cretized momentum dependence. The dimension of
the matrix KQ,abijmn(P 2) is given by (np × ncheb ×
nch× 8, np× nCheb× nch× 8), where np represents
the number of grid points to calculate the integra-
tion in the radial variable p, nCheb is the number
of Chebyshev moments, 8 is the number of basis
elements and nch is the number of channels.

Finally, having calculated the full kernel for each
channel, one can sum over the indices of the fi-
nal channel b, by transforming the system into a
matrix-vector multiplication. An artificial eigen-
value λ(P 2) is introduced and the eigenvectors F
represent the BS amplitudes Γµa,αβ(p, P ). The equa-
tion is

λ(P 2)F aim = KQ,abijmn(P 2)F bjn . (14)

To find a bound state solution, we vary P 2 to
identify the values where some of the eigenvalues
become one, which then corresponds to the mass
of a possible bound state. More efficiently, we cal-
culate the kernel with all coupling constants equal
to 1. Thus for any P 2, the inverse eigenvalues
1/λ(P 2) is a value of a common coupling constant
c, by which we can multiply the kernel to produce a
bound state. The smallest corresponds to a ground
state’s mass and the larger ones to possible excited
states.

4.1. Eigenvalue reconstruction
The kernel K and the propagator G matrices are
both hermitian but (KG) 6= (KG)† because they
do not commute. For unequal masses, solutions
with different type of eigenvalues may interfere,
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and this could be the underlying mechanism for
the generation of complex eigenvalues (14 ). In
principle, the kernel and the propagator matri-
ces can always be transformed into real and sym-
metric matrices: Gmn(p2, P 2) = Gnm(p2, P 2) and
Kmn(p2, p′2, P 2) = Knm(p′2, p2, P 2). Initially, due
to choices of particular bases and polynomials, the
matrix entries can be real or imaginary, so we per-
form the following transformation to make K and
G real and symmetric,

KGΓi = λiΓi → (hKg)︸ ︷︷ ︸
real and

(g†Gh†)︸ ︷︷ ︸
symmetric

(hΓi) = λi (hΓi) ,

(15)

where g and h are diagonal matrices with entries 1
or i.

If K and G are real and symmetric, then from
a Cholesky decomposition one can show that KG
is hermitian if G > 0 or G < 0. So, performing
a spectral decomposition of the propagator matrix
from its eigenvalues ηi and eigenvectors ξi, we get:

Gξi = ηiξi → G′ =
∑

ηi>0 or ηi<0

ηi ξiξ
†
i , (16)

leading to a new equation with different eigenvalues
λ′i:

KG′ Γ
′
i = λ

′
i Γ

′
i . (17)

Because KG′ is hermitian, λ′i must be real and the
Γ′i are orthogonal.

This restriction of the propagator matrix to its
positive or negative eigenvalues disentangles the
complex eigenvalues of the BSE to become real and
exhibit only the characteristics of physical or un-
physical solutions.

4.2. Suppression form factor
In order to make the loop integrals converge, we
had to include a form factor in the kernels of eqs.
(8), (9) and (10), ensuring that the BS amplitudes
fall off for large momenta. This factor is given by:

F (q2,Λ2) =
Λ2

(Λ2 + q2)
, Λ = 1 GeV , (18)

where Λ is the cutoff value and q is the relative in-
ternal momentum between the two constituent par-
ticles. This monopole suppression factor is also used
in other models (5, 15, 16 ). Before introducing this
factor, the amplitudes are constant even for all p2

values.

4.3. Eigenvalues’ extrapolation
To reach the physical threshold, which corresponds
to the total mass of the constituent particles in the
molecule, one has to determine the optimal momen-
tum partitioning, which allows calculations up to

that limit. Only when the optimal partitioning is
employed the “calculable threshold” corresponds to
the physical threshold.

It is straightforward to establish this parameter
for the one-channel case, it is simply given by the
mass of the baryon divided by the physical thresh-
old of the molecule. Nevertheless, when there are
several channels, we have to define an optimal par-
titioning for each channel. In our simple model, we
stick with the lower threshold, which ensures that
we avoid poles; thus our thresholds correspond to
the sum of the masses of the lightest baryon and me-
son in the channels considered. For instance, when
we consider all diagrams, the calculable threshold
is 2.8 GeV, which coincides with the sum of the
lightest baryon, proton, and the lightest meson, D.

Above the threshold, one has to extrapolate the
eigenvalue spectrum which is problematic for sev-
eral reasons. As a simple “guesstimate”, we ap-
proximate the p2-dependence of eigenvalues by a
Hermite polynomial of degree 2. Naturally, the ex-
trapolation is only an indication of each diagram’s
influence and density of eigenvalues near the thresh-
old region. The inaccuracy of this approach is due
to the fact we are continuing a non-analytical func-
tion by an analytical since there is a cut opening
at the threshold(s). A proper method but more in-
volved to extrapolate the eigenvalues is described in
(17 ).

5. Results
First, we consider one channel (see Figure 5), the

Σc{D,D
∗} ↔ Σc{D,D

∗}. The configurations stud-
ied for this channel are given in Figure 10 in the end.
The second channel is then added, the J/ψp↔ ηcp,
to check the eigenvalues response. The cases, in-
cluding the second channel, are indicated in Figure
11. Eigenvalue comparison will allow for the assess-
ment of their influence in the pentaquark system
and determine how each channel and exchange par-
ticles affect the number of bound states.

5.1. Eigenvalue spectrum
We begin by adding diagrams to the first channel
Σc{D,D

∗} ↔ Σc{D,D
∗}, as indicated by configu-

rations (C1) - (C4) in Figure 10. The eigenvalue
spectrum for different combinations is depicted in
Figure 7.

In Figure 7 - (C1) and (C2), we plot the inverse
eigenvalue spectrum for the diagonal diagrams, in-
dividually, and looking at these configurations in
Figure 10, we expect these diagrams to be decou-
pled, since they belong to the diagonal part of the
kernel matrix. Hence, comparing the inverse eigen-
value spectrum of (C1) and (C2) with configura-
tion (C3), which includes both diagonals, we con-
clude that the ground and first excited state in (C3)
are identified as the ground state in (C1) and the

6



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

C1

0

1000

2000

3000

4000

5000

1/
R
e(
λ
)

● ● ● ●
●

●
●

●
●

●
●

●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

C2

0

1000

2000

3000

4000

5000

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ●
●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

C3

0 1 2 3 4
0

1000

2000

3000

4000

5000

M (GeV)

1/
R
e(
λ
)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

C4

0 1 2 3 4
0

500

1000

1500

2000

2500

M (GeV)

(
)

Figure 7: Inverse eigenvalue spectrum for the configurations (C1) - (C4) i in Figure 10 considered
for the 1st channel. The gray area represents the region above the threshold where the eigenvalues are
extrapolated. The dots are the calculated values, the lines are inter- and extrapolation.

ground state in (C2), respectively. The second and
third excited states in (C3) have contributions from
both diagrams. In particular, the second excited
state is given by the first excited state in (C2) un-
til around M=1 GeV and after that by the first
excited state in (C1). Regarding the third excited
state, it is the other way around, it is dominated
by the second excited state from (C2) until M=1
GeV and then by (C1). Because the spectrum in
(C3) can be approximately obtained by superim-
posing spectra (C1) and (C2), one can conclude
that these two diagrams are essentially decoupled.

Afterwards, the off-diagonal diagrams (C4) are
included. From their comparison with (C3), we
observe that the spectrum is similar, but the inverse
eigenvalues’ magnitude in (C4) is lower, indicating
that the off-diagonal diagrams have an attractive
effect in the system; however they are not dominant.

To summarize, the first channel is essentially
dominated by the diagonal diagrams, namely, in the
ground state the ΣcD −ΣcD diagram prevails, the
first excited state is dominated by ΣcD

∗ − ΣcD
∗

and the higher lying inverse eigenvalues are given by
contributions from both diagonal diagrams. From
now on, configuration (C4) will be taken as our
reference.

Beyond the 1st channel, we add the 2nd according
to configurations (C7) - (C10) in Figure 11, and
represent the inverse eigenvalue spectrum in Figure
8.

We plot the inverse eigenvalue spectrum for
(C7), and comparing with our reference (C4) (rep-
resented by the dashed lines in all panels), one con-

cludes that it merely shifts the spectrum. In ad-
dition, we only consider the vector-vector diagonal
diagram, (C8) and the spectrum is almost iden-
tical to (C7), but in this case the ground state
is very close to our reference, meaning that the
small shift from the diagonal diagrams comes from
ΣcD ↔ p ηc. Subsequently, we plot (C9), and it
looks very similar to the other spectra even in form
and magnitude, indicating that there is not any par-
ticular diagram which is dominant. Also, we ob-
serve that the ground state is almost not changed
by any of the diagrams of the 2nd channel.

Finally, we plot (C10), which includes all dia-
grams, and by comparing with (C4) we observe,
once more, that the spectrum looks very similar.
The main difference is on the inverse eigenvalues
spectrum magnitude which is lowered by the in-
terference from the diagonal and off-diagonal dia-
grams of the 2nd channel, since the individual con-
figurations (C7)-(C9) fail in explaining the (C12)
spectrum. Despite the second channel having an
attractive effect, providing more binding, it does
not modify the eigenvalues fundamentally. Thus,
the system is still dominated by the first channel,
mainly by the diagonal diagrams.

5.2. Mass spectra

In this section, we present the mass spectra for some
configurations in the first channel. The masses of
the bound states P 2 = −M2 are obtained by the
intersection of the inverse eigenvalues with the cou-
pling constant value. In our case, the coupling con-
stant is chosen such that the ground state repro-

7
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Figure 8: Inverse eigenvalue spectrum for configurations (C7) - (C12) in Figure 10 considered for the
1st and 2nd channel. The gray area represents the region above the threshold. The dashed gray lines are
the results of the reference configurations (C4), shown for comparison.

duces the mass of the lightest pentaquark state de-
tected at LHC, the Pc(4312)+, in our reference cal-
culation (C4). This value was found to be c = 16.0,
which is employed in the other configurations to
determine the density of bound states. As previ-
ously mentioned, this is simply a first approxima-
tion, since, in principle, one could calculate the cou-
pling constants. Once more, the masses determined
in this section are merely a rough indication, when-
ever they are calculated above the threshold. An
evidence of the fragility of Hermite extrapolation is
the occurrence of eigenvalue crossing in this region,
which should not happen after the reconstruction
procedure. We calculate the extrapolation until
4.457 GeV, which corresponds to the pentaquark
state with the largest mass, Pc(4457)+. We only
consider the first three eigenvalues as an illustra-
tion. Also, higher magnitude eigenvalues are asso-
ciated with larger uncertainties.

In Figure 9, the purple horizontal line is adjusted
such that the first bound state in (C4) is at 4.312
GeV. As previously determined, the ground state in
configuration (C1) gives the ground state in (C4),
so the mass of that state is the same in both cases
(M = 4.312 GeV). In the first excited state, on
the other hand the contribution from the ground
state in (C2) prevails, thus the mass of the next
bound state in (C4) should appear near 4.492 GeV.
However, the second excited state in (C4) forms a
bound state before the first excited state, as a conse-
quence of our oversimplified extrapolation. So, if we
overlook this “problematic” state, the first excited

state in (C4) forms a bound state near 4.545 GeV,
relatively close to the mass formed by the ground
state in (C2) (M = 4.492 GeV), as one expected.

6. Conclusions

The goal of this thesis project was to calculate pen-
taquark states in QCD within the Bethe-Salpeter
formalism. The main objective was to make pre-
dictions about the dominant diagrams to describe
these states and their bound state masses. In our
calculations, we assumed a molecular picture, con-
stituted by a meson and a baryon suitable to form
the appropriate quark content, ccuud. Hadronic ex-
changes bind the molecule.

In order to draw conclusions, we plotted the
inverse eigenvalue spectrum for different configu-
rations, including the two possible channels, the
Σc{D,D

∗} ↔ Σc{D,D
∗} and the p{ηc, J/ψ} ↔

p{ηc, J/ψ}. Then, by comparing each channel’s in-
fluence in the spectrum, we concluded that the sec-
ond channel does not affect it fundamentally. It
only decreases the inverse eigenvalues by providing
more binding to the system. Thus, the pentaquark
could be generally described by the first channel
alone, as long as the molecules ΣcD and ΣcD

∗
are

included. Inside the first channel, the diagonal dia-
grams are the most relevant to describe the system,
so the case where both diagrams are included was
taken as our reference case.

Afterwards, we calculated the bound state masses
formed for the several combinations by fixing the
coupling constant such that the first bound state in
our reference case appears at the mass of the lightest

8
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Figure 9: Inverse eigenvalue spectrum near the threshold and bound state masses for configurations (C1),
(C2) and (C4). The horizontal line corresponds to the adjusted coupling constant value, c = 16.0. The
gray area represents the region above the threshold, where the eigenvalues are extrapolated. In the inset
tables are indicated the bound state masses (in GeV) for the three eigenvalues.

pentaquark discovered at LHCb, Pc(4312)+. This
value was found to be c = 16.0. In our reference
case, for the ground and first excited state, we found
M = 4.312 and 4.545 GeV, respectively.

Our model is simply a first approximation; all
coupling constants were taken to be equal; how-
ever, this is not a very realistic model. Each dia-
gram has a specific coupling constant, that could
be adequately calculated in future work. Another
source of uncertainty is the inverse eigenvalue ex-
trapolation above the threshold, where the masses
are calculated. In principle, the predictions in this
region can be made through the Resonances-Via-
Padé method. Thus, our bound state masses are
only an indication of the density of inverse eigen-
values near the threshold region, and should not be
taken as a firm prediction.
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(C5)
Figure 10: Different configurations considered for the first channel.
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Figure 11: Different configurations considered after adding the second first channel.
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