
File Survivability in P2P Networks based on Stochastic Swarm Guidance

Francisco Barros
francisco.t.barros@tecnico.ulisboa.pt

IST Taguspark, Av. Prof. Dr. Cavaco Silva, 2744-016 Porto Salvo, Portugal

Abstract— With the growing importance of IT devices and so-
lutions in governments, companies, and individuals’ lives, cloud
services, in particular cloud storage, have become increasingly
desired alternatives to safeguard important files. Traditional ap-
proaches range from centralized architectures, where multiple
nodes continuously report to highly reliable monitoring servers,
to decentralized Peer-to-Peer (P2P) networks, in which nodes
gossip users’ queries to find and store their items. All paradigms
use supplementary techniques to improve some performance
metric of the system. In this paper, we propose the use of
Probabilistic Swarm Guidance (PSG) to increase the reliability
of a system and the durability of stored files. We focus on finding
out if the approach brings benefits to this type of service. We
create a custom simulator where we test Markov Chains (MCs)
generated with different procedures and find that while we do
not provide guaranteed durability with the solution, the P2P-
based Distributed Backup System (DBS) outperforms Hadoop
Distributed File System (HDFS).

Index Terms— File Durability; Markov chains; Peer-to-Peer
Storage; Swarm Guidance;

I. INTRODUCTION

We have entered an era in which devices with computing
capabilities are ubiquitous. Individuals generate more data
than ever before, some of which they might want to backup
remotely, e.g., photos. Organizations recognize IT and the
internet as a vital part of their business and governance.
The law often requires them to store critical documents for
long periods, with the risk of penalization when they fail to
comply. Regarding digital storage, one choice is to use Dis-
tributed File Systems (DFSs); they facilitate the distribution
of documents to multiple clients, which can collaboratively
and transparently modify them. Continuous availability and
session-guarantees are fundamental properties of DFSs. Al-
ternatively, DBSs are a sub-category of DFSs. Their priority
is to ensure that uploaded files become durable, perhaps at
the cost of losing shareability or editability. At the extreme,
two paradigms emerge as pillars for these systems.

Supervisor Prof. Carlos Silvestre is with the Department of Electrical and
Computer Engineering of the Faculty of Science and Technology of the Uni-
versity of Macau, Macau, China, on leave from Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal, csilvestre@umac.mo

Co-supervisor Daniel Silvestre is with the Department of Electrical and
Computer Engineering of the Faculty of Science and Technology of the
University of Macau, Macau, China, and with the Institute for Systems
and Robotics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon,
Portugal., dsilvestre@isr.ist.utl.pt

This work was partially supported by the project MYRG2018-00198-FST
of the University of Macau; by the Portuguese Fundação para a Ciência
e a Tecnologia (FCT) through Institute for Systems and Robotics (ISR),
under Laboratory for Robotics and Engineering Systems (LARSyS) project
UIDB/50009/2020.

On the one hand, we have P2P networks, in which
equally privileged peers contribute with a portion of their
resources to achieve common goals. This approach is popular
due to, among others, its self-organized behavior, lack of
centralization, and low cost, e.g., HandyBackup. On the other
hand, Cloud platforms offer unmatched, on-demand, self-
served, availability, and reliability at higher price points.
The latest approach is trendy, with DropBox, Google, and
Microsoft offering diversified solutions. Cloud-based systems
are often centralized architectures, in which a large number
of computers are clustered and managed by master entities,
which may become bottlenecks. While P2P implementations
are cheaper for both companies and their clients, they have
a hard time achieving performance levels seen in Cloud
implementations. P2P approaches have a higher inherent
risk of permanent file loss resulting from the fact that
contributors may leave at any time for no particular reason
(churn), making them unappealing for clients who seek to
store critical data. However, as aforementioned devices disks
have ever-increasing mean-time-to-failure values and with
allocation spaces growing disproportionally faster than the
generality of file-sizes, we propose a P2P-based DBSs as a
possible solution to the problem.

This body of work aims to assert the viability of PSG
in a DBS environment. The reasoning is twofold. First, due
to the widespread adoption of this method in robotics and
control fields, where results demonstrate that it is possible
to gift autonomous agents, working independently of each
other, with simple probabilistic rules and limited knowledge
of the environment, and have them achieve complex tasks
as a group. Furthermore, PSG also enables recovery from
predicaments without human interference. Second, to the
best of our knowledge, no one attempted the use of PSG
as an underlying algorithm for file durability in DBSs.
Consequently, the topic represents an exciting opportunity to
observe the behavior of the technique outside of its typical
application. Our main contributions can be summarized as
follows:

• An open-source cycle-based simulator for Python users.
• First implementation of a PSG algorithm in a DBS.
• Evaluation and comparison against abstracted HDFS.

The document has the following structure. We survey
the literature concerning different topics in Section II. In
Section III, we define our problem more objectively. We
outline our solution in Section IV and a synthesis of the used
algorithms are given in Section V; Results are provided in

Section VI followed by our conclusions in Section VII.

Symbolic Notation

Miscellaneous

Epochs.....................T = {t0, t1, . . . , tn}, n ∈ N
Function..f(x)
Parameter or variable.........................x
System States...........S = {s0, s1, . . . , sn}, n ∈ N

Algebra

Vector..v
Vector at epoch.........................v(t), t ∈ T
Matrix...M
Matrix or vector transpose.................xᵀ

Matrix element.......................Mij,i, j ∈ N
Matrix row............................Mi?,i, j ∈ N
Matrix column........................M?j,i, j ∈ N
Matrix Eigenvalue..........................λ(M)
Identity Matrix..................................I
Zeros Matrix, Ones Matrix0, 1
Ones Vector1
Equilibrium vector..............................e
MC at epoch..............................Mt, t ∈ T
MC event chance at epoch..Mt

ij , t ∈ T ∧ i, j ∈ N

II. LITERATURE REVIEW

A. Swarm Guidance

The control and robotics fields of research are packed
with complex problems. One such problem is how to control
effectively groups of robotic agents. Swarm Guidance (SG)
is a bio-inspired technique [1], [2] that emerges as a straight
forward solution that acts at the agent level rather than on
the group level. Thus, SG permits the decentralization of
control systems by gifting each agent with the capability
of carrying their functionality and contributing to the group
mission without necessarily interacting with the remainder of
the agents. Consequently, this avoids intricate algorithms that
are hard to validate. Research by B. Açıkmeşe et al. [3]–[5]
shows PSG is a viable form of SG. Summarizing, SG is a
compelling technique that may be applied to a wide array of
topics [6], [7]. We study its effectiveness in the safekeeping
of files stored in P2P networks.

B. Distributed File Systems

We can classify DFSs according to their architectural cen-
tralization. To say that a system is centralized is to say that
at least one component plays a central role in its operation,
e.g., metadata server that stores file locations or monitors
that decide what nodes are operational. P2P approaches
are often decentralized. Classical DFSs like Google File
System (GFS) [8] and HDFS [9] are examples of centralized
architectures. In fact, their modus operandi is the same
save for the approach to security and permission handling.
In these systems, clients talk to master servers to know
which storage servers they need to contact to read or write
files. These same masters are also responsible for receiving
heartbeats from storage servers and controlling replication
levels within them. Despite the disregard for centralized
architectures in the scientific community, these systems have
proven to offer unmatched service guarantees, concerning

reliability and durability, and operational performance. Ceph
File System (CFS) [10], [11], another state-of-art DFS, uses
an algorithm to provide fast and precise localization without
using an indexing server and leverages P2P behavior within
clusters of storage servers, to mask and recover from faults.
CFS, however, still relies on consensus performed by some
of the cluster’s dedicated nodes to decide on which storage
servers are up. On the other end of the spectrum, we have a
novelty system, called Gluster File System (GlusterFS) [12],
a completely decentralized solution, in which indexing is
done through algorithms similar to those in CFS. However,
GlusterFS does not have any metadata dependency, which
makes it exceptionally fast at handling small file operations
and acceptably fast, albeit slower than GFS and HDFS
at handling large file operations. Finally, recognizing that
there is no one-system-fits-all solution, Hybrid File System
(HybridFS) [13], creates an abstraction layer over HDFS,
CFS and, GlusterFS allowing users to use them as if they
were one single DFS, ensuring the best storage and access
performance by respectively using dynamic file migration
mechanisms and artificial intelligence to select which sub-
system will receive a certain file.

C. Overlay Networks

Since we implement PSG algorithm over a P2P-based
DBS, it is essential to understand overlays. They exist
because it is often unfeasible or undesirable for each peer
to know and interact with every other entity in the network.
Thus, an overlay is a logical abstraction of the physical
network where single-hop edges represent links between
pairs of peers. There are two main categories of overlays,
structured and unstructured. In the foremost [14], peer
placement follows rigid rules to speed up read operations,
commonly using Distributed Hash Tabless (DHTs) or tree
implementations, e.g., decision trees. These overlays have
higher maintenance costs since one change in the topol-
ogy can cause a cascade of modifications concerning peer
organization, the data they hold, or both, causing them to
be unideal for highly dynamic environments. In the latter
[15], [16], information dissemination is likely to occur in
gossip or broadcasting fashions; this makes reads and writes
slower than their structured counterparts, but the mainte-
nance is often easier because peer placement is arbitrary
– a new peer entering or leaving the network requires
few rearrangements. Consequently, they tend to be more
scalable and robust in the advent of failures but have a
higher likelihood of peer isolation. In the last decade, some
multi-layer overlays emerged. They are a combination of
two or more conventional overlays concurrently abstracting
the same physical network. When properly combined, these
multi-layer types can satisfy a broader range of requirements
for their applications and off-set some weaknesses. However,
network and computational resources may also deplete faster
and, their complexity can lead to more service failures.
Alternatively, bio-inspired overlays [17], [18] have shown
promising results, and their objective is also to diminish
or eliminate the disadvantages associated with structured

or unstructured overlays, which they extend by introducing
dedicated agents that accomplish complex behaviors (in
similarity with SG) that would otherwise require time or
space consuming algorithms. These agents usually roam the
network to aggregate data and rearrange file locations or peer
connections. The downside is: results of agent actions are not
always easy to evaluate.

III. PROBLEM STATEMENT

Let us consider a set of storage nodes, S, participating
in a P2P network to hold B file block replicas or encoded
fragments (parts) belonging to a file F . Their objective is to
achieve the durability of F . Assume that message integrity,
confidentiality, and authenticity are not at risk, that there
are no malicious attacks on the system and that nodes do
not deviate from the defined algorithms intentionally or
otherwise. Admitting that message loss may occur when
nodes communicate with one another; that they may suffer
from disk errors or disconnect at any given time. We must
introduce a distributed PSG algorithm into P2P-based DBS.
The problem involves generating an overlay topology, repre-
sented by a graph G = (V, E), that defines edge-connections
between pairs in S or alternately by an adjacency matrix
A ∈ RS×S . Topology rearrangements are only allowed when
nodes in S leave or join the system, and they must be
connected, i.e., network partitions are not allowed except
due to failures. There are no constraints with whom peer
nodes may communicate as long as any first message, in
a sequence of exchanges, must result from a probabilistic
event. Our algorithm must also use a policy that diminishes
or delays the likelihood of losing parts from B. There is
space for some centralized components; however, these must-
have lightweight functions, since the cost benefits of P2P
approaches lies in maximizing the utility of participating
machines, S. In other words, centralized components can not:
i) store data files; ii) directly monitor participating peers; iii)
perform computationally intensive operations.

IV. PROPOSED SOLUTION

A. PSG from Robotics to Distributed Systems

We study PSG in a DBS environment and see if files can
survive in the system, i.e., we want to know if files uploaded
to a remote set of peers using the PSG algorithm become
durable. From a PSG perspective, our proposal is a mixture
of the problems studied in B. Açıkmeşe et al. [3], [5] and the
FMMC problem in Boyd et al. [19]. We want to create a MC
that guides agents to the desired formation in space, defined
by the equilibrium vector e. The space is a logical overlay,
our regions are nodes in the overlay, and our agents are files
and their replicas. Since files are motionless, and the network
links do not exert wind-like forces on them, we must account
for this difference and adapt B. Açıkmeşe et al. ideas. We
also need to be aware that overlay topologies change due to
churn or other machine malfunctions. Consequently, we want
the fastest possible MC to increase the odds that e (desired
file distribution) is reached before such occurrences, thus
increasing the system reliability, the files availability, and

Algorithm 1 Creation and selection of the fastest MC.

function CREATEMC(c)
. Random, symmetric and, connected, with self-loops.
K ← NewTopology(c)
e ← NewEquilibrium(c)
. Eq. (1)
Kopt ← SDP.Solve(K)
choices ← ∅
. Algorithm 2.
choices ∪ METROPOLISHASTINGS 〈K, e〉
choices ∪ METROPOLISHASTINGS 〈Kopt, e〉
. Eq. (2)
choices ∪ GO.Solve(K, e)
µ? =∞
M? = ∅
for all M in choices do

if µ(M) < µ? then
µ? ← µ(M)
M? ←M

end if
end for
return M?

end function

fair load-balancing among clusters’ nodes. Boyd et al. Semi-
definite programs (SDPs) are not directly applicable because
our e is not uniform and even if it was, heuristically created
MCs are not always slower than SDP ones. The non-
uniformity of e can also result in a non-convex problem.

B. Markov Chain Optimization

In order to attain a good performing DBS service that
ensures the durability of uploaded files, when using PSG,
two aspects are related to the algorithm itself. The first is
the selection of a suitable e; this means appropriately filling
the entries of the vector accounting for past node behavior,
their hardware capabilities, and perhaps usual working hours
to minimize the probability of losing parts. We do not explore
this subject. The second aspect is to use a MC that converges
quickly to the e, to minimize the time the file-hosting
cluster spends in unideal states. Since optimal solutions are
hard to produce, we employ multiple techniques, including
relaxed constraint global optimization, to deal with non-
convex cases, producing sets of feasible MCs, and choose
the one with the fastest Second Largest Eigenvalue Modulus
(SLEM) as depicted in Algorithm 1.

Our first technique is Metropolis-Hastings (MH) (Algo-
rithm 2), using symmetric, connected adjacency matrices,
with obligatory self-loops as a proposal matrix (K) targeting
e. Self-loop enforcement is done for all methods since by
experience, the self-loop property revealed a tendency to
create faster chains and to reduce the algorithm bandwidth
footprint, but is not obligatory. The second technique lever-
ages the fact that uniform distributions, u, are likely to create
clean SDPs. We first optimize an adjacency matrix, A, to u
by minimizing the matrix eigenvalues (Eq. (1)); then, we

Algorithm 2 Metropolis-Hastings by B. Açıkmeşe et al.

function METROPOLIS-HASTINGS(K, e)
R ← 0
F ← 0
M ← 0
n ← Length(e)
for i ← 0 to n do

for j ← 0 to n do
Rij ← viKji

vjKij

Fij ← min(0, Rij)
if i 6= j then

Mij ← KijFij

end if
end for

end for
for i ← 0 to n do

Mii ← Kjj +
∑

k 6=j(1 - Fij)Kkj

end for
return M

end function

use the output as being the K that targets e in MH. The
final technique uses global optimization (Eq. (2)), where our
constraints force the output matrix to converge to e. The
model directly targets e because we allow the optimization
variable to be asymmetric. Note that neither of the mathe-
matical optimization models guarantees a globally optimal
SLEM. The former technique is local-optimization-based,
and, conversely, the latter is global-based but, the objective
function minimizes the norm of the output matrix, which is
a relaxed approximation of eigenvalue minimization.

minimize
Kopt, t

t

subject to Kopt = Kᵀ
opt,

Kopt ≥ 0,

Kopt · 1 = 1,

Kopt � (1−K) = 0,

− t · I � Kopt −
1

n
· 1 � t · I, t ∈ R

(1)

minimize
M

∥∥∥∥M− 1

n
· 1
∥∥∥∥
2

subject to M ≥ 0,

M · 1 = 1,

M� (1−K) = 0,

eᵀ ·M = eᵀ, e ∈ Rn

(2)

While the optimizations may not result in the fastest
chains, the speed-ups may be significant, as can be deduced
by looking at Fig. 1. For the presented box plots, we ran a
Monte Carlo simulation with 1000 〈K, e〉 pairs, and for each
of those pairs, we created a MC using the described methods
for different-sized clusters.

8 16 32

Cluster group size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SL
EM

go mh sdp_mh

Fig. 1: Comparing Markov chains’ mixing rates with our
heuristic and optimization implementations.

C. Swarm Guided Distributed Backup System (SGDBS)

Our proposal is composed of five entities. Master servers,
H , are responsible for handling client and contributor reg-
istration and authentication, and mapping clients’ files to
clusters, and keeping a record of each clusters’ members.
Clusters are groups of storage nodes who contribute with
their private storage space to the DBS. A cluster maintains
one single file with a predefined replication level, r, on behalf
of precisely one client. Consequently, whenever a client, C,
wishes to upload a file F , to the system, he first sends F ’s
metadata to Hk, who will reply with a subset S of storage
node identifiers with size n, along with the ideal equilibrium
vector e. Upon receiving Hk’s response, C divides F into
multiple blocks, B, and creates a random uniform symmetric
and connected topology, A, and uses it along with e, to
generate Markov matrix, M, using Algorithm 1. C then
slices M into n row vectors, each being sent to the respective
Sn storage node, to be used as a routing table for F s’
blocks. C also sends one replica of each Bi to the r closest
storage nodes. From this moment onwards, at every epoch,
which does not need to be synchronized, each Sn uses F ’s
routing table to send one or more Bi to other members of
the cluster. This process ensures the synthesis of M and
the eventual distribution of parts according to e. Monitors,
O, are a set of high-reliability servers but could be sets of
dedicated commodity network nodes instead, like in CFS
[10]. Either way, they do not contribute with storage, but
rather, receive complaints from storage nodes about their
direct cluster neighbors. When monitors receive a quorum
of complaints respecting a node, the complaining cluster’s
members evict the complainee (i.e., the suspicious or failed
node). Eventually, another storage node will replace the
ousted one. When a node leaves or joins a cluster group,
the Monitors create and broadcast a new MC. Ideally, this
replacement would be direct so that the MC could remain
the same or only be slightly change to avoid a complete
block density distribution restart. For simplicity, we restart
the entire algorithm on membership changes and assume
that disconnected nodes will never rejoin the system, which
degrades the performance of our solution. We note that

Erasure Coding (EC) is likely a better pairing for PSG,
however, we favor the use of block-level replication to
provide fair comparisons against HDFS in Section VI-B.

V. IMPLEMENTATION

A. Hives simulator

We implement our solution using the Python 3.71 pro-
gramming language, since it gives us access to power-
ful open-source mathematical and data science packages.
To evaluate the proposed solution performance, we utilize
Hives2, an open-source simulation framework, with a GPLv3
license, for Python, developed by us. The simulator was
developed because there are few well-known alternatives for
this language other than NS-3 [20], which focuses on low-
level problems related with the Network layer of the OSI
model. Ours, on the other hand focuses on the application
layer and favors quick prototyping for the generality of
DFSs by implementing server, group, and individual node
behaviors. The bundled classes and mechanisms may be
modified or extended effortlessly using the language’s in-
heritance and polymorphism features. Apart from providing
base behaviors, the simulator provides researchers logging
tools that store the simulations state on an epoch basis to
disk in a JSON format for easy post-processing and analysis.
All-in-all, the simulation framework decreases the number of
hours researchers have to put into programming; however, it
lacks the time-efficiency seen in famous competitors such
as PeerSim [21] due to the shortage of data structures and
procedures that favor speed. It supports at most 104 network
nodes and has a base time complexity of O(e × c × n),
which becomes O(e× c×n×r)3 when using our abstracted
PSG implementation. Other functionality provided by the
simulation framework includes a module for setting up
environment properties, such as message loss and disk error
probability, replication level, the minimum and maximum
times to recover from replica loss, among others. There is
also a way of defining available nodes in the network, their
uptime, and the cluster groups’ size that will persist at most
one file each, through the use of what we call simulation files.
The documentation is available on our project’s website4.

B. Swarm Guidance based Distributed Backup System

Our Master server implementations adhere to the used sim-
ulator specifications. In particular, they act as record-keepers
that indicate which storage nodes are currently online, such
that clusters may find replacements for their faulty nodes.
We pretend that, during the simulation, any available storage
node has gone through a prior authentication process. Our
storage nodes, SGNodeExt, inherit from the default Node
class offered by the simulator. The same holds true for our
cluster class (SGClusterExt), which apart from performing
the simulator described roles, also emulates the initial client
write to the r closest storage nodes, as well as the role of a set

1 https://www.python.org/downloads/
2 https://github.com/FranciscoKloganB/hivessimulator
3 e: epochs; c: #clusters; n: (#nodes)/cluster; r: (#blocks)/node
4 https://www.hivessimulator.tech/

of Monitors who registers node complaints, deciding which
suspicious members to expel from the complainers’ cluster,
the resulting member substitution and chain recalculation. In
Algorithm 3 we provide the routines carried by these entities.

Algorithm 3 DBS algorithm implemented in Hives

upon event SIMULATE 〈json〉 do at SGMASTER : m
cSize, fid, blocks ← IO.Read(json)
c ← m.NewClusterGroup(cSize, fid)
trigger event SPREADFILES 〈c, blocks〉.

upon event SPREADFILES 〈B〉 do at SGCLUSTER : c
M ← CREATEMC 〈c〉 . Algorithm 1
for all s in c.members do

if s ∈ NEAREST(r) then
s.files ∪ {c.fid, {b1, . . . , bk}}

end if
trigger event DOWORK 〈s, c, Ms?〉

end for
upon event DOWORK 〈c, s〉 do at SGNODE : s

every ∆t do
for all b in s.files[c.fid] do

d ← SelectNextState(s)
trigger event RECEIVEPART 〈d, c, b〉
async wait r then

if r ∈ {OK} then
s.files[fid].Delete(b)

else if r ∈ {BADREQUEST} then
trigger event REPLICATE 〈c, b〉
s.files[fid].Delete(b)

else if r ∈ {NOTFOUND, TIMEOUT} then
trigger event ERR 〈c, s, d, ∆t〉

end if
end for

upon event RECEIVEPART 〈c, b〉 do at SGNODE : s
if ¬ Sha256(b.data) then

return BAD REQUEST
else if b ∈ s.files[c.fid] then

return NOT ACCEPTABLE
else

s.files ∪ {c.fid, b}
return OK

end if
upon event ERR 〈n1, n2, ∆t〉 do at SGCLUSTER : c

cid ← n1 | n2
if cid 6∈ c.epochComplaints(∆t) then

c.epochComplaints[∆t] ∪ cid
c.complaints[n2] + 1
if c.complaints[n2] > c.size

2 then
c.members.Replace(complainee)
M ← CREATEMC 〈c〉
for all s in c.members do

trigger event DOWORK 〈s, c, Ms?〉
end for

end if
end if

https://www.python.org/downloads/
https://github.com/FranciscoKloganB/hivessimulator
https://www.hivessimulator.tech/

VI. RESULTS DISCUSSION

We divide our study into two parts. In Section VI-A, we
make the environment as easy as possible; the idea is to
assess the baseline performance of the algorithm in perfect
situations. In the Section VI-B, we put away the environ-
ment’s easiness to understand how real-world problems may
come to affect the algorithm and compare our work against
a simulated HDFS. All test scenarios lasts a day with 480
epochs, i.e., an epoch occurs every three minutes, and a file is
considered durable if all epochs are played. We summarize
all of the different played scenarios in Table I. The table
identifies scenarios by prefixing the tested system acronym5,
followed by the number of storage nodes in the simulated
cluster, suffixed by a short, acronym-like, description that
summarizes the key property or features that distinguish
the scenario from the remainder, e.g., one hundred parts
would equate to the suffix of 100P, a test where messages
can be lost in transmission would equate to the suffix of
ML, likewise a system using optimizations would be tagged
with Opt. We also use these identifiers in the figures that
follow. From now on, any time we say that instantaneous
convergence is verified at some epoch, we mean that, during
the logging stage of a simulation, Eq. (3) held, where vs is
the current part density within a cluster’s storage node. We
may also imply that a cluster reached a goal; in this case, we
consider Eq. (4) instead. Associated with the latter case, we
also measure the cluster’s distance to that goal, as in Eq. (5).

ct ⇒
∣∣∣v(t)s − es

∣∣∣ ≤ min

(
1

dim(v)
, 0.05

)
+ 0.05× |es| (3)

cavg ⇒

∣∣∣∣∣
∑

t v
(t)
s

td
− es

∣∣∣∣∣ ≤ atol + 0.05× |es| (4)

cdm =

√√√√∑
s

∣∣∣∣∣
∑

t v
(t)
s

td
− es

∣∣∣∣∣ (5)

For the first batch of tests, each scenario plays 100 times.
We set up the simulator environment with disk error and
message loss chances to zero. The replication factor is
r = 3, but we sometimes vary the block size. We also
activate or deactivate the optimizations to MCs to investigate
if they produce any practical effects. Storage nodes never
fail; consequently, we run a Monte Carlo simulation with
a predefined pool of 〈K, e〉 pairs designated as challenges,
which can be solved by any of our three methods. This is
useful, as it ensures that different scenarios run challenges
of equal difficulty at the same respective playthrough p ∈
[1, . . . , 100]. Ultimately, through the simulation file, we vary
cluster sizes.

For the second part disk errors and message loss chances
are possible. The replication factor is kept at r = 3 and we
fix b(F) = 1MB for both SGDBS and HDFS. While the

5 SG: Swarm Guidance algorithm tested on a perfect environment;
SGDBS: Swarm Guided Distributed Backup System;
HDFS: Hadoop Distributed File System;

theory argues that using more parts reduces the distance to
e in the long run, it does not indicate that such a desired
state is reached faster. As a matter of fact, using extra parts
might increase the time it takes for the first convergences to
occur due to the increased distance to the goal at the start of
the simulations. Consequently, using smaller block sizes and
thus, having a greater number of parts in Swarm Guided
Distributed Backup System (SGDBS) is not necessarily
favorable for us. Also, for similarity, more resilient storage
nodes will receive a bigger quota of parts to safeguard,
without bounds, hence, we do not use random equilibrium
vectors. We base our notion of machine resiliency purely
on the time a node remains online throughout a simulation.
For both SGDBS and the HDFS system, we test three
different scenarios that differ with respect to storage node
uptimes, uk(s),∀s ∈ S, hence we distinguish them by tiers.
For the first scenario and tier we have uT1(s) ∈ [4, 32],
correspondingly, we have uT2(s) ∈ [32, 64] and uT3(s) ∈
[64, 100]. The optimizations in Eqs. (1) to (2) are always
executed in these scenarios for the SGDBS simulations,
meaning that, we pick the fastest µ(M) from the pool of
available MCs when a membership change occurs. Also,
due to membership changes, our Monte Carlo simulations
have 500 samples rather than 100, to reduce result variance.
Finally, fault detection is not immediate and depends on
the running protocol, i.e., complaints vs. heartbeats. Once
detected, if they concern disconnected storage nodes, tsnr,
an immediate replacement takes place; otherwise, if they
concern lost file block replicas, these will take three to nine
minutes, i.e., tbrr ∈ [1, 3] epochs, to be possibly restored to
no more than r.

A. Swarm Guidance on Hives

One issue associated with the use of PSG in a DBS
would be the bandwidth consumption, comparing with other
approaches that do not regularly change the location of
file parts as a feature of the underlying algorithm. Fig. 2
presents the bandwidth consumption for simulations with
different number of parts. Irrespective of this choice, the
members exchange≈ 80MB on average in messages contain-
ing file block replicas at every epoch, excluding Transmis-
sion Control Protocol (TCP)/User Datagram Protocol (UDP)
headers, message fields like block identifying data, response
and complaint messages. A clear disadvantage compared to
HDFS, which may be relevant in some scenarios. When
implemented with storage nodes (peers) spread worldwide,
link saturation is unlikely. However, if all nodes are in the
same building and multiple clusters exist, issues may arise
not only in the DBS but also in other systems not associated
with the backup service. On the other hand, HDFS and
likely GFS, only perform checksum verifications when a
client retrieves a block from a remote DataNode. This means
that file corruption due to faults in a storage device, the
network, or the software is unknown until a client accesses
his files, which can be infrequent. By verifying checksums
whenever forwarding the parts, the chance of losing files
to corruption is minimized. Another advantage is the self-

healing property of PSG, which allows clusters to recover
from faults transparently. Depending on the used topology,
permanent faults are also detected and dealt with quicker
(Fig. 3). Tweaks to reduce bandwidth consumption include: a
Gia-like satisfaction metric; adjusting epoch-length statically
or dynamically; not allowing parts received at some storage
node at some epoch to be considered for routing before the
next epoch; using EC instead of block-level replication.

SG
8-1

00
P

SG
8-1

00
0P

SG
8-2

00
0P

50

60

70

80

90

100

110

m
ov

ed
 b

lo
ck

s
(M

B
)

Fig. 2: Bandwidth consumption, per epoch, with 45MB files.

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3
1

2

3

4

5

6

7

8

9

ep
oc

hs

SGDBS tsnr HDFS Constant tsnr

Fig. 3: Epochs required to detect/replace faulty nodes.

Since the number of parts in the system does not appear
to influence bandwidth consumption, the next step is to
determine how many parts should exist in the cluster. An
increased number of parts implies that somewhere in the
system, centrally or otherwise, more metadata will exist. Our
solution states that master servers map clients’ file identifiers
to clusters containing the blocks without tracking which stor-
age nodes have which blocks, thus eliminating a big chunk
of queries the masters would otherwise receive. However, the
masters or some other entity in the system must maintain for
each existing file the hash values associated with its blocks,
to check for disk and message corruption. Consequently,
increasing the number of parts without bounds is undesirable,
as the metadata file would occupy more space. Furthermore,
when using EC to minimize bandwidth and storage node
disk usage, the reconstruction of lost replicas could become
slow (more parts to collect and decode), which endangers
durability. Our results indicate that the number of parts does

SG
8-1

00
P

SG
8-1

00
0P

SG
8-2

00
0P

SG
8-M

L
SG

8
SG

16
SG

32

SG
8-O

pt

SG
16

-O
pt

SG
32

-O
pt

0

5

10

15

20

25

30

35

40

ep
oc

h

(a) epoch at which ct boolean condition was first
verified.

SG
8-

10
0P

SG
8-

10
00

P

SG
8-

20
00

P

SG
8-

M
L

SG
8

SG
16

SG
32

SG
8-

O
pt

SG
16

-O
pt

SG
32

-O
pt

0.0

0.2

0.4

0.6

0.8

1.0

su
m

(c
t)

 /
te

rm
in

at
io

n
ep

oc
h

(b) clusters lifetime (%) where ct boolean condition was
verified. In this case termination epoch is fixed for all
cases.

Fig. 4: Overview of instantaneous convergence (ct) behavior.

not affect the time it takes to witness the first convergences
(Fig. 4) in a cluster. Truthfully, all scenarios had very
satisfying results taking what equates to something between
30 to 90 minutes to achieve the desired configuration for
the first time. Conversely, using approximately ≈ 1000 parts
produces the best balance between the number of blocks that
require tracking, the witnessed instant convergences, and the
number of times the goal equilibrium is achieved, on average,
as well as the distance to that goal (Fig. 5), including the
cases where the goal remains unachieved.

As expected, there is a tendency for the first convergences
to occur relatively early in a cluster lifecycle and for the
number of observed instantaneous convergences to increase
as simulations progress. Fig. 6 shows that the number of
occurrences tends to become bounded after a certain point
in time. In the aforementioned figures, the inequalities used
to declare convergence Eqs. (3) to (5) cause clusters with 16
and 32 members to be faster as the entries in the distribution
vector are smaller values. If other functions are used results
could differ. An example would be using only the relative
tolerance in Eq. (3), i.e., considering only the amount of parts
in the cluster, never considering the number of nodes. From
these simulations, the use of bigger networks contributes to
better load-balance for the same replication factor as well
as fewer storage node isolation situations, i.e., they make
for more resilient swarms, greatly reducing the number of

SG
8-

10
0P

SG
8-

10
00

P

SG
8-

20
00

P

SG
8-

M
L

SG
8

SG
16

SG
32

SG
8-

O
pt

SG
16

-O
pt

SG
32

-O
pt

0

20

40

60

80

100

cl
us

te
rs

 (
%

)

88 86 86 87 86

100 100

28

45

22

(a) percentage of clusters that verified the boolean
condition cavg at the end of a playthrough.

SG
8-

10
0P

SG
8-

10
00

P

SG
8-

20
00

P

SG
8-

M
L

SG
8

SG
16

SG
32

SG
8-

O
pt

SG
16

-O
pt

SG
32

-O
pt

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

c d
m

 /
cl

us
te

r
si

ze

eq. achieved eq. not achieved.

(b) clusters distance to the goal at the end of a
playthrough, based on Eq. (5) (cdm).

Fig. 5: Clusters (%) achieving or not achieving the desired
equilibrium and registered distance to that goal.

outliers in Fig. 3. Another unexpected behavior regards the
optimization algorithms used to produce MCs with better
SLEM. We expected results to be better than the ones
obtained using MH when it comes to reaching and stabi-
lizing around the desired equilibrium. However, they were
strictly worse. This is an issue that requires further research.
Lastly, message-loss seems irrelevant concerning the studied
properties, including time taken to converge, the number
of instantaneous convergences, and goal achievement. In a
real-world scenario, they may impact system availability and
reliability and even more so the durability of the files, but
we do not concern ourselves with that in this subsection.

B. SGDBS vs HDFS

Our solution outlines a DBS made of commodity nodes
that are not guaranteed to remain online for long periods,
where the system users either contribute to it as storage nodes
or use the available space as file uploaders. Files hosted
in the service are not intended to be modified frequently,
nor in parallel; rather, the central purpose of the system is
to persist critical user files for arbitrarily long periods in
dynamic networks, at a low cost, with little centralization.
Consequently, we focus on file survivability metric.

In P2P overlays, churn, and its consequences are one of the

20 40 60 80 10
0

simulations progress (%)

0

100

200

300

400

500

600

700

800

c t
 c

ou
nt

SG8-100P SG8-1000P SG8-2000P

(a) varying only the number of parts

20 40 60 80 10
0

simulations progress (%)

0

200

400

600

800

1000

1200

1400

c t
 c

ou
nt

SG8-ML SG8 SG16 SG32

(b) varying cluster size, or alternatively allowing for
messages to be lost.

20 40 60 80 10
0

simulations progress (%)

0

50

100

150

200

250

300

350

400

c t
 c

ou
nt

SG8-Opt SG16-Opt SG32-Opt

(c) varying cluster size with M optimizations activated.

Fig. 6: Simulations’ instantaneous convergence distribution.

most significant dangers to file durability; that explains why
so much overlay research focuses, among other topics, on
keeping the networks connected and timely failure detection.
We extrapolate from surveys cited in Section II that robust-
ness of overlays is tied node degrees. In our case, we do not
need to concern ourselves with node clusters or hubs because
our solution is not gossip-based. However, we still want to
avoid weakly connected storage nodes, particularly regarding
the number of receive channels they have. We explain the
outliers in Fig. 7(b), essentially with the node degrees seen
in Fig. 7(a). Even though our system often beats HDFS
concerning the time it takes to detect and replace failed
nodes, a median in-degree of four, sometimes as low as two,

SG
DBS

SG
8

SG
16

SG
32

0

5

10

15

20

25

no
de

 d
eg

re
es

in-degree out-degree

(a) Node degrees with and without optimizations.

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3
0

10

20

30

40

ep
oc

hs

SGDBS tsnr HDFS Constant tsnr

(b) Time to replace faulty nodes, including outliers.

Fig. 7: Node degrees resulting from different configurations
and their impact on tsnr.

implies that it takes only three node failures for some other to
become isolated, a grim scenario when our main objective
is to guarantee the durability of uploaded files regardless
of peer uptime. Apart from that, new topologies give no
guarantee that a failed, yet undetected, node will have a good
in-degree in the next chain, which in turn, might postpone its
detection even further sometimes, indefinitely. This situation
is particularly relevant when clusters suffer a high churn.
Our approach, contrary to the expected, was vastly inferior
to the one employed by HDFS on T1 machines, even when
they do not proactively defend against disk errors and file
block corruption. The termination epoch value for HDFS-
T1 is more dispersed than in SGDBS-T1; the fact remains
that the former still ensured the durability of files 1.77 more
times than the latter. SGDBS-T2 and SGDBS-T3 had better
results but did not win versus their HDFS counterparts by
astoundingly large margins. Ultimately both systems failed
in providing durability for all of the 500 tests.

Finally, we reinforce the value of adaptively changing the
topology and the goal, if at all, when cluster membership
changes occur, something we did not do as expressed in Sec-
tion IV. The result of such hindsight is visible in Fig. 9. For
the same number of file block replicas in a cluster, the time
clusters spent in instantaneous convergence is approximately

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3

HDFS
-T1

HDFS
-T2

HDFS
-T3

0

80

160

240

320

400

480

ep
oc

h

(a) simulations termination epochs distribution.

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3

HDFS
-T1

HDFS
-T2

HDFS
-T3

0

100

200

300

400

500

nu
m

be
r

of
 d

ur
ab

le
 f

ile
s

136

434

480

242

399 413

(b) simulations reaching the maximum number of
epochs, thus guaranteeing durability.

Fig. 8: Data respecting termination epochs and playthroughs
which successfully ensured file durability.

ten times worse than the clusters that used optimizations and
whose members had 100% uptime. The distances to the goal
also increased slightly because every member’s departure
meant restarting the Markov process from a system state
with a possibly lousy initial file distribution and finally, due
to the reduced time the storage node swarms had to achieve
the goal, only ≈ 4.33% of the clusters achieved desired
equilibrium, on average.

VII. CONCLUSION AND FUTURE DIRECTIONS

This paper addresses the introduction of PSG to DBSs.
Our proposal imposes a high tax on network bandwidth, and
not all of the results were in line with the expectations. The
sought purpose of ensuring 100% durability was unachieved,
but we still outperformed HDFS [9]. Thus, the solution
merits further investigation. Some issues remain open. In
particular, future research endeavors may include:
• Study the effectiveness of the solution using fountain-

code EC as the file redundancy model.
• Given a set of available storage nodes, form a group

that minimizes the probability of file loss.
• Adapt the solution such clusters’ goals and MCs are not

altered on a membership change occurs; or alternatively,
minimize the magnitude of alteration.

• Further decentralize the algorithm giving more responsi-
bility to storage nodes, i.e., collectively or independently
decide MCs to follow.

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3
0.00

0.02

0.04

0.06

0.08

0.10

0.12

su
m

(c
t)

 /
te

rm
in

at
io

n
ep

oc
h

(a) clusters lifetime (%) where ct boolean condition was
verified.

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3
0

20

40

60

80

100

cl
us

te
rs

 (
%

)

5 3 5

(b) percentage of clusters that verified the boolean
condition cavg at the end of a playthrough or after a
membership change.

SG
DBS-

T1

SG
DBS-

T2

SG
DBS-

T3
0.10

0.15

0.20

0.25

0.30

0.35

c d
m

 /
cl

us
te

r
si

ze

eq. achieved eq. not achieved. r
(c) distance to the equilibrium goal whenever cavg

condition was verified, using Eq. (5)

Fig. 9: Impact of changing MCs on node replacement.

REFERENCES

[1] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algo-
rithms and theory,” IEEE Transactions on Automatic Control, vol. 51,
no. 3, pp. 401–420, 2006.

[2] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,”
IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39,
2006.

[3] B. Açikmeşe and D. S. Bayard, “A markov chain approach to
probabilistic swarm guidance,” in 2012 American Control Conference
(ACC), June 2012, pp. 6300–6307.

[4] B. Açıkmeşe and D. S. Bayard, “Probabilistic swarm guidance for col-
laborative autonomous agents,” in 2014 American Control Conference,
June 2014, pp. 477–482.

[5] N. Demir and B. Açıkmeşe, “Probabilistic density control for swarm of

decentralized on-off agents with safety constraints,” in 2015 American
Control Conference (ACC), July 2015, pp. 5238–5244.

[6] J. M. Lien and E. Pratt, “Interactive planning for shepherd motion,”
AAAI Spring Symp. Agents Learn Human Teachers, March 2009.

[7] E. Masehian and M. Royan, “Cooperative control of a multi robot
flocking system for simultaneous object collection and shepherding,”
Studies in Computational Intelligence, vol. 577, pp. 97–114, January
2014.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 29–43, October 2003.
[Online]. Available: https://doi.org/10.1145/1165389.945450

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), June 2010.

[10] Red Hat. (2016) Architecture — ceph documentation. Accessed
1st July 2020. [Online]. Available: https://docs.ceph.com/docs/master/
architecture/

[11] X. Zhang, S. Gaddam, and A. T. Chronopoulos, “Ceph distributed file
system benchmarks on an openstack cloud,” 2015 IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM),
November 2015.

[12] M. Selvaganesan and M. A. Liazudeen, “An insight about glusterfs
and its enforcement techniques,” in 2016 International Conference on
Cloud Computing Research and Innovations (ICCCRI), 2016, pp. 120–
127.

[13] L. Zhang, Y. Wu, R. Xue, T. Hsu, H. Yang, and Y. Chung, “Hybridfs —
a high performance and balanced file system framework with multiple
distributed file systems,” in 2017 IEEE 41st Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, 2017, pp. 796–805.

[14] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” Proceedings of first international
workshop on peer-to-peer systems, vol. 55, p. 53–65, April 2002.

[15] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” Computer Communica-
tion Review, vol. 33, August 2003.

[16] B. Cohen, “Incentives build robustness in bittorrent,” Workshop on
Economics of Peer-to-Peer systems, vol. 6, June 2003.

[17] A. Forestiero, C. Mastroianni, and M. Meo, “Self-chord: A bio-
inspired algorithm for structured p2p systems,” 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid, June 2009.

[18] A. Brocco, A. Malatras, and B. Hirsbrunner, “Enabling efficient
information discovery in a self-structured grid,” Future Gener. Comput.
Syst., vol. 26, no. 6, pp. 838–846, June 2010.

[19] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on
a graph,” SIAM Review, vol. 46, March 2003.

[20] U. of Washington NS-3 Consortium (nsnam). (2011) About
— ns-3. Accessed 14th July 2020. [Online]. Available: https:
//www.nsnam.org/about/

[21] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
2009 IEEE Ninth International Conference on Peer-to-Peer Comput-
ing, 2009, pp. 99–100.

https://doi.org/10.1145/1165389.945450
https://docs.ceph.com/docs/master/architecture/
https://docs.ceph.com/docs/master/architecture/
https://www.nsnam.org/about/
https://www.nsnam.org/about/

APPENDIX A - TABLES

TABLE I: Tested scenarios’ configurations.

Scenario System Optimized Cluster Size Blocks Replication Link Loss Disk Error Node Uptimes Plays
SG8-100P SG6 No 8 33

3

No No 100 100
SG8-1000P SG No 8 333 No No 100 100
SG8-2000P SG No 8 666 No No 100 100

SG8-ML SG No 8 333 Yes No 100 100
SG8 SG No 16 333 No No 100 100

SG16 SG No 16 333 No No 100 100
SG32 SG No 32 333 No No 100 100

SG8-Opt SG Yes 8 333 No No 100 100
SG16-Opt SG Yes 16 333 No No 100 100
SG32-Opt SG Yes 32 333 No No 100 100
SGDBS-T1 SGDBS7 Yes 8 46 Yes Yes [4, 32], µ = 18, σ = 8 500
SGDBS-T2 SGDBS Yes 8 46 Yes Yes [32, 64], µ = 48, σ = 8 500
SGDBS-T3 SGDBS Yes 8 46 Yes Yes [64, 100], µ = 82, σ = 8 500
HDFS-T1 HDFS8 - 8 46 Yes Yes [4, 32], µ = 18, σ = 8 500
HDFS-T2 HDFS - 8 46 Yes Yes [32, 64], µ = 48, σ = 8 500
HDFS-T2 HDFS - 8 46 Yes Yes [64, 100], µ = 82, σ = 8 500

6Swarm Guidance Algorithm (perfect environment)
7Swarm Guided Distributed Backup System
8Hadoop Distributed File System

	I Introduction
	II Literature Review
	II-A Swarm Guidance
	II-B Distributed File Systems
	II-C Overlay Networks

	III Problem statement
	IV Proposed Solution
	IV-A PSG from Robotics to Distributed Systems
	IV-B Markov Chain Optimization
	IV-C Swarm Guided Distributed Backup System (SGDBS)

	V Implementation
	V-A Hives simulator
	V-B Swarm Guidance based Distributed Backup System

	VI Results Discussion
	VI-A Swarm Guidance on Hives
	VI-B SGDBS vs HDFS

	VII Conclusion and Future Directions
	References

