Object Detection and Classification on the Versat Reconfigurable

Processor

Daniel Garigali Pestana
daniel.pestana@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

January 2021

Abstract

The main goal of this work is the development of VersatCNN, an IP core based on the Versat
Coarse-Grained Reconfigurable Array, extended to efficiently compute Convolutional Neural Networks
(CNNs). VersatCNN is validated with the deployment of a state-of-art object detector. VersatCNN is
composed of a large number of Multiply-Accumulate (MAC) units embedded in vector units, organised
in a matrix structure to exploit parallelism at the convolution and feature map levels and to enhance
data sharing. Parallel memory read and write units exchange data with the external memory over
a wide memory controller bus. The reconfigurable computing units form different datapaths for
accelerating different CNN layers and activation functions. The state-of-art object detector used is
YOLOv3-Tiny, a lightweight version of the YOLOv3 detector targeting embedded systems, which has
the best trade-off between accuracy and execution time. In this work, the source code is converted
to fixed-point and optimised for hardware acceleration using approximated activation functions,
batch-normalization folding and post-training dynamic quantization. The precision drop is only 2.1
using the Mean Average Precision (mAP) metric, when compared to the original floating-point model.
The YOLOv3-Tiny detector, running the optimised software on a minimal and low performance
RISC-V CPU and using the VersatCNN IP core for acceleration, is prototyped in a UltraScale
XCKU040 FPGA and achieves a performance of 32.4 frames per second, running at 143 MHz for
T768x576 sized images and a parallelism factor of 832 (number of MAC units).

Keywords: Coarse Grained Reconfigurable Array, Convolutional Neural Networks, Versat Reconfig-

urable Processor, YOLOv3-Tiny, RISC-V CPU

1. Introduction

Object detectors have a wide range of application
fields such as security, transportation, military and
medical. Their task consists in classifying and lo-
cating multiple objects in an image from predefined
categories. Object detection has been under exten-
sive research in both academia [4, 5] and real world
applications [14, 11]. Traditional approaches were
based on handcrafted low-level features and shallow
trainable architectures.

Recent technological breakthroughs led to the
fast evolution of object detectors. The main con-
tributions include the development of Deep Neural
Networks (DNNs) and the increase of the hardware
computing power. State-of-art object detectors use
DNNs with deeper architectures to learn more com-
plex features without the need to design them man-
ually. The superior accuracy of DNNs comes at
the cost of high computational complexity. Graph-
ics Processing Units (GPUs) have been the most
common programmable accelerators for deploying

DNNs due to their high parallelization and high-
speed floating point computing power. However,
GPUs cannot be deployed in embedded systems as
a result of their high power consumption.

Recent studies [6, 12] have been using Field Pro-
grammable Gate Arrays (FPGAs) as a more energy-
efficient alternative to GPUs for deploying DNNs.
FPGAs present advantages in terms of high flexibil-
ity to design dedicated hardware, fixed-point calcu-
lation, parallel computing and low power consump-
tion. Accelerators based on Coarse Grained Recon-
figurable Arrays (CGRAs) for DNNs have also been
further investigated. A CGRA is a programmable
hardware circuit from the same family of the FP-
GAs but with a lighter configuration infrastructure,
resulting in less silicon area and lower cost.

The Deep Versat CGRA [7] is a config-
urable and customisable hardware accelerator de-
veloped for speeding-up loop-based applications.
Although highly scalable, this reconfigurable pro-
cessor presents limitations for the acceleration of

CNNs. Thus, the main focus of this work is the
development of a new hardware accelerator named
VersatCNN, which is based on the former Deep
Versat but suitable for the computation of CNNs.
The improvements include the addition of a Direct
Memory Access (DMA) module for fast data trans-
fers, the deployment of vector Functional Units
(FU) for shared configurations between the same
type of FUs, the implementation of automatic ping-
pong memories and heterogeneous stages.

The second main goal is to validate and demon-
strate the VersatCNN IP core by the deployment
and acceleration of an object detector for an ambi-
tious performance of at least 30 Frames Per Second
(FPS). As a result, the source code of the origi-
nal floating-point model of the detector is firstly re-
duced for its application on an resource-constrained
embedded system and then simplified for hardware
computation, which englobes post-training fixed-
point quantization and approximation of activa-
tion functions. The software baseline is imple-
mented on top of the IObundle System-On-Chip
(I0Ob-SoC) platform, which is based on a RISC-V
soft-processor.

This document is organized as follows. Section 2
introduces the background of CNNs, the YOLOv3-
Tiny detector and Deep Versat. Section 3 describes
the architecture of the IP core developed to accel-
erate CNNs, which is inspired on the Deep Versat
CGRA. In Section 4, YOLOv3-Tiny is accelerated
using the VersatCNN IP core. Section 5 presents
the performance results of the final solution in terms
of the resource consumption, the execution time of
the detector and the comparison with other FPGA-
based works. Finally, Section 6 concludes the work
and highlights the major achievements and sugges-
tions for future work.

2. Background

2.1. Convolutional Neural Networks

CNNs are implemented as a sequence of intercon-
nected layers and consist in two stages: feature ex-
traction and classification. For feature extraction,
the network is built on repeated blocks, each com-
posed of a convolutional layer, an optional batch-
normalization layer, a non-linear layer (i.e., appli-
cation of an activation function) and an optional
pooling layer. For classification purposes, fully con-
nected layers, optionally followed by a regression
function, are typically applied after the last block
of the feature extraction stage. Modern CNN mod-
els add other type of layers such as shortcut, route
and upsample layers.

Convolutional layers perform 3D convolutions,
which can be seen as a set of 2D convolutions. In 2D
convolutions, a 2D kernel is overlapped and shifted
as a sliding window throughout the entire 2D input
feature map (FM), generating a 2D output FM. In

each overlap, a MAC operation is performed. In
3D convolutions, for each 3D kernel, there is a 2D
convolution between each channel of the input FM
and of the given 3D kernel. The results of the con-
volutions are summed across all the channels. The
output feature map is obtained after summing the
former result with a shared bias associated to each
3D kernel. Therefore, one output FM is created for
each 3D kernel.

The batch-normalization layer is used for speed-
ing up the training by normalizing the input data.
Eq. 1 expresses the computation performed by this
layer for each input element, x, where the mean, p,
and the variance, o2, are statistics collected from
training and the scale factor, v, and the shift fac-
tor, 3, are parameters learned during training. € is
a small constant that avoids dividing by zero.

_ T4
Y Vo2+e

The pooling layer downsamples the feature maps.
Each 2D channel is divided into blocks, which are
further replaced by the maximum (maxpooling) or
the mean (average pooling) value of the block. The
most common operation is a 2x2 maxpooling.

v+ 5 (1)

The shortcut layer skips one or more layers by
adding the output of a former layer to the input
of the current layer. The route layer concatenates
the output from a former layer with the input of
the current layer by stacking them into different
channels. The upsample layer upsamples a feature
map, typically by a factor of two.

2.2. CNN acceleration with FPGAs
The most common approaches for accelerating CNN
inference in FPGAs in previous works [6, 12] are
mainly focused on exploiting the parallelism of the
MAC operations of the convolutions and approxi-
mating the model for fixed-point computation.
The computation of each convolutional layer can
be seen as the application of four nested loops. Each
loop is associated to a source of parallelism: intra-
convolution (multiplications in 2D convolutions are
implemented concurrently), inter-convolution (mul-
tiple 2D convolutions are computed concurrently),
intra-FM (multiple pixels of a single output FM are
processed concurrently) and inter-FM parallelism
(multiple output FMs are processed concurrently).
The sources of parallelism to be exploited are de-
fined by applying loop optimization techniques such
as loop unrolling and loop tiling. Loop unrolling
consists in accelerating the execution of the loops
at the expense of resource utilization. Each loop
has an unroll factor that indicates how many times
the respective loop is parallelized. Loop tiling di-
vides the data into multiple blocks to increase the
data locality.

2.3. YOLOv3-Tiny detector

YOLOv3-Tiny [9] is the state-of-art object detector
that presents the best trade-off between accuracy
and execution time. The input image is resized at
the beginning of the process flow as the detector
allows different input resolutions. The YOLOv3-
Tiny CNN extracts features and returns candidate
bounding boxes from those features for two differ-
ent scales (26x26 and 13x13). Candidate bounding
boxes are then filtered based on their objectness
score and the score of each class. Finally, non-
maximum suppression is used to remove multiple
detections of the same object and the final detec-
tions (bounding boxes and class labels) are drawn
over the original input image.

The YOLOv3-Tiny CNN is composed of 13 con-
volutional layers, 6 maxpool layers, 2 route layers, 2
yolo layers and 1 upsample layer. All convolutional
layers include batch-normalization and use Leaky
ReLU (with slope of 0.1) as activation function, ex-
cept from the convolutional layer exactly before of
each yolo layer. The kernels are 3x3 and 1x1 to
reduce the number of weights. The yolo layers ap-
ply the logistic activation (i.e., sigmoid) to some of
their input channels.

2.4. Deep Versat CGRA

A CGRA is a collection of programmable FUs
and embedded memories interconnected by pro-
grammable switches. The interconnections are re-
configurable at runtime to form different hardware
datapaths that accelerate distinct computations for
the same application.

The Deep Versat CGRA [7] is a multi-layer ar-
chitecture composed of a set of Versats stacked in a
ring structure. Each Versat has a data engine which
consists of FUs organized in a full mesh topology
and configuration module composed of (1) the Con-
figuration Shadow Register, which stores the config-
uration currently being executed by the respective
data engine and (2) the Configuration Register File,
which holds the next configuration.

The Address Generator Unit (AGU) is the core
of the data engine that controls the data access pat-
tern within the FUs and manages the start and the
end of the execution of a given run. The AGU con-
sists of two cascaded counters capable of execut-
ing two nested loops in a single configuration. The
computation of the addr output is controlled by the
start, iterations, period and incr inputs according
to Algorithm 1.

Deep Versat is controlled by a RISC-V soft-
processor and presents some limitations for accel-
erating CNNs in terms of the: data transfer (driven
through the soft-processor instead of a DMA); ping-
pong memories (overlapping data computation and
communication is not automatic); homogeneous

addr = start
for i € {1,...,iterations} do { // Outer loop}
for j € {1,...,period} do { // Inner loop}
addr += incr
addr += shift

Algorithm 1: AGU output access pattern.

layers; individual configurations per FU and the
number of loops in the AGU (to perform a full 3D
convolution in a single configuration, more loops are
required).

3. VersatCNN IP Core

3.1. High-level architecture

VersatCNN is composed of two heterogeneous
stages called xWeightRead and xComp, besides of
an AXI-based DMA, as represented in Figure 1.

VersatCNN

xWeightRead
IP Core:

VRead Array ,gq

256bit

Config —
Vread

VRead
= s

Bias Weights

RISC-V
Native
Interface

& [VRead
Arra)
VWrite

=| Array

" Merge

FU Matrix

2560t Merge

- Merge

AXI-DMA

DMAWiite Interface

Config DMA

DMARead Interface

AXI4 Interface

Figure 1: VersatCNN high-level architecture.

The xWeightRead stage reads weights and bi-
ases from the external memory and stores them in
the on-chip memory. This stage is constituted by
an array of a new type of configurable FU called
vRead. A vRead unit is a dual-port memory where
one the ports has an AGU for writing weights and
biases read from the external memory via the DMA,
and the other port has an AGU for reading those
values and feeding them to the xComp stage.

The xComp stage computes the data (convolu-
tion, activation functions, maxpool, etc) and stores
the results back to the on-chip memory. This stage
is composed of a matrix of configurable custom com-
puting FUs, where each row shares a vRead FU, and
another new type of FU called vWrite. The vRead
FU is used for reading tiles of the input FMs from
the external memory. The vWrite FU is the recipro-
cal of the vRead FU, including a dual-port memory,
an internal AGU to store the computation results
and an external AGU to write the stored results to
the external memory using the DMA. The various
vRead and vWrite units share a merge block each,
which is a priority encoder for allowing DMA access
to only one vRead and one vWrite at a given time.

The function of the AXI-DMA block is to
read/write data from/to the external memory. The
DMA handles 256-bit wide data and allows config-
urable bursts for both reads and writes. It has two
data native interfaces, allowing the xComp mod-
ule to read and write from memory and an AXI4
interface to access the external memory. It also has
a native configuration interface driven by the CPU.
Like the FUs, the DMA can be configured while
running, so that configurations, data transfers and
FU computing can all happen simultaneously.

Each stage has a configuration module with spe-
cific configurations that are shared between the
same type of FUs within the stage. These configu-
rations are set via the RISC-V native. Apart from
the internal configurations of each stage, there are
global control and status registers that are common
to all stages:

e Run: starts the execution of the configurations
stored in the shadow registers of each stage.

e Clear: resets the configurations stored in the
register files of each stage.

e Done: indicates the end of execution of all
configurations of all the stages.

3.2. Detailed architecture

The detailed architecture of the VersatCNN IP core
is shown in Figure 2. Unlike Deep Versat, the con-
nections between the compute, vRead and vWrite
FUs are fixed due to the regularity of the convolu-
tional layers. The custom FUs are reconfigurable as
in generic CGRAs, allowing them to form different
hardware datapaths for different computations.

'
V ambiy 2s6hity 255bity () 2s6bity,
DMA | ' Read [vRead[0] Read[l] Read[N]
Read 1 Bias Weights Weights Weights N
=T T WGBS Juobs — T] T ——— LxO bits XComp
o6t R e bits . s i LBis
= le:
‘ FU[00] ‘: ‘ FUpL] ‘: FU[ON] |:
v L bits yL bits. (.) ¥ L bits
| VWite[0] |
26bi] \
255”."{3:;'?{1] LxObits
ile k2 L] i
Fuo] | ‘ FuL) ‘j | FULLN] l:
L bits 4L bits (...) + L bits
. VWrite[1]
T = 256bit] DMA
— — - Write
255““ LxObits
C—
FM Tile v 5 v -
Note: N - nCols ‘ FuMOl t— ‘ Fup L | FUMN |4 -
M — nRows 3 L bits yL bits (..) L bits
L~ DATAPATH W | | VWite[M] |

O - nMACs

256 bit] >
Figure 2: VersatCNN detailed architecture.

Each FU in the same row receives the same FM
tile but a different 3D kernel, which corresponds to
computing multiple output FMs in parallel (inter-
FM parallelism), corresponding to the loop 4 unroll
factor defined by nCols. In turn, each FU in the

same column receives the same 3D kernel but a dif-
ferent FM tile, corresponding to the computation
of multiple pixels of a single output FM in par-
allel (intra-FM parallelism), where the loop 3 un-
roll factor is defined by nRows. Therefore, the total
number of FUs is nCols x nRows. Inside each FU,
multiple 2D convolutions are computed in parallel
(inter-convolution parallelism) and the loop 2 unroll
factor is defined by nMACs. The remaining synthesis
parameters give the address width of the respective
module.

The dataflow is the following. The vRead FUs
read data from the external memory using the DMA
and stores them internally. At the same time, the
data in the vRead FUs, obtained from the exter-
nal memory in the previous run, is read out and
broadcast to columns or rows of FUs, depending on
the type of vRead FU. Each custom FU computes a
different 3D convolution. The computation results
of the custom FUs are concatenated and stored in
the vWrite FUs, while those of the previous run are
written back to the external memory via the DMA.

3.2.1 xWeightRead stage

Figure 3 shows the detailed architecture of the
xWeightRead stage, omitting the merge module
and the dataflow. This module is composed of a
Bias vRead FU and an array of Weight vRead FUs.
These units read data from the external memory us-
ing their External AGUs, write these data to their
internal memories (Bias or Weights memories) and,
at the same time, read previous data from their in-
ternal memories to feed the compute FUs.

WEIGHT_EXT_ADDR
WEIGHT_OFFSET

A

BIAS_EXT_ADDR 1

External g T [—
AGU config
A i i g T
Bias Weights Weights Weights Weights
Memory Memory 1 Memory 2 Memory 3 Memory N
o o 2 © aae . e
T T Py Py —
BIAS_START B T
=3
Internal Note:
& N - nCols
External
AGU config

Figure 3: xWeightRead stage detailed architecture.

The Weight vRead FU array share the Internal
AGU to read the data from the internal memory.
The external AGUs are on the other hand individ-
ual as each uses a different base address value. How-
ever, their configuration is shared because the base
addresses are calculated in hardware. The base ad-
dress of the first external AGU is configurable. The
base address of the other external AGU is calcu-
lated by adding the base address of the first exter-

nal AGU (WEIGHT_EXT_ADDR runtime parameter in
the figure) with the product of the external AGU
position and the address offset (WEIGHT_OFFSET run-
time parameter). This results from the kernels of
the same convolutional layer being typically stored
sequentially in the external memory and having the
same size. In spite of requiring the use of nCols-1
multipliers in the design, performing this calcula-
tion in hardware allows keeping the configuration
size independent of the number of vReads.

The weight memories are asymmetric dual-port
memories, having an external bus of 256 bits and an
internal bus of nMACs x DATAPATH_W bits as nMACs
weights are read simultaneously from the same 3D
kernel to perform inter-convolution parallelism. Re-
garding the bias vRead, as the same bias is used by
the custom FUs in the same matrix column, no in-
ternal AGU is needed, only a single read address
defined by the BIAS_START B runtime parameter.

The runtime parameters of the xWeightRead
stage are used by the internal and external AGUs
that control the access pattern of the weights and
bias memories. For the vReads, the external AGU
controls the write address of the memories whilst
the internal AGU controls the read address. The
internal AGU is the same 2-loop AGU from Deep
Versat. The external AGU, represented in Figure 4,
is a new module that handles data exchanged be-
tween the external and internal memories.

External
memory
interface

Internal
memory
interface

—| direction
—| ext_addr
—| int_addr
—| delay
— | duty rune——
—|incr
—= iterations
—»/ period
—| shift
——* start

Configuration
parameters

Figure 4: Interface signals of the external AGU.

In this module, the communication with the ex-
ternal memory is done through the native external
memory interface where the address is calculated
by adding a base value (ext_addr parameter) with
an offset value. The offset is calculated by using
another 2-loop AGU inside the external AGU. In
turn, the communication with the internal mem-
ory is done via the native internal memory interface
where the address is determined by adding a base
value set by the int_addr parameter with an off-
set calculated by using a sequential counter inside
the external AGU. The direction parameter indi-
cates the direction of the data flow. For the vReads,
the direction parameter is hard-wired to zero which

means that the data is read from the external mem-
ory and written into the internal memory.

3.2.2 xComp stage

The xComp stage is composed of an array of FM
Tile vRead FUs, a matrix of custom FUs and an ar-
ray of vWrite FUs. The vRead units operate anal-
ogously to the vRead FUs from the xWeightRead
stage. Each custom FU receives a bias, weights and
pixels from the FM tile to compute mainly 3D con-
volutions. The vWrite units write the results to
their internal memories and read the previous re-
sults to be sent back to the external memory.

3.2.2.1 FM Tile vReads

The vReads for the input FM tiles present a scheme
similar to the vReads for the weights, namely with:
the calculation of the base address of each external
AGU with nRows-1 multipliers; the shared config-
urations between the external AGUs; the use of a
single internal AGU by the asymmetric dual-port
memories that store the FM tiles and the auto-
matic ping-pong operation of those memories. Fig-
ure 5 shows the detailed architecture of the xComp
vReads, omitting the calculation of the base ad-
dresses of the external AGU, the merge module and
the dataflow for simplification purposes.

External

AGU config
5 FMitile
¥ Memory =
= 1 =
s FMiile
B Memory ¥
= 2 =
Note:
M - nRows
= FMiile
5, Memory ¥
= M -
TILE_EXT
External
AGU config

Figure 5: xComp vReads detailed architecture.

The read address of the memories can be con-
figured to come from the internal AGU or from
the values stored in other memory. The selection
is made by the TILE_EXT runtime parameter via a
multiplexer. This parameter is useful when the data
access pattern is not regular and cannot be deter-
mined by the AGU. The pattern memory is also

linked to an external AGU for pre-loading data ac-
cess patterns from the external memory and to the
same internal AGU as the FM tile memories when
being read to address them. To perform a 3D convo-
lution in a single run, the access pattern of the FM
tile memories requires more than 2 loops. Hence,
the internal AGU of the xComp vReads was im-
proved to support 6 loops by cascading 3 AGUs,
which adds 2 more sets of the incr, iterations, pe-
riod and shift configuration parameters.

3.2.2.2 Custom FU

The detailed architecture of the custom FU is rep-
resented in Figure 6. The reconfigurable intercon-
nections inside this module allow to form different
datapaths to accelerate different CNN layers (e.g.,
convolutional with or without bias, maxpool) and
activation functions (e.g., Leaky ReLU, sigmoid) in-
dividually or even in the same run.

in_bias CUSTOM FU in_weights[N]

[
N[y

A B C
MAC -1 3 I

I1]

0
11
Fa
mac1d
out
Imac_out[0] mac_out[:

Adder Tree

Sigmoid
| Activation
d — 1
;‘g;r::[\m T > 0 P ,/_L bypass_adder
-
eaky T L= Result

1 [mac_outN-1]

3
mac_outINDEX]

o [
AGU
§ B
£
i

2

>>>] | shift

____]

bypass
Z-bit counter
enabe

o

Note: N ~ nMACs
M - 0....nCols-1
INDEX ~ n % nMACs

Figure 6: Custom FU detailed architecture.

The default operation is the 3D convolution,
which is performed by MACs in parallel, where each
MAC performs 2D convolutions of different input
channels (inter-convolution parallelism) and by an
adder tree that sums the results of the convolution
across the channels. The internal AGU controls the
number of accumulations to perform by resetting
the accumulator of the MACs when the output ad-
dress is zero. The bias can be included in the com-
putation of the convolutions by enabling the bias
runtime parameter. When enabled, the accumula-
tor of the first MAC is initialized with the value of
the bias for each accumulation (for the other MACs,
the accumulator is reset to zero). This way, the
computation of the bias is hidden inside the compu-
tation of the accumulations. The b_shift runtime
parameter indicates the number of shifts to perform
to the bias before the accumulation, taking into ac-
count its quantization format.

The IP core implements the activation func-
tions after the convolution. The leaky runtime
parameter enables the leaky activation, which is
implemented with 2 adders, 1 multiplexer and
shifters. =~ The sigmoid runtime parameter en-
ables the sigmoid activation, which is implemented
by means of simple comparators, multiplexers,
adder/subtracters and a priority encoder. In case
the sigmoid activation is not applied to all output
channels, the mask runtime parameter is a second
enable for the sigmoid computation but is individ-
ual for each custom FU in the matrix row. After the
optional activation blocks, the result is shifted con-
sidering the value of the shift runtime parameter
and the quantization format of the results.

The TP core was designed to allow the compu-
tation of the convolutional and maxpool layers in
the same run. The computation of the maxpool,
which is enabled by the maxpool runtime parame-
ter, is performed with: a 2-bit counter to handle 2x2
blocks of pixels; a comparator to find the maximum
value in the 2x2 block and a multiplexer to select
that value. Note that the enable of the counter is
also controlled by the AGU. The maxpool can also
be performed standalone (without performing con-
volutions in the same run) by bypassing the pix-
els from the FM tile to the input of the maxpool
computation. This configuration is enabled by the
bypass runtime parameter. The last runtime pa-
rameter regards to the option of bypassing the re-
sult of one of the MACs to the output of the custom
FU by enabling the bypass_adder runtime param-
eter. It is used when only needing to compute indi-
vidual accumulations with a single MAC.

3.2.2.3 vWrite FUs

The runtime parameters for the xComp vWrites are
used by the internal and external AGUs that con-
trol the access pattern of the memories that store
the computation results. For the vWrites, the inter-
nal AGU controls the write address of the memories
whilst the external AGUs control the read address
of the memories. Therefore, the direction param-
eter of the external AGUs is hard-wired to one,
which indicates that the data is read from the inter-
nal memories and written into the external memory.
As the vReads, the vWrites: require nRows-1 multi-
pliers for the calculation of the base address of each
external AGU; use a single internal AGU shared
by all memories and share the runtime parameters
between the external AGUs.

3.2.3 AXI-DMA

The AXI-DMA module consists of two finite state
machines (one for the reads and another for the
writes) that convert the requests of the vReads and

vWrites (native interface) to AXI4 read and write
transactions (AXI4 interface).

For the read transactions (vReads), the runtime
parameters account for the total number of 256-
bit aligned transactions in a single run. The AXI4
protocol supports a maximum of 256 transfers per
burst. Therefore, the DMA contains an internal
counter, initialized at the beginning of the configu-
ration run with the total number of required trans-
actions, that decrements each time a transaction is
done in order to determine the number of transac-
tions in each burst. For instance, if the total num-
ber of 256-bit aligned transactions is 500, the first
burst will have 256 transactions whilst the second
burst will have 244 transactions (500-256).

The runtime parameter for the write transactions
(vWrites) accounts for the total number of bytes
(not 256-bit transactions) to transfer in a single run.
The difference regards to the fact that the DMA
write may require unaligned transactions, i.e., being
able to write from any memory address any number
of bytes. Hence, the DMA also includes an aligner
module that manages the data bytes and the strobe
to align the data with the DMA 256-bit databus.

3.3. Operation

The VersatCNN IP core is first configured by writ-
ing to the configurable register files and then run
by writing a command to the run control regis-
ter. The run command executes the configurations
transferred from the register files to the shadow reg-
isters. As a result, the next run can be configured
during the current run without affecting its opera-
tion. Excepting the first and last two runs, the IP
core can read and write to the external and internal
memories, compute and be configured for the next
run, all in parallel.

The operations are implemented in a pipelined
fashion which means that, after the first two runs,
different data is being read, computed and written
in the same run. The management of the config-
urations in pipeline fashion is challenging in soft-
ware as the programmer would need to program all
the configurations at the same time taking into ac-
count that some are due in the next run and others
in the next two subsequent runs. To ease the soft-
ware development, the configurations of the internal
AGUs (compute operation) are ”delayed” one run
by adding an extra level of shadow registers, and the
configurations of the vWrite external AGUs (write
operation) are "delayed” two runs by adding two
extra levels of shadow registers. As a result, the
pipeline process is transparent to the programmer,
who simply programs all the configurations at the
same time abstracted from the fact that not all are
run at the same time.

3.4. Optimization of the FM tile read process

The core was designed so that each matrix row of
custom FUs computes a different line of the out-
put FM. As a result, the tiles between consecutive
vReads will share one or more lines from the input
FM when performing a 3x3 convolution. Without
any further optimisation, each vRead would indi-
vidually read 4 lines from the external memory (one
at a time, taking into account the priority defined
by the merge module), resulting in several lines be-
ing repeatedly read from the external memory in
the same run.

To optimize the read process, each tile vRead is
coupled with a comparator that compares the ad-
dress of the vRead with the address at the databus
interface (which corresponds to the address of the
vRead that earned the priority in the merge mod-
ule) and, in case they are equal, a multiplexer
chooses the data coming from the databus. Con-
sequently, the common lines between vReads are
stored at the same time, saving communication time
in the run.

4. Implementation of YOLOv3-Tiny

4.1. Optimizations for hardware implementation
To be able to run the software application on an
resource-constrained embedded system, additional
optimizations, such as linear approximation of ac-
tivation functions, batch-normalization folding and
post-training quantization, were deployed.

The slope value (0.1) of Leaky ReLU is approxi-
mated by replacing the multiplication by a sum of
multiple right shifts of the input value, as shown in
Eq. 2. The sigmoid was implemented by the piece-
wise linear approximation in [13].

rx0lx(xz>>4)+(@>>5)+(@>>7) (2

The batch-normalization folding consists of a lin-
ear transformation to fold the parameters of the
batch-normalization layer into the preceding con-
volutional layer. The pre-trained floating-point
weights w and biases b are updated to their new
values w’ and b’ according to Eq. 3.

F_AXw Wy X7

w = ——
Vo2 +e Vo2 +e

The CNN computation is typically approximated
to fixed-point format for inference in FPGAs. The
fixed-point format for the weights, biases and FMs
in each layer is chosen by selecting the minimum
number of bits needed for the integer part to avoid
overflow, leaving the remaining bits for the frac-
tional part. All values were quantized using 16 bits.
The final fixed-point model resents a mAPs, drop
of 2.1 in comparison with the original floating-point
model for the MS COCO 2017 test dataset.

4.2. TOb-SoC-Yolo

IOb-SoC [3] is an open-source RISC-V-based
System-On-Chip platform developed by IObundle.
The system is composed of a low-performance
RISC-V soft-processor to control the slaves (i.e.,
memory sub-system and peripherals). The slaves
include: boot controller (runs bootloader), internal
memory (stores firmware), external memory, timer
(measures the time performance of the application),
UART (for the bootloader and debugging) and Eth-
ernet (transfer big data files). The VersatCNN is in-
tegrated as another peripheral in the SoC platform
(to accelerate YOLOv3-Tiny) which is renamed to
I0Ob-SoC-Yolo.

4.3. Performance of the software baseline

The software baseline is divided in 4 sections: setup
(peripherals initialization and preparation of the
data in the external memory), pre-CNN, CNN and
post-CNN. The execution time of the software-only
version running on the IOb-SoC platform (using O3
optimizations) at 143MHz is 969 seconds (above 16
minutes). The target frame rate for this work is 30
FPS, which corresponds to a total execution time of
33.3 ms. Therefore, all CNN layers need to be ac-
celerated in hardware. The pre-CNN process takes
approximately 1 second on the CPU and must also
be accelerated in the same hardware as the CNN.
The post-CNN process is fast enough in software,
except the draw detections method, which can be
accelerated in hardware using a DMA engine.

4.4. Accelerating YOLOv3-Tiny with VersatCNN
Most of the synthesis parameters that determine the
internal architecture of the VersatCNN IP core are
defined by the loop unroll and loop tiling factors
chosen to accelerate the YOLOv3-Tiny network.
Previous works performed design space exploration
in order to choose the factors that achieve the maxi-
mum computational throughput. This work follows
a slightly different approach by theoretically choos-
ing the factors that allow to achieve a target frame
rate of 30 FPS (i.e., 33.3 ms) taking into account
the characteristics of the YOLOv3-Tiny CNN.
The execution time for the computation of the
convolutional layers depends on the parallelism fac-
tor and the clock frequency. The parallelism fac-
tor must be carefully chosen considering the CNN
characteristics for not leading to the underutiliza-
tion of the MAC resources: Inter-FM parallelism
factor defined by nCols is 16 as all the CNN layers
have a number of kernels multiple of 16; Intra-FM
parallelism factor defined by nRows is 13 as all lay-
ers present an input FM with a height multiple of
13; Inter-convolution parallelism factor defined by
nMACs is 4 as all layers present a number of input
channels multiple of 4. The total parallelism factor
chosen for the IP core is then 832 (16x13x4), which

leads to an estimated execution time of 23.4 ms for
a clock of 147 MHz. In turn, the tiling factor of each
layer is chosen so that the communication time is
below the computation time in each run.

5. Results

The development board available for this work is
the Kintex UltraScale KU040 [2], which includes a
Xilinx XCKU040 FPGA. The vWrite and the bias
memories are implemented using LUTRAMSs whilst
the other vRead memories are implemented with
BRAMs. Each MAC of the VersatCNN IP core
is implemented in the FPGA by one DSP with 4
pipeline stages, no pre-adder and the ALU config-
ured as an accumulator.

5.1. Resource consumption

Table 1 presents the resource consumption in terms
of the FPGA primitives of the IOb-SoC-Yolo sys-
tem, where most of the resources are occupied by
the hardware accelerator.

Table 1: IOb-SoC-Yolo resource consumption.

Resource VersatCNN IP | IOb-SoC-Yolo
36Kb BRAM 339 383.5 (64%)
FF 86,319 110,988 (23%)
LUT Logic 103,655 119,166 (49%)
LUT memory 16,792 19,780 (18%)
DSP 371 878 (46%)

Overall, the design requires less than half of the
resources available at the target device, with the
exception of the BRAMSs, which are used as on-chip
memory to store all channels from 3D kernels and
input FM tiles in order to perform 3D convolutions
in a single run. The implementation of shared con-
figurations between the same type of FUs allowed
the system to be scalable in terms of both Flip-Flop
and LUT consumption. Only 46% of the DSPs are
used, thus, the parallelism factor could still be dou-
bled from 832 to 1664 if requiring a higher target
frame rate.

5.2. Execution time
The total execution time of the YOLOv3-Tiny de-
tector implemented over the IOb-SoC-Yolo plat-
form is 30.9 ms, exceeding the target frame rate
of 30 FPS. In comparison with the software base-
line, the pre-CNN was accelerated from 1s to only
3ms and the drawing detections method from the
post-CNN was improved from approximately 12ms
to nearly 1.4ms, both mainly due to the reduction
of the communication time between the FPGA and
the external memory by using the DMA engine in-
side the IP core. The highest speed-up was achieved
for the acceleration of the CNN from 968 seconds
to only 24.4ms.

Table 2 compares the execution time of the fixed-
point model of the YOLOv3-Tiny detector imple-
mented over the IOb-SoC-Yolo platform with the

original floating-point model from Darknet exe-
cuted in both CPU and GPU. IOb-SoC-Yolo is
nearly 27 times faster than the CPU version and
only 2 times slower than the GPU version, being
however more suitable for embedded systems.

Table 2: YOLOv3-Tiny performance per platform.

Platform Time (ms) | FPS

CPU (Intel i7-8700) 828.3 1.2
GPU (RTX 2080 Ti) 15.4 64.9
FPGA (I0b-SoC-Yolo) 30.9 32.4

5.3. Comparison with FPGA implementations

At the time of writing of this document, three oth-
ers implementations of the YOLOv3-Tiny detector
in FPGA are reported in the literature. All three
implementations consist of hardware/software co-
designs. The IOb-SoC-Yolo is compared with these
implementations in Table 3.

In (8], the YOLOv3-tiny model is first trained
using the Caffe framework over a dataset for pedes-
trian signalling and then quantized with 8-bit fixed-
point. The backbone network is accelerated by the
FPGA whilst the detection layers are handled in
software by the hard processor. The author claims
a throughput of 104.2 FPS without detailing the
hardware architecture or resource consumption.

[1] applies batch-normalization folding and post-
training quantization of 18 bits. Only the convo-
lutions are handled in hardware and all the other
layers and activation functions are implemented in
software. The hardware architecture exploits the
inter-FM, inter-convolution and intra-convolution
parallelisms with a total parallelism factor of 2304.
In comparison with IOb-SoC-Yolo, the total paral-
lelism factor is over 2.5x higher, which would jus-
tify a higher throughput. However, the only per-
formance metric reported is the number of MAC
operations per second, calculated from the product
between the number of DSPs and the frequency.
Therefore, the actual throughput is not reported
and no fair performance comparison can be done
between the two works.

[15] accelerates all YOLOv3-Tiny layers in hard-
ware. In comparison with IOb-SoC-Yolo, the intra-
convolution parallelism (loop 1) is exploited instead
of the intra-FM (loop 3), the data is also quan-
tized with 16 bits and the throughput is about 17x
lower. Note that the Zynq 7020 device has between
4 and 8x less hardware resources than the Ultra-
Scale XCKU040 (depending on the specific FPGA
primitive). Both works perform 16-bit MAC oper-
ations and, based on the MAC operations per sec-
ond, IOb-SoC-Yolo has better performance and also
better area efficiency in terms of LUT and DSP con-
sumption.

All the other works only focus on the accelera-
tion of the CNN part of the YOLOv3-Tiny detec-

tor. In turn, this work executes the full process
flow of the detector by adding the image resize prior
to the CNN and the drawing of the detections af-
ter the CNN. The reconfigurable interconnections
of the VersatCNN IP core allow to form different
datapaths to accelerate more than only CNNs. As
a result, the core is also able of accelerating the pre
and post-precessing parts of the detector.

6. Conclusions

This work presents the development of a new exten-
sion for the Versat reconfigurable processor called
VersatCNN, which is optimized for the acceleration
of CNNs. This hardware accelerator is added as
another peripheral in the IOb-SoC platform with
the purpose of accelerating the YOLOv3-Tiny ob-
ject detector. The IP core is parameterized taking
into account the characteristics of the CNN and the
available resources in the target device, achieving a
performance over 30 FPS.

The source code from the Darknet framework
[10] is reduced and adapted for resource-constrained
embedded systems, which includes hardware opti-
mizations such as the approximation of the acti-
vation functions, batch-normalization folding and
post-training dynamic quantization. The fixed-
point model presents a mAPsy drop of only 2.1 in
comparison with the original floating-point model.
The software baseline is executed on the IOb-SoC
platform and presents an execution time over 16
minutes and the profiling results show that the pre-
CNN, all CNN layers and the drawing detection
method of the post-CNN must be accelerated in
hardware to achieve the target frame rate

The Deep Versat CGRA presents limitations for
the acceleration of CNNs, which lead to develop-
ment of VersatCNN for efficient CNN computation.
The improvements involve the implementation of
vector FUs that share configurations between the
same type of FUs, the integration of a DMA for
fast data transfers, heterogeneous stages, automatic
ping-pong memories and higher loop-level AGUs.
The custom MAC-based FUs are structured in a
matrix form to exploit three types of parallelism
(Inter-FM, Intra-FM and Inter-Convolution) and to
enhance pixel and weight sharing.

The IP core is tested for the acceleration of the
YOLOv3-Tiny detector in a FPGA. Its architecture
is pre-configured with a total of 16 weight memories
of 32kB, 13 FM tile memories of 64kB and 208 cus-
tom FUs, each with 4 MACs, for a total parallelism
factor of 832. The yolo, upsample and most of the
maxpool layers are executed alongside the previous
convolutional layer. The pre-CNN and the drawing
of the detections from the post-CNN are also ac-
celerated by the IP core. As a result, the system
composed of IOb-SoC and VersatCNN achieves a

Table 3: Comparison of FPGA-based implementations of the YOLOv3-Tiny detector.

8] 1] [15] IOb-SoC-Yolo
FPGA UltraScale+ XCZU9EG | Virtex-7 XC7VX485T | Zynq 7020 | UltraScale XCKU040
Frequency (MHz) - 200 100 143
LUT (K) - 19 26 119
BRAM - 70 93 384
DSP - 2304 160 878
Images/s 104.2 - 1.9 32.4
Unrolled loops - 1,2,4 1,24 2,3,4
Precision (bits) 8 18 16 16
GMAC/s - - 53 90
MMAC/s/kLUT - - 203.8 756.3
MMAC/s/DSP - - 33.1 102.5
performance of 32.4 FPS for the full YOLOv3-Tiny [8] S. Oh, J. H. You, and Y. K. Kim. Implemen-

detector, which shows that VersatCNN is a valid
solution for accelerating CNN-based networks.

Future developments on this work may in-
clude the deployment of a generic infrastructure
to demonstrate the object detector in real-time,
the improvement of the performance of the soft-
processor and the Ethernet module and further val-
idation of the VersatCNN IP core by accelerating
other CNN-based networks.

References

[1]

A. Ahmad, M. A. Pasha, and G. J. Raza. Ac-
celerating Tiny YOLOv3 using FPGA-Based
Hardware/Software Co-Design. In 2020 IEEE
International Symposium on Circuits and Sys-

tems (ISCAS), pages 1-5, 2020.

Avnet. Kintex UltraScale KU040 Development
Board: Hardware User Guide, December 2015.

IObundle. IOb-SoC.
https://github.com/IObundle/iob-soc, 2020.

L. Jiao, F. Zhang, F. Liu, S. Yang, L. Li,
Z. Feng, and R. Qu. A Survey of Deep
Learning-Based Object Detection. IEEE Ac-
cess, 7:128837-128868, 2019.

L. Liu, W. Ouyang, X. Wang, P. W. Fieguth,
J. Chen, X. Liu, and M. Pietikdinen. Deep
Learning for Generic Object Detection: A Sur-
vey. International Journal of Computer Vi-
sion, pages 1 — 58, 2018.

Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo.
Optimizing Loop Operation and Dataflow in
FPGA Acceleration of Deep Convolutional
Neural Networks. In Proceedings of the
2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA
17, pages 45-54. ACM, 2017.

V. Mério. Deep Versat: A Deep Coarse Grain
Reconfigurable Array. Master’s thesis, Insti-
tuto Superior Técnico, November 2019.

10

[13]

[14]

[15]

tation of Compressed YOLOv3-tiny on FPGA-
SoC. In 2020 IEEE International Conference
on Consumer Electronics - Asia (ICCE-Asia),
pages 1-4, 2020.

J. Redmon and A. Farhadi. YOLOv3: An In-
cremental Improvement, 2018.

J. Redmond. darknet.
https://github.com/pjreddie/darknet, 2018.

R. Simhambhatla, K. Okiah, S. Kuchkula, and
R. Slater. Self-Driving Cars: Evaluation of
Deep Learning Techniques for Object Detec-
tion in Different Driving Conditions. SMU
Data Science Review, 2(1), 2019.

V. Sze, Y. Chen, T. Yang, and J. S. Emer. Ef-
ficient Processing of Deep Neural Networks: A
Tutorial and Survey. Proceedings of the IEEE,
105(12):2295-2329, Dec 2017.

I. Tsmots, O. Skorokhoda, and V. Rabyk.
Hardware Implementation of Sigmoid Activa-
tion Functions using FPGA. In 2019 IEEE
15th International Conference on the Experi-
ence of Designing and Application of CAD Sys-
tems (CADSM), pages 34-38, 2019.

E. Unlu, E. Zenou, N. Riviere, and P.-E.
Dupouy. Deep learning-based strategies for the
detection and tracking of drones using several

cameras. IPSJ Transactions on Computer Vi-
sion and Applications, 11:1-13, 2019.

Z. Yu and C.-S. Bouganis. A Parameterisable
FPGA-Tailored Architecture for YOLOv3-
Tiny. In F. Rincén, J. Barba, H. K. H. So,
P. Diniz, and J. Caba, editors, Applied Re-
configurable Computing. Architectures, Tools,
and Applications, pages 330-344, Cham, 2020.
Springer International Publishing.

