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ABSTRACT
The asteroseismic modelling of solar-like stars has proved to be valuable in the search for dark matter constraints. In this work
we study for the first time the influence of asymmetric dark matter (ADM) in the evolution of a subgiant star (KIC 8228742)
by direct comparison with observational data. Both spectroscopic and seismic data are analysed with a new approach to the
stellar calibration method, in which dark matter properties can also be considered as free inputs. In another phase of this study,
a calibrated standard stellar model (without DM) is used as the benchmark for DM models. We find that the latter models
consistently outperform the former for 10−40 6 fSD < 10−38 cm2, hinting that the presence of asymmetric dark matter in stars
of this type does not go against observations. Moreover, we show that stellar seismology allows us to suggest exclusion limits
that complement the constraints set by direct detection experiments. Different seismic observables are proposed to study DM
properties and ΔΠℓ is found to be the most reliable, having the potential to build future DM exclusion diagrams. This new
methodology can be a powerful tool in the analysis of the data coming from the next generation of asteroseismic missions.
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1 INTRODUCTION

Since the dark matter (DM) hypothesis arose from the discrepancy
between theory and the observation of the galaxies’ rotation curves
(Rubin et al. 1976), direct detection experiments have been conducted
in the hope of finding these elusive particles (e.g., Bertone 2010;
Undagoitia & Rauch 2015, and references therein). Although some
constraints on the mass and cross section of interactions of DM
particles with baryons have been set (e.g., Beringer et al. 2012), no
detection has yet been confirmed (e.g., Schumann 2019).
Weakly Interacting Massive Particles (WIMPs) stand out as one

of the primary candidates for DM (Bertone et al. 2005; Bertone &
Hooper 2018). These particles have a non-negligible scattering cross
section with baryons which is usually treated in two separate compo-
nents: spin-dependent, fSD, and spin-independent interactions, fSI
(Barger et al. 2008). For WIMP masses around <j ' 5 GeV, recent
upper limiting constraints on fSD (WIMP-proton interactions) have
been placed at slightly below 10−37 cm2 by PICASSO (Behnke et al.
2017) and at around 10−39 cm2 by PICO-60 (Amole et al. 2019).
The XENON-100 experiment (Aprile et al. 2016) placed a limit for
fSD at ∼10−36 cm2 for <j ∼ 9 GeV. For fSI (WIMP-nucleon inter-
actions) the upper limits were found to be at around 5×10−41 cm2

(from both PICASSO and PICO-60).
In this study, we consider WIMPs in an asymmetric dark matter

(ADM) scenario, in which the DM annihilation cross section is neg-
ligible. Much like baryons in baryogenesis, dark matter asymmetry is
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hypothesised to have been produced in a process often called darko-
genesis (e.g., Shelton & Zurek 2010). Thus, in the ADM framework,
the DM and anti-DM densities are unbalanced and make the present-
day DM self-annihilation negligible. This choice of framework is
mainly interesting in the standpoint of the DM influence on stars:
since DM self-annihilation does not occur, the number of DM parti-
cles inside a star will naturally be larger than it would be otherwise,
making the star more sensible to its effects, which allows for a better
study of DM phenomena.

Besides the alreadymentioned direct detection achievements, stars
have also been used in the search for DM. These endeavours have
ranged from the study of solar models affected by DM (e.g., Lopes
& Silk 2010; Taoso et al. 2010) to asteroseismic analysis (e.g., Lopes
et al. 2002a; Casanellas&Lopes 2013; Lopes et al. 2019) also includ-
ing neutrino flux constraints (e.g., Lopes et al. 2002b; Turck-Chièze
et al. 2012). Using stars and stellar models as an object of study
of DM also has its shortcomings, which are mostly inherited from
standard stellar modelling. A notable example among these is the
so-called solar composition problem. Standard solar models using
the most recent photospheric abundances (AGSS09: Asplund et al.
(2009)) as inputs present a contradictory prediction of the Sun’s in-
ternal structure when compared to high-precision results from helio-
seismology (e.g., Christensen-Dalsgaard 2002; Bahcall et al. 2005).
This discrepancy between predictions coming from spectroscopy and
helioseismology renders the determination of stellar properties (such
as the sound speed profile) through stellar modelling problematic and
affects not only the modelling of the Sun but also other stars since
they rely on solar inputs for some quantities, like the relative metal-
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licity //- . In a recent discussion of this problem, Capelo & Lopes
(2020) have shown that measuring neutrino fluxes from the CNO
cycle with a precision that could be achieved by the next generation
of experiments could help resolve this issue. While this problem can
hinder the ability of using stellar modelling to probe DM properties,
DM itself can also be an answer to the abundance problem since
it introduces different physics in the interior of stars. Particularly,
Lopes et al. (2014) proposed that the accretion of DM in the Sun’s
core could lead to a better agreement between helioseismic and neu-
trino data. In a follow up with a more detailed analysis, Vincent et al.
(2015) show that the solar abundance problem could be solved by
the presence of a light asymmetric dark matter particle.
Asteroseismology has particularly been thoroughly exploited in

an attempt to find constraints for the properties of DM while us-
ing stars as laboratories (Casanellas & Lopes 2010). The premise is
fairly straightforward: by analysing oscillation frequencies of stars
we can extract valuable information of their interior structure. This
is related to DM because the capture and subsequent accumulation
of these particles via gravitational effects introduce an additional en-
ergy transport mechanism. This new phenomenology can naturally
lead to changes in the structure of the star, which can be probed via
asteroseismic diagnostics (e.g., Casanellas & Lopes 2010; Martins
et al. 2017). Missions like CoRoT (Fridlund et al. 2006; Michel et al.
2008), Kepler (Borucki et al. 2010; Koch et al. 2010) and TESS
(Ricker et al. 2014) have made progress in obtaining the oscillation
frequencies of many main-sequence (MS), subgiant (SG) and red-
giant (RG) stars with great precision, making it possible to study the
asteroseismology of stars other than the Sun. To take full advantage
of this diversity of data, seismic diagnostics can be formulated for
several stars in different stages of evolution, broadening the spectre
of potential DM laboratories. With the primary goal of discovering
habitable extra-solar planets, the PLAnetary Transits and Oscilla-
tions of stars (PLATO) mission (Rauer et al. 2014), to be launched in
2026, will extend this effort and enable more precise studies by the
determination of accurate stellar masses, radii, and ages from aster-
osesimic data. The oscillation frequency measurements are expected
to improve in precision upon those ofKepler while also extending the
catalogue to include brighter stars. Thus, this will enable the study of
the effects of DM on the stellar structure with both greater precision
and for a considerably larger number of stars.
In the following section we focus on the asteroseismology of SG

stars and important quantities for describing stellar oscillations are
introduced. We then describe the calibration methodology and the
diagnostics used to infer on the quality of the calibrated models, in
Section 3. In Section 4we address the interactions betweenADMand
stars. Results are then shown in two separate parts. In Section 5 we
calibrate a SG star with and without ADMpresence, where the stellar
inputs are treated as free parameters and are thus optimised to better
fit the observational data. After that, in Section 6, we take on the
work of the previous section by choosing the best no-DM model as
benchmark to build a set of DMmodels with different properties and
fixed standard stellar inputs. We then use the diagnostics defined in
Section 3 to classify this set of models and enquire about constraints
on the properties of ADM. Finally, conclusions and closing remarks
are presented in the last section.

2 ASTEROSEISMOLOGY OF SUBGIANT STARS

The study of the impact of DM on the Sun and other MS sun-like
stars using asteroseismology has allowed to constrain properties of
different types of particle DM (e.g., Lopes et al. 2002a,b; Frandsen

& Sarkar 2010; Lopes et al. 2019). In this work we focus on stars in
a different stage of evolution – the subgiant phase. This stage follows
the MS, i.e., after hydrogen burning ceases in the centre of the star
and moves to a shell right above the helium ashes that compose the
inert stellar core.

In particular, the object of our study is the subgiant KIC 8228742,
a F9IV-V spectral type star (Molenda-Żakowicz et al. 2013) with
a previously modelled mass of 1.27 M� (Metcalfe et al. 2014).
Throughout this work, the observational constraints were taken from
Chaplin et al. (2013) for the spectroscopic parameters and from Ap-
pourchaux et al. (2012) for the oscillation frequencies, as published
in the Asteroseismic Modelling Portal (AMP) (Metcalfe 2014).

Despite the experimental advances made by the aforementioned
missions, SG stars are more difficult to find than MS or giant stars
since that stage has a relatively shorter lifetime. Another interesting
aspect when studying the asteroseismology of SG stars is the lack
of detected non-radial acoustic modes. Usually, SG and RGs’ most
visible oscillations are gravity-dominated mixed modes (Hekker &
Mazumdar 2013; Gai et al. 2017): due to the rapid core contraction,
the gravity (g-) and acoustic (p-) mode trapping cavities are closer
to each other when the stars move off the MS, which results in the
coupling of the acoustic and gravity modes. These are called mixed
modes, which have p-mode characteristics in the convective stellar
envelope and g-mode characteristics in the dense radiative stellar
core. However, KIC 8228742 exhibits many simple modes (or pure
acoustic p-modes) like the Sun (Appourchaux et al. 2012). This is
due to gravity-dominatedmixedmodes having lower amplitudes than
pressure-dominated ones (Dupret et al. 2009; Grosjean et al. 2014),
so observing them is not always easy. As such, we first direct our
focus to the acoustic simple modes.

Since acoustic waves of low spherical degree (ℓ) propagate
throughout the entire star, their frequencies encode information of
the whole stellar structure, spanning from the star’s core to its sur-
face. Thus, as stated before, obtaining them is pivotal to understand
the underlying physics of the internal structure of a star. Naturally,
quantities stemming from these frequencies can be defined to better
probe the stellar structure. The large frequency separation is defined
as (e.g., Tassoul 1980; Lopes & Turck-Chieze 1994)

Δa=,ℓ = a=,ℓ − a=−1,ℓ '
(
2
∫ '

0

3A

2(A)

)−1
, (1)

where a=,ℓ denotes the frequency of the mode with radial order =
and spherical degree ℓ, A is the radial coordinate, ' is the total radius
of the star and 2(A) represents the sound speed profile inside the star.
Thus, Δa=,ℓ is deeply related to the sound speed profile of a star and
is useful as a global measure of that quantity (Floranes et al. 2005).

Additionally, a small frequency separation can also be defined as
(Tassoul 1980; Lopes & Turck-Chieze 1994)

Xa=,ℓ = a=,ℓ − a=−1,ℓ+2, (2)

which is particularly sensitive to the thermodynamic conditions of
the stellar core.

As discussed before, subgiant and giant stars often exhibit gravity
dominated modes. From these, the period separation ΔΠℓ is a useful
quantity to extract and, in the asymptotic limit, it is given by (Tassoul
1980)

ΔΠℓ =
2c2√
ℓ(ℓ + 1)

(∫ A2

A1
#
3A

A

)−1
=

Π0√
ℓ(ℓ + 1)

, (3)

where # is the Brunt-Väisälä (or buoyancy) frequency and A1
and A2 correspond to the boundaries of the g-mode cavity which
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extends through the radiative region of the star. Since, in SG stars,
A1 coincides with the interface between the inner convective zone (if
there is one) and the radiative region, it follows that ΔΠℓ directly
relates to the size of the convective core.

3 CALIBRATION AND DIAGNOSTIC METHODS

3.1 Observables and calibration

Stellar modelling has been extremely helpful in allowing us to better
understand the physics at play inside stars. Modules for Experiments
in Stellar Astrophysics (MESA) (Paxton et al. 2011, 2013, 2015,
2018, 2019), an open-source 1-D stellar evolution code, is a pow-
erful tool in this regard. By combining various modules that aim to
precisely describe different stellar phenomenology,MESA allows the
user to model a wide variety of stars, given a set of stellar parameters
as inputs.
In our work, we take advantage of the full capabilities of MESA,

with special emphasis on the astero module (Paxton et al. 2013),
as it governs calibrations. Using this module as a starting point, we
produce a high precision stellar model calibration process which al-
lows for both seismic and spectroscopic calibrations by taking as
inputs {" , .8 , [Fe/H]8 , U, 5ov} (stellar mass, initial helium abun-
dance, initial metallicity, mixing-length parameter and overshooting
parameter, respectively) and then producing an evolutionary model
that is compared head-to-head with observations. This comparison
is accomplished by computing a j2

star value that has weighted con-
tributions from both spectroscopic (j2

spec) and seismic (j2
seis) ob-

servables. In this work we use the default 2/3 weight on the seis-
mic contribution and 1/3 on the spectroscopic counterpart, i.e.,
j2

star = 1/3j2
spec + 2/3j2

seis (Metcalfe et al. 2012; Paxton et al.
2013). The diagnostics j2

spec and j2
seis are quadratic deviations from

the spectroscopic and seismic observational data, respectively, with
their uncertainties taken into account:

j2
spec/seis =

1
#

#∑
8=1

(
-mod
8
− -obs

8

f-8

)2

, (4)

where # is the number of parameters, -mod
8

and -obs
8

are the stel-
lar model and observed values of the 8th parameter, respectively, with
f-8

being the observational uncertainty. The observational parame-
ters used in j2

spec are {!, )eff , [Fe/H]} = {4.57 ± 1.45 L� , 6042 ± 84
K, -0.14 ± 0.09} (luminosity, effective temperature and metallicity),
and in j2

seis is {Δa} = {62.1 ± 0.13 `Hz}.
As for the calibration procedure, we use amethod that is commonly

used throughout the literature (e.g., Deheuvels et al. 2016; Capelo
& Lopes 2020) which relies on minimising j2

star. This is achieved
through an automatised optimisation process which uses a direct
search method – the downhill simplex algorithm (Nelder & Mead
1965) – to find the optimal set of inputs that produce the group
of outputs {!, )eff , [Fe/H], Δa} that are closest to their observed
counterparts. To account for DM effects, we extend the standard
calibration process to also include the relevant DM parameters as
inputs, which extends the input set to {" , .8 , [Fe/H]8 , U, 5ov <j ,
fSD} while maintaining the same outputs and comparison strategy.

3.2 Seismic ratio diagnostics

While ensuring that a model is consistent with observations in terms
of spectroscopy is valuable in itself, in most cases these parameters
do not fully mirror what is happening in the stellar interior. These are

the situations where thoroughly analysing the oscillation frequencies
of a star becomes a powerful diagnostic tool.

To build upon the calibration process described in the last section,
we resort to a more detailed seismic diagnostic of the stellar interior
based on the observational frequencies a=,ℓ . Since in stars other than
the Sun it is difficult to observe modes with ℓ > 2 due to partial
cancellation (e.g., Aerts et al. 2010), we decide to use the ratio of the
small to large separations A02,

A02 (=) =
Xa=,0
Δa=,1

. (5)

Equation (5) aims to give better insights on the stellar core –
where the most significant DM influence is expected – since the near-
surface effects that highly affect individual frequency separations
nearly cancel out by computing this ratio. This means that A02 (=)
is independent of the structure of the outer layers of a star and thus
works as a probe into the stellar interior (Roxburgh & Vorontsov
2003). Conveniently, we define a new j2 to assess the seismic quality
of a given stellar model in terms of the A02 ratio:

j2
A02 =

22∑
==14

[
Aobs

02 (=) − A
model
02 (=)

f
Aobs

02

]2

, (6)

where Aobs
02 (=) and A

model
02 (=) represent the ratio defined in eq. (5)

computed using both the observed and model frequencies, respec-
tively, while f

Aobs
02

stands for the observed uncertainty which is com-
puted through error propagation from the individual frequencies’
uncertainties. For the star considered here, we can observe 32 modes
with ℓ 6 2 and = running from 14 to 22, amounting to 9 different
instances of A02 in the sum defined in eq. (6). The resulting value
of j2

A02 along side the other mentioned diagnostics will provide the
classification of the models.

One important point to bear in mind is that j2
A02 is used as an

additional diagnostic, independent from the original calibration pro-
cess. This is mainly because it creates a robust two-step rejection
method and also due to computational time constraints. Thus, only
j2

spec and j2
seis are computed at each step of the calibration process.

It should be noted that while j2
seis does imply the computation of

the large frequency separation, this is accomplished by taking into
account the approximation in eq. (1) instead of the actual computa-
tion of the oscillation modes, and as such, it does not represent the
time-consuming effort that A02 would. After the calibration process is
completed the A02 ratios are then computed for the accepted models
of the previous step (usually by defining a cut-off j2

star).

4 ASYMMETRIC DARK MATTER INTERACTIONS WITH
A STAR

In the case of ADM, the interactions between DM particles and a
given star are limited to capture, evaporation and energy transport,
all due to scattering with the baryonic matter that constitutes the
stellar plasma. For the models considered in this work, it is safe to
neglect evaporation – the process in which DM particles that were
already trapped inside the star scatter to velocities larger than the
local escape velocity – since it has been found that, for sun-like
stars, the DM mass above which evaporation is negligible is close
to 3.3 GeV (e.g., Gould 1990; Kouvaris 2015), and here we explore
larger mass values of ADM particles. Additionally, as stated before,
the annihilation cross section of ADM particles is negligible and,
thus, the process that defines the number of dark matter particles
inside the star is the capture. This process, which consists in the
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gravitational trapping of DM particles from the galactic halo, is
mainly defined by the DM mass, the DM–nucleon cross-section, the
gravitational potential of the star and the local DM density. In our
case, KIC 8228742 is just 0.17 kpc away from the Sun, therefore we
assume a DM density corresponding to what is found in the solar
neighbourhood, dj = 0.38 GeV/cm3 (Catena & Ullio 2010).
After accumulating and thermalising within the star, captured par-

ticles interact with baryons in the stellar interior. These scatterings
will create an additional mechanism for transporting energy, adding
an extra term to the standard equation of energy transport in stars.
In most model-independent DM studies it is usual to assume the
already mentioned fSI and fSD effective constant cross sections to
describe the ADM particles’ interactions with the baryons in the
stellar plasma. In this work, we focus on SD interactions, which,
in the case of solar-like stars, correspond mostly to scatterings with
hydrogen. Previous studies regarding the impact of ADM in the Sun
showed that due to the flux of energy carried outwards from the
innermost regions of the star by ADM particles with a mass of 7
GeV and fSD ' 10−36 cm2, the stellar core exhibited a decrease in
temperature when compared to the standard case, while the reverse
happened with the (baryonic) density (Taoso et al. 2010). This effect,
whose intensity is naturally related to the interaction cross-section,
is in fact counter intuitive given that any transport of energy away
from the core should lead to its contraction, which would in turn lead
to an increase in temperature. This however is not the case, since the
energy transported away by the ADM particles is of a higher order of
magnitude than the one released by the core contraction, countering
its heating effects.
Another well-known consequence of the extra energy transport by

DM is the suppression of convection – generally in the centre of the
star – which was firstly proposed by Renzini (1987) and Bouquet &
Salati (1989) and later studied by Casanellas & Lopes (2013) and
Casanellas et al. (2015), particularly for stars with masses between
1.1 and 1.3 M� . This suppression is directly related to the decrease
in the temperature gradient, which prevents the arise of convection
as it would in cases where there is no energy transport by DM.
In this work, to study the effects of the interactions between ADM

and the stellar plasma during the evolution of star KIC 8228742 we
use themodifications to theMESAstellar evolution code done by José
Lopes and mentioned in Lopes & Lopes (2019); Lopes et al. (2019)
to include the processes described above, namely capture and energy
transport. We consider DM capture as described by Gould (1987),
and energy transport is computed taking into account the numerical
results by Gould & Raffelt (1990). During the evolution, the capture
rate is computed at each time step, and total number ofADMparticles
inside the star is updated accordingly. This information is then used
to compute the extra energy term, which is fed to the usual set of
differential equations that govern stellar evolution.

5 STELLAR MODELS

5.1 Standard stellar model of the subgiant KIC 8228742

Using the calibration methods described in Section 3 with all five
inputs {" , .8 , [Fe/H]8 , U, 5ov} as free parameters, we obtain several
stellar models with no dark matter interactions. From these models,
the best one in terms of j2

star was chosen as the benchmark model for
future analysis and is henceforth also referred to as Standard Subgiant
(SSG) model. The resulting parameters are shown in the first row of
Table 1, where j2

A02 is also included. It should be noted that directly

comparing j2
star with j2

A02 is misleading, as their definitions and
normalisation are different.

In comparison with other models found in the literature, the SSG
model’s parameters fall well within the limits proposed inmost works
(e.g., Bellinger et al. 2019) with the exception of the initial metallicity
andmixing-length parameters found inVerma et al. (2018). This does
not amount to a large discrepancy and thus the model is accepted to
be a good reference model. Additionally, the SSG model exhibits
a convective core during the MS that extends up to 0.065 R� and
showcases a helium core (surrounded by a hydrogen shell) at the
end of the evolution (see Fig. 3), which is the expected structure for
stars in this stage of evolution, with these values of stellar mass (e.g.,
Hurley et al. 2000; Salaris & Cassisi 2006a,b,c).

5.2 Comparison of dark matter models with a standard stellar
model

A valuable asset of the improved calibration method considered in
this work is that it allows for the DM properties to be treated as free
parameters in the calibration. In this sense, we allow the algorithm to
vary the values of the ADM particles’ mass in between 4 and 12 GeV
and the spin-dependent cross section in between 10−40 and 10−35

cm2 since this is both included in the region of the parameter space
currently being probed by DM direct detection experiments and also
the region that produces greater effects on stars (e.g., Casanellas &
Lopes 2013; Martins et al. 2017).

As before, the standard stellar inputs shown in the previous section
were treated as free parameters, so it is expected that the set of
optimal parameters is different than the values shown in the first row
of Table 1. Taking into account the DM phenomenology described
in Section 4, we carried out the optimisation process, from which
we retrieved the best model (i.e., with the lowest j2

star). This model
(DM Calib) found an optimal dark matter particle with a mass of
<j = 9.12 GeV and a spin-dependent interaction cross section of
fSD = 2.32× 10−36 cm2, which is within the limits of the XENON-
100 experiment mentioned in Section 1. The fact that this model is
calibrated, by definition, means that it is bound to be in agreement
with the corresponding observations. However, it is interesting to
note that the best agreement – within the considered parameter range
– occurs for the aforementioned values of <j and fSD, even though
they fall inside the excluded area of other more recent experiments
(e.g., Amole et al. 2019).

As expected, Fig. 1 shows that the optimal inputs changed with
respect to the parameters obtained in the SSG model, some more
drastically than others, as is the case of the initial Helium abundance
.8 and the mixing-length parameter U. In terms of model outputs, the
inclusion of the DM effects and parameters in the calibration process
made the stellar age change in around 12%while the most noticeable
difference is the 16% increase in the logarithm of the central density,
which translates to a factor of around 2.5 in the central density itself.
This discrepancy is best viewed by comparing the respective profiles
shown in Fig. 2, where it is visible that the star forms an isothermal
core at a lower temperature, which is consistent with other results
for the Sun and other sun-like stars (e.g., Lopes & Silk 2002; Taoso
et al. 2010). Such is also the case of the baryonic density profile,
which displays an increase in the innermost regions of the star when
considering ADM capture and interactions. One important aspect
to remember is the fact that, by only considering spin-dependent
couplings, the DM-stellar matter scatterings are practically reduced
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Table 1. KIC 8228742 models. The 4 bottom models were calibrated with fixed pairs of (<j , fSD) while DM Calib allowed the two parameters to vary. The
first 2 columns are the DM parameters and the 3 following columns are some of the input parameters of the calibration. Both 5ov and [Fe/H]8 are omitted
because they share similar values between all models ( 5ov ' 1.62 × 10−2 and [Fe/H]8 ' −0.14). The following columns correspond (from left to right) to: age,
luminosity, total radius and the logarithms of the central temperature and central density. The j2 used in calibration and diagnostics are also displayed. Finally,
the period spacing is shown for ℓ = 1 and ℓ = 2.

Model <j fSD " .8 U age ! ' log
(
)2
1 K

)
log

(
d2

1 gcm−3

)
j2

star j2
A02 ΔΠ1 ΔΠ2

(GeV) (10−36 cm2) (M�) (Gyrs) (L�) (R�) (10−3) (s) (s)

SSG - - 1.2565 0.244 1.403 4.52 4.254 1.884 7.42 2.53 5.735 27.8 1636 945

DM Calib 9.12 2.32 1.2517 0.227 1.467 5.03 4.270 1.886 7.32 2.95 5.287 29.2 548 316

DM A 6.00 10−3 1.2580 0.244 1.406 4.50 4.263 1.884 7.42 2.53 5.586 26.7 1642 948
DM B 6.00 10−1 1.2591 0.243 1.407 4.50 4.264 1.885 7.42 2.53 5.486 37.8 1644 949
DM C 5.000 1 1.2516 0.227 1.480 5.06 4.268 1.887 7.32 2.96 5.245 20.0 543 313
DM D 6.00 10 1.2590 0.229 1.403 4.76 4.339 1.884 7.32 2.96 17.879 64.3 564 326

0 A slightly different mass value was used in this case due to model convergence limitations.

χ2
star

M Yi [Fe/H]i α fov log L Teff [Fe/H] ∆ν age log R log g νmax χ2
r02

log Tc log ρc
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Figure 1. Direct comparison of the DM Calib and Standard Subgiant models: the percentage variations were recorded relatively to the SSG model (see Table
1). As some variations are negative, we use blue for negative values and red otherwise.

to DM-hydrogen interactions. This means that, in fact, we neglect
most of the DM energy transport that occurs during the actual SG
phase, given that in these stars the region inhabited byADMparticles,
i.e., the core, is mostly devoid of hydrogen. Thus, the DM signatures
shown here – and the resulting departures from the standard non-
DM models – are in fact a consequence of DM interactions that
occurred mainly during the MS. Therefore, the comparison with
different studies in the literature about similar effects in MS stars is
reasonable since we are looking at the remnants of ADM interactions
during the MS phase through a SG star. It should also be noted that
although we are not comparing the SSG and DM Calib models at
the same age (nor do they have the same standard stellar inputs),
as is the usual practice, the comparison is still of interest (and thus

this effect is still expected) since it is made between two calibrated
models of the same star, meaning that they are spectroscopically
similar. Nevertheless, one could argue that the change in the star’s
age could be the driving factor of the differences found between the
two models. But, in fact, that is not the case: by analysing the same
profiles of the two models for the same age (for example, at t = 4.52
Gyrs, see Table 1) we confirm that the two distinct regimes are still
present and identical to what is seen in Figs. 2 & 3.

Unlike the Standard model of this star, DM Calib did not exhibit
a convective core. In fact, the suppression of the convective core is a
recurring feature of DM influence on stars as mentioned in Section 4.
Furthermore, by studying the star chemical profiles (Fig. 3) we see
that while hydrogen is completely exhausted in the inner regions of
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Figure 2. Temperature (left axis) and baryonic density (right axis) profiles of
the SSG and DM Calib stellar models (see Table 1).

the stellar core, there is a smooth increase in the hydrogen abundance
(vice-versa for helium), instead of the sharp variation which is usual
in stars with " ' 1.3 "� . This is a direct consequence of the stellar
core being radiative, as opposed to convective, during the main-
sequence: the arise of core convection during the MS promotes the
homogenisation of the chemical species in the central regions of the
star, and thus the exhaustion of hydrogen that characterises the end
of the MS occurs everywhere within the convective zone – instead
of locally in centre of the star.
One other effect that is found in this model is the extension of

the MS lifetime (Lopes & Lopes 2019). While the star with DM
has a radiative core during the largest part of its MS lifetime, and
thus nuclear burning is limited to the local hydrogen supply, the
decrease in central temperature slows down the hydrogen burning
rate thus extending the MS lifetime. The age of the model itself may
be another indicator of this effect since the best agreements with
observations (which are the goals of a successful calibration) were
found to be at a later stellar age than in the standard case.
In addition to the model DM Calib, we decided to repeat the

calibration process accounting for DM effects, but instead with pre-
defined fixed values of <j and fSD. Stellar DM models from A to
D are the best models for each of the (<j , fSD) pairs showcased
in Table 1. The first conclusion to be taken is that DM Calib, which
produced an optimal pair of (<j , fSD), does not have the lowest
j2

star. This means that the full calibration optimisation method most
likely hit a local minimum around the displayed values.
A closer inspection at the remaining columns of Table 1 reveals

that the SSG model, DM A and DM B all share similar outputs.
The same happens for models DM Calib, C and D, where the latter
slightly deviates from the rest, leading to a j2

star of an higher order
of magnitude. These two distinct regimes are expected once we take
into account the mass and cross-section values of the dark matter
impacted models: for fSD > 10−36 cm2 the effects from ADM
interactions have a noticeable impact on the star, while for smaller
values of fSD the effects are mostly negligible. We also confirm
the prevalence of the two regimes when drawing profiles similar to
Figs. 2 and 3 for the remaining models, i.e., the curves of Standard,
DM A and DM B have similar behaviour between themselves whilst
the remaining models follow the signature of DM Calib.
Finally, it is interesting to note that some DMmodels have a lower

j2
star than the SSG model. For DM Calib, the decrease in almost 8%

of this quantity is substantial and the fact that DM A, B and C also
represent an improvement on the Standard model’s value reinforces
the argument that the existence of DM is not incompatible with the
current observational data for this star. However, the j2

A02 diagnostic
increased in about 4% for DM Calib (even more for DM B) which
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Figure 3. Hydrogen and helium abundances of the SSG and DMCalib stellar
models (see Table 1).
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Figure 4. A02 ratios (see eq. (5)) for the models in Table 1 compared to
observations. The dashed lines represent the 4 models with fixed values of
(<j , fSD).

hints towards the fact that the model might have fallen victim to
an equivalent of overfitting. This means that, since the optimisation
is done with respect to j2

star, other parameters of the star might
have been affected to achieve a better performance in that specific
diagnostic. Either way, the deviation on j2

A02 is not as significant as
in the previous diagnostic. To better infer on the j2

A02 discrepancy,
we compute A02 (=) as shown in Fig. 4.

The results for A02 (=) show that although theDMCalib ratio values
deviate more from the observational average than the SSG’s, the
behaviour pattern is similar to that of the observed A02 (particularly
around = ∼ 19−20). Fig. 4 also shows that model DMC has the same
regime as DM Calib, but slightly closer to the observation values,
which is reflected in its smaller j2

A02 . Again, the two regimes are
distinctively visible, with DM B being somewhat of an intermediate
model. This is also expected since in this model fSD is in-between
that of DM A and DM C, which showcase each one of the two
different regimes.

6 ASTEROSEISMIC ANALYSIS

6.1 Probing the parameter space <j − fSD

Using the input stellar parameters of the SSG model as benchmark
(see Table 1) and enabling DM interactions, we decide to explore the
sensibility of the models in DM parameter space. This is achieved
by computing 100 models in a <j −fSD grid with fixed dark matter
parameters within the range 4 6 <j 6 12 GeV and 10−40 6 fSD 6
10−35 cm2. As before, this range of values was chosen in agreement
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Figure 5. Contours for j2
star (see eqs. (4) and (7)): lighter shades represent

lower j2 and thus better models for this specific diagnostic. The contour
for j2

star = 1 represents models as good as the SSG model. Direct detection
experiment results fromXENON-100 (Aprile et al. 2016), LUX (Akerib et al.
2016), PICASSO (Archambault et al. 2012; Behnke et al. 2017) and PICO-60
(Amole et al. 2019) are shown as solid lines.

with the DM parameter space usually explored in the literature (e.g.,
Martins et al. 2017). Each input group in this grid was then used
to create a model (i.e., one single model, differently from the opti-
misation process discussed in the previous sections) for which j2

star
was computed, allowing for the drawing of contour plots showcasing
the parameter region of interest and corresponding DM parameters
(Fig. 5). A normalised j2

star was defined as:

j2
star =

j2
DM
j2

SSG
, (7)

where j2
DM corresponds to the j2

star of each model taking DM into
account and, likewise, j2

SSG is that same value for the Standardmodel
(in this case j2

SSG = 5.735×10−3, see Table 1).
On the one hand, it is visible that the overall tendency is for

stellar models with lower interaction cross-section to agree better
with observations. On the other hand, there are some models with
higher fSD that do not converge, meaning that the benchmark input
parameters coupled with the given DM quantities cannot converge to
an acceptable solution of the stellar evolution differential equations.
This happened for models with fSD larger than 4 × 10−36 cm2,
where although not explicitly shown in the figure, the j2 values rose
to orders ofmagnitude of 102. This relation between the cross-section
and j2

star is somewhat expected since the lower the fSD the smaller
the influence of DM is on the stellar structure. Thus, the lower region
of the grid performs better than the upper region since it naturally
tends to the SSG case. However, it is still worth noting that for fSD
as high as 10−37 cm2 some models seem to perform well.

Furthermore, by looking at the contour line that defines models as
good as the SSG model (at j2

star = 1, see Fig. 5), it is visible that a
large portion of the 100 DM stellar models outperform it. This means
that most dark matter models with the same inputs as the SSG but
with<j between 4 and 12GeV andfSD between 10−40 and 4×10−39

cm2 fit the spectroscopy and large frequency separation observations
better than the best performing no-DM model. It should be noted
that despite the fact that fSD = 10−40 cm2 is a hard limit, i.e., it was
chosen by default, that does not mean that the improvement in j2

star
is observed for any fSD below this value. In fact, we also obtained
models below the minimum cross-section considered in Fig. 5 (e.g.,
fSD = 10−42 cm2) and observed that the j2

star diagnostic again
tended to the SSG value (i.e., j2

star = 1), which is expected since DM
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Figure 6. Contours for j2
A02 (eq. (6) and normalised similarly to eq. (7)):

lighter shades represent lower j2 and thus better models for this specific
diagnostic. The contour for j2

A02 = 1 represents models as good as the SSG
model. Direct detection experiment results from XENON-100 (Aprile et al.
2016), LUX (Akerib et al. 2016), PICASSO (Archambault et al. 2012; Behnke
et al. 2017) and PICO-60 (Amole et al. 2019) are shown as solid lines.

is less influential for lower interaction cross-sections. Additionally,
we found a model near <j = 9 GeV and fSD = 3 × 10−38 cm2 that
exhibits the lowest j2

star of the set.
It is interesting, however, to study the performance of the best

performingmodel and all the others under the j2
A02 diagnostic defined

in Section 3.2. To achieve that, the A02 ratio was computed for all
models in the grid and compared to observations, i.e., the ratio that
was computed with the 32 frequencies observed in the star. After
that, j2

A02 was computed and yet again plotted in contours.
The results shown in Fig. 6 confirm the overall trend seen before in

Fig. 5: models in the lower region of the grid seem tomore accurately
agree with the observed A02 which, in itself, grants more confidence
to the previous results. The contour that defines models with similar
performance to that of the SSG model was again explicitly drawn
at j2

A02 = 1. Once more, most models with f(� < 10−38 cm2

outperform the best model with no dark matter interactions, this time
on a different diagnostic that better represents the core structure.
It is also interesting to note that the best performing model of the
previous set (Fig. 5) is not in the same region of the best performing
models in the j2

A02 diagnostic. This is a case where the spectroscopic
results out-shadowed the structural differences in the first diagnostic,
which was then covered by calculating the A02 ratio. Hence, the two
step rejection method proves to be valuable in cases like this, since
normally that model would have been accepted by passing the j2

star
diagnostic with the lowest value.

A simple additional test can be done by combining the two
methods, taking the maximum value of both diagnostics, j2

total =

max(j2
star, j

2
A02 ). This is shown in Fig. 7, as well as the region within

the j2
total = 1 contour which represents the models that outperform

the SSG model in both diagnostics.
When comparing the aforementioned grids with the direct detec-

tion experiment’s limits we see that our method could provide com-
plementary <j − fSD exclusion diagrams. This could be achieved
by defining a cut-off j2 since it is visible that there is a steep tran-
sition region between the two regimes (from yellow to dark red)
which indicates a rapid disagreement between the stellar models and
the observational data. The behaviour showcased in Figs. 5 - 7 can
be compared to that of the limits from PICASSO (2012; 2017) and
LUX (2016). Moreover, it seems to suggest harder limits than those
of XENON-100 (2016), which is not as competitive for lower <j .
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star and j

2
A02 : the contour for j

2
total = 1

represents the models with an equated performance to the SSG model, using
their worst diagnostic. Direct detection experiment results from XENON-100
(Aprile et al. 2016), LUX (Akerib et al. 2016), PICASSO (Archambault et al.
2012; Behnke et al. 2017) and PICO-60 (Amole et al. 2019) are shown as
solid lines.

Taking into account the SSG model as the benchmark we can hint
towards the region with fSD & 10−37 cm2 where j2

total rapidly
increases, meaning that ADM presence in this SG star is strongly
disfavoured by both spectroscopic and seismic observations.
Finally, it should be noted that the models obtained in the previous

section – which were obtained by calibrating the stellar and, in the
case of DM Calib, the DM parameters – can fall in the excluded
region suggested in Fig. 7 (see Table 1) and still yield stellar models
that are in agreement with the observational data. This may be due
to the increase in the degrees of freedom associated with the extra
free parameters which, given that the observational error for the
star in question is substantial, allows the method to find different
combinations of parameters that still fit the reality. Therefore, with
access to more precise measurements from future spectroscopy and
asteroseismology missions, one can expect to calibrate a standard
benchmark model that allows the drawing of exclusion diagrams
with more certainty.

6.2 Period Spacing Analysis

When further analysing the oscillation eigenfunctions of severalmod-
els, it is clear that the amplitude rapidly falls off within the first outer
20% of the star radius. This means that despite using a seismic ratio
that is designed to gather more information about the stellar interior,
the acoustic modes that defined the diagnostic fall short on this task.
Thus, we can conclude that the A02 diagnostic is not as sensitive to the
core as expected, being more representative of the stellar envelope,
contrary to what happens in a typical MS star.
Motivated by this, we change our focus to the gravitational char-

acter of the oscillations, which, as seen before, should be specially
sensitive to the stellar interior. This is done by analysing the mixed
modes of the various models, which allows the extraction of the rel-
evant quantities of the gravity contribution. In particular, the asymp-
totic value of the large period separation presented in eq. (3) can be
computed from the MESA models for ℓ = 1 and ℓ = 2, for which
there are mixed modes. It is expected that if the presence of DM in
stars directly affects the size of their convective cores, as we have
seen in previous sections, then the period spacing will serve as a
good probing tool (Lopes et al. 2019). The ΔΠℓ values are shown
in the two last columns of Table 1. The already mentioned regimes
are once again clearly noticeable: there is a substantial decrease in
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Figure 8.Contour plot of the deviation of the period separation ΔΠ1 from the
SSG model for the same grid of DM models. The two black curves represent
the lower and upper boundaries of the relative error of measurement of this
quantity for 39 SG stars from Mosser et al. (2014) (Lopes et al. 2019).

period spacing when DM is strongly influential that can go up to
66% of the benchmark value (from SSG). This, again, is explained
by the suppression of the convective core caused by DM, which in
turn leads to an increase of the g-mode cavity, producing a direct
effect on the integral in eq. (3).

As before, we define the ΔΠℓ deviation from the SSG model for
the same grid of DM models to better understand the impact that the
different DM parameters have on the stellar core. The variation of
ΔΠ1 is shown in Fig. 8. Only the case with ℓ = 1 is shown, given that,
by definition, in the asymptotic limit, ΔΠ1 and ΔΠ2 only differ by
a multiplying constant. The darker region represents models where
|XΔΠ1 | is larger than 15% and, in some cases, models reach the
60% mark as was already the case for some models in Table 1. It
is also clear that larger masses of ADM particles tend to result in
less effects. This is twofold: first, these particles are harder to capture
by virtue of requiring a larger transfer of momentum upon recoil in
order to reach a velocity lower than the escape velocity (e.g., Gould
1987); secondly, if eventually captured, they cluster strongly in the
innermost regions of the star and, thus, their impact is naturally not
felt as much. It is important to note that most of the deviations shown
in the grid happen in the negative direction, with DM impacted
models exhibiting a smaller period spacing, as expected.

The overall tendency in Fig. 8 mimics that of Figs. 5 - 7: models
in the upper part of the grid show a larger ADM influence on the star.
Yet again, the transition region between the two regimes is narrow.
The region below the 5.76% contour represents models whose ΔΠ1
variation is lower than the lowest relative uncertainty among the large
period separation measurements in Mosser et al. (2014). Likewise,
models above the 37.50% curve exhibit a variation that surpasses the
uncertainty of the less precise measurements. Both these statements
mean that current experiments may not have enough sensitivity to
resolve DM signatures in SG stars in the transition region (where the
lower relative uncertainty contour is) and particularly in the region
below the 37.50% contour. Above that curve, the effect should be
detected, with the deviation being greater than the observable un-
certainty in the worst cases. However, one should note that if this
analysis is carried out for a SG star which allows for a more precise
measurement of ΔΠ1 (i.e., closer to the 5.76% mark) there should
be enough sensitivity to draw any valuable conclusions regarding the
acceptability of DMmodels for that star. In the future, this diagnostic
could be used with measurement data as the benchmark, providing
a strong case for model rejection and, additionally, ADM parameter
constraints.
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7 CONCLUSIONS

Subgiant stars are but a small fraction of the currently observed stars
by virtue of that evolutionary stage being relatively short. Despite
that, they can pose as important laboratories for the study of dark
matter constraints. In this work, we obtained calibrated stellar mod-
els of the subgiant KIC 8228742 assuming both the presence and
absence of asymmetric DM spin-dependent interactions. Focusing
on SD interactions allows us to directly compare our results to the
corresponding constraints placed by detectors which study the same
type of interactions. More importantly, by studying only spin de-
pendent couplings, we essentially neglect interactions with elements
heavier than hydrogen, and thus also any direct effect that DM has
on the star during the SG phase. Then, by carrying out this study we
take advantage of the seismological benefits of the SG phase to study
DM interactions in the MS stage.
The results shown here point towards the fact that, overall, DM

models are in agreement with current observations of this star.
Firstly, in an attempt to study the possibility of ADM presence in

SG stars, we introduce darkmatter parameters into the calibration and
optimisation processes. This is a new approachwhich aims to find the
best models, in terms of the diagnostics here proposed, disregarding
any prior standard (with no darkmatter influence) benchmarkmodels.
Calibrated models with strong DM influence showcased a different
regime from both the standard (SSG) model and DM models with
lower fSD. Phenomena like the suppression of the convective core,
the cooling of the inner core and the increase in density of that region
were all present and in agreement with past findings (e.g., Taoso et al.
2010; Casanellas & Lopes 2013; Casanellas et al. 2015; Lopes &
Silk 2002). We later conclude that the results obtained at this stage
of the work, which provided an optimal pair of ADM particle mass
and spin-dependent cross-section of <j = 9.12 GeV and fSD =

2.32 × 10−36cm2 may not be sufficient to constrain the DM particle
candidates’ properties. A number of limitations can be pointed out as
the cause for this. The number of spectroscopic quantities of this star
that we have measurements for pose a problem when introducing
more parameters into the input group, since overfitting – typical
of situations where there are too many parameters relative to the
available data points – may be happening here. The precision of the
current measurements is also a factor since it broadens the accepted
model spectrum and limits the certainty of a possible exclusion limit.
Lastly, computational time constraints were a large limitation to the
minimisation problem and this is an aspect that has the potential for
clear improvements.
Using seismological diagnostics as a second probing tool, we then

present a method to study the influence of DM in the interior of stars,
with direct applicability to SGs. The A02 ratio is used in an attempt to
probe the stellar core, which is the region that ADM severely impacts.
A study of the deviation of A02 from observational measurements
allows us to draw several sensitivity grids (Figs. 5 - 7)which showcase
the increasing influence that DM has with the increase of the spin-
dependent cross-section of the interaction between ADM particles
and stellar matter.
Moreover, those same figures show a class ofmodels with 10−40 6

fSD < 10−38 cm2 that consistently outperform the best standard
models, which strengthens the argument that the presence of ADM
particles in this star is consistent with observations. Additionally, a
fSD admissible region is suggested for values up to 10−37 cm2 where
the j2 diagnostics start to deteriorate fromobservations. This value is
comparable to those of the PICASSO (2012; 2017) and LUX (2016)
experiments and improves that of XENON-100 (2016). Then, an
exclusion limit may be drawn with more certainty at fSD & 10−35

cm2 since results from both Section 5 and 6 find this region as
incompatible with current observations. This conclusion is similar
to what Casanellas & Lopes (2013) and Martins et al. (2017) found
previously for MS stars.

Lastly, we propose an additional seismic parameter to study DM
influence on SG stars that allows us to further probe the stellar core.
As the acoustic modes were mainly probing the stellar envelope
(contrary to what typically happens in MS stars), we turned our
attention to gravity and mixed modes, which carry more information
about the core since they travel deeper into the stellar interior. The
ΔΠℓ diagnostic was calculated for the same grid of models and
the results again confirm the previous analysis and hint towards the
possibility of drawing exclusion diagrams for a SG star for which we
have the ΔΠℓ observations.

In the future, missions like PLATO (Rauer et al. 2014), which
will provide high precision measurements of both spectroscopic and
seismic quantities, will allow for a more extensive analysis of the
impact of ADM in stars and,more importantly, will make the drawing
of exclusion diagrams possible, using the method we present here.
With better measurements, we also expect the calibration with DM
quantities as inputs to provide a better result, with less impact from
numerical constraints.

Another aspect to consider in the future is the inclusion of spin-
independent interactions which will certainly drive the DM impact
in the later stages of the stellar evolution, by allowing the interaction
with helium and heavier elements as well.
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