Building More Decentralized Blockchains Using Secure
Virtual Coordinates

Marco Silva
Instituto Superior Técnico, Lisboa, Portugal
marcofsilva@tecnico.ulisboa.pt

ABSTRACT

Blockchain provides an immutable and unforgeable ledger that
can be decentralized. However, existing blockchain systems
lack decentralization, e.g., due to clustered nodes most likely
confined to datacenters. This centralization may raise some
security concerns, e.g., allows the selection of a majority of
nodes under the control of some malicious attacker. One cru-
cial property that would help to avoid this security issue and to
increase decentralization is to ensure diversity of participants
in the blockchain. A way to enforce that diversity can be by
choosing geographically diverse nodes, and we hypothesize
that it is possible to achieve this by embedding virtual coordi-
nates in the overlay of blockchain systems, as that would allow
for topology-awareness. However, such a Virtual coordinate
system (VCS) needs to be robust to malicious participants,
including the ones performing attacks most effective in the
context of blockchains. To address this, as a starting point
for this thesis, we select Newton, a secure decentralized VCS.
We evaluate it in an adversarial environment, where we sim-
ulate attack strategies trying to overcome Newton’s security
mechanisms, with a particular focus on attack strategies and
scenarios relevant in a blockchain context, namely where the
attackers form a cluster in the network, as a consequence of be-
ing operated by the same entity. We confirm that Newton can
withstand the known attacks on VCS even when performed by
the cluster. We then design and test a new attack strategy, Split
Cluster Attack, which we found capable of disrupting New-
ton’s defense mechanisms, degrading significantly Newton’s
accuracy.

Keywords
Distributed Systems; Blockchain; Decentralization; Virtual
Coordinates; Cybersecurity

1. INTRODUCTION

Blockchain provides an immutable and unforgeable ledger
that can be implemented in a fully decentralized manner. The
importance of blockchain systems comes mainly from the
ability to bring trust to a decentralized network, allowing
for recording transactions between peers who do not trust
each other, and removing the need for a trusted third party
for validating those transactions. Given the recent success
and increased visibility of this technology, blockchain-based
applications are increasingly applied to various fields. This
success creates a pressing need to find and overcome existing
challenges and limitations of today’s blockchains.

In a "permissionless" (open membership) blockchain setting,
anyone can create an address and begin interacting with the
network. This is derived from the nature of blockchain sys-
tems, namely the fact that they are decentralized, anonymous,
and equally accessible from any computer. Beyond the advan-
tages that result from this nature, such as increased privacy
and low barrier to entry, some problems may also arise in
the presence of malicious users. In particular, if an attacker
creates multiple nodes, it becomes challenging to ensure that
the system still works correctly [6, 5].

One crucial property to prevent such attacks is to ensure
that there is a diversity of participants contributing to the
blockchain, in order to minimize the odds of selecting a major-
ity of nodes under the control of a malicious attacker, who can
use that majority to subvert the system. However, in practice,
existing blockchain systems lack diversity. For example, Bit-
coin and Ethereum, two of the most popular blockchain-based
networks, have been shown to have a significant number of
clustered nodes [6], most likely confined to datacenters con-
trolled by a single person or entity. Additionally, when these
studies focus on the processing power instead of the number
of nodes, they show that a low number of entities in these
networks possess the majority of the processing power that
maintains the blockchain [6]. As such, this lack of diversity
has the potential to create security problems, thus reducing the
benefit of a truly decentralized system.

A central observation of this thesis is that, enforcing geo-
graphic diversity between the nodes, would substantially raise
the bar of an attacker trying to conduct this sort of attack, since
he/she could no longer operate all the nodes from a single lo-
cation, such as a datacenter. Furthermore, since blockchains
form an overlay network between their members, it is possible
to embed virtual coordinates in those overlays [3], thus allow-
ing for choosing geographically diverse nodes, to enforce — or
at least increase — diversity in the blockchain.

However, since there can be a malicious attacker that can try
to subvert the protocol that determines these coordinates in
order to control the blockchain, we need to deploy a virtual
coordinate system that is secure in the presence of malicious
participants. Thus, we choose Newton [10] as an appropriate
starting point to achieve secure virtual coordinates for the
nodes in the overlay.

Newton is a decentralized Virtual Coordinate System which
extends Vivaldi [3] with security mechanisms that prevent

an attacker from spoofing its own coordinates or otherwise
manipulate the coordinates of other nodes. The idea of these
security mechanisms is to enforce Newton’s laws of physics to
recognize and reject tampered or malicious reports from one
node to another. However, despite their potential to improve
the security of blockchains, their use in this context require
that they are not only robust against a single malicious node,
but also against a cluster of nodes trying to disguise their real
location.

In this thesis, we test Newton against novel attack scenar-
ios that we devised, with the goal of understanding how ro-
bust, and consequently how suitable it is for incorporating in
blockchains. To this end, we started by implementing Vivaldi
and Newton in the context of a novel distributed systems sim-
ulator based on the Rust programming language [11]. This
then allowed us to test Newton under a wide variety of adver-
sarial scenarios: from executing the known attacks to virtual
coordinate systems, performed both by randomly distributed
attackers in the network and attackers forming a cluster, to
designing and testing a novel Split Cluster Attack, which is
a new attack strategy capable of disrupting Newton’s ability
to provide accurate coordinates, while the attackers deceive
honest nodes into thinking that the nodes in a cluster are split
across different groups. Under the known attacks, Newton is
able to match the baseline accuracy, even for the cluster sce-
narios, however, the Split Cluster Attack, manages to degrade
Newton’s prediction performance.

The remaining of this document is organized as follows. Sec-
tion 2 presents background on both blockchain and virtual
coordinate systems. We describe our approach in this work,
followed by the implementation details of Newton and the
novel Split Cluster Attack in Section 3. Section 4 describes
the metrics used in the measurements and shows the results ob-
tained from our experiments using Newton. Finally, Section 5
presents the conclusions and future work.

2. BACKGROUND

Blockchain

Blockchain [9] is a peer to peer distributed ledger where
transactions or digital events are recorded. This ledger is
immutable, unforgeable, and simultaneously maintained by
the nodes (computing devices) in the network. The transac-
tions are grouped into blocks, and the blocks are then stored
sequentially in the ledger record, thus forming a chain of
blocks. For transactions to be included in a blockchain, they
first need to be included in a candidate block (a possible new
block to the chain). This entails a preliminary check where
the nodes of the network have to confirm that it is a valid
transaction. Then, the nodes run some consensus algorithm to
reach an agreement on the next valid block to add the chain. In
particular, the consensus algorithms that are used nowadays in
permissionless blockchains are based on the notion of "proof
of work". In these schemes, every node in the system acts as
a miner trying to solve a cryptographic puzzle, in addition to
validating transactions and creating the blocks for the ledger,
usually in exchange for some reward. In this case, the con-
sensus algorithm attempts to select the miner who appends

the next block, among the nodes that succeeded in solving the
puzzle.

Blockchain [9] systems can be organized according to var-
ious different categories. The primary division is between
public and private blockchains. Private (or permissioned)
blockchains have restrictions on the individuals that may be-
long to the blockchain, usually just members of some organiza-
tion. On the contrary, public (or permissionless) blockchains
have an open membership, and anyone can create an address
from where to send or receive transactions and begin interact-
ing with the network anonymously. The two primary permis-
sionless blockchain-based cryptocurrencies are Bitcoin and
Ethereum. We next survey a series of measurement studies on
both Bitcoin and Ethereum, regarding their level of decentral-
1zation.

Decentralization in blockchain-based Cryptocurrencies
Blockchain-based systems have decentralization as one of
their key underlying properties. However, a lack of diversity
is currently observed in overlays such as Bitcoin or Ethereum,
where a significant fraction of the participating nodes is con-
centrated in a few data centers, reducing decentralization.

In [6], Gencer et al. present a measurement study on decen-
tralization metrics in Bitcoin [8] and Ethereum [13, 4]. When
measuring network structure, the aim was to understand if
the networks were geographically clustered, through the use
of measured and estimated latencies between nodes. These
latencies were used to infer estimates of geographic distances,
and the results show that Ethereum nodes are more distributed
around the globe than Bitcoin nodes, but that both have nodes
likely to be running in data centers, due to the geographic prox-
imity between these nodes. The authors also measured the
distribution of mining power in Bitcoin and Ethereum. Min-
ing in these two networks is a complex and computationally
expensive process, especially due to the proof of work consen-
sus algorithm. The authors try to evaluate if the participants
of these networks use more powerful hardware to succeed
more often in solving the cryptopgraphic puzzle, resulting
in a mining process more centralized. The authors’ mining
power estimations for each entity are based on the ratio of
main chain blocks generated by each entity. Then through the
examination of the weekly distribution of mining power in
Bitcoin and Ethereum for ten months from 2016 to 2017, the
authors present results showing that over 50% of the mining
power has been shared by only eight miners in Bitcoin and five
in Ethereum. These results give us a sense of the centralization
of these blockchain networks. Furthermore, powerful miners
who attract more and more members might try to appear less
powerful, creating multiple entities, as not to seem that they
are contributing to the centralization of the network.

Virtual Coordinate Systems

Virtual Coordinate Systems (VCS) were proposed to address
an issue in large-scale distributed systems, related with the
fact that the cost of direct measurements of network latency
or bandwidth between nodes can outweigh the benefits of ex-
ploiting topology information, to be able to select the best
nodes to contact (e.g., its neighbors in an overlay network)
[3]. For this purpose, VCS allows hosts to predict network

performance metrics between pairs of nodes without the need
for explicit measurements, which reduces significantly the
network measurement overhead. The key idea of VCS sys-
tems is to characterize the network location of a node in the
overlay by modeling the real network as a geometric space. In
this geometric space, all the hosts have coordinates, and the
distance between them represents latency, for instance, which
is usually considered as the round trip time (RTT) between
hosts.

VCS systems can be divided into two major groups, Landmark-
based Systems, and Decentralized Systems. Comparing both,
the main difference is in the fact that the former relies on a
priori trusted set of nodes, a fixed infrastructure of landmarks,
to serve as reference nodes. The latter, in turn, does not require
any fixed network infrastructure/set of reference nodes and
makes no distinctions between nodes. In other words, any
node in the system may be used as a reference to any other
node.

Next we describe Vivaldi [3], the decentralized approach cor-
responding to Newton [10], with no defense mechanisms. We
then present the attacks on VCS, and lastly, we describe the
security aspects of Newton.

Vivaldi

Vivaldi [3] is a decentralized, low-overhead, adaptive system,
with a simple algorithm that assigns synthetic coordinates to
hosts, with the distance between their coordinates predicting
the communication latency, specifically RTT, between them,
with low error.

Vivaldi was inspired by analogy to a real-world mass-spring
system, therefore on a Euclidean coordinate space. The Eu-
clidean space has to satisfy the triangle inequality, dsc <
dap +dpc, where dy, is the distance between the nodes x and
y. However, Internet routing policies often violate the triangle
inequality [15, 7, 12], so Vivaldi cannot predict the exact RTT
between hosts. Instead, the algorithm attempts to find the
coordinates that minimize the error of predictions.

In the design of Vivaldi, all nodes update their coordinates
based on interaction with a subset of other nodes (neighbor
set). A node chooses half of these nodes randomly from all
possible nodes and the other half from a set of low-latency
(nearby) nodes. In addition to the coordinate value, each node
also maintains a local error value, representing the confidence
in the coordinate value. Algorithm 1 describes how each node
i updates its coordinates, after it sends a request to node j for
its coordinate and local error value, and measures the actual
RTT when the node j replies.

First, (line 1) a sample confidence (weight) w is calculated,
balancing local and remote error. Then, (line 2) the relative
error of the sample is computed. (line 3) Then node i updates
its local error with a fraction of the sample error, weighted by
the confidence in the remote coordinates, where c, is a system
parameter. (line 4) An adaptive time-step 6 that depends on
the confidence on the remote node coordinates and a system
parameter c. is now computed. Finally, (line 5) node i updates
its local coordinates by finding the force applied by the remote
node, using a fraction of that force determined by the adaptive

N oA W N =

Algorithm 1: Vivaldi’s Node i Coordinate Update

Input : Remote node tuple < x;,e;,RTT;; >

Output : Updated local node coordinate and error x;, e;
w=e;/(eit+e));

ey = |||xi —x;|| = RTT;|/RT Tij;

ei = (es X coe X W)+ (€; X (1 —(ce xw)));

O =c.xXw,

Xi =X+ S X (RTT,'J' — ||x,- —xJ-H) X u(x,- —XJ');

time-step & and multiplying that by a unit vector with the
direction it should move.

One key challenge in the design of Vivaldi is that sampling
only low-latency (nearby) nodes can lead to coordinates that
preserve local relationships but are far from correct on a global
scale. This issue is avoided by adding long-distance commu-
nications. In the proposed design, each node is assigned eight
neighbors: the four immediately adjacent to it and four chosen
at random (on average, the random neighbors will be far away).
At each step, each node decides to communicate either with an
adjacent neighbor or a far away neighbor. In the evaluation of
the system, it is shown that when half of the communication
is with distant nodes, coordinates converge quickly.

A high time-step leads to high oscillation, and a low time-step
leads to slow convergence. Consequently, Vivaldi uses an
adaptive time step parameter, 0, to provide low oscillation,
resilience against high-error nodes, and to make the system
quickly converge to accurate solutions, maintaining accuracy
even as a large number of new hosts joins the network.

Attacks on VCS

Now we will look at known types of attacks to VCS, aiming
at lowering the performance of VCS systems. These are in-
ternal attacks, executed by insider attackers. Zage et al. [14]
identified basic attacks, in a specific way considering how
the malicious node can lie to perform different manipulations.
Concretely, an attacker can influence the round-trip time (RTT)
by delaying measurement probes, and can also lie about its
coordinates and local error value, to conduct the following
attacks:

Inflation Attack has attackers that lie about their coordinates,
resulting in a victim node having incorrect coordinates, far
from the correct ones. To accomplish this, an attacker can, for
instance, report a low error and close coordinates to the victim,
and delay the measured RTT.

Deflation Attack aims at maintaining a victim node immobile.
For that purpose, an attacker may report coordinates that result
in an estimated RTT (|x, — x,|, where x, and x, are the coor-
dinates from the victim node and the attacker, respectively)
similar to the measured RTT, making the victim node think
that it should not move. An alternative is for the attacker to
report coordinates close to the origin.

Oscillation Attack, like the disorder attack, introduces chaos
in the coordinate system. Attackers choose random coordi-
nates to report and randomly delay measurement probes. Con-

sequently, the remaining nodes have to keep updating their
coordinates, not converging to their correct positions.

Additionally, Chan-Tin et al. [1, 2] identified more advanced
attacks, frog-boiling and network partition, that are slow at-
tacks, more subtle and difficult to identify. The objective of
both is to disrupt the accuracy and stability of victim nodes’
coordinates.

Frog-boiling Attack has a node lying in small amounts at a
time, moving their coordinates in one direction. Over time,
the coordinates of the lying node end up being far from its
real position, but each step is small enough not to trigger the
anomaly detection in the security mechanisms based on outlier
detection.

Network partition Attack is an extension of the frog-boiling
attack, with multiple nodes colluding together and moving in
opposite directions.

Newton

Newton [10] is a decentralized VCS that extends Vivaldi [3]
with security mechanisms. The objective is to withstand a
large number of attacks on VCS systems, by using safety
invariants derived from Newton’s three laws of motion, and
if a node lies, the system detects that it violates some safety
invariant, and the update from that node can be ignored.

Newton’s three laws of motion are the following: First Law: a
body stays at rest unless acted upon by an external, unbalanced
force; Second Law: a force f on a body of mass m, undergoes
an acceleration a, such that a is proportional to f and inversely
proportional to m; Third Law: when a first body exerts a force
on a second body, the second body exerts an equal but opposite
force on the first body.

The rationale underlying the detection of the attacks previ-
ously described is that, when an attacker node lies about its
coordinates, it is implying that some forces have previously
acted upon it, thus introducing extraneous indirect forces into
the system. Introducing these forces breaks the first and third
laws. Furthermore, when an attacker delays a probe or lies
about its local error, it is introducing extraneous direct forces
between itself and another node. This case breaks the second
law. Therefore, Newton introduces the following mechanisms
to detect these violations:

e Detecting extraneous indirect forces: Newton incorporates
in its design two detection methods, one for randomly cho-
sen neighbor nodes, and the other for physically close neigh-
bor nodes:

— Random nodes: By Newton’s third law, there can be
no unbalanced forces in a mass-spring system. By the
definition of the first law, an extraneous indirect force
introduced by an attacker will be an unbalanced force.
Then, the third law implies that an unbalanced force
can be detected by finding the centroid of the nodes’
coordinates. Consequently, the following invariant is
used to detect such violations.

First invariant, IN1: If the centroid of a node i and
the randomly selected nodes from its neighbor set is at

the origin of the geometric space, then no unbalanced
force has been introduced. However, if the centroid
is not at the origin, then an attacker (or collection of
attackers), has introduced an unbalanced force that has
the same direction as a force vector from the origin to
the centroid c¢. Therefore, a node i can find an attack
by observing that the centroid ¢ is non-zero, or over
some threshold.

— Physically close nodes: Because all nodes are con-
nected via springs and are physically close, they will
experience similar forces from the same nodes, thus
leading to the following.

Second invariant, IN2: if nodes i and k are physically
close, and node i experiences a force f;; from node
J, then node i would expect node k to experience a
force fi; from j similar to the vector projection of
fij onto the vector u(x; —x;), where x; and x; are the
coordinates of the nodes j and k.

Node i knows where node k is expected to have its
updated coordinates, and it calculates the difference,
in distance, between this expected location and the
location reported by k. Then, if the distance is over
some threshold, i rejects the update from k.

e Detecting extraneous direct forces: The second law states
how much a node should accelerate, given the force and
mass of a node. Additionally, in a mass-spring system, the
amount of force applied to a node is dominated by Hooke’s
law, F = —kx, which states that the amount of force on a
node is proportional to the spring’s current displacement x
from its rest position, and where & is the spring constant !
These laws can be checked by the following.

Third invariant, IN3: As the springs in the physical system
stabilize and come closer to their rest position, nodes should
decelerate, and as a consequence, the forces applied to them
should decrease over time.

3. IMPLEMENTATION

A way to enforce diversity of participants in blockchains and
thus minimizing the odds of selecting a majority of nodes
under the control of a malicious attacker can be by choosing
geographically diverse nodes. In this thesis, we hypothesize
that it is possible to achieve this by embedding virtual coor-
dinates in the overlay of blockchain systems, as that would
allow for topology-awareness. However, since we may have
to handle a malicious attacker that can try to subvert the proto-
col that determines these coordinates in order to control the
blockchain, we need to deploy a virtual coordinate system that
is secure in the presence of malicious participants. For that
purpose we will use Newton [10]. Given this context, we need
to make sure that the defense strategies that Newton puts in
place are robust against the attacks that might be most effective
in the context of blockchains. Therefore, we evaluate Newton
in an adversarial environment, where we simulate attack strate-
gies trying to overcome Newton’s security mechanisms, with
a particular focus on attack strategies and scenarios relevant
in a blockchain context, namely where the attackers form a

"How stiff the spring is.

cluster in the network, as a consequence of being operated
by the same entity. Consequently, our work consists of the
following two main stages:

e Perform a set of known attacks to VCS to try to degrade
the system performance, specifically its accuracy and in
some cases stability, but in a novel context, where the at-
tackers form a cluster in the network. The cluster varies
in size, being formed by a different number of attackers,
and distance to the rest of the network, where we aim at
comparing attackers randomly positioned in the network, at-
tackers forming a cluster close to the network, and forming
a cluster far isolated from the rest of the network.

e Split Cluster Attack devises a new attack, aimed at con-
cealing the clustering of a set of nodes by making it appear
as multiple separate sets.

The measurements and results of the experiments for both are
shown in Section 4. We next go through the implementation
of Newton and the design of the Split Cluster Attack.

Newton

The Newton protocol [10] was explained in Section 2, in two
different sections, since it consists of two components, namely
Vivaldi as the base protocol, and Newton’s security invariants
applied on top of it. Additionally, this implementation is con-
ducted in a simulation environment, which allows us to remove
a lot of the complexity of a real execution. Regarding the sim-
ulator to use, we picked the novel Corten Simulator [11], since
it is a discrete event-based distributed algorithms simulator
that, among other things, models network asynchrony, namely
latency, but at the same time is simple enough to allow for fast
prototyping and a scalable evaluation. Specifically, latency is
given by a matrix of inter-host internet latencies. Additionally,
the Corten simulator, is coded in the Rust programming lan-
guage, and requires its applications to also be written in Rust.
Consequently, we had to implement all our code in Rust as
well.

Our explanation of the implementation of Newton is split into
two parts: first, the implementation of the base code of Vivaldi,
and then the security invariants based on Newton’s laws of
physics, which add the security aspect.

Vivaldi

A node running Vivaldi needs to store the following main at-
tributes: Local Virtual Coordinates, Local Error and Neighbor
Set. Additionally, the main method, which contains the core
algorithm of the system is the one that takes care of updating
the coordinates, and additionally also updates the local error.

Virtual Coordinates: The coordinates that each node keeps are
intended to allow the estimation of the RTT between nodes,
which is accomplished by computing the distance between co-
ordinates. As mentioned in [3], the simplest solution is to use
n-dimensional coordinates and the standard Euclidean distance
function, as per Equation 1, where x and y are the coordinates
of the two nodes, and » is the number of dimensions.

d(x,y) = i{(yixi)z (D

1

Additionally, Seibert et al. [10] have shown that Newton op-
erates well using simple two-dimensional coordinates. Con-
sequently, and considering we run all experiments in a simu-
lation environment and not in a real Internet deployment, we
use two-dimensional coordinates in the Euclidean space.

Error: The local error value each node maintains represents
the confidence the node has in its coordinate value. This error
is a float with values within [0.0, 1.0], and starts with the value
1.0 at the beginning of an execution. In Algorithm 1, we can
see how it is updated.

Neighbor Set: As previously explained, half of the neighbors
are low-latency nodes and the other half are random nodes
from the network. Each node creates its neighbor set at the
beginning of execution and following the next two steps: (1)
choosing the closest neighbors is done using the simulator’s
global knowledge of the network, where the #neighbor_set /2
nodes with the lowest latency to the current node are chosen;
(2) choosing the random neighbors is done in a straightforward
way given this global knowledge. A node uses this knowledge
to pick the #neighbor_set /2 nodes randomly with uniform
probability.

Coordinate Update: Regarding the updating of coordinates in
the system, our implementation directly reflects the specifica-
tion given in Section 2, when describing Vivaldi, with its core
rationale in Algorithm 1.

Security

Regarding the security in Newton, the central idea falls in the
usage of security invariants based on Newton’s laws of motion.
Therefore, in addition to the logic that is already present in
the version with no security, every node after receiving an
update/reply from another node checks the invariants, and, if
at least one is violated, the update is discarded. Specifically,
when receiving an update from a random neighbor, IN1 and
IN3 are checked; and, if the update is coming from a close
neighbor, then the invariants that are checked are IN2 and IN3.

INI1: A node i calculates the centroid of its local coordinates
and its random neighbors’ coordinates, considering also the
force being applied in the current update, as we show in Equa-
tion 2, where x,, represents the coordinates of node p, f;; the
force that node j is trying to apply on node i in the current
update, and n the number of nodes in the network.

o= Lom1 Bt S @

n

If the distance from the origin to the centroid c is larger than
some IN1 threshold, then node i detected an attack. Subse-
quently, it can find which node introduced the unbalanced
force into the system and is therefore the attacker. For ev-
ery neighbor, node i sums up all the forces that the neighbor
has applied to it, and computes the vector projection of the
summed forces onto the centroid vector. The neighbor node
whose projection has the greatest magnitude is, therefore, the
greatest contributor to the moved centroid. Specifically, if
the current updating node j is the neighbor with the greatest
magnitude, then the current update will be ignored.

IN2: We implemented the IN2 verification exactly as described
in Section 2, when discussing the detection of extraneous
indirect forces introduced in the system by physically close
nodes, in Newton subsection, taking into consideration the last
forces of all the neighbors (close and random) that the local
node has experienced.

IN3: As the springs in the physical system stabilize and come
closer to their rest position, nodes should decelerate, and as a
consequence, the forces applied to them should decrease over
time. To verify if nodes reporting updates are indeed slowing
down over time, the local node calculates the median f and
median absolute deviation D of the magnitude of the force that
each node is applying to it. If the magnitude of any force m; is
some deviations larger than the median, the node will ignore
it. This is shown in Equation 3, where ¢ is the threshold for
the number of deviations.

mj;> f+1xD A3)

Additionally, there are different thresholds defined for ran-
domly chosen neighbors #, and physically close ones 7., where
the median is calculated separately for both types of neighbors.
The rationale for this is that close nodes exert smaller force
values but deviate more from the median, while randomly cho-
sen nodes are the opposite [10]. Hence, the threshold for the
close neighbors will be higher than the threshold for randomly
chosen nodes.

Split Cluster Attack

This is a new type of attack, inspired by the actions that an en-
tity trying to operate a cluster in a permissionless Blockchain
might take, in order to deceive a secure virtual coordinate
system trying to detect and deactivate such a cluster. As such,
the main goal of the Split Cluster Attack is to split a cluster
into multiple separate groups in the eyes of the rest of the
network. It is performed by the nodes in the referred cluster,
which will cooperate and lie to the remaining nodes in the
network, i.e., the benign nodes. We set the goal of trying to
separate the previously mentioned cluster into multiple groups
to the extent possible, and a second goal of trying to degrade
Newton’s estimation performance.

Our approach was devised while taking into account the secu-
rity invariants of Newton, and therefore we try to surpass these
one by one. In particular, there are three security invariants
that Newton tries to validate, and that consequently need to
be circumvented by our strategy. With this in mind, we next
explain the design of this attack strategy, and what it does to
deal with each of the invariants:

IN1: First, we want to take into account IN1, which detects
erroneous behavior by checking if the centroid moves away
from the origin of the geometric space. Consequently, to dodge
detection, the attackers need to avoid moving the centroid, and
for that, our design for this attack will start by using the same
base ideas as the network partition attack: splitting the cluster,
with its nodes slowly getting their coordinates far away from
each other, in opposite directions.

IN2: To allow the attackers from the cluster to get around this
invariant, the cluster have to be isolated from the rest of the

network or at least positioned far enough to avoid its nodes to
be selected as close neighbors of any of the benign nodes in
the network, since IN2 is only tested for low RTT neighbors.

IN3: Lastly, the third security invariant, IN3, checks if the
forces in the system decrease over time. To overcome this in-
variant, the idea is for the attackers to keep the forces they are
applying to benign nodes under the deviation threshold of IN3.
Since a strategy along the lines of the network partition attack
is being used, the attacker will deviate its coordinates from
their real position, lying by small increments at a time. Addi-
tionally, we will have the attacker decrease the fake increment
proportionally to the median magnitude of the force (which is
explained in Section 3, in Newton’s security implementation,
under IN3) applied by the neighbor set of some node. Mainly,
this allows the force introduced in the system and applied to
another node by the wrong reports (the small increments) over
time to be proportional to the IN3 threshold, which determines
when to ignore an update that tries to apply a force higher than
the maximum defined in each time instant. Specifically, each
attacker will simply compute its median force and use it as a
reference.

In summary, the attackers will be forming a cluster positioned
far enough from the rest of the network, to avoid that any of its
nodes are selected as close neighbors of the nodes outside the
cluster, excluding this way the IN2 checks against these nodes
updates. The attack consists essentially in the Network Parti-
tion behavior, where the colluding attackers avoid moving the
centroid of the network (IN1 weakening), but with a dynamic
value for the small fake increments, which will decrease over
time to avoid detection from IN3. With all these provisions in
place, the attack should be able to disguise the physical cluster-
ing and/or reduce the virtual coordinate system’s performance,
mainly accuracy.

4. MEASUREMENTS AND RESULTS

Newton’s code is executed in each node individually, without
the need of any central nodes for coordination of the algorithm,
which complies with the decentralization characteristics we
want for our VCS system. Regarding our choices for the
system parameters, as in [3] and [10], each node picks 64
neighbors, with half being low RTT nodes and the other half
random nodes. In addition, Seibert et al. have shown in [10]
that the following values can be used in any Internet-wide
deployment, and so we used them while configuring Newton:
IN1 threshold 20 ms, IN2 threshold 35 ms, five deviations for
random neighbors and eight deviations for close neighbors
regarding IN3 thresholds.

The Corten Simulator [11] will need a matrix of inter-host
internet latencies of the network in the simulations. The data
set we use for our simulations contain pairwise measurements
of latencies between 1130 nodes, plus the added nodes that
will attack the system, either randomly distributed around the
network or forming a cluster. The number of attackers will
be defined by the percentage of nodes in the network that are
attackers, which has different values for different experiments.

In all simulations, we use a Euclidean Coordinate Space with
two dimensions, and all nodes join in the beginning in a flash-

crowd scenario and continue until the end of the execution.
Every node is constantly selecting a new node from its neigh-
bor set to which to send a probe, and consequently receive
an update in its reply. A probe is sent by each node every
2500 ms, unless otherwise stated, and every node has only one
pending probe at a time.

Regarding the main metrics we use to analyze the experiments,
we have the Prediction Error to help us visualize the accuracy
of the system and the Velocity for the stability. Accuracy and
stability of the system go up when prediction error and velocity
go down, respectively.

e Prediction Error of the system is computed in three levels.
Specifically, it is the median of all the errors of each node.
In turn, the error of each node corresponds to the median of
the link errors involving that node. Lastly, the error of a link,
which is a virtual connection between two nodes, follows
Equation 4, where RT T, is the real RTT between two
nodes, and RT Ty edicrion 18 the distance between the virtual
coordinates generated by each node (||x; —x;|| for nodes i
and j).

pred_error = |RTT;1ctual _RTTpredicted| 4)

e Velocity is given by Equation 5, where Ax refers to the
distance that some node travels, and ¢ is the time taken to
make that distance. The system’s velocity is computed as
the average velocity of all the nodes, and we calculate it for
different time instants.

y=2F 5)

Existing Attacks

In this section, we evaluate the impact that known attacks to
VCS have when performed by a cluster of attackers (represent-
ing an adversary flooding the network with nodes under its
control), and varying the distance between the cluster and the
rest of the network. This focus on an isolated cluster is in con-
trast with the scenario of randomly disperse attackers, which is
the type of attack tested by Seibert et al. [10]. In other words,
we are evaluating existing attacks, but using a novel configu-
ration for the set of nodes controlled by the attacker. All the
experiments in this section run for approximately 1.4 x 107
ms, unless stated otherwise. Additionally, we vary the percent-
age of nodes from the network that are attackers between 10%
and 30%.

We first try to understand the effect of cluster isolation on the
effectiveness of the attacks. To this end, we test each attack
on different topologies, varying the distance from the cluster
to the rest of the network, more concretely, using 50ms and
500ms. Additionally, we run simulations where randomly
distributed attackers perform the attacks. When analyzing
the results for each attack, we present and compare the sys-
tem’s accuracy for these different scenarios. As a baseline for
each attack, we present the accuracy when no attack is per-
formed. This results in four accuracy curves over time, which
are labeled as NoAttack, Random, Cluster50 and Cluster500.
We now present the results of the experiments for each of

the different attacks, where each one starts at 4,000,000 ms,
allowing the system to stabilize first:

Inflation Attack: To report fake coordinates far away from
the origin, an attacker randomly chooses a distance between
900 and 1000 ms, which is far enough from the origin to
be beyond every correct node in the network. Observing
Figures 1(a) and 1(c), we realize that the cluster scenarios
have less impact on the virtual coordinates than the random
one. Furthermore, Newton is able to keep the prediction error
matching with the baseline, for all scenarios. This is because,
regardless of the positioning of the attackers, the unbalanced
forces introduced in the system during the attack, displace the
centroid and allow Newton to detect the attack through IN1
(Figures 1(b) and 1(d)).

Deflation Attack: In this attack, to report coordinates close to
the origin, the distance to it is randomly chosen between 0.1
and 1.0 ms. When analyzing Figures 2(a) and 2(c), we observe
that when the attack starts, the prediction error of the system
(using Vivaldi) rapidly peaks when under the attack of the
cluster at 500 ms of distance, with higher values than with the
random attackers. However, even without the security mecha-
nisms, Vivaldi is able to match the baseline prediction error in
the cluster scenarios. We can see in Figures 2(b) and 2(d) that
Newton is able to successfully mitigate the attack once again.

Oscillation Attack: An attacker not only lies about its coor-
dinates but also delays probes by up to 1 second. Regarding
the coordinates reported, it randomly generates fake coordi-
nates between 0.1 and 1000 ms of distance to the origin in
any direction. We don’t show the results for the oscillation
attack, because they present the same conclusions and patterns
as the ones from inflation attack, and just like in the inflation
attack, the cluster attackers have a smaller impact than the
random attackers on the system’s accuracy. Once again, as
in the previous attacks, Newton is able to match the baseline
accuracy in all scenarios, which we attribute to the IN3 ability
to detect when forces do not decrease over time.

Frog-Boiling Attack: The small deviations that the attacker
reports in each update have a length of 0.25 ms. Figure 3
presents the prediction error of the system under the frog-
boiling attack. When there are 30% of attackers, we can
see in Figure 3(c) that the cluster eventually starts degrading
accuracy more than the random attackers, which had not been
the case in the other attacks. However, and regardless of the
scenario, the attackers are not able to prevent Newton from
reaching stable and accurate coordinates.

Network Partition Attack: Like in the Frog-Boiling attack, the
small inaccuracies that the attacker reports in each update that
is sent, increment its fake coordinates by 0.25 ms. In Figure 4
we have the accuracy results, which allow us to see, when
Vivaldi is under attack, that the network partition attack has an
even slower impact than the frog-boiling attack, even though
both attacks are considered to be slow attacks. Newton is
still able to protect against the network partition attack, even
without relying so much on IN1, since colluding attackers
avoid moving the centroid.

-(b) Newton -(c) Vivaldi
10% attackers 30% attackers

(a) Vivaldi
10% attackers

-(d) Newton -
30% attackers

Figure 1. Accuracy - Inflation Attack

-(b) Newton -(c) Vivaldi
10% attackers 30% attackers

(a) Vivaldi
10% attackers

-(d) Newton -
30% attackers

Figure 2. Accuracy - Deflation Attack

-(b) Newton -(c) Vivaldi -(d) Newton -
10% attackers 30% attackers 30% attackers

(a) Vivaldi
10% attackers

Figure 3. Accuracy - Frog-Boiling Attack

(a) Vivaldi -(b) Newton -(c) Vivaldi -(d) Newton -
10% attackers 10% attackers 30% attackers 30% attackers

Figure 4. Accuracy - Network Partition Attack

Stability: We have just seen the accuracy results obtained
by Newton under all the different attacks we consider, and
how it is able to match the baseline accuracy and maintain
it over time. Thus, it is of no surprise that we learn from
Figures 5, 6 and 7, that it obtains stable coordinates, which are
represented by a small velocity value close to 0. The stability
results are only presented for the oscillation, frog-boiling and
network partition attacks, as these are the attacks that also
intend to disrupt stability, in addition to accuracy. When
comparing the impact of the frog-boiling and network partition
attacks over Vivaldi, we observe that the cluster attackers
have a higher impact on disrupting stability than the random
attackers during the frog-boiling attack, whereas the opposite
happens in the network partition attack. However, Newton
can deal with both. Additionally, we present the zoomed-in
velocity axis for the three attacks, which highlights that, in all
scenarios, Newton reaches velocity values with minor, almost
insignificant deviations from the baseline.

Start Attack from Beginning: In an attempt to make the attacks
more effective against Newton, we ran each one of them from
the beginning of the system execution, with 30% of attacker
nodes in the network. We present the prediction error results
of these experiments in Figures 8 and 9, which run for 2.5 x
107 ms.As we can observe, Newton mitigates all five attacks.
The main observation is that during the network partition

167 17
Time (ms) Tmewms T Tmems

(a) Vivaldi - 30% at- (b) Newton - 30% at- (¢) Newton - 30% at-
tackers tackers tackers (zommed in)

Figure 5. Stability - Oscillation Attack

(a) Vivaldi - 30% at- (b) Newton - 30% at- (¢) Newton - 30% at-
tackers tackers tackers (zoomed in)

Figure 6. Stability - Frog-Boiling Attack

107
Time (ms) Time (ms)

(a) Vivaldi - 30% at- (b) Newton - 30% at- (c) Newton - 30% at-
tackers tackers tackers (zommed in)

Figure 7. Stability - Network Partition Attack

attack, the system takes longer to match the baseline accuracy,
specifically in the random attacker scenario.

Time (ms)

(a) Inflation

(b) Deflation (¢) Oscillation

Figure 8. Accuracy - Newton with 30% of attackers. Simple attacks from
beginning.

e (me) Time (me)

(b) Network Partition

(a) Frog-Boiling

Figure 9. Accuracy - Newton with 30% of attackers. Advanced attacks
from beginning.

Summing up from the results obtained in this section, we
observe that the defense mechanisms of Newton are strong
enough to mitigate not only the known attacks performed by
random attackers but also by attackers forming a cluster, even
if isolated from the rest of the network. In fact, the cluster at-
tackers were less effective than the randomly distributed ones.
We attribute this to the fact that half of the neighbor sets are

composed of close (low RTT) neighbors. An isolated cluster,
sufficiently distant to avoid its nodes from being chosen as
close neighbors, will consequently reduce its influence over
the network, since fewer of its attacker nodes will be neighbors
(reference nodes) of the benign nodes.

Split Cluster Attack

Unlike in the experiments from the previous section, in this
attack, nodes send a probe every 2 seconds because this is
enough to allow for one pending probe at a time. The rationale
behind the split cluster attack and how we intend to avoid each
one of the three security invariants is as follows:

For IN1, which is looking out for the displacement of the cen-
troid of the network, the approach is to minimize the deviation
of the centroid by adopting the core behavior of the network
partition attack, with colluding nodes counter-balancing and
canceling the extraneous forces introduced in the system by
their lies.

Regarding IN2, we obtained the total number of close neigh-
bors of benign nodes that are attackers, for the network used
in our simulations, as follows. For 10% Attackers - randomly
distributed attackers: 1446; cluster at centroid of network:
210; cluster at 50 ms and 500 ms: 0. For 30% Attackers -
randomly distributed attackers: 3797; cluster at centroid of
network: 244; cluster at 50 ms and 500 ms: 0. As we can see,
comparing the random scenarios with the cluster ones, in the
former, there are significantly more close neighbors of benign
nodes that are attackers, than in the latter. We are interested in
the scenarios where this number is as low as possible, because
IN2 is only verified for updates coming from close neighbors,
and, in the case of the network we are using for the simula-
tions, there are no nodes from the cluster being chosen as low
RTT (i.e., close) neighbors when it is at least at 50 ms away
from the rest of the network.

To deal with IN3, as previously explained, we produce small
lies that push the coordinates of an attacker slowly away from
its correct position and decrease over time, making the force
generated by these fake movements remain below the IN3
threshold in benign nodes. To analyze the effect of the attack
after its completion, we present the results for accuracy of
our experiments in Figure 10, where the attack starts from
the beginning, and we varied the percentage of attackers be-
tween 10% and 30%. Serving as a baseline is the prediction
error curve of a simulation of Newton under no attack, then
a curve that resulted from the scenario where the attackers
are randomly distributed around the network, and finally the
prediction error curves for the scenarios with the attackers
forming a cluster, whose distance to the rest of the network
changes between 50 ms and 500m:s.

We first observe that in order for the attack to be effective,
the attackers must represent at least 30% of the nodes in the
network, since we have a clear increase of the error in Fig-
ure 10(b), but not in Figure 10(a). In fact, Newton was able
to maintain the accuracy of the system during the three sce-
narios of attack (random, cluster50, cluster500), matching the
accuracy of the benign scenario, with 10% of attackers. For
30% of attackers, we can see in Figure 10(b), that randomly

ste
— Clusters00

100

Prediction Error (ms)

Prediction Error (ms)

0
o 5000 10000 15000 20000 5000 10000 15000 20000
Time (s) Time (s)

(a) 10% Attackers (b) 30% Attackers
Figure 10. Split Cluster Attack - Accuracy

distributed attackers have no significant impact on the system’s
accuracy, and once again Newton is able to match it with the
accuracy of the benign setting. On the other hand, we observe
that the curves for the cluster scenarios have an increase, with
Cluster50 reaching around the double of Cluster500, at around
50ms and 25ms of error, respectively. Regarding the reason
that makes the attack successful when performed in the cluster
scenarios, but not in the random one, this is related to the de-
tection of malicious updates by IN2. Specifically, the attackers
are isolated and distant enough so that the remaining nodes in
the network do not choose any of them as close neighbors, and
consequently do not even run the IN2 check on their updates.

The attack must start right from the beginning of the system
execution, because of the higher tolerance of IN3 to the forces
applied between nodes. In Figure 11, we have the accuracy
of the system when performing this attack after the system
has stabilized, at 4000 seconds, which shows no significant
impact. Looking at the Figure 11(b), where we zoom in the
prediction error axis, we can notice where the attack starts,
but the prediction error peaks after an insignificant increase of
less than 0.1 ms, then it starts decreasing and stabilizes with an
insignificant difference of around 0.04 ms above the accuracy
of the system under no attack.

— Noattack — Noattack
3507 Clusterso Clusterso
— Clusters00 150 — Clustersoo

Prediction Error (ms)

Prediction Error (ms)

0 5000 10000 15000 20000) 5000 10000 15000 20000
Time (s) Time (s)

(a) 30% Attackers (b) 30% Attackers (Zoomed
in)
Figure 11. Split Cluster Attack - Accuracy with attack starts at 4000
seconds

A noteworthy aspect of this evaluation is the following: in prior
work [10], the authors say that Newton can avoid significant
degradation of its accuracy until the system reaches 50% of
attacker nodes. In this thesis, however, we just presented
an attack strategy where Newton’s security invariants cannot
provide enough protection to allow for accurate coordinates,
accomplishing that with a minimum of 30% attackers.

5. CONCLUSION

In this thesis, we highlighted the current lack of decentraliza-
tion in blockchain systems, and how in order to minimize the
odds of selecting a majority of nodes under the control of a

malicious attacker (who can use that majority to subvert the
system), one crucial property is the diversity of participants
contributing to the blockchain. With that in mind, we build
on the concept of virtual coordinate systems, which model
networks as geometric spaces, attributing virtual coordinates
to each node in this space. These virtual coordinates allow for
efficient estimation of latency between nodes in the network.
A central observation of this thesis is that we could increase
the diversity in blockchains by embedding virtual coordinates
in the overlay of the blockchain and choosing geographically
diverse nodes for contributing to the blockchain.

We showed, through various simulations, that Newton is in-
deed very robust even when under attack, being able to mit-
igate all the attacks presented in Section 4.1, including the
cluster attack scenarios we devised.

Another contribution of this work is the Split Cluster Attack,
which we designed with inside knowledge about Newton’s
protocol. This attack strategy is able to disrupt Newton’s
prediction accuracy. In particular, the nodes from the cluster
performing the attack are able to deceive the remaining nodes
from the network into thinking that they (the attackers) are
split across different groups. This is, to our knowledge, the
first negative result that is presented in the context of Newton,
given that the original paper only mentions the ability to cope
with advanced attackers that leverage insider knowledge about
calibration-specific parameters used by the algorithm [10].

For the Split Cluster Attack to be effective, the cluster of
attackers must represent at least 30% of the network, it must
be performed right from the start of Newton’s deployment, and
the cluster must be at a minimum distance that prevents the
honest nodes from choosing attacker nodes as close (low RTT)
neighbors. However, all these requirements reduce the number
of occasions when attackers could perform the attack. In
particular, the need to start the attack from the beginning of the
system’s execution can be a substantial barrier. Consequently,
despite having created an attack strategy capable of degrading
Newton’s performance significantly, we still believe, from
the remaining experiments done in this thesis, that Newton is
suitable and robust enough to be useful when deployed on a
blockchain system.

A promising avenue for future work is to design a modifi-
cation for Newton, in order to optimize it and make it also
resilient to the Split Cluster Attack. Additionally, another
possibility is to run the scenarios tested in this work in a real
implementation. In particular, the main avenue for future work
resides in incorporating Newton [10], as a virtual coordinates
algorithm, in the blockchain source code. This would require
building an overlay between nodes (or adapting the existing
overlays used by the blockchain) and embedding virtual co-
ordinates for the nodes in that overlay, which could allow for
topology-awareness, and from there enforcing greater diver-
sity of participants in the blockchain network by choosing
geographically diverse nodes. With this purpose, either Bit-
coin [8] or Ethereum [13] could be used as a representative
blockchain system where to implement the Newton algorithm,
as they are two of the most popular blockchain systems at this
time and have a large amount of documentation available.

10

REFERENCES

[1] Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and
Yongdae Kim. 2009. The Frog-Boiling Attack:
Limitations of Anomaly Detection for Secure Network
Coordinate Systems. Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering 19 LNICST (2009),
448-458.

Eric Chan-Tin, Victor Heorhiadi, Nicholas Hopper, and
Yongdae Kim. 2011. The Frog-Boiling Attack:
Limitations of Secure Network Coordinate Systems.
ACM Trans. Inf. Syst. Secur. 14, 3, Article 27 (Nov.
2011), 23 pages.

Frank Dabek, Russ Cox, Frans Kaashoek, and Robert
Morris. 2004. Vivaldi: A decentralized network
coordinate system. Computer Communication Review
34,4 (2004), 15-26.

Ethereum. Last edit Jun. 2019. A Next-Generation
Smart Contract and Decentralized Application Platform.
(Last edit Jun. 2019).

[5] Ittay Eyal and Emin Sirer. 2013. Majority Is Not
Enough: Bitcoin Mining Is Vulnerable, Vol. 8437. DOI:
http://dx.doi.org/10.1007/978-3-662-45472-5_28

[2

[}

[3

—_—

[4

[}

[6] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert
Van Renesse, and Emin Sirer. 2018. Decentralization in
Bitcoin and Ethereum Networks. 439-457.

[7] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. 2007.
Network Coordinates in the Wild.

[8] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer
Electronic Cash System. Cryptography Mailing list at
https://metzdowd.com (03 2009).

[9] Marc Pilkington. 2016. Blockchain Technology:
Principles and Applications.

[10] Jeff Seibert, Sheila Becker, Cristina Nita-Rotaru, and
Radu State. 2014. Newton: Securing virtual coordinates
by enforcing physical laws. IEEE/ACM Transactions on
Networking 22, 3 (2014), 798-811.

[11] Ines Sequeira. 2019. Large Scale Distributed Algorithms
Simulator. IST Dissertation (2019).

[12] Guohui Wang, Bo Zhang, and T. Ng. 2007. Towards
network triangle inequality violation aware distributed
systems. 175—188.

[13] Gavin Wood. 2014. Ethereum: A secure decentralised
generalised transaction ledger. (2014).

[14] David John Zage and Cristina Nita-Rotaru. 2007. On the
accuracy of decentralized virtual coordinate systems in
adversarial networks. Proceedings of the ACM
Conference on Computer and Communications Security
(2007), 214-224.

[15] Han Zheng, Eng Lua, Marcelo Pias, and Timothy Griffin.
2005. Internet Routing Policies and Round-Trip-Times,
Vol. 3431. 236-250.

http://dx.doi.org/10.1007/978-3-662-45472-5_28

	1. Introduction
	2. Background
	Blockchain
	Virtual Coordinate Systems

	Vivaldi
	Attacks on VCS
	Newton

	3. Implementation
	Newton
	Vivaldi
	Security

	Split Cluster Attack

	4. Measurements and Results
	Existing Attacks
	Split Cluster Attack

	5. Conclusion
	References

