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Abstract

This work addresses the design of a controller using Model Predictive Control (MPC) to steer an
autonomous vehicle along a racing track. The objective is to control the vehicle to follow a virtual
reference that is moving with a certain velocity over a reference path. The problem is formulated in
a Frenet-Serret reference frame that moves with the virtual target over the path, which, in turn, is
parametrized according to its arc-length. The velocity of the reference is imposed externally, and thus
corresponds to an extra controller design parameter.

The vehicle model in the Frenet-Serret frame is then used with MPC to control the vehicle. This
work discusses the implementation of obstacle avoidance and path boundaries under the current MPC
formulation. In addition, it presents one method to control the velocity of the virtual target based on
the distance between the vehicle and the virtual target and another method to dynamically change the
focus the controller puts on correcting the orientation of the vehicle based on its orthogonal distance to
the path.

1. Introduction

This work focuses on controlling an autonomous
racing vehicle with MPC to follow a given path with
a maximum reference velocity. The main advan-
tage MPC has with respect to the other forms of
control is its ability to incorporate, in an explicit
and computationally effective way, constraints on
all the process variables. The control decision is
obtained by solving an online finite horizon opti-
mization problem, and thus the controller can take
preventive actions regarding future events. The pre-
dictive capabilities of MPC make it a very attrac-
tive option to be deployed as the controller of au-
tonomous vehicles. However, the main disadvan-
tage of MPC is the usually high associated compu-
tational loads.

Although the literature on path-following with
autonomous vehicles is by now very extensive, for-
mulating the problem in a Frenet-Serret frame that
moves along the reference path has received less at-
tention. To the author’s knowledge, [5] was the first
to formulate a path-following problem in a Frenet-
Serret frame. In his work, a path parametrization
with respect to the arc-length is introduced, which
allows the vehicle model to be defined relatively to
a Frenet-Serret frame whose origin corresponds to
the orthogonal projection of the vehicle in the path.
This work was later complemented and extended in
[3] to two-steering-wheels robots. However, as the
authors point out in their work, by projecting the
vehicle in the path, a singularity is created in the
vehicle model.

In [6], which serves as the foundation for this
work, the authors propose considering a virtual
target that moves independently along the path,
which, in turn, detaches the origin of the Frenet-
Serret frame from the vehicle. This step allows the
velocity of the virtual target to be controlled inde-
pendently from the vehicle and removes the singu-
larity created in [3]. The controller design relies on
Lyapunov function methods.

Following the same problem formulation of [6], in
[2] the author presents a MPC formulation which
prioritizes maximizing the progress of the reference
over the path. Using the dynamic bicycle model,
the velocity of the reference is maximized with MPC
based on the velocity of the vehicle, its orientation
and normal errors relatively to the reference on the
path. The MPC formulation presented also incor-
porates other constraints such as keeping the vehicle
inside the road boundaries and enforcing handling
limits.

The motivation for this work is provided by the
aim of providing the first autonomous race car pro-
totype, code-named FST10d, of the Formula Stu-
dent team of Instituto Superior Técnico de Lisboa,
named FST Lisboa, with a guidance and control
system based on MPC.

This work follows the following structure. In Sec-
tion 2, a theoretical overview regarding the path
parametrization and Frenet-Serret frame is pro-
vided. A brief derivation of the generic vehicle
model in the Frenet-Serret frame is also present,
along with an example with the unicycle dynamic

1



model. Section 3 provides an introduction to MPC
theory and discusses the implementation of different
controller features under the current problem and
MPC formulation. Finally, Section 4 includes sev-
eral experiments where the incremental incorpora-
tion of the different features to the MPC controller
is gradually tested.

2. Path Following

Path-following covers the topic of controlling a ve-
hicle to converge and follow a path where the ref-
erence is not subject to any temporal constraints.
This formulation usually leads to less demanding
control signals and smoother vehicle trajectories.

2.1. The Frenet-Serret Frame and Path
Parametrization

Figure 1: Vehicle geometry and frame definitions

In 2D space, let {I} designate an inertial refer-
ence frame, where the position of an arbitrary point
P is given by vector p. Furthermore, consider P as
being part of an arbitrary smooth curve ζ defined in
{I}, as shown in Figure 1. At point P , let {F} des-
ignate a Frenet-Serret reference frame, which has
one axis tangent and another normal to the curve.
Additionally, let θm and θc designate the orientation
of the vehicle in {I} and the angle that the positive
tangent axis of {F} makes with the horizontal axis
of {I}, respectively.

Define now point Q as the center of mass of a
vehicle that tracks point P on the curve. Point Q
can either be defined in {I} by vector q = [X Y 0]>

or in {F} by vector r = [s1 y1 0]>. It is remarked
that, the vehicle position error in {I} corresponds
to the position of the vehicle in {F}.

The position of Q in {I} and {F} can be related
by

q = p + R−1 r, (1)

where R = R(θc) denotes the axes rotation matrix
from {I} to {F}.

Similarly, the orientation of the vehicle in {F} is

also the orientation error in {I}, and is given by

θ = θm − θc. (2)

Since P is the target position of the vehicle, by
making P move along the path, the vehicle is forced
to follow P , and thus P acts like a virtual target
for the vehicle. By considering the tangent axis of
{F} positive in the direction of movement of P , by
defining the vehicle model in {F}, one is effectively
defining the error model of the problem.

The fact that P only moves along the path mo-
tivates the introduction of a path parametrization
with respect to its arc-length, which here is denoted
by s. The arc-length s between two points is defined
by the length of the section of the path that unites
those two points. By considering a starting point
where s = 0, any point of the path can be identified
by its arc-length with respect to the initial point,
and thus each point has an unique s.

The velocity in {F} at which P moves along the
curve has no orthogonal components to the tangent
direction, and can thus be expressed as(

dp

dt

)
F

=
[
ṡ 0 0

]T
, (3)

where ṡ denotes the tangent velocity of P along
the path and encodes the progression of the virtual
target along the path. The variable ṡ is imposed
externally, and, therefore, it is actually an extra
controller design parameter.

As P moves along the path, the orientation of
{F}, given by θc, also changes. Denoting κ = κ(s)
as the signed curvature of the path at point P =
P (s), the rate of change of θc is influenced by the
velocity of P and by the curvature of the path κ.
It can be deduced using the Frenet-Serret equations
that the model for θc is given by

θ̇c = κ ṡ = ωc, (4)

where ωc is the angular speed of {F}.

2.2. Generic Model of a Vehicle in the Frenet-Serret
Frame

The velocity of Q can be given in {F} by

(
dq

dt

)
I

=

(
dp

dt

)
I

+ R−1
(
dr

dt

)
F

+ R−1 (Ω× r) ,

(5)

where Ω =
[
0 0 ωc

]T
denotes the angular veloc-

ity vector of {F}. Multiplying the equation above
by R yields

R

(
dq

dt

)
I

=

(
dp

dt

)
F

+

(
dr

dt

)
F

+ Ω× r, (6)

which gives the velocity of the vehicle in {F}.
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Replacing(
dq

dt

)
I

=
[
Ẋ Ẏ 0

]T
,

(
dr

dt

)
F

=
[
ṡ1 ẏ1 0

]T
,

(7)
and

Ω× r =

 0
0

ωc = κ ṡ

×
s1y1

0

 =

−κ ṡ y1κ ṡ s1
0

 (8)

in (6), solving for ṡ1 and ẏ1, and augmenting it with
θ̇ = θ̇m − θ̇c yields

ṡ1 =
[
cos θc sin θc

] [Ẋ
Ẏ

]
− ṡ (1− κ y1)

ẏ1 =
[
−sin θc cos θc

] [Ẋ
Ẏ

]
− ṡ κ s1

θ̇ = θ̇m − κ ṡ

,

(9)

The equations in (9) represent the generic model
of any vehicle in {F} following a moving reference P
along a path. This model can now be used to gen-
erate other kinematic or dynamic models in {F},
specific to the type of vehicle being used. To do so,
the variables Ẋ, Ẏ , and θ̇m must be replaced by
the correspondent inertial model equations of the
vehicle. This system of equations can also be aug-
mented to include any other equations relevant to
the model or problem.

The relevance of (9) to the control problem stems
from the fact that these equations provide a relative
motion model that allows to transform the tracking
control problem into a regulation control problem,
in which the variables s1, y1 and θ, that measure the
deviation of the vehicle with respect to its desired
position and orientation, are to be driven to zero.

2.3. Unicycle Dynamic Model
The inertial dynamic model of the unicycle is given
by the following equations



Ẋ = v cos θm

Ẏ = v sin θm

θ̇m = ωm

υ̇ =
F

m

ω̇m =
N

I

, (10)

where the state variables X and Y denote the po-
sition of the vehicle, θm its orientation, υ its linear
velocity, ωm its angular velocity, and F and N are
given by

F =
τ1 + τ2
R

N =
τ1 − τ2
R

L
, (11)

where m is the mass of the unicycle, I its moment
of inertia, R the radius of the wheels, L is half the
length of the axis that connects the centers of the
two wheels, and τ1 and τ2 are the torques applied
to each wheel.

The dynamic model of the unicycle in the moving
Frenet-Serret is obtained by substituting (10) in (9),
yielding 

ṡ1 = −ṡ (1− κ y1) + v cos θ

ẏ1 = −κ ṡ s1 + v sin θ

θ̇ = ωm − κ ṡ

v̇ =
1

m

τ1 + τ2
R

ω̇m =
L

I

τ1 − τ2
R

. (12)

The state variables of the unicycle dynamic model

in {F} are
[
s1 y1 θ v ωm

]T
and the control

inputs are
[
τ1 τ2 ṡ

]T
.

3. Motion Control with MPC
3.1. Model Predictive Control
Model Predictive Control (MPC)[4] is a control
method that makes explicit use of a system model
to predict its future outputs and states over a finite
horizon, and, based upon that knowledge, solve an
online optimization problem to obtain a control de-
cision.

Figure 2: Model Predictive Control strategy. Avail-
able at [1].

Figure 2 illustrates the typical MPC control strat-
egy. At each sampling instant, the optimization
problem is solved by minimizing a cost function
within a finite prediction horizon, while consider-
ing the latest available state measurement or esti-
mate as the initial condition. The solution to this
problem is a sequence of control actions for future
sampling instants within the prediction horizon, al-
though only the first of this sequence is actually ex-
ecuted. Subsequently, the problem is repeated with
the new available system state and with the pre-
diction horizon shifted towards the next sampling
instant. The shifting forward of the prediction hori-
zon is also known as the receding or moving horizon
strategy.

The formulation as an optimization problem al-
lows the MPC to directly impose constraints on
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both the state and control variables, this feature
being a major advantage over other control design
methods. Furthermore, MPC can handle tightly
coupled multivariate systems, even if these systems
are non-linear (Non-Linear MPC or NMPC). The
main disadvantage of MPC is the high computa-
tional load, since it has to solve an online open-loop
iterative optimization problem for every sampling
step.

3.1.1 Model Predictive Control Formulation

For a system whose state variables and control in-
puts are denoted by x and u, respectively, the
MPC optimization problem can be formulated, for
discrete-time invariant systems, as follows

minimize
x,x

J(x,x) =

N∑
i=1

`(xi,ui) (13a)

subject to x0 = xt , (13b)

xi = f(xi−1,ui−1), (13c)

xi ∈ X i, i = 1, . . . , N, (13d)

ui ∈ U i, i = 1, . . . , N − 1, (13e)

where x and u represent the predictions of x and
u, N denotes the length of the prediction horizon,
and `(.) is the instantaneous cost function to be
minimized. The optimization problem is subject
to the constraints (13b) to (13e), where constraint
(13b) imposes the initial condition on the state (xt
represents the state at time t), and constraint (13c)
imposes the system model. The state is also subject
to a set of constraints represented by X in (13d),
and, likewise, the control inputs are subject to the
constraints represented by U in (13e).

3.1.2 Linear Quadratic Cost Function

The cost function selected for optimization problem
dictates the control strategy used by the MPC. A
common and effective approach is to use the linear
quadratic cost function

`(x,u) = x>Qx + u>Ru, (14)

where Q and R are positive definite weight matrices
used to tune the controller. In this work, both Q
and R are diagonal matrices where each diagonal
entry is the weight attributed to the correspond-
ing state or input variable. The weights in Q are
used to set the relative importance between each
state variable. Furthermore, increasing a value of
R relatively to Q penalizes the control action of
the corresponding control variable.

A MPC controller using the cost function (14) is
known as a ”linear quadratic regulator” (LQR), and
it controls the system to the origin since it directly
penalizes non-zero states and control inputs .

3.1.3 Reference Tracking
Controlling the system towards a reference state
xref other than zero can be achieved with the cost
function

`(x,u) = (x− xref )
>
Q (x− xref )+u>Ru, (15)

where x− xref represents the state tracking error.
For systems with integral action, u tends to zero

as the system approaches xref , and thus the ref-
erence tracking is achieved without static errors.
However, for systems without integral action, if
xref is not the origin, then u must be different
than zero in steady state, and, therefore, will weight
the cost function (15), causing the reference to be
tracked with a static error because the optimal so-
lution is no longer the one that makes x = xref .
To achieve error-free reference tracking in systems
without integral action, a feed-forward term must
be included in (15) that allows u to be non-zero in
steady state. The resulting cost function is

`(x,u) = (x− xref )
>
Q (x− xref )

+ (u− uref )
>
R (u− uref ) , (16)

where uref represents the control reference.

3.2. Path Boundaries
For every point of the path, a boundary is defined
as the normal distance to the path beyond which
the vehicle is not allowed to go. For the vehicle
models defined in the Frenet-Serret frame, the nor-
mal distance between the vehicle and the reference
point on the path is given by the state variable y1,
therefore, the path boundaries can be enforced via
inequality constraints on the state y1 as

llower ≤ y1 ≤ lupper , (17)

where llower and lupper denote the lower and upper
limits of the path, with llower < lupper.

However, this formulation can create a problem
when s1 6= 0, since the virtual target is not the clos-
est point of the path to the vehicle in this situation.
It can happen, especially in curves, that the path
boundaries do not accurately portrait the limits of
the path in the vicinity of the vehicle, as depicted
in Figure 3.

The proposed solution is to increase the focus the
controller puts on making s1 ≈ 0, since the errors in
the path boundary constraints decrease as s1 tends
to zero. Therefore, when s1 ≈ 0, the boundary
conditions defined by (17) approximately match the
path limits when viewed from the vehicle position.

To increase the importance of s1, the relative
weight of s1 is increased in the cost function. An al-
ternative method to keep the virtual target and the
vehicle close together is presented in Section 3.4.

4



Figure 3: Path boundaries error

3.3. Obstacle Avoidance
Obstacle avoidance can be achieved by restricting
the region of positions where the vehicle is allowed
to be.

By knowing the coordinates of the center of the
obstacle in {F}, an exclusion zone around the ob-
stacle can be defined by a circle centered on the ob-
stacle, with a radius large enough to encompass the
entire obstacle or the vehicle, whichever is bigger.
Then, the obstacle exclusion zone can be enforced
with the following nonlinear inequality constraint

(s1 − Cs1)2 + (y1 − Cy1)2 ≥ r2, (18)

where (Cs1 , Cy1) represents the center of the ob-
stacle in {F} at certain time instant, and r is the
radius of the exclusion zone.

It is remarked that, as a result of the movement
of the virtual target and {F}, the position of the
obstacle, when expressed in {F}, changes between
time instants. Any existent movement of the obsta-
cle itself also contributes to the change of position,
although moving obstacles are out of the scope of
this work. Since MPC predicts future states to ob-
tain a control decision, the constraint that enforces
the exclusion zone must be updated each step of
the prediction window with the new position of the
obstacle, computed from its fixed inertial position.

Due to the discrete nature of the problem, it can
happen that the obstacle constraints are satisfied
in each time step, but the vehicle actually violates
the constraints between sampling instants. Figure
4 depicts one of these situations.

Two complementary approaches that mitigate
this problem are to incorporate a margin of safety
into the radius of the exclusion zone and to decrease
the sampling period of the controller. If sized prop-
erly, the margin of safety allows the vehicle to vi-
olate the obstacle constraint without entering the
physical area of the obstacle. The downside is that
it can only be so big until the problem becomes
infeasible in overtake situations. The latter solu-

Figure 4: Obstacle Avoidance Violation

tion also allows the margin of safety to be smaller,
but requires more computational power available,
therefore a balance of these two solutions must be
achieved.

However, it is remarked that, adding obstacle
constraints greatly increases the difficulty of the op-
timization problem, and thus it increases the com-
putational requirements of the controller. For this
reason, it is recommended that the obstacle avoid-
ance be built into the path itself, instead of leaving
this job to the controller.

3.4. Virtual Target Speed Control
The arc-length path parametrization introduced the
ability to control the speed at which the virtual tar-
get moves along the path via the control variable ṡ.
This ability can be exploited to keep the virtual ref-
erence close to the vehicle when the latter is not able
to keep up. One advantage of controlling the speed
of the virtual target is that it is a virtual reference,
i.e., it has no dynamics.

The virtual target must behave in such a man-
ner that when the vehicle is moving close behind,
or on top, the virtual target moves at a predefined
reference speed, and, when the vehicle starts to lag
behind, the virtual target starts slowing down, and
stops if necessary. When the vehicle starts regain-
ing ground, the virtual target gradually starts to
speed up again. It is also expected that, if the ve-
hicle overtakes the virtual target for some reason,
the virtual target must quickly speed up to catch
up with the vehicle. The objective is to make the
vehicle always be close behind, or on top of, the vir-
tual target, since the latter sets the speed at which
the vehicle will move through the path, effectively
pulling the vehicle towards it. The reference veloc-
ity can be set to a velocity close to the maximum
achievable velocity of the vehicle, for example.

In this work, it is proposed to use the state vari-
able s1 as the variable that sets the speed of the
virtual target. The state s1 partially provides infor-
mation regarding the distance between the vehicle
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and the virtual target, as well as if the vehicle is
behind or in front of the virtual target. However,
information regarding the normal distance of the ve-
hicle to the path is lost, but that does not present
a problem because the controller always works to
minimize both s1 and y1 at the same time, if con-
figured properly.

One candidate function that fulfills all the cri-
teria mentioned above is the exponential function,
therefore, the virtual target speed can be given as
a function of s1 by

ṡ(s1) = ṡref exp
(s1
λ

)
, (19)

where ṡref is the reference speed when s1 = 0 and
λ is a tuning parameter. Figure 5 shows resulting
virtual target speed profiles for different values of
λ.
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Figure 5: Virtual target speed profiles for a refer-
ence speed of 14 m/s.

It is remarked that, the virtual target speed con-
troller can be incorporated into the vehicle model,
and thus eliminates one optimization variable from
the problem.

3.5. Variable Orientation Error Weight
A fixed weight for the orientation error θ in the
MPC cost function means that the controller is al-
ways trying to correct the orientation of the vehi-
cle, regardless of the vehicle position relatively to
the reference. When the vehicle is offtrack, reduc-
ing the orientation error is of less importance than
reducing the normal distance, moreover, these two
actions oppose each other.

By dynamically decreasing the weight of θ as |y1|
increases, the controller is going to prioritize de-
creasing |y1| first. As |y1| gets smaller, i.e., as the
vehicle orthogonally approaches the reference, by
gradually increasing the weight of θ, the controller
is going to start adjusting the orientation of vehicle
too.

The proposed method allows the controller to, at
a beginner stage, aggressively reduce |y1| since the

weight of θ is very small compared to the weight
of y1. Furthermore, at a final stage, when y1 is
small enough, the gradually increased importance
of θ forces the controller to align the vehicle with
the path, resulting in a smooth approach.

To achieve this behavior, in this work, it is pro-
posed that the weight of θ follow the following Gaus-
sian function of y1

ρθ(y1) = α exp

([
y1
β

]2)
, (20)

where α and β are a tuning parameters. Figure 6
shows the variation of the weight of θ for different
values of α and β.
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Figure 6: Variation of the θ weight coefficient vs y1

The Gaussian function is considered a suitable
candidate function because it presents symmetry
relatively to y1 and is a bounded continuous func-
tion. The weight of θ has its maximum α when
|y1| = 0, i.e., when the vehicle is moving on top
of the reference (assuming s1 ≈ 0). When |y1| in-
creases, the weight of θ decays as a function of |y1|,
within an interval controlled by β, outside of which
it can be considered to be zero.

To incorporate this functionality in the MPC con-
troller, the entry corresponding to θ in the diagonal
matrix of fixed weights Q is changed to zero. Fur-
thermore, the cost function

`θ(y1, θ) = ρθ(y1) θ2, (21)

is added to the cost function in (13), resulting in a
new cost function

`′(x,u) = `(x,u) + `θ(y1, θ), (22)

where y1 and θ are part of x.

4. Results
The unicycle being considered in the following ex-
periments has a rectangular shape measuring 2.8 by
1.3 meters in length and width, respectively, and the
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vehicle parameters are shown in Table 1. The unicy-
cle model is defined by equations (12) and the uni-
cycle is actuated by two independent motors, whose
individual torque output, including the drivetrain,
is limited to the interval [−100, 100] N.m via con-
straints on the input variables τ1 and τ2.

m [kg] L [m] R [m] I [kg.m2]

200 0.5 0.25 158.8(3)

Table 1: Unicycle physical parameters.

Unless otherwise stated, the following simulations
are obtained with a prediction horizon N = 10
and a controller sampling period Ts = 0.125 sec-
onds. The unicycle initial conditions are x0 =
[0 15 0 7 0]>, meaning that the vehicle starts with
a tangential and normal offset of 0 and 15 meters,
respectively, relatively to the initial position of the
virtual target, which equates to a vehicle starting
at position (35, 0) in {I}. Also, θ = 0◦means that
the vehicle starts aligned with the tangential axis of
{F}, and thus the initial orientation of the vehicle
is θm = 90◦. Finally the vehicle also starts with a
linear velocity of υ = 7 m/s and with no angular
velocity, i.e., ωm = 0 rad/s. The initial conditions
are kept the same throughout most of the exper-
iments to provide a basis of comparison between
experiments.

The test path is the ”∞” shaped track with 335
meters in length and a maximum radius of curva-
ture of about 9 meters. This track contains different
sections simulating different scenarios that can be
found in real world race tracks, such as straights,
corners, and chicanes, an thus provides a suitable
test environment.

4.1. Constant Virtual Target Speed
In this experiment the virtual target moves at a
constant velocity equal to 14 m/s (50.4 km/h). The
weights assigned to each state and control variables
in the MPC cost function are shown in Table 2.

States Inputs

s1 y1 θ v ωm τ1 τ2

1 1 1 0 0 0 0

Table 2: Controller weights assigned to each vari-
able.

Figure 7 shows that, despite starting with an off-
set and with half the velocity of the virtual tar-
get, the controller is able to drive the vehicle to
smoothly converge to the moving reference. From
then on, vehicle and reference move together, and
thus path following is achieved for the rest of the
simulation.
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Figure 7: Resulting trajectory of the unicycle using
a constant virtual target speed of 14 m/s.

The evolution of the state and control variables
displayed in Figure 8 shows the position and ori-
entation errors converging to zero as wanted. Fur-
thermore, Figure 8 shows that the vehicle velocity
converges to the virtual target constant velocity of
14 m/s, as expected.
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Figure 8: Evolution of the state and control vari-
ables over time.

4.2. Controlled Virtual Target Speed

In this experiment, the virtual target speed con-
troller presented in Section 3.4 is tested. The aim
of this experiment is to demonstrate the benefits of
controlling the virtual target velocity based on the
position of the vehicle relatively to the virtual tar-
get. To provide a basis of comparison, the initial
conditions and controller weights are the same as
in the previous experiment.

Regarding the virtual target speed controller, the
reference speed is set to the same value of 14 m/s
when s1 = 0 for all controllers. The tuning pa-
rameter λ, which controls the aggressiveness of the
virtual target speed profile, is set to 2, 4, 6, and 8
in controllers A, B, C, and D, respectively.

Figure 9(a) shows the comparison between two
trajectories, one that is the same as in the previous
experiment obtained using a constant virtual target
velocity, and another obtained using controller C

7



which utilizes a virtual target speed controller with
λ = 6. It can be seen that controlling the virtual
target speed allows the vehicle to converge to the
path much sooner, since the virtual target slows
down to ”wait” for the vehicle to get close.
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(a) Trajectory comparision
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trolled virtual target speeds.
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Figure 9: Resulting trajectories using and not using
a controlled virtual target speed.

Figure 9(b) shows the comparison between tra-
jectories of four controllers using differently tuned
virtual target speed controllers. It can be seen that,
as λ increases in value (from controller A to D), the
vehicle converges later to the path, since the virtual
target speed profile becomes less aggressive, i.e., the
change in speed responds more slowly to changes in
s1. Conversely, smaller values of λ allow the vehicle
to converge to the path sooner, because the virtual
target has lower velocities for smaller negative val-
ues of s1, which allows the virtual target to wait
closer in front of the vehicle. On the other hand,
it also picks up speed very quickly, which results in
overshoots as the virtual target gains velocity very
quickly when the vehicle approaches it.

The evolution of the state and control variables
displayed in Figure 10 shows the position and orien-
tation errors converging to zero, and also shows the
evolution of the virtual target speed. At first, when
s1 = 0, the virtual target moves at its reference
speed of 14 m/s. As soon as the vehicle starts to
lag behind, it gradually slows down until the vehi-
cle stars to recover ground again and picks up speed
again, as desired.

4.3. Variable Orientation Error Weight

The previous experiment shows that decreasing λ
allows the vehicle to turn to the path more agres-
sively, but it also generates an overshoot in the tra-
jectory. In this experiment, the variable orienta-
tion error weight method presented in Section 3.5
is tested as a complementary feature to the virtual
target speed controller to achieve better smooth
convergences with the path using smaller λ.

In this experiment, three controllers are tested
and their parameters and weights are shown in Ta-
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(a) States s1, y1, and θ.
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Figure 10: Evolution over time of the state and
control variables of controller C (λ = 6).

ble 3. It is remarked that controller A is the same
of the previous experiment.

Weights*

Controller θ λ α β

A 1 2 - -
B 15 2 - -
C 0 2 15 3

*The remaining weights remain un-
changed and are present in Table 2.

Table 3: Controller weights and parameters.

Figure 11(a) shows that controller C achieves
a faster and smoother convergence without over-
shoots when compared to the other controllers. In-
creasing the fixed weight of θ in controller B elim-
inates the overshoot in the trajectory, although it
causes the vehicle to converge more slowly to the
path, and thus the benefit of using a smaller λ is
lost. Controller C, on the other hand, uses the same
maximum θ weight, given by α, of controller B, but
since this weight decreases with increasing |y1|, it
first allows the vehicle to turn more aggressively to
the path and, at a later stage when the vehicle is
close to the virtual target, the gradually increas-
ing value of θ makes the controller align the vehicle
with the path, and thus eliminates the overshoot.

The evolution of the key state variables displayed
in Figure 11(b) also shows that the variable θ weight
method produces smoother signals throughout the
simulation, especially when compared to Controller
A.

4.4. Path Boundaries and Obstacle Avoidance
In this experiment, the methods proposed to enforce
path boundaries and obstacle avoidance in Sections
3.2 and 3.3, respectively, are tested. The controller
used is the same as controller C of the previous
experiment and, unlike the previous experiments,
the vehicle starts aligned with the path and on top
of the virtual target with a velocity of 14 m/s.

8



25 30 35 40 45 50

X [m]

5

10

15

20

25

30
Y

 [
m

]

A

B

C

(a) Trajectories.

0 5 10 15

-2

-1

0

s
1
 [
m

]

0 5 10 15

0

5

10

15

y
1
 [
m

]

0 5 10 15

Time [s]

-1

-0.5

0

 [
ra

d
]

(b) Evolution of the error
states over time. states

Figure 11: Resulting trajectories and error states
evolution of the differently tuned controllers.

Figure 12(a) shows that, when an obstacle with
an exclusion radius of 2 meters is placed on the
path, the controller is able to avoid it and return
the vehicle to the path afterwards. As discussed in
Section 3.3, the vehicle violates the exclusion zone
but not the physical area of the object between con-
troller sampling instants, therefore demonstrating
the importance of adding a margin of safety to the
obstacle.
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(a) Obstacle avoidance with
no path boundaries.
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Figure 12: Obstacle avoidance with virtual target
speed control and variable θ weight.

Figure 12(b) shows the resulting trajectory of the
same vehicle when a single path boundary of 2 me-
ters is placed on the right side of the path, when
viewed from a vehicle moving from the right to the
left of the figure. The distance between the path
and the boundary is made equal to the exclusion
zone radius to force the vehicle to take an alterna-
tive path around the obstacle, when compared Fig-
ure 12(a). As expected, the vehicle is shown to take
another path around the obstacle in Figure 12(b),
and thus the path boundaries are demonstrated to
work successfully.

4.5. Robustness Experiments

The previous experiments are performed under per-
fect conditions, where every state, control input and
vehicle parameter is assumed to be known. To as-
sess to some degree the robustness of the designed
controller, this experiment introduces uncertainty
in the position or orientation of the vehicle with

respect to an inertial frame, since these states are
the ones measured in a real world application. The
controller being tested is controller C of Section 4.3,
with the initial conditions and vehicle parameters
remaining the same. Because the problem is now
stochastic, each experiment is performed ten times.
Furthermore, the initial state of the vehicle is al-
ways assumed to be known.

In the first experiment, zero mean white Gaussian
noise with a variance of 1 meter is introduced in the
inertial position of the vehicle, given by X and Y .
The second experiment introduces zero mean white
Gaussian noise with variance of 1 degree into the
orientation of the vehicle θm. The results of these
experiments are presented in Figure 13 and Table
4.
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(a) Noise in X and Y with a
variance of 1 meter.
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(b) Noise in θm with variance
of 1◦.

Figure 13: Trajectories of the unicycle under uncer-
tainty of the position or orientation of the vehicle
using a fully featured controller.

|s1| [m] |y1| [m] |θ|[◦]

Fig. Mean Var. Mean Var. Mean Var.

13(a) 1.23 1.43 1.06 0.68 10.73 19.40

13(b) 0.15 0.02 1.20 1.56 16.50 22.19

14(a) 1.04 0.62 1.07 0.57 9.69 17.96

14(b) 0.87 1.34 1.14 0.98 16.90 26.85

Table 4: Mean and variance of s1, y1 and θ in the
different simulations.

Figure 13 shows that, despite a considerable un-
certainty in key states, such as the position or ori-
entation of the vehicle, the controller proves to be
robust to this degree of uncertainty in both scenar-
ios, since it is able to follow the path.

Table 4 shows that an uncertainty of 1◦in the ori-
entation of the vehicle does not produce significant
errors in s1, although it causes worse orthogonal
tracking than a 1 meter uncertainty in the position
of the vehicle.

Figure 14 and Table 4 show the results obtained
under the same degree of uncertainty using a con-
troller with no added features, such as the controller
of Section 4.1. It can be seen that the added fea-
tures do not seam to negatively impact the robust-
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ness of the controller, which is desirable, although
more simulations must be performed to take any
definitive conclusion. The main noticeable differ-
ence is that the fully featured controller becomes
more robust in s1 under uncertainty on the orien-
tation of the vehicle.

-50 0 50

X [m]

-20

0

20

Y
 [

m
]

(a) Noise in X and Y with a
variance of 1 meter.

-50 0 50

X [m]

-20

0

20

Y
 [

m
]

(b) Noise in θm with variance
of 1◦.

Figure 14: Trajectories of the unicycle under uncer-
tainty of the position or orientation of the vehicle
with a featureless controller.

5. Conclusions
The main objective of developing a controller using
Model Predictive Control to drive an autonomous
racing vehicle to follow a reference path is achieved
in this work. Based on the work developed in [3],
by parametrizing the path with respect to the arc-
length, the path-following problem can be formu-
lated in a Frenet-Serret frame that follows a virtual
moving reference over the path. The inspiration
from [3] stems mainly from the use of a Frenet-
Serret referential to reduce the tracking problem to
a regulation problem, in which the vehicle state is
driven to zero.

The ability to control the speed of the virtual
target is explored in this work to make the virtual
target stay relatively close to vehicle while it tries to
move at a certain reference velocity. The proposed
method to specify the virtual target speed using
an exponential function is shown to produce very
positive results.

Designing the controller using Model Predictive
Control allows constraints to be placed on both the
state and control variables. This ability is suc-
cessfully explored in this work to implement path
boundaries and basic obstacle avoidance.

This work also proposes a method to dynamically
change the weight of the orientation error based on
its orthogonal distance to the reference by using a
Gaussian function of this distance. This method
gradually increases the weight on orientation error
as the vehicle gets closer to the path, and vice-versa,
and thus allows the vehicle to more aggressively re-
duce the orthogonal distance to the path at an ini-
tial stage, while at a later stage forces the controller
to align the vehicle with the path for a smooth con-
vergence. This method is shown to produce positive
results.

Finally, some robustness experiments are also

performed to test the controller by introducing
uncertainty in the vehicle position or orientation.
Despite considerable uncertainties, the controller
proves to be robust, although the scenarios tested
are limited, and thus a more comprehensive bat-
tery of robustness tests must be performed in future
work.

Future steps of this work include designing the
controller utilizing a more realistic and complete ve-
hicle model, that accounts for additional dynamics,
such as tire grip and motor dynamics. Other steps
are to use MPC to generate the path the vehicle
will follow and expand on the obstacle avoidance
formulation. Finally, a fundamental step is to test
the controller with real hardware, running the con-
troller in real time to control a test vehicle.
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