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Resumo

O objectivo principal deste trabalho é o desenvolvimento do VersatCNN, um módulo IP baseado na

arquitectura de matriz reconfigurável de grão grosso Versat e estendido para a computação eficiente

de redes neuronais convolucionais (CNNs). O VersatCNN é validado através da implementação de

um detector de objectos de estado de arte. O VersatCNN é composto por unidades de multiplicação-

acumulação (MAC) embebidas em unidades vectoriais e organizadas numa matriz para explorar reuso

dos dados e paralelismo ao nı́vel da convolução e mapa de caracterı́sticas. Unidades paralelas de

leitura e escrita comunicam com a memória externa através dum barramento amplo de controlo de

memória. As unidades de computação reconfiguráveis formam diferentes caminhos de dados para

acelerar várias camadas das CNNs e funções de ativação. O detector de objectos é o YOLOv3-Tiny,

uma versão leve do YOLOv3 para sistemas embebidos. Neste trabalho, o código-fonte é convertido

para vı́rgula fixa e optimizado para aceleração em hardware através da aproximação das funções de

activação e quantização dinâmica pós-treino. A queda de precisão é de apenas 2,1 usando a métrica

da precisão média (mAP), quando comparada ao modelo original de virgula flutuante. O software

optimizado do YOLOv3-Tiny é executado num CPU RISC-V de baixo desempenho, acelerado pelo

VersatCNN e prototipado numa UltraScale XCKU040, atingindo um desempenho de 32,4 imagens por

segundo, funcionando a 143 MHz para imagens de tamanho 768x576 e um factor de paralelismo de

832 (número de MACs).

Palavras-chave: Matriz Reconfigurável de Grão Grosso, Redes Neuronais Convolucionais,

YOLOv3-Tiny, Versat, CPU RISC-V
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Abstract

The main goal of this work is the development of VersatCNN, an IP core based on the Versat Coarse-

Grained Reconfigurable Array, extended to efficiently compute Convolutional Neural Networks (CNNs).

VersatCNN is validated with the deployment of a state-of-art object detector. VersatCNN is composed

of a large number of Multiply-Accumulate (MAC) units embedded in vector units, organized in a matrix

structure to exploit parallelism at the convolution and feature map levels and to enhance data sharing.

Parallel memory read and write units exchange data with the external memory over a wide memory

controller bus. The reconfigurable computing units form different datapaths for accelerating different

CNN layers and activation functions. The state-of-art object detector used is YOLOv3-Tiny, a lightweight

version of the YOLOv3 detector targeting embedded systems, which has the best trade-off between

accuracy and execution time. In this work, the source code is converted to fixed-point and optimized for

hardware acceleration using approximated activation functions, batch-normalization folding and post-

training dynamic quantization. The precision drop is only 2.1 using the Mean Average Precision (mAP)

metric, when compared to the original floating-point model. The YOLOv3-Tiny detector, running the

optimized software on a minimal and low performance RISC-V CPU and using the VersatCNN IP core for

acceleration, is prototyped in a UltraScale XCKU040 FPGA and achieves a performance of 32.4 frames

per second, running at 143 MHz for 768x576 sized images and a parallelism factor of 832 (number of

MAC units).

Keywords: Coarse Grained Reconfigurable Array, Convolutional Neural Networks, Versat Re-

configurable Processor, YOLOv3-Tiny, RISC-V CPU
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Chapter 1

Introduction

Object detectors have a wide range of application fields such as security (e.g., face detection), trans-

portation (e.g., autonomous driving), military (e.g., aircraft detection) and medical (e.g., computer aided

diagnosis) [1]. Their task consists in classifying and locating multiple objects in an image from prede-

fined categories. General-purpose object detectors focus on detecting a broad range of natural cate-

gories from highly structured objects (e.g., car, bicycle) to articulated objects (e.g., person, dog), rather

than specific categories (e.g., faces) [2]. The deployment of a real-time general-purpose object detector

for resource-constrained embedded systems is a major and current challenge.

This thesis presents a new extension of the Versat reconfigurable processor, which consists of a

hardware architecture aimed for low-end devices and extended for the acceleration of the computation

of CNNs, which are the basis of the state-of-art object detectors. The system is validated with the

deployment of a state-of-art object detector that maximizes performance for a target frame rate of 30

Frames Per Second (FPS) with reduced hardware size and cost.

1.1 Motivation

Object detection has been under extensive research in both academia [1–3] and real world applica-

tions [4, 5]. Traditional approaches were based on handcrafted low-level features and shallow trainable

architectures. Their performance were limited due to the difficulty of manually designing a robust feature

extractor and combining low-level features with high-level context from classifiers [6].

Recent technological breakthroughs led to the fast evolution of object detectors. The main contri-

butions include the development of Deep Neural Networks (DNNs) and the increase of the hardware

computing power. State-of-art object detectors use DNNs with deeper architectures to learn more com-

plex features without the need to design them manually.

The superior accuracy of DNNs comes at the cost of high computational complexity with tens of

millions of parameters and billions of operations (i.e., additions and multiplications). Therefore, these

networks require parallel computation, high data reusability and large memory bandwidth [7]. Graphics

Processing Units (GPUs) have been the most common programmable accelerators for deploying DNNs
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due to their high parallelization and high-speed floating point computing power. GPUs use large-size

batch to perform parallelization, which requires the simultaneous input of several images. For real-time

applications with the need to process images frame by frame, this strategy is not viable due to the

considerable latency of each frame. Moreover, GPUs cannot be deployed in embedded systems as a

result of their high power consumption.

Recent studies [8–11] have been using Field Programmable Gate Arrays (FPGAs) as a more energy-

efficient alternative to GPUs for deploying DNNs. FPGAs present advantages in terms of high flexibility

to design application-specific hardware, fixed-point calculation, parallel computing and low power con-

sumption. The dataflow is a main concern when designing these programmable accelerators. Accel-

erators based on Coarse Grained Reconfigurable Arrays (CGRAs) for DNNs have also been further

investigated [12, 13]. A CGRA is a programmable hardware circuit from the same family of the FPGAs

but with a lighter configuration infrastructure, resulting in less silicon area and lower cost.

1.2 Objectives

The Deep Versat CGRA [14] is a configurable and customisable hardware accelerator developed for

speeding-up loop-based applications. Although highly scalable, this reconfigurable processor presents

limitations for the acceleration of CNNs. Thus, the main focus of this work is the development of a new

hardware accelerator named VersatCNN, which is based on the former Deep Versat but suitable for the

computation of CNNs. The improvements include the addition of a Direct Memory Access (DMA) module

for fast data transfers, the deployment of vector Functional Units (FUs) for shared configurations between

the same type of FUs, the implementation of automatic ping-pong memories and the introduction of

heterogeneous stages.

The second main goal is to validate and demonstrate the VersatCNN Intellectual Property (IP) core

by the deployment and acceleration of an object detector for an ambitious performance of at least 30

FPS. As a result, the source code of the original floating-point model of the detector is firstly reduced for

its application on an resource-constrained embedded system and then simplified for hardware computa-

tion, which englobes post-training fixed-point quantization and approximation of activation functions. The

software baseline is implemented on top of the IObundle System-On-Chip (IOb-SoC) platform, which is

based on a RISC-V soft-processor. This thesis also shows how to configure the internal architecture of

the IP core taking into account the characteristics of the CNN to be accelerated and the target perfor-

mance.

This thesis was developed in cooperation with IObundle, a Lisbon-based computer architecture com-

pany, for further investigation and commercialization of the designed IP core. Given the foreseen magni-

tude of the development of a hardware accelerator and its configuration for the deployment of an object

detector, this work was implemented alongside another thesis [15], which focused more on the integra-

tion of both software baseline and VersatCNN IP core in the IOb-SoC platform, besides of the software

code for configuration of the IP core with the purpose of accelerating an object detection algorithm.
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1.3 Outline

This document is organized as follows. Chapter 2 introduces DNNs and shows how they are imple-

mented in FPGAs. In Chapter 3, the current state-of-art for object detection is analyzed. Based on

that analysis, one object detector is selected and fully described. Chapter 4 introduces the concept of

CGRA and explains the Deep Versat CGRA architecture, remarking its limitations for CNN acceleration.

Chapter 5 describes the architecture of the IP core developed to accelerate CNNs, which is inspired

on the Deep Versat CGRA. In Chapter 6, the software-only version of the object detector chosen is

implemented in the RISC-V soft-processor to be used as baseline for the hardware acceleration and

the IP core is parameterized and tested for accelerating the object detector. Chapter 7 presents the

performance results of the final solution in terms of the resource consumption, the execution time of the

detector and the comparison with other FPGA-based works. Finally, Chapter 8 concludes the work and

highlights the major achievements and suggestions for future work.
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Chapter 2

Deep Neural Networks

This chapter introduces the concept of DNN and proceeds to CNNs, a common form of DNN widely

used in image processing applications such as object detection. The evolution of CNNs and the asso-

ciated popular models are further discussed. FPGAs have recently been used to accelerate CNNs by

developing dedicated hardware and memory systems. Thus, this chapter also focuses on the strategies

implemented in previous works to accelerate CNNs in FPGAs.

2.1 Neural networks

The neuron is the main computational unit of neural networks and is implemented as the weighted sum

of the inputs plus a constant, followed by an activation function, as represented in Figure 2.1.

Figure 2.1: Implementation of a neuron.

The weight, wi, expresses the influence of a given input, xi, to the neuron’s output and the bias, b, is

an offset term used to shift the result of the activation function, f , towards the negative or positive side.

Eq. 2.1 computes the output, y, of a neuron.

y = f

(
b+

n∑
i=1

xiwi

)
(2.1)

Conventional activation functions include the identity function, the sigmoid (i.e., logistic function) and

the hyperbolic tangent. Recently, the Rectified Linear Unit (ReLU) and some variations (e.g., Leaky
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ReLU) have become popular due to their simplicity and fast convergence during training [9]. These

activation functions are represented in Figure 2.2.

Figure 2.2: Plot and expression of the most common activation functions.

Neural networks are composed of neurons organized in layers: one input layer, one or more hidden

layers and one output layer. A DNN is a neural network with more than one hidden layer. Figure 2.3

exemplifies a fully connected (i.e., each neuron from one layer is connected to every neuron of the next

layer) DNN with 2 hidden layers.

Figure 2.3: Example of a fully connected DNN.

By using more layers, DNNs can learn more complex high-level features. For instance, in a typical

image processing application, the input layer receives the normalized pixels (i.e., scaled between 0

and 1) from an image which then go through the first hidden layer. This layer outputs several low-level

features (e.g., lines and edges). In the next hidden layers, these features are combined to form higher

level features (e.g., contours, shapes). Hence, each layer builds on the features detected in previous

layers. The output layer predicts if all those features describe a certain object or scene [9]. This process
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is an example of inference, which consists in making predictions over the input data by using a learned

model. This work focuses on the inference for embedded systems, thus, a pre-trained DNN is used.

2.2 Convolutional Neural Networks

Fully connected DNNs are more difficult to train as the network gets deeper due to the increasing number

of connections and weights. CNNs are DNNs characterized by the presence of convolutional layers. The

neurons of a convolutional layer only connect to sub-regions of the previous layer, instead of being fully

connected, allowing to build deeper networks and therefore achieve superior performance.

CNNs are implemented as a sequence of interconnected layers and consist in two stages: feature

extraction and classification, as shown in Figure 2.4. The stages are based on convolutional, pooling

and fully connected layers. For feature extraction, the network is built on repeated blocks, each com-

posed of a convolutional layer, an optional batch-normalization layer, a non-linear layer (i.e., application

of an activation function) and an optional pooling layer. For classification purposes, fully connected lay-

ers, optionally followed by a regression function, are typically applied after the last block of the feature

extraction stage. Modern CNN models add other type of layers such as shortcut, route and upsample

layers.

Figure 2.4: Constitution of a typical CNN.

2.2.1 Convolutional layer

Convolutional layers perform 3D convolutions, which can be seen as a set of 2D convolutions. In 2D

convolutions, a 2D kernel is overlapped and shifted as a sliding window throughout the entire 2D input

image (known as input feature map), generating a 2D output image (called output feature map). In each

overlap, a MAC operation is performed. Padding, which consists in adding new elements around the

edges of the input Feature Map (FM), allows the output to keep the same size as the input. Normally

zero-padding is applied. Figure 2.5 exemplifies a 2D convolution between an 5x5 input feature map and

3x3 kernel with zero padding. Note how the weights that compose the kernel are shared during the

process. In this example, the step size (also known as stride) used when shifting the kernel throughout

the input feature map is 1.
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Figure 2.5: Example of an 5x5 input feature map and 3x3 kernel 2D convolution.

The input of convolutional layers is a set of 2D feature maps (each one is called a channel) and

another set of 3D kernels, with each 3D kernel having the same number of 2D channels. For each 3D

kernel, there is a 2D convolution between each channel of the input feature map and each channel of

the given 3D kernel. The results of the convolutions are summed across all the channels. The output

feature map is obtained after summing the former result with a shared bias associated to each 3D kernel.

Therefore, one output feature map is created for each 3D kernel. Figure 2.6 exemplifies a 3D convolution

between an 5x5 input feature map and two 3x3 kernels, all with 3 channels and zero-padding.

Figure 2.6: Example of an 5x5 input feature map and two 3x3 kernels 3D convolution (3 channels).

2.2.2 Batch-Normalization layer

The batch-normalization layer is used for speeding up the training by normalizing the input data (i.e.,

zero mean and unit standard deviation) [10]. Furthermore, the normalized value is scaled and shifted.
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Eq. 2.2 expresses the computation performed by this layer for each input element, x, where the mean,

µ, and the variance, σ2, are statistics collected from training and the scale factor, γ, and the shift factor,

β, are parameters learned during training. ε is a small constant that avoids dividing by zero. When using

this layer, the bias can be included in the shift factor instead of being computed in the convolutional layer.

y =
x− µ√
σ2 + ε

γ + β (2.2)

In inference, the values of µ, σ2, γ and β are known. Thus, Eq. 2.2 can be reformulated as one

multiplication and one addition, as shown in Eq. 2.3, where γi and βi are the new scale and shift factors.

y = x× γ√
σ2 + ε

+

(
− µ× γ√

σ2 + ε
+ β

)
= x× γi + βi (2.3)

2.2.3 Pooling layer

The pooling layer downsamples the feature maps, leading to a reduction of the number of inputs in

the next layers. Each 2D channel is divided into blocks, which are further replaced by the maximum

(maxpooling) or the mean (average pooling) value of the block. The most common operation is a 2x2

maxpooling, as shown in Figure 2.7. Some CNNs, instead of using pooling layers, simply apply a stride

of 2 in the convolutional layers. However, pooling layers are more robust as they turn the network

invariant to small shifts and distortions when downsampling [9].

Figure 2.7: Example of 2x2 max-pooling.

2.2.4 Shortcut layer

The shortcut layer skips one or more layers by adding the output of a former layer to the input of the

current layer. Figure 2.8 exemplifies a shortcut layer generated from adding the output from 2 layers

before.

Figure 2.8: Example of a shortcut layer.

2.2.5 Route and upsample layers

Route and upsample layers were introduced for CNNs focused on object detection tasks [16]. The route

layer concatenates the output from a former layer with the input of the current layer by stacking them into
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different channels. For example, routing a (26x26)x256 feature map with a (26x26)x128 feature map

results in a (26x26)x384 feature map. This allows the detection of fine grained features, improving the

localization of small objects.

The upsample layer upsamples a feature map, typically by a factor of two, which allows to detect

objects at different scales and obtain more meaningful semantic information from the features. Figure 2.9

exemplifies the simplest way to upsample a 2x2 feature map by a factor of two.

Figure 2.9: Example of upsampling by a factor of 2.

2.3 Training neural networks

The training of neural networks consists in finding the parameters (i.e., weights and bias) that maximize

the score of the correct prediction and minimize the scores of the incorrect predictions. For that, there is

a training dataset containing inputs of the network (e.g., an image) and the desired output (e.g., label). In

order to obtain the parameters, the gradient descent method [9] is used. This iterative algorithm updates

the parameters by computing the partial derivatives of the gradient, which indicates how the parameters

should change to reduce the difference between the desired outputs and the actual predictions (also

known as loss). To efficiently compute the partial derivatives, the loss is propagated backwards through

the network, which is known as the backpropagation algorithm [9].

Often, the parameters are initialized randomly for the first iteration of the gradient descent, which

could result in slow training. To speed-up the training and achieve better performance, fine-tuning can

be applied. Fine-tuning consists in using previously-trained parameters as a starting point to adjust the

data to a new dataset or a new constraint.

There are several frameworks for training and testing DNN models. The most popular are Caffe,

Tensorflow, Torch [9] and Darknet [17]. The popular CNN models that will be mentioned in the next

section were developed for image classification. The most popular datasets for this task are MNIST

(digit classification), CIFAR and ImageNet [9].

2.4 Popular CNN models

AlexNet [9] was one of the first CNN-based models for image classification, followed by VGG-16 [9].

Both are based on the architecture presented in Figure 2.4. They mainly differ in the number of layers

and in the number and size of the kernels. A more distinct model is GoogLeNet [9]. Different sized

filters are convoluted in parallel for the same input feature map and the results are further concatenated.

Therefore, the input is processed at multiple scales. The other difference is the use of 1x1 kernels to

reduce the number of channels and, consequently, the number of weights.
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ResNet [9] was the first CNN that exceeded the human-level accuracy for image classification by de-

ploying a deeper network than the above-mentioned models. Those models suffered from the vanishing

gradient problem, restraining them from getting deeper. When training, after several multiplications, the

gradient becomes infinitely small during backpropagation, affecting the update of the weights in early

layers for very deep networks. To avoid that, shortcut layers were added in the network.

Darknet-53 [16] is a more recent CNN model that also employs the shorcut layers first introduced by

ResNet to allow a deeper network.

2.5 CNN acceleration with FPGAs

Several studies have been conducted for accelerating CNNs in FPGAs [8–11]. The main computation

in CNNs is the MAC operation which mostly occurs in the convolutional layers, as shown in Table 2.1.

Consequently, more than 90% of the inference execution time is typically spent in the computation of the

convolutional layers [10]. Therefore, accelerators are focused on speeding-up these layers.

Table 2.1: Layer constitution of some popular DNN models (adapted from [10]).

Type of layer Characteristic AlexNet VGG-16 GoogLeNet ResNet-152

Convolutional
# Layers 5 13 57 155
# MACs 666M 15.3G 1.58G 11.3G

#Parameters 2.33M 14.7M 5.97M 58M
Pooling # Layers 3 5 14 2

Fully Connected
# Layers 3 3 1 1
# MACs 58.6M 124M 1.02M 2.05M

#Parameters 58.6M 124M 1.02M 2.05M

The most common approaches for accelerating CNN inference in FPGAs in previous works are

mainly focused on optimizing the accelerator by developing dedicated hardware and memory systems

in order to exploit the parallelism of the MAC operations and to enhance data reuse. Approximating

the model specifically for computation in FPGAs is another method that allows to reduce the amount of

operations and storage requirements.

2.5.1 Accelerator optimization

One of the main advantages of accelerating CNNs in FPGAs, rather than in Central Processing Units

(CPUs) or GPUs, is the flexibility to design customized hardware to exploit different sources of parallelism

and dedicated caches to support data reuse. As shown in Table 2.1, as networks get deeper, the number

of operations and the storage requirements increase. Thus, the use of external memory is required,

whose access results in high latency and significant energy consumption. FPGAs present a density of

hard-wired Digital Signal Processing (DSP) blocks and a collection of on-chip memories that can be used

for performing the MAC operations and reducing the number of external memory accesses, respectively.

Typical FPGA-based CNN accelerators [18–20] introduce several levels of memory hierarchy, as

shown in Figure 2.10. The system is composed of two on-chip input buffers, one for fetching the feature

maps and the other for fetching the parameters from the external memory through the DMA. The data is

streamed into configurable Processing Elements (PEs), which are responsible for computing the MAC
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operations. Each PE has its own on-chip registers. The on-chip output buffer stores the intermediate

results and output feature maps, which are transferred back, if needed, to the external memory. The

CPU issues the workload to the controller, which in turn generates control signals to the other modules.

The multipliers and adder trees present in each PE are usually pipelined in order to reduce the critical

path of the circuit and increase the throughput.

Figure 2.10: Typical FPGA-based CNN accelerator (adapted from [10]).

Figure 2.10 also shows four sources of concurrency [10] when computing each convolutional layer:

1) Intra-Convolution Parallelism: multiplications in 2D convolutions are implemented concurrently.

2) Inter-Convolution Parallelism: multiple 2D convolutions are computed concurrently.

3) Intra-FM Parallelism: multiple pixels of a single output FM are processed concurrently.

4) Inter-FM Parallelism: each output FM is processed separately in a different PE.

The computation of each convolutional layer can be seen as the application of four nested loops.

Each loop is associated to a source of parallelism, as represented in Figure 2.11.

Figure 2.11: Association between loops and source of parallelism.

The sources of parallelism to be exploited depend on the characteristics of the convolutional layers

(e.g., number of channels, input feature map size) and the FPGA resources. The architectural config-

uration of the PEs (i.e., number of MACs and registers) and the data temporal scheduling are defined

by applying loop optimization techniques such as loop unrolling, loop tiling and loop interchange [10].

Examples of previous works that implement these techniques are analyzed in Section 2.5.3.

Loop unrolling consists in accelerating the execution of the loops at the expense of resource uti-

lization. Each loop has an unroll factor that indicates how many times the respective loop is parallelized.
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Taking into account the loop enumeration in Figure 2.11, the unroll factor for loop 4 determines the num-

ber of PEs while the unroll factors for the remaining loops determine the number of multipliers, adders

and registers of each PE. The total number of multipliers is given by the product of the four unroll fac-

tors. The unroll factors must be carefully chosen, otherwise, they could lead to underutilization of the

hardware. For instance, for any given loop, if the number of iterations is not divisible by the respective

unrolling factor, then, the utilization ratio is less than 1 [11]. Figure 2.12 shows that the weights and the

pixels can be reused by unrolling loops 3 and 4 respectively [8].

Figure 2.12: a) 3D convolution between one FM and several kernels with b) weight and c) pixel reuse.

Loop tiling is a higher level of loop unrolling that divides the data into multiple blocks that fit into the

on-chip buffers, increasing the data locality. Each tiled loop is splitted into two loops: one for iterating

inside each tile (intra-tiling) and the other for iterating over the tiles (inter-tiling). Each loop has a tiling

factor that indicates how many iterations are performed inside the respective tile. The tiling factors

determine the size of the input and output buffers. If the tiling factors can cover all pixels and weights for

loops 1 and 2, the partial sums (between channels) are stored in the local registers [8]. Otherwise, the

partial sums of one tile must be stored in the output buffer (intermediate result) until is used by the next

tile [8]. Figure 2.13 exemplifies the division of the feature maps and kernels when tiling all loops.

Figure 2.13: Example of loop tiling in the a) input FMs, b) output FMs and c) kernels.

The loop interchange strategy decides the execution order of the loops. For intra-tiling loops, the

order determines the data being transferred from the on-chip buffers to the PEs. For inter-tiling loops,

the order indicates the movement of data from the external memory to the on-chip buffers. The storage
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required for intermediate results also depends on the order of the execution of the loops. For instance,

the earlier loops 1 and 2 are computed, the fewer are the number of partial sums [8].

2.5.2 Model approximation

The CNN execution can be accelerated by approximating the computation at the cost of minimal accu-

racy drop. Two of the most common strategies are reducing the precision and the number of operations.

During training, the data is typically in single-precision floating-point format (32 bits). For inference in

FPGAs, the feature maps and kernels can be converted to fixed-point format with less precision (typically

8 or 16 bits), reducing the storage requirements, hardware utilization and power consumption [10].

The reduction of the FPGA resources consumption when using fixed-point representation is clear

in Table 2.2, especially for lower precision data. The DSP consumption is hardly benefited when using

narrower bit-width than 16 for fixed-point. Figure 2.14 exemplifies the conversion of a 32-bit floating-point

value to fixed-point with 8 bits for the decimal part and 8 bits for the fractional part (Q8.8).

Table 2.2: Operation resource consumption for different operand sizes (adapted from [11]).

Data type Multiplier Adder Multiplier and Adder
LUT FF LUT FF LUT FF DSP

floating-point (32 bits) 708 858 430 749 800 1284 2
floating-point (16 bits) 221 303 211 337 451 686 1

fixed-point (32 bits) 1112 1143 32 32 111 64 4
fixed-point (16 bits) 289 301 16 16 0 0 1
fixed-point (8 bits) 75 80 8 8 0 0 1
fixed-point (4 bits) 17 20 4 4 0 0 1

Figure 2.14: Example of conversion from 32 bits floating-point to Q8.8 fixed-point.

In general, the feature maps of deeper layers tend to present a larger numerical range than the ones

from initial layers and the weights also tend to be much smaller than the pixels of feature maps [11].

To prevent overflow, the precision must be increased for intermediate results. Thus, different precision

values are normally used for weights, intermediate results and output feature maps from different layers.

In order to reduce the number of operations, the most common approaches are weight pruning and

low rank approximation [10]. These methods are often followed by a fine-tuning phase to counterbalance

the accuracy drop. As this work is focused on the inference part, these methods are not further studied.

2.5.3 Comparison of FPGA-based CNN accelerators

To choose the unroll and tiling factors that maximize both computational throughput and resource uti-

lization, besides minimizing the number of memory accesses, previous works performed a brute force

exploration of the design space [10]. This design space exploration consists in testing several factors for

different loops in order to exploit various parallelism and data reuse patterns.
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[19] was one of the first works to employ loop optimization strategies to accelerate the execution of

AlexNet in a FPGA. By unrolling loops 2 and 4, the accelerator achieved a performance of 61.62 GOPs,

relying on 32-bit floating point arithmetic. This work also introduced the utilization of double buffers to

perform ping-pong operations, allowing to simultaneously compute and transfer data.

Greater acceleration can be achieved when using loop optimization techniques alongside fixed-point

arithmetic. For instance, [20] reached a performance of 187.24 GOPs for the same AlexNet network by

unrolling loops 1, 2 and 4, relying on 16-bit fixed-point arithmetic. In general, unrolling loop 1 does not

provide enough parallelism as the kernels are usually small (e.g. 3x3). Unrolling loop 1 also increases

control complexity when layers present different kernel sizes.

The same unrolling scheme and fixed point arithmetic was followed by [18] for the VGG-16 network,

achieving a performance of 136.97 GOPs. In all these approaches, the loops are unrolled in the same

way they are tilled [10]. In [8], the tiling factors are set in a way all the data required to compute an ele-

ment from the output feature map is fully buffered. As a result, intermediate results can be stored in the

PE registers instead of in the output buffer. This accelerator outperforms all previous implementations by

reusing pixels and weights when unrolling loops 3 and 4, reaching a total performance of 645.25 GOPs.

Table 2.3 compares the four FPGA-based accelerators in terms of resource consumption, optimiza-

tion strategy and performance. All these approaches unroll loop 4 by employing several PEs. [19] has the

major DSP consumption mainly due to using 32-bit floating point operands. [8] presents 3 times higher

performance than [18] but consumes the double of resources in terms of DSPs and on-chip memory

(BRAMs). The analysis of previous works regarding FPGA-based CNN acceleration allows to infer that

it is essential to choose optimal unroll and tiling factors, which in turn depend on the characteristics of

the convolutional layers and the available resources of the FPGA.

Table 2.3: Comparison between different FPGA-based accelerators.

Network AlexNet [19] AlexNet [20] VGG-16 [18] VGG-16 [8]
Device Virtex VX485T Stratix5 GSD8 Zynq XC7Z045 Arria-10 GX 1150

Frequency (MHz) 100 120 150 150
# Operations (GOP) 1.3 1.3 30.76 30.95

# Weights (M) 2.3 2.3 50.18 138.3
LUT (K) 186 138 183 161
BRAM 512 (36 kB) — 486 (36 kB) 1900 (20 kB)
DSP 2240 635 780 1518

Performance (GOPs) 61.62 126.6 136.97 645.25
Unrolled loops 2,4 1,2,4 1,2,4 3,4

Precision Float 32 Fixed 16 Fixed 16 Fixed 8-16

2.6 Final remarks

CNNs are composed of a sequence of interconnected layers, being the convolutional ones the most

time consuming for inference execution. FPGAs, with dedicated hardware and cache memories, allows

to exploit parallelism and data reuse. Previous works use fixed-point arithmetic and perform design

space exploration to obtain the best loop optimization parameters. Similar strategies will be conducted

to accelerate the convolutional layers of the object detection network chosen in the next chapter.
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Chapter 3

Object Detection State-of-Art

This chapter studies the current CNN-based state-of-art object detectors, alongside the benchmarks

and metrics used for their evaluation. Based on this study, one object detector is chosen and described.

The task of a general-purpose object detector is to locate and classify existing objects in an image

from predefined categories. The most common way to label and output the coordinates of the located

object is to draw a bounding box around it, as represented in Figure 3.1. State-of-art object detectors are

DNN-based and their backbone network for feature extraction consists (or is inspired) in the networks

for image classification mentioned in Section 2.4, excluding the last fully connected layers [1].

Figure 3.1: Example of bounding box usage to locate objects in an image (adapted from [21]).

3.1 Benchmarks and metrics

Two of the most common benchmarks for general-purpose object detection are PASCAL Visual Object

Classes (VOC) 2007/2012 and Microsoft Common Objects In Context (COCO) [3]. The official metric

for measuring the performance of detectors is based on the mAP with small variations between both

benchmarks. This metric compares the predicted bounding boxes and labels with the ground truth data,

which provides the true labels of each object in an image including the class and the coordinates of the

true bounding box.

Object detection is simultaneously a regression (object bounding box) and a classification (object

class) task. The process for calculating the mAP metric is summed up in Figure 3.2. Usually, the model

outputs more boxes than actual objects, which indicates the presence of boxes with low confidence.

Therefore, the first step is to label the predicted bounding boxes as true or false detections with respect

to the ground truth bounding boxes. The Intersection over Union (IoU) is an evaluation metric that
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measures the accuracy of the localization task by calculating the ratio of the area of overlap and the

area of union between the predicted and the ground truth bounding boxes. The predicted bounding box

is considered a true detection if its IoU score is above a given IoU threshold, otherwise, it is a false

detection. Duplicated bounding boxes and wrong classifications are also false detections.

The Average Precision (AP) of each class is calculated based on the precision and recall metrics.

The precision measures the ratio of the true detections and the total number of objects detected [4]. The

recall measures the ratio of the true detections and the total number of objects in the dataset [4]. A high

precision indicates that it is likely that a true detection is, in fact, a correct detection while a high recall

means that the detector will positively detect all objects in the dataset.

Each bounding box has a score associated which indicates how likely that box contains an object.

To calculate the AP of each class, the precision-recall curve is computed from the detections of the

model by varying the score threshold. The AP corresponds to the area under that curve and is typically

computed by numerical integration. After the AP of all classes is calculated, the mAP is determined as

the average of all the APs, resulting in a value between 0 and 100%. Therefore, the mAP metric allows to

evaluate both classification and localization and is designed to penalize the algorithms for missing object

instances, for duplicate detections of one instance, for false positive detections and for specializing in

some classes, resulting in worse performances in other classes [1].

Figure 3.2: Steps for obtaining the mean average precision (adapted from [4]).

The PASCAL VOC datasets contain 20 object categories (e.g., person, bicycle, dog) spread over

11k images, from which over 27k object instances are labeled with bounding boxes [1]. This benchmark

considers only one IoU threshold of 0.5 to obtain the mAP. On the other hand, the COCO dataset is com-

posed of 300k images with an average of 7 object instances per image from a total of 80 categories [3].

This benchmark considers ten IoU thresholds (from 0.5 to 0.95 with an interval of 0.05) and the mAP is

obtained by averaging the mAPs calculated for each IoU threshold. Considering several IoU thresholds

tends to reward models that are better at precise localization and penalizes the algorithms with a high

number of bounding boxes with wrong classifications.

3.2 Comparison between object detectors

Several studies have been conducted for comparing the performance of the state-of-art object detec-

tors [1–3]. Object detectors can be divided into two categories: two-stage detectors (region proposal

based) and one-stage detector (regression/classification based).
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Two-stage detectors follow the traditional object detection pipeline by firstly scanning the whole sce-

nario and then focusing on regions of interest. Thus, the first stage consists in generating region pro-

posals (i.e., candidate bounding boxes). In the second stage, features are extracted from each candi-

date box in order to perform the classification and bounding box regression tasks. The most popular

two-stage detectors are Region Based CNN (R-CNN), Fast R-CNN, Faster R-CNN, Mask R-CNN and

Region-based Fully Convolutional Network (R-FCN) [1, 3, 7].

One-stage detectors treat object detection as a regression/classification problem by adopting a uni-

fied framework to obtain the labels and locations directly. These detectors map straightly from image

pixels to bounding box coordinates and class probabilities by proposing predicted boxes directly from in-

put images without the region proposal step. The most common one-stage detectors are You Only Look

Once (YOLO) and its successors YOLOv2 and YOLOv3, Single Shot Detector (SSD) and its successor

Deconvolutional SSD (DSSD) and RetinaNet [1, 3, 7].

The selection between one-stage and two-stage detectors resides on a choice between speed and

accuracy. Two-stage detectors present higher localization and object recognition accuracy while one-

stage detectors achieve higher inference speed. Table 3.1 summarizes the mAP metric for both PASCAL

VOC 2007 and COCO datasets and the inference time of each of the above-mentioned object detectors.

For the COCO dataset, besides the official mAP metric (i.e., obtained from ten IoU thresholds), the mAP

with only one IoU of 0.5 is also shown.

Table 3.1: Comparison of the performance of several object detectors.

Type Detector PASCAL VOC07 COCO Inference time Backbone Hardware
mAP mAP mAP50 ms FPS

Tw
o-

st
ag

e R-CNN [7] 66 — — 10000 0.1 AlexNet

Titax X GPU

Fast R-CNN [1, 7] 70 19.7 35.9 2000 0.5 VGG16
Faster R-CNN [1, 7] 73.2 21.9 42.7 167 6 VGG16

R-FCN [1, 3] 83.6 29.9 51.9 170 5.9 ResNet-101
Mask R-CNN [1, 7] — 39.8 62.3 303 3.3 ResNeXt-101

O
ne

-s
ta

ge

YOLO [7] 63.4 — — 22 45 GoogLeNet
YOLOv2-544 [1, 3] 73.4 21.6 44 25 40 DarkNet-19

SSD-300 [1, 3] 74.3 23.2 41.2 21.7 46 VGG-16SSD-512 [1, 3] 76.8 26.8 46.5 52.6 19
SSD-321 [1, 16] — 28 45.4 61 16.4

ResNet-101SSD-513 [1, 7, 16] 76.8 31.2 50.4 125 8
DSSD-321 [1, 3, 16] 78.6 28 46.1 85 11.8

DSSD-513 [1, 16] — 33.2 53.3 156 6.4
YOLOv3-320 [16] — 28.3 51.5 22 45.5

DarkNet-53YOLOv3-416 [16] — 31 55.3 29 34.5
YOLOv3-608 [16] — 33 57.9 51 19.6

RetinaNet-500 [1, 16] — 34.4 53.1 90 11.1 ResNet-101 M40 GPURetinaNet-800 [1, 16] — 37.8 57.5 198 5

The best performance for both PASCAL VOC and COCO datasets are achieved by two-stage de-

tectors, namely R-FCN and Mask R-CNN. Higher frame rates are achievable with one-stage detectors

such as YOLO (and its successors) and one version of the SSD detector. There are several versions

available for the same detectors which mainly differ in the size of the input feature maps of the first layer.

However, the topology of the network is the same for any version. For instance, YOLOv3 has three

versions with input feature maps of 320x320, 416x416 or 608x608. Bigger input feature maps tend to

lead to higher accuracy but lower speed. In the case of the SSD detector, some versions use VGG-16

which results in accelerated performance and others use ResNet-101 for higher accuracy. Within these

19



detectors, YOLOv3 is the one that presents the best trade-off between accuracy and execution time (for

the 320 and 416 versions). This is the object detector chosen for this work.

3.3 YOLOv3 detector

Figure 3.3 exemplifies the process flow of the YOLOv3 detector for an input feature map of 416x416. The

input image is resized at the beginning of the process as the detector allows different input resolutions.

The YOLOv3 network block is responsible for extracting features using the Darknet-53 backbone and

for returning candidate bounding boxes from those features for three different scales (52x52, 26x26 and

13x13). Candidate bounding boxes are then filtered based on their objectness score and the score of

each class. Finally, non-maximum suppression is used to remove multiple detections of the same object

and the final detections (bounding boxes and class labels) are drawn over the original input image.

Figure 3.3: YOLOv3 process flow.

3.3.1 Image resizing (pre-CNN)

This method scales the input image to the size of the first layer of the YOLO network by maintaining

its aspect ratio and adding padding until meeting the desired dimensions. To keep the aspect ratio,

the maximum dimension (width or height) of the input image is scaled to the desired dimension of the

resized image, while the other dimension is scaled proportionally. For instance, for an 768x576 input

image, the width (768) is resized to 416 and the height (576) is resized to 312 (576 * 416/768). The

remaining space (416-312=104) is padded with grey as shown in Figure 3.4.

The resize method is based on a bilinear interpolation. For each unknown pixel of the resized image,

this method considers the closest 2x2 neighbourhood of known pixels from the input image surrounding

the unknown pixel and interpolates its final value by calculating the weighted average of the 4 known

pixels. The procedure is expressed in Algorithm 1 and can be divided in 3 steps. First, the pre-processing

stage determines the indexes and factors that are related to each possible pixel of the resized image. In

other words, the positions and weights of the closest 2x2 pixels are determined for each unknown pixel

based on the dimensions of both input and resized images.
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Figure 3.4: Example of image resizing.

Furthermore, the width of the input image is resized by calculating the weighted sum of two of the

closest pixels based on the horizontal indexes and factors for each unknown pixel. This second step

generates an intermediate image with the desired width of the resized image while keeping the height

of the input image. For instance, an 768x576 input image is converted into an 416x576 intermediate

image. The final step resizes the height of the image by determining the weighted sum of the other two

closest pixels based on the vertical indexes and factors for each unknown pixel. Finally, this converts an

416x576 intermediate image to the desired 416x312 resized image. Note that the resizing of both width

and height are done for all the three channels of the input image.

Algorithm 1: Image resizing
Input image dimensions (IMG W, IMG H); Resized image dimensions (NEW W, NEW H)
1) Pre-processing:
- Width and height scales:

w scale =
IMG W − 1

NEW W − 1
h scale =

IMG H − 1

NEW H − 1

- Horizontal index and factor:
for i = 1,...,NEW W do

w pos[i] = i * w scale (integer part)
w factor[i] = i * w scale (fractional part)

end for
- Vertical index and factor:

for i = 1,...,NEW H do
h pos[i] = i * h scale (integer part)
h factor[i] = i * h scale (fractional part)

end for
2) Width resize:

for j = 1,...,IMG H do
for i = 1,...,NEW W do

interm im[i, j] = (1 - w factor[i]) * input im[w pos[i], j]
interm im[i, j] += w factor[i] * input im[w pos[i+1], j]

end for
end for

3) Height resize:
for j = 1,...,NEW H do

for i = 1,...,NEW W do
output im[i, j] = (1 - h factor[j]) * interm im[i, h pos[j]]
output im[i, j] += h factor[j] * interm im[i, h pos[j+1]]

end for
end for
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3.3.2 YOLOv3 network

The CNN-based YOLOv3 network is represented in Figure 3.5. This network is composed of 75 con-

volutional layers, 23 shortcut layers, 3 yolo layers, 2 upsample layers and 4 route layers, making a total

of 107 layers. The two route layers after the yolo layers only copy the output of a former layer without

concatenating with the output of the previous layer. All convolutional layers include batch-normalization

and use Leaky ReLU (with a = 0.1) as activation function, except from the convolutional layer exactly be-

fore of each yolo layer, which does not include batch-normalization and uses a linear activation function.

There are no fully connected layers and convolutional layers with stride 2 are used instead of maxpool

layers. One can also observe that every time the feature map is downsampled by a factor of four, the

depth (i.e., number of channels) is duplicated. 3x3 convolutions are done with zero-padding in order to

keep the same size between input and output feature maps.

Figure 3.5: YOLOv3 Network.
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This network is inspired on some concepts from popular DNN models. For instance, the kernels

are 3x3 and 1x1 to reduce the number of weights as first introduced by GoogLeNet. A ResNet-alike

structure is followed through the shortcut layers, thereby enhancing feature learning in deep networks.

As the network goes deeper, due to downsampling the feature maps, small objects are difficult to detect.

Therefore, objects of different sizes are detected with different feature map scales through a structure

similar to the Feature Pyramid Network (FPN) [3]. The FPN, represented in Figure 3.6, is used for multi-

scale feature learning and consists in merging, through the route layers, upsampled feature maps from

deeper layers with feature maps of the same spatial size from early stages in order to capture both low

and high-level information from objects [3]. YOLOv3 uses three scales: 52x52 to detect small objects,

26x26 to detect medium objects and 13x13 to detect big objects.

Figure 3.6: Feature Pyramid Network structure [3].

For each scale, the feature map is divided into a grid where each grid cell predicts 3 bounding boxes.

The initial size of each bounding box (known as prior box) was set after using K-mean clustering in the

training dataset [16]. The sizes are then appropriately adjusted by the network. Each bounding box

consists in the predictions of [21]: i) the center of the box relative to the grid cell bounds (2 coordinates);

ii) the width and height of the box relative to the whole image; iii) the objectness (or confidence) score

which indicates how likely the box contains an object and how accurate are its dimensions regarding to

the ground truth box; and iv) the conditional probability of every class given there is an object. As the

YOLOv3 network is trained over the COCO dataset [16], the total number of classes is 80. Thus, each

grid cell is composed of 3 ∗ (2 + 2 + 1 + 80) = 255 values, as specified in Figure 3.7.

The logistic activation is used to constrain the center coordinates of the box to fall in the range of

the grid cell (i.e., between 0 and 1). The objectness score is predicted using logistic regression (1

means perfect overlapping between predicted and ground truth boxes while 0 means no overlapping).

For the class predictions, independent logic classifiers are also used. The yolo layers apply the logistic

activation in the predictions of each bounding box, excluding the width and height parameters. This new

layer added by the YOLOv3 network is used as the ending layer for each scale.

Figure 3.7: Constitution of each grid cell.
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3.3.3 Detections phase (post-CNN)

After executing the YOLOv3 network block (Figure 3.3), there are several candidate bounding boxes for

each scale, however, only a few of them correspond to true detections (depending on the number of

objects in the image). The true detections correspond to the bounding boxes whose product between

the objectness score and the conditional probability of each class is above a given threshold (the default

value is 0.5). The bounding boxes can be multilabeled, i.e., can have more than one class.

Due to detecting objects with different scales and with three bounding boxes per grid cell, multiple

bounding boxes of the same object might be found. The Non-Maximum Suppression (NMS) is used to

remove these multiple detections and consists in the following algorithm [21]:

Algorithm 2: Non-maximum suppresion
1) Select bounding box with the highest confidence score
2) Calculate the IoU between selected box and all the remaining boxes
3) Discard boxes whose IoU is greater than a certain threshold (default value is 0.45)
4) Repeat steps 2-4 for the next highest score box until processing all remaining boxes

After applying the non-maximum suppression algorithm, the post-processing phase of the detector

ends with the drawing of the bounding boxes and respective class labels over the original input image.

3.4 YOLOv3-Tiny network

The YOLOv3 network comprises a total of 62 million parameters. The author of this detector [16] pro-

posed an alternative network for constrained environments called YOLOv3-Tiny which in turn has a total

of 8.8 million parameters. This smaller model presents a mAP (for one IoU of 0.5) of 32.9 in the COCO

dataset and runs at a frame rate of 65 FPS in the RTX 2080 Ti GPU. Thus, this version is faster but also

less accurate than the YOLOv3 network. The YOLOv3-Tiny network is the CNN to be accelerated in the

scope of this work as the object detector to be deployed is intended for embedded systems.

As represented in Figure 3.8, the YOLOv3-Tiny is composed of 13 convolutional layers, 6 maxpool

layers, 2 route layers, 2 yolo layers and 1 upsample layer. In comparison with YOLOv3, this network

uses maxpooling instead of convolutions with stride 2 to downsample the feature maps. Besides that,

objects are detected with only 2 scales (26x26 and 13x13). No shortcut layers are used. Note that the

last maxpool layer has a stride of 1, hence, the feature map keeps its resolution in this layer. To achieve

that, the last column and last line of the feature map are duplicated to form an input 14x14 feature map.

Table 3.3 summarises the characteristics of each layer of the YOLOv3-Tiny network in terms of the

kernel size, the bias, the resolution of the feature maps and the activation function. Note that layers 1 to

13 are responsible for feature extraction and layers 14 to 24 are responsible for object detection.

The execution time of the CNN mainly depends on the number of MAC operations of the convolutional

layers. As the stride of these layers in the YOLOv3-Tiny network is always one, the number of MAC

operations of each layer can be determined by the following expression:

# MAC operations = num ker× ker w× ker h× w× h× c (3.1)
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where num ker is the number of kernels, ker w and ker h are the kernel dimensions, w and h are the

input FM dimensions and c is the number of input channels. As shown in Table 3.2, the convolutional

layers of the YOLOv3-Tiny CNN present a total of 2.78 GMAC operations.

Table 3.2: Number of MAC operations of the convolutional layers of the YOLOv3-Tiny CNN.

Layer N.o Kernels Kernel Size Input FM N.o Input Channels MMAC
1 16 3x3 416x416 3 75
3 32 3x3 208x208 16 199
5 64 3x3 104x104 32 199
7 128 3x3 52x52 64 199
9 256 3x3 26x26 128 199

11 512 3x3 13x13 256 199
13 1024 3x3 13x13 512 797
14 256 1x1 13x13 1024 44
15 512 3x3 13x13 256 199
16 255 1x1 13x13 512 22
19 128 1x1 13x13 256 6
22 256 3x3 26x26 384 598
23 255 1x1 26x26 256 44

Total (GMAC) 2.78

3.5 Final remarks

The backbone for feature extraction of the state-of-art object detectors are based on the popular CNNs

introduced in the previous chapter. PASCAL VOC and COCO are the most common benchmarks for

the evaluation of object detectors where YOLOv3 presents the best trade-off between accuracy and

execution time. For this work, the lighter YOLOv3-Tiny network will be accelerated using an architecture

based on the one introduced in the next chapter.
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Figure 3.8: YOLOv3-Tiny Network.

Table 3.3: Characteristics of the YOLOv3-Tiny layers.

Layer Type Kernel Bias Input FM Output FM Activation Function
1 Convolutional 16x(3x3x3) 16 416x416x3 416x416x16 Leaky
2 Maxpool 416x416x16 208x208x16
3 Convolutional 32x(3x3x16) 32 208x208x16 208x208x32 Leaky
4 Maxpool 208x208x32 104x104x32
5 Convolutional 64x(3x3x32) 64 104x104x32 104x104x64 Leaky
6 Maxpool 104x104x64 52x52x64
7 Convolutional 128x(3x3x64) 128 52x52x64 52x52x128 Leaky
8 Maxpool 52x52x128 26x26x128
9 Convolutional 256x(3x3x128) 256 26x26x128 26x26x256 Leaky

10 Maxpool 26x26x256 13x13x256
11 Convolutional 512x(3x3x256) 512 13x13x256 13x13x512 Leaky
12 Maxpool 13x13x512 13x13x512
13 Convolutional 1024x(3x3x512) 1024 13x13x512 13x13x1024 Leaky
14 Convolutional 256x(1x1x1024) 256 13x13x1024 13x13x256 Leaky
15 Convolutional 512x(3x3x256) 512 13x13x256 13x13x512 Leaky
16 Convolutional 255x(1x1x512) 255 13x13x512 13x13x255 Linear
17 Yolo 13x13x255 13x13x255 Sigmoid
18 Route Layer 14 13x13x256
19 Convolutional 128x(1x1x256) 128 13x13x256 13x13x128 Leaky
20 Upsample 13x13x128 26x26x128
21 Route Layer 20 + 9 26x26x384
22 Convolutional 256x(3x3x384) 256 26x26x384 26x26x256 Leaky
23 Convolutional 255x(1x1x256) 255 26x26x256 26x26x255 Linear
24 Yolo 26x26x255 26x26x255 Sigmoid
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Chapter 4

CGRA-based accelerator

In this chapter, the fundamentals about CGRAs and why they can be used for accelerating CNNs are

briefly explained. The Deep Versat CGRA architecture, which is the inspiration behind the hardware

accelerator developed in this work, is described. The chapter ends by pointing out the limitations of the

Deep Versat CGRA regarding CNN acceleration.

4.1 CGRA architecture

A CGRA is a collection of programmable FUs and embedded memories interconnected by programmable

switches [22]. The interconnections are reconfigurable at runtime, allowing to form different hardware

datapaths to accelerate distinct computations for the same application. CGRAs are reconfigurable at the

word-level and the hardware units can be programmed in any execution cycle.

Typically, CGRAs consist of a reconfigurable array, which is mainly used to accelerate program loops,

and a conventional CPU, which executes the non-loop code of a given application and controls the

configuration of the array. Thus, CGRAs can be used as hardware co-processors to accelerate parts of

the algorithms that are slow or energy inefficient in regular CPUs [14].

The FPGA-based architecture for accelerating CNNs proposed on previous works, which was studied

in Section 2.5.1, is the same as the CGRA architecture. Both consist of a spatial array of processing

elements (i.e., functional units) with data flowing through an interconnection network and memory is

located as close as possible to the computational units [12].

The reconfigurable array is suitable for accelerating program loops, which fits with the implementation

of the convolutional layers. For all these reasons, a CGRA-based architecture can be used for accel-

erating CNNs. For instance, [13] implemented the AlexNet network in a CGRA by using 16 PEs and 9

parallel multipliers with fixed-point arithmetic of 8 bits for the image pixels, 16 bits for the weights, bias

and output feature maps and 32 bits for intermediate results, achieving a performance of 141 GOPs,

which is comparable with the ones obtained in Table 2.3. An auto-tuning compiler to map CNNs in

CGRA architectures by exploring loop optimization techniques is proposed in [12] . The author claims

that the developed CGRA outperforms, in terms of energy per inference, other ARM-based accelerators.
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4.2 Deep Versat

Versat [22] is a 32-bit CGRA architecture developed at the INESC-ID Research Institute capable of being

configured on the fly, without using pre-compiled configurations, through partial reconfiguration. The

ability of generating configuration sequences from stored routines, instead of storing the configuration

itself, allows to exploit the similarity between configurations as only distinct bits need to be changed,

which results in a faster and less energy consuming configuration.

Versat is composed of FUs organized in a full mesh topology, which limits the number of FUs to use,

due to the increase of the circuit delay caused by the selection multiplexers. To overcome this limitation,

a multi-layer architecture composed of a set of Versats, called Deep Versat, was proposed in a master

thesis [14]. With more layers, programs can use more FUs. Layers are stacked in a ring structure, as

shown in Figure 4.1, to limit the number of connections and prevent a frequency drop.

Figure 4.1: Deep Versat architecture (adapted from [14]).

Each Versat has a data engine for computation and a configuration module. In the data engine,

the FUs are interconnected by a data bus which concatenates the 32-bit output of each FU of the

current and of the previous layer (memories have two 32-bit outputs as they are dual-port). As the

interconnection follows a full mesh topology, each FU can select any section from the data bus by

means of a programmable multiplexer, depending on the configuration defined in the configuration bus.

The versat layers are homogeneous as all layers have the same number and same type of FUs.

The configuration module is composed of (1) the Configuration Shadow Register, which stores the

configuration currently being executed by the respective data engine, (2) the Configuration Register

File, which holds the next configuration, and (3) the Configuration Memory, which saves frequently used

configurations. This composition allows the configuration and execution processes to run in parallel as
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the preparation of the next configuration can be done at the same time the current configuration is being

executed. The configuration bus connects the data engine and the configuration module.

4.2.1 Address generator unit

The Address Generator Unit (AGU) can be seen as the core of the data engine due to being responsible

for controlling the data access pattern within the FUs, besides of managing the start and the end of the

execution of a given configuration. The AGU consists of two cascaded counters capable of executing

two nested loops in a single configuration. For instance, the AGU can be programmed to generate the

address sequence for accessing data from the memory during the execution of a program loop or to

generate a counter to control individual FUs.

Figure 4.2a shows the input and output ports of the AGU, which can be divided into two interfaces,

one for configuration control and another one for address control. In the configuration control interface,

when the init input is enabled, the local counters are initialized according to the parameters of the

address control interface whilst the run input indicates the start of the execution of a given configuration

and, consequently, of the counters. When the pause input is enabled, the counter registers are not

updated (i.e., the address generation process is halted). The done output indicates the completion of

the address generation process and also of the execution of a given configuration.

The inputs of the address control interface are the parameters that control the nested loops respon-

sible for generating the value of the address (addr output) and the value of the enable signal (mem en

output), which is typically used to enable memory reads or writes. As represented in Figure 4.2b, the

iterations and period inputs are the number of iterations and the shift and incr inputs are the increment

value of the outer and inner loops respectively. The address is initialized with the value of the start input

before the loops. Finally, the duty input controls the number of iterations within the inner loop in which

the address is incremented and enabled, whilst the delay input adds a latency in terms of clock cycles

between setting the run and entering in the nested loops.

Figure 4.2: AGU a) input and output ports and b) nested loops computation.

Note that the AGU is not considered to be a FU from the Deep Versat CGRA as it is normally coupled

with an actual FU such as the dual-port memories.
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4.2.2 Functional units

Currently, the functional units available include dual-port memories, Arithmetic Logic Units (ALUs), mul-

tipliers, Multiplier and Accumulators (MulAdds) and barrel shifters. The number of FUs (and also the

number of layers) is configured at compile time. Each FU holds different configuration parameters, set-

tled via the configuration bus, based on their functionality:

Dual-port memory: Each Versat memory has two AGUs, one per each port. Besides the config-

urable parameters associated to the AGUs, the memory also has the sel parameter for each port to

select the desired FU output from the data bus via multiplexers and the ext parameter to bypass the

AGU. This last parameter is used when the input value selected is not a value to be written into the

memory but is the address from which the memory must be read, which is useful when the data access

pattern is irregular and cannot be defined by means of the AGU.

ALU / Multiplier: These FUs have 3 parameters: the two input operand select and the type of op-

eration. In the case of the ALU, the most common operations include logic operations (e.g. AND, OR)

and additions. The multiplier has a latency of three clock cycles and allows to choose the upper or lower

32-bit part of the 64-bit multiplication result.

Barrel shifter: The barrel shifter has a latency of 1 clock cycle and has 3 parameters: the input

select of the operand to be shifted, the size of the shift and the type/direction of the shift (e.g, right/left,

logic/arithmetic).

MulAdd: The MulAdd was also added by [14]. This FU uses an AGU as a counter to control the

number of accumulations to perform. The accumulator resets when the value of the counter is zero.

Besides the parameters from the AGU, the MulAdd also has 4 other parameters: two input operand

select, the size of the shift (indicates the number of right shifts to perform after accumulation) and the

type of accumulation (additive or subtractive).

4.2.3 System integration

As previously mentioned, a CGRA is typically accompanied by a CPU. As shown in Figure 4.3, Deep

Versat is controlled by a RISC-V soft-processor. In this system, the processor accesses peripherals

through its memory bus. Deep Versat can be seen as two peripherals, one for the control bus to start

its execution, check the completion of the execution of a given configuration and manipulate the con-

figuration registers and another one for the data bus, which is used for data transfers. The Universal

Asynchronous Receiver-Transmitter (UART) module is another peripheral mainly used for debugging.

Note that each peripheral can only be accessed once at a given time, which means that in this system

data transfer and FU configuration cannot be done simultaneously.

The RISC-V processor is programmed with a standard GNU toolchain, which contains compilers for

C and C++. Therefore, Deep Versat also includes an Application Programming Interface (API) in C++

to enhance its configuration process. Figure 4.4 illustrates the class diagram of the API, where the FUs

are represented by classes and their configurations are managed by the methods of the class.
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Figure 4.3: Deep Versat system ([14]).

Figure 4.4: Deep Versat API class diagram ([14]).

4.2.4 Limitations for CNN acceleration

Although Deep Versat is scalable in depth (i.e. the number of FUs can be increased by adding more

layers), highly configurable and costumisable (i.e., the designer can create and add existing and also its

own FUs), this system still presents some limitations for accelerating convolutional layers:

Data transfer: As mentioned above, the data is driven to and from versat memories through the

RISC-V processor, which is quite inefficient as the bandwith is limited and dependent on the perfor-
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mance of the processor. Knowing that CNNs present high data density (the YOLOv3-Tiny network has

nearly 8.8 million parameters), the acceleration would be bottlenecked by the data transfers, especially

if the computation is greatly accelerated. Moreover, as both control and data buses are interfaced by the

processor, data transfers and versat configurations cannot occur simultaneously. This system needs a

DMA to connect directly the data bus to the external memory.

Ping-pong memories: Memories in ping-pong fashion allow to overlap data computation and com-

munication (i.e., data transfer to/from external memory), which is typically done by splitting them in half,

as shown in Figure 4.5. For instance, during a given run, data transferred from the external memory is

stored in the first half of the memory whilst data stored in the second half of the memory in the previous

run is read out for the FUs computation. In the next run, data is stored in the second half of the memory

and read out from the first half of the memory. Although this read/write process can be currently handled

by manual configuration in software, the hardware could automatically toggle the most significant bit of

the read and write addresses of the dual-port memory to opposite states between runs. As a result,

this process would be transparent for the user and reduce the number of configurations in the software

loaded in the processor.

Figure 4.5: Ping-pong memory example.

Homogeneous layers: As seen in Chapter 2, convolutional layers are accelerated in reconfigurable

hardware devices by deploying spatial architectures that exploit the parallelism of the MAC operations

and boost data reuse. An architecture ideal for unrolling loops 4 (inter-FM parallelism) and 3 (intra-FM

parallelism) is represented in Figure 4.6 and is inspired on the architecture shown in [23]. In this matrix

fashion architecture, the weights are shared across the columns and the FMs are shared across the

lines. The number of FUs inside each line defines the loop 4 unroll factor and the number of FUs inside

each column dictates the loop 3 unroll factor (inside each MAC-based FU unit the other 2 loops might

also be unrolled). This kind of composition cannot be supported by Deep Versat as two different type of

layers are needed: a layer with N weight memories and a layer with one FM memory and N MAC-based

FUs. Therefore, Deep Versat is limited by not supporting heterogeneous layers.
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Figure 4.6: Matrix architecture for CNN acceleration.

Individual configurations: In Deep Versat, each FU is configured individually. For complex appli-

cations that use hundred of FUs, this system is not scalable neither in hardware due to requiring a high

number of configuration shadow registers and configuration register files, nor in software as the grow-

ing number of configurations increases the configuration time in the RISC-V processor, besides of also

rising the size of the program code. Fortunately, the parallel MACs and memories perform the same

operations at the same time but with different data, which means that they could share configurations.

Hence, a crucial feature for accelerating CNNs is to allow shared configurations between the same type

of FUs.

Number of loops in AGUs: Currently, the AGUs support up to two nested loops. To perform a full 3D

convolution in a single configuration, depending on the data format, the access pattern of the FM data

requires between four and six nested loops. To achieve that, a possible solution would be to cascade

several AGUs. This will be analysed later in Chapter 5.

4.3 Final remarks

CGRAs are reconfigurable hardware devices suitable for accelerating program loops such as 3D con-

volutions in CNNs. Deep Versat is a highly configurable and customisable CGRA but is limited in terms

of the speed for accessing data from/to the external memory, homogeneous layers, individual configu-

rations, among others. Therefore, this work focuses on implementing a hardware accelerator, improved

for CNN computation and presented in the next chapter, that overcomes these constraints and inherits

features from Deep Versat such as the configuration modules, AGUs and others.
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Chapter 5

VersatCNN IP Core

This chapter describes the architecture of the IP core developed to accelerate CNNs based on the

Deep Versat CGRA. The global architecture including the main modules and the address mapping are

first introduced, highlighting the features inherited from Deep Versat. The modules and their runtime

configurable parameters are then explained in a top-down manner. The chapter ends by describing the

operation for configuring the AGUs in the core and the additional optimization when reading FM tiles.

5.1 High-level architecture

As explained in Section 4.2.4, the deployment of a matrix architecture, like the one shown in Figure 4.6,

capable of enhancing MAC parallelism and data sharing, is not possible with the Deep Versat architec-

ture, which prescribes a ring of fully connected stages. The said matrix architecture neither requires fully

connected stages nor connections between them. Therefore, an improved hardware accelerator named

VersatCNN was designed, which includes two heterogeneous stages called xWeightRead and xComp,

and an AXI-based DMA, as represented in Figure 5.1.

The xWeightRead stage reads weights and biases from the external memory and stores them in the

on-chip memory. This stage is constituted by an array of a new type of configurable FU called vRead. A

vRead unit is a dual-port memory where one the ports has an AGU for writing weights and biases read

from the external memory via the DMA, and the other port has an AGU for reading those values and

feeding them to the xComp stage. The latter AGU has been described in Section 4.2.1 and is one of the

features inherited from Deep Versat.

The xComp stage computes the data (3D convolution, activation functions, maxpooling, etc) and

stores the results back to the on-chip memory. This stage is composed of a matrix of configurable

custom computing FUs, where each row shares a vRead FU, and another new type of FU called vWrite.

The vRead FU is used for reading tiles of the input FMs from the external memory. The vWrite FU is

the reciprocal of the vRead FU, including a dual-port memory, an internal AGU to store the computation

results and an external AGU to write the stored results to the external memory using the DMA. The

various vRead and vWrite units share a merge block each, which is a priority encoder for allowing DMA

access to only one vRead and one vWrite at a given time.
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The function of the AXI-DMA block is to read/write data from/to the external memory. The DMA

handles 256-bit wide data and allows configurable bursts for both reads and writes. It has two data

native interfaces, allowing the xComp module to read and write from memory and an AXI4 interface to

access the external memory. It also has a native configuration interface driven by the CPU. Like the

FUs, the DMA can be configured while running, so that configurations, data transfers and FU computing

can all happen simultaneously.

Figure 5.1: High-level architecture of the VersatCNN IP Core.

Another feature inherited from Deep Versat is the use of configuration register files with shadow

registers. Each stage has a configuration module with specific configurations that are shared between

the same type of FUs within the stage. These configurations are set via the RISC-V native interface

taking into account the address mapping shown in Table 5.1. Apart from the internal configurations of

each stage, there are global control and status registers that are common to all stages:

• Run: starts the execution of the configurations stored in the shadow registers of each stage.

• Clear: resets the configurations stored in the register files of each stage.

• Done: indicates the end of execution of all configurations of all the stages.

Table 5.1: VersatCNN IP core address mapping.

Configuration/Status Base address Operation
xWeightRead 0x7000 0000 Write
xComp 0x7100 0000 Write
AXI-DMA 0x7200 0000 Write
Run / Done 0x7800 0000 Write / Read
Clear 0x7C00 0000 Write
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5.2 Detailed architecture

The detailed architecture of the VersatCNN IP core is shown in Figure 5.2. Unlike Deep Versat, the

connections between the compute, vRead and vWrite FUs are fixed due to the regularity of the convolu-

tional layers. The custom FUs are reconfigurable as in generic CGRAs, allowing them to form different

hardware datapaths for different computations as later explained in Section 5.2.2.

Figure 5.2: Detailed architecture of the VersatCNN IP Core.

The synthesis parameters that determine the internal architecture of the VersatCNN IP core are

described in Table 5.2.

Table 5.2: Synthesis parameters of the VersatCNN IP core.

Parameter Description
nCols Number of custom FUs per matrix row
nRows Number of custom FUs per matrix column
nMACs Number of MAC units inside each custom FU
DDR ADDR W Address width of the external memory
DATAPATH W Computation data width for weights, biases and FM tile data
VREAD TILE EXT ADDR W External address width of the FM tile vRead memories
VREAD BIAS ADDR W Internal address width of the bias vRead memory
VREAD WEIGHT ADDR W Internal address width of the weight vRead memories
VREAD TILE ADDR W Internal address width of the FM tile vRead memories
VREAD PATTERN ADDR W Internal address width of the pattern vRead memory
VWRITE ADDR W Internal address width of the vWrite memories
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Each FU in the same row receives the same FM tile but a different 3D kernel, which corresponds

to computing multiple output FMs in parallel (inter-FM parallelism), corresponding to the loop 4 unroll

factor defined by nCols. In turn, each FU in the same column receives the same 3D kernel but a different

FM tile, corresponding to the computation of multiple pixels of a single output FM in parallel (intra-FM

parallelism), where the loop 3 unroll factor is defined by nRows. Therefore, the total number of FUs is

nCols x nRows. Inside each FU, multiple 2D convolutions are computed in parallel (inter-convolution

parallelism) and the loop 2 unroll factor is defined by nMACs. The remaining synthesis parameters give

the address width of the respective module.

The dataflow is the following. The vRead FUs read data from the external memory using the DMA

and stores them internally. At the same time, the data in the vRead FUs, obtained from the external

memory in the previous run, is read out and broadcast to columns or rows of FUs, depending on the

type of vRead FU. Each custom FU computes a different 3D convolution. The computation results of the

custom FUs are concatenated and stored in the vWrite FUs, while those of the previous run are written

back to the external memory via the DMA.

The following subsections present the detailed architecture of each stage.

5.2.1 xWeightRead stage

Figure 5.3 shows the detailed architecture of the xWeightRead stage, omitting the merge module and

the dataflow. This module is composed of a Bias vRead FU and an array of Weight vRead FUs. These

units read data from the external memory using their External AGUs, write these data to their internal

memories (Bias or Weights memories) and, at the same time, read previous data from their internal

memories to feed the compute FUs.

Figure 5.3: xWeightRead stage detailed architecture.
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The Weight vRead FU array shares the Internal AGU to read the data from the internal memory. The

external AGUs are on the other hand individual as each uses a different base address value. However,

their configuration is shared because the base addresses are calculated in hardware. The base address

of the first external AGU is configurable. The base address of the other external AGU is calculated

by adding the base address of the first external AGU (WEIGHT EXT ADDR runtime parameter in the figure)

with the product of the external AGU position and the address offset (WEIGHT OFFSET runtime parameter).

This results from the kernels of the same convolutional layer being typically stored sequentially in the

external memory and having the same size. In spite of requiring the use of nCols-1 multipliers in the

design, performing this calculation in hardware allows keeping the configuration size independent of the

number of vReads. The weight memories are asymmetric dual-port memories, having an external bus

of 256 bits and an internal bus of nMACs x DATAPATH W bits as nMACs weights are read simultaneously

from the same 3D kernel to perform inter-convolution parallelism.

Regarding the bias vRead, as the same bias is used by the custom FUs in the same matrix column,

no internal AGU is needed, only a single read address defined by the BIAS START runtime parameter.

The bias memory is also asymmetric with an external bus of 256 bits and an internal bus of nCols x

DATAPATH W bits as each matrix column has a different bias.

In the vRead FUs, the external AGU controls the write address of the memories whilst the internal

AGU controls their read address. The internal AGU is the same 2-loop AGU from Deep Versat (Fig-

ure 4.2a). The configurable parameters of the weights internal AGU are described in Table 5.3.

Table 5.3: Configurable parameters of the weights internal AGU.

Parameter Description Type

delay Number of clock cycles to wait before performing the
nested loops in the run Configurable at runtime

duty Number of iterations within the inner loop in which the
address is incremented and enabled

Hard-wired to the
period parameter

incr Increment value of the inner loop Configurable at runtime
iterations Number of iterations of the outer loop Configurable at runtime
period Number of iterations of the inner loop Configurable at runtime
shift Increment value of the outer loop Configurable at runtime
start Initial value of the AGU Configurable at runtime

The external AGU, represented in Figure 5.4, is a new module that handles data exchanged between

the external and internal memories. The communication with the external memory is done through the

native external memory interface where the address is calculated by adding a base value (ext addr

parameter) with an offset value. The offset is calculated by using another 2-loop AGU inside the exter-

nal AGU. In turn, the communication with the internal memory is done via the native internal memory

interface where the address is determined by adding a base value set by the int addr parameter with

an offset calculated by using a sequential counter inside the external AGU. The direction parameter

indicates the direction of the data flow. In the case of the vReads, the direction parameter is hard-wired

to zero which means that the data is read from the external memory and written into the internal memory.
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Figure 5.4: Symbol and interface signals of the external AGU.

The configurable parameters of the weights and bias external AGU are described in Table 5.4. In

order to reduce the number of runtime parameters, some parameters are hard-wired as there is no need

to configure their value throughout the application. For instance, the delay parameter is set to zero as

there is no need to hold up the storage of weights and biases during a run.

Table 5.4: Configurable parameters of the weights and bias external AGU.

Parameter Description Weights Bias

direction Direction of dataflow. From external to internal
memory (0) or from internal to external memory (1) Hard-wired to 0

ext addr Base address of the external memory Computed in
hardware

Configurable
at runtime

int addr Base address of the internal memory Configurable at runtime

delay Number of clock cycles to wait before performing
the nested loops in the run Hard-wired to 0

duty Number of iterations within the inner loop in which
the address is incremented and enabled

Hard-wired to the
period parameter

Hard-wired
to 1

incr Increment value of the inner loop Configurable at
runtime

Hard-wired
to 0

iterations Number of iterations of the outer loop Configurable at runtime

period Number of iterations of the inner loop Configurable at
runtime

Hard-wired
to 1

shift Increment value of the outer loop Configurable at
runtime

Hard-wired
to 0

start Initial value of the AGU Hard-wired to 0

The remaining runtime parameters are listed in Table 5.5. Both weight and bias memories perform

automatic ping-pong in hardware by toggling the most significant bit of their read and write addresses to

opposite states between different runs. This is enabled by setting the PP runtime parameter to one.

Table 5.5: Remaining xWeightRead runtime parameters.

Runtime parameter Description
PP Enable ping-pong
WEIGHT OFFSET Address offset between external AGUs
WEIGHT EXT ADDR Base address of the first external AGU
BIAS START Bias read address
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5.2.2 xComp stage

The xComp stage is composed of an array of vRead FUs, a matrix of computing FUs and an array of

vWrite FUs. The vRead units operate analogously to the vRead FUs from the xWeightRead stage. Each

custom FU receives a bias, weights and pixels from the FM tile to compute mainly 3D convolutions. The

vWrite units write the results to their internal memories and, simultaneously, read the previous results to

be sent back to the external memory.

5.2.2.1 xComp vRead FUs

Figure 5.5 shows the detailed architecture of the xComp vReads, omitting the calculation of the base

addresses of the external AGU, the merge module and the dataflow for simplification purposes. This

module is composed of an Address Pattern vRead FU and an array of FM Tile vRead FUs.

Figure 5.5: Detailed architecture of the xComp vReads.

The FM tile vReads are similar to the weight vReads, namely with: the calculation of the base

address of each external AGU, which requires the use of nRows-1 multipliers; the shared configurations

between the external AGUs; the use of a single internal AGU by the asymmetric dual-port memories

that store the FM tiles and the automatic ping-pong operation of those memories. The read address of

the FM tile memories can be configured to come from the internal AGU or from the values stored in the

address pattern memory. The selection is made by the TILE EXT runtime parameter via a multiplexer.

This parameter, inherited from Deep Versat, is useful when the data access pattern is not regular and

cannot be determined by the internal AGU. The address pattern memory is also linked to an external

AGU for pre-loading data access patterns from the external memory. The configurable parameters of

the external AGUs of the FM tile and address pattern vReads are described in Table 5.6.
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Table 5.6: Configurable parameters of the external AGUs of the xComp vReads.

Parameter Description FM Tile Address
Pattern

direction Direction of dataflow. From external to internal
memory (0) or from internal to external memory (1) Hard-wired to 0

ext addr Base address of the external memory Computed in
hardware

Configurable
at runtime

int addr Base address of the internal memory Configurable at
runtime

Hard-wired to
0

delay Number of clock cycles to wait before performing
the nested loops in the run Hard-wired to 0

duty Number of iterations within the inner loop in which
the address is incremented and enabled Hard-wired to the period parameter

incr Increment value of the inner loop Configurable at runtime
iterations Number of iterations of the outer loop Configurable at runtime
period Number of iterations of the inner loop Configurable at runtime

shift Increment value of the outer loop Configurable at
runtime

Hard-wired to
0

start Initial value of the AGU Hard-wired to 0

To perform a 3D convolution in a single run, the read access pattern of the FM tile memories requires

more than 2 loops. Hence, the internal AGU of the xComp vReads was improved to support 6 loops

by cascading 3 AGUs, which adds 2 more sets of the incr, iterations, period and shift configuration

parameters, as shown in Figure 5.6a. To follow the computation shown in Figure 5.6b, the lower loop

AGU is first run whilst the upper loop AGU is halted. After ending that computation, the upper loop AGU

computes during only one clock cycle before halting again and controls the lower loop AGU to run again,

with a different start value. This process carries on until the upper loop AGU ends its computation.

Figure 5.6: 6-loops AGU a) interface signals and b) nested loops computation.

In terms of interconnection, the cascade, which is represented in Figure 5.7, is implemented by initial-

ising the start input of the lower loop AGU with the addr output of the upper loop AGU. The computation

of the upper loop AGU is halted (using the pause input) while the done output of the lower loop AGU is

zero and the run input of the lower loop AGU is controlled by the mem en output of the upper loop AGU.

The done output of the 6-loop AGU is one only when the done output of all 2-loop AGUs is also one.

42



Figure 5.7: Cascade of 2-loop AGUs to form a 6-loop AGU.

The address pattern memory is linked to the same 6-loop internal AGU as the FM tile memories

when being read to address them. The configurable parameters of the internal AGU are described in

Table 5.7. The remaining runtime parameters are listed in Table 5.8.

Table 5.7: Configurable parameters of the 6-loop internal AGU.

Parameter Description Type

delay Number of clock cycles to wait before performing the nested
loops in the run Hard-wired to 0

duty Number of iterations within the inner loop in which the
address is incremented and enabled

Hard-wired to the period
parameter

start Initial value of the AGU Configurable at runtime
incr Increment value of the inner loop 1-2 Configurable at runtime
iterations Number of iterations of the outer loop 1-2 Configurable at runtime
period Number of iterations of the inner loop 1-2 Configurable at runtime
shift Increment value of the outer loop 1-2 Configurable at runtime
incr2 Increment value of the inner loop 3-4 Configurable at runtime
iterations2 Number of iterations of the outer loop 3-4 Configurable at runtime
period2 Number of iterations of the inner loop 3-4 Configurable at runtime
shift2 Increment value of the outer loop 3-4 Configurable at runtime
incr3 Increment value of the inner loop 5-6 Configurable at runtime
iterations3 Number of iterations of the outer loop 5-6 Configurable at runtime
period3 Number of iterations of the inner loop 5-6 Configurable at runtime
shift3 Increment value of the outer loop 5-6 Configurable at runtime

Table 5.8: Remaining xComp vRead runtime parameters.

Runtime parameter Description
TILE PP Enable ping-pong
TILE OFFSET Address offset between external AGUs
TILE EXT ADDR Base address of the first external AGU
TILE EXT Enables the FM Tile read address to come from the pattern memory
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5.2.2.2 xComp custom FU

The detailed architecture of the custom FU is represented in Figure 5.8. The reconfigurable intercon-

nections inside this module allow to form different datapaths to accelerate different CNN layers (e.g.,

convolutional with or without bias, maxpool) and activation functions (e.g., Leaky ReLU, sigmoid) in-

dividually or even in the same run. These reconfigurable interconnections are defined by the runtime

parameters of the custom FU described in Table 5.9.

Figure 5.8: Detailed architecture of the custom FUs.

Table 5.9: Runtime parameters of the xComp custom FU.

Runtime parameter Description
shift Number of right shifts in convolution result
shift b Number of left shifts for the bias
bias Enable bias addition
leaky Enable leaky activation function
sigmoid Enable sigmoid activation function
mask Sigmoid activation mask
maxpool Enable maxpooling
bypass Enable convolutional bypassing
bypass adder Enable adder tree bypassing
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The custom FU is configured at runtime to perform one of four possible operations: convolution, con-

volution + maxpool, maxpool and single MAC accumulation. The main operations and their respective

runtime parameters are summarized in Table 5.10.

Table 5.10: Main operations performed by the custom FU.

Operation maxpool bypass bypass adder
Convolution only (default) 0 0 0
Convolution + Maxpool 1 0 0
Maxpool only 1 1 0
MAC output X X 1

The default operation is the 3D convolution, which is performed by MACs in parallel, where each MAC

performs 2D convolutions of different input channels (inter-convolution parallelism) and by an adder tree

that sums the results of the convolution across the channels. The number of MACs is defined by nMACs,

thereby stating the loop 2 unroll factor. An internal AGU is used as a 2-loop counter to control the number

of accumulations to perform by resetting the accumulator of the MACs when the output address is zero

(like the MulAdd FU of Deep Versat). As shown in Table 5.11, the only runtime parameters required for

the AGU are the period and iterations parameters that determine respectively the number of MAC

accumulations per result and the number of results to compute in a single run.

Table 5.11: Configurable parameters of the custom FU internal AGU.

Runtime
parameter Description Type

delay Number of clock cycles to wait before performing
the nested loops in the run Hard-wired

duty Number of iterations within the inner loop in which
the address is incremented and enabled

Hard-wired to the period
parameter

incr Increment value of the inner loop Hard-wired to 1
iterations Number of iterations of the outer loop Configurable at runtime
period Number of iterations of the inner loop Configurable at runtime

shift Increment value of the outer loop Hard-wired to the negative
period parameter

start Initial value of the AGU Hard-wired to 0

The architecture of each MAC is represented in Figure 5.9. The accumulations are performed with

the double of precision of the weights and pixels.

Figure 5.9: Internal architecture of a MAC.
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The bias can be included in the computation of the convolutions by enabling the bias runtime pa-

rameter. When enabled, the accumulator of the first MAC is initialized with the value of the bias for

each accumulation (for the other MACs, the accumulator is reset to zero). Thus, the computation of the

bias is hidden inside the computation of the accumulations. The b shift runtime parameter indicates

the number of shifts to perform to the bias before the accumulation, taking into account its quantization

format (different for each convolutional layer due to the dynamic quantization, as seen in Section 6.2.3).

The IP core implements the activation functions after the convolution considering the simplifications

explained in Section 6.2.1. The leaky runtime parameter enables the leaky activation, which is imple-

mented with 2 adders, 1 multiplexer and shifters, as represented in Figure 5.10. In turn, the sigmoid

runtime parameter enables the sigmoid activation, which is implemented by means of simple compara-

tors, multiplexers, adder/subtracters and a priority encoder, as shown in Figure 5.11. In case the sigmoid

activation is not applied to all output channels, the mask runtime parameter is a second enable for the

sigmoid computation but is individual for each custom FU in the matrix row. Note that the other param-

eters are fully shared by all custom FUs in the matrix. After the optional activation blocks, the result is

shifted considering the value of the shift runtime parameter and the quantization format of the results.

Figure 5.10: Leaky activation function in hardware.

Figure 5.11: Sigmoid activation function in hardware.
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The IP core was designed to allow the computation of the convolutional and maxpool layers in the

same run. The computation of the maxpool, which is enabled by the maxpool runtime parameter, is

performed with: a 2-bit counter to handle 2x2 blocks of pixels; a comparator to find the maximum value

in the 2x2 block and a multiplexer to select that value. The enable of the counter is also controlled

by the AGU. The maxpool can also be performed standalone (without performing convolutions in the

same run) by bypassing the pixels from the FM tile to the input of the maxpool computation. This

configuration is enabled by the bypass runtime parameter. Although the custom FU receives nMACs

pixels simultaneously, it can only perform the maxpool of one of those pixels at a time. Hence, the

design includes a multiplexer controlled by another counter (with log2(nMACs) bits) to select each pixel

individually. The enable of this counter is also controlled by the AGU. Note that the internal AGU and

both counters are shared by all custom FUs in the matrix.

The last operation regards to the option of bypassing the result of one of the MACs to the output of the

custom FU by enabling the bypass adder runtime parameter. It is used when only needing to compute

individual accumulations with a single MAC. The MAC output to be bypassed is fixed and determined by

n%nMACs where n is the column number of the custom FU in the matrix.

5.2.2.3 xComp vWrite FUs

The vWrite FUs are also composed of internal and external AGUs for addressing the internal memories

storing the computing results from the custom FUs. In contrast with the vRead FUs, the internal AGU

controls the write address of the memories whilst the external AGU controls their read address. There-

fore, as shown in Table 5.12, the direction parameter of the external AGUs is hard-wired to one, which

indicates that the data is read from the internal memories and written into the external memory. The

runtime parameters are shared between the external AGUs.

Table 5.12: Configurable parameters of the vWrite external AGU.

Parameter Description Type

direction Direction of dataflow. From external to internal memory
(0) or from internal to external memory (1) Hard-wired to 1

ext addr Base address of the external memory Computed in hardware
int addr Base address of the internal memory Configurable at runtime

delay Number of clock cycles to wait before performing the
nested loops in the run Hard-wired to 0

duty Number of iterations within the inner loop in which the
address is incremented and enabled

Hard-wired to the period
parameter

incr Increment value of the inner loop Configurable at runtime
iterations Number of iterations of the outer loop Configurable at runtime
period Number of iterations of the inner loop Configurable at runtime
shift Increment value of the outer loop Configurable at runtime
start Initial value of the AGU Hard-wired to 0

The vWrite memories are smaller than the vRead memories as the latter must store all the input

channels of the FM tiles and kernels whilst the vWrite memories only store a number of output channels

equal to the nCols parameter. The vWrite are asymmetric dual-port memories, having an external bus

of 256 bits and an internal bus of nCols x DATAPATH W bits. The vWrite FU array shares the Internal

AGU, in which all parameters are configured in runtime, as shown in Table 5.13.
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Table 5.13: Configurable parameters of the vWrite FU internal AGU.

Runtime
parameter Description Type

delay Number of clock cycles to wait before performing
the nested loops in the run Configurable at runtime

duty Number of iterations within the inner loop in which
the address is incremented and enabled Configurable at runtime

incr Increment value of the inner loop Configurable at runtime
iterations Number of iterations of the outer loop Configurable at runtime
period Number of iterations of the inner loop Configurable at runtime
shift Increment value of the outer loop Configurable at runtime
start Initial value of the AGU Configurable at runtime

The remaining runtime parameters are listed in Table 5.14 and are related to the calculation of the

base address of each external AGU, which requires nRows-1 multipliers.

Table 5.14: Remaining xComp vWrite runtime parameters.

Runtime parameter Description
VWRITE OFFSET Address offset between external AGUs
VWRITE EXT ADDR Base address of the first external AGU

5.2.3 AXI-DMA

The AXI-DMA module consists of two finite state machines (one for the reads and another for the writes)

that convert the requests of the vReads and vWrites (native interface) to AXI4 read and write transactions

(AXI4 interface). The runtime parameters of this module are related to the number of transactions to

perform as shown in Table 5.15.

Table 5.15: Runtime parameters of the AXI-DMA.

Runtime parameter Description
WEIGHT LEN Number of read transfers of 256 bits for the xWeightRead vReads
TILE LEN Number of read transfers of 256 bits for the xComp vReads
VWRITE NBYTESW Number of bytes to write for the xComp vWrites

For the read transactions (vReads), the runtime parameters account for the total number of 256-

bit aligned transactions in a single run. The AXI4 protocol supports a maximum of 256 transfers per

burst. Therefore, the DMA contains an internal counter, initialized at the beginning of the configuration

run with the total number of required transactions, that decrements each time a transaction is done in

order to determine the number of transactions in each burst. For instance, if the total number of 256-bit

aligned transactions is 500, the first burst will have 256 transactions whilst the second burst will have

244 transactions (500-256).

The runtime parameter for the write transactions (vWrites) accounts for the total number of bytes

(and not 256-bit transactions) to transfer in a single run. The difference regards to the fact that the DMA

write may require unaligned transactions, i.e., being able to write from any memory address any number

of bytes. Hence, the DMA also includes an aligner module that manages the data bytes and the strobe

to align the data with the DMA 256-bit databus.
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5.3 Operation

The VersatCNN IP core is operated like Deep Versat, as explained in Section 4.2. The IP core is

first configured by writing to the configurable register files and then run by writing a command to the

run control register, taking into account the address mapping shown in Table 5.1. The run command

executes the configurations transferred from the register files to the shadow registers. As a result, the

next run can be configured during the current run without affecting its operation.

Excepting the first and last two runs, the IP core can read and write to the external and internal

memories, compute and be configured for the next run, all in parallel. In VersatCNN, the AGUs are

configured according to the scheme represented in Figure 5.12.

Figure 5.12: Configuration of the AGUs.

The AGUs are configured for the same run taking into account their type of operation:

• Read: the data (weights, biases and input FM tiles) are read from the external memory and stored

in the vRead memories. This is done by configuring the vRead external AGUs.

• Compute: the data stored in the vRead memories is read, then computed by the custom FU matrix

and finally stored in the vWrite memories by configuring all the internal AGUs in the design.

• Write: the computed data stored in the vWrite memories is transferred back to the external memory

by configuring the vWrite external AGUs.

The operations are implemented in a pipelined fashion which means that, after the first two runs, dif-

ferent data is being read, computed and written in the same run. The management of the configurations

in pipeline fashion is challenging in software as the programmer would need to program all the configu-

rations at the same time taking into account that some are due in the next run and others in the next two

subsequent runs. To ease the software development, the configurations of the internal AGUs (compute

operation) are ”delayed” one run by adding an extra level of shadow registers, and the configurations of

the vWrite external AGUs (write operation) are ”delayed” two runs by adding two extra levels of shadow
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registers. As a result, the pipeline process is transparent to the programmer, who simply programs all

the configurations at the same time abstracted from the fact that not all are run at the same time.

5.4 Optimization of the FM tile read process

The core was designed so that each matrix row of custom FUs computes a different line of the output

FM. As a result, the tiles between consecutive vReads will share one or more lines from the input FM

when performing a 3x3 convolution. For instance, Figure 5.13a shows that 2 lines are repeated between

tiles of consecutive vReads when performing a 3x3 convolution over tiles of 4 lines each. Without any

further optimisation, each vRead would individually read 4 lines from the external memory (one at a time,

taking into account the priority defined by the merge module), resulting in several lines being repeatedly

read from the external memory in the same run.

To optimize the read process, each tile vRead is coupled with a comparator that compares the ad-

dress of the vRead with the address at the databus interface (which corresponds to the address of the

vRead that earned the priority in the merge module) and, in case they are equal, a multiplexer chooses

the data coming from the databus, as shown in Figure 5.13b. Consequently, the common lines between

vReads are stored at the same time, saving communication time in the run.

Figure 5.13: a) Example of line sharing between FM tiles and b) Address comparison for tile vReads.

5.5 Final remarks

The VersatCNN IP core is a CGRA designed to accelerate CNNs which, in the next chapter, is going

to be tested to accelerate the YOLOv3-Tiny detector. The core is a substantial improvement from the

Deep Versat CGRA, although inheriting some relevant features such as the configuration register files

and shadow registers, the use of AGUs which kept being the core of the system, among others. The

improvements include the integration of a DMA for fast data transfers between the core and the external

memory, shared configurations between the same type of FUs, automatic ping-pong memories, higher

loop-level AGUs and heterogeneous stages. The CNN is accelerated by a matrix of custom MAC-based

FUs that exploits three types of parallelism (Inter-FM, Intra-FM and Inter-Convolution) and enhances

both pixel and weight sharing. The design of the core has a total of 72 runtime configurable parameters.
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Chapter 6

Implementation of YOLOv3-Tiny

This chapter describes the implementation and acceleration of the YOLOv3-Tiny detector. Firstly, the

SoC platform executing the software code and the optimizations for hardware implementation are ex-

plained. The software-only version is then profiled. The chapter ends with the acceleration of the

detector using the VersatCNN CGRA developed in Chapter 5 by setting the synthesis parameters of the

IP core and describing the final firmware running on the SoC platform.

6.1 IOb-SoC

IOb-SoC [24] is an open-source RISC-V-based System-On-Chip platform developed by IObundle. As

shown in Figure 6.1, this system is based on the PicoRV32 [25] soft-processor, which is a low-performance

32-bit CPU with an average Cycles per Instruction (CPI) of approximately 4. The CPU is programmed

with the RISC-V GNU Compiler Toolchain [26], which contains compilers for C and C++.

Figure 6.1: IOb-SoC-Yolo block diagram.
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The RISC-V soft-processor is the master of the system and accesses to the slaves (i.e., memory

sub-system and peripherals) through a native interface, which follows a simple valid-ready protocol that

runs one read or write transfer at a time. Table 6.1 shows the address associated to each slave. Note

that the split modules are responsible for selecting the desired slave based on the most significant bits

of the address. Each slave presents a different functionality in the system:

• Boot controller: constituted by a Read Only Memory (ROM) that stores the bootloader, which

is a program initially executed by the CPU that receives the firmware via UART and stores it in

the internal memory. This controller allows to test different programs under the same hardware

system without need for re-synthesis, as the firmware is transferred each time instead of being

hard-loaded into the internal memory. The bootloader has 3140 bytes, fitting into a 4kB ROM.

• Internal memory: composed of a Static RAM (SRAM) that stores the firmware to be executed after

the bootloader. The firmware program for the software-only version of the YOLOv3-Tiny detector

has 29012 bytes, which fits into a 32kB SRAM.

• External memory: stores the weights, class labels, input image and intermediate results of the

YOLOv3-Tiny detector. Its access is done through an AXI4-full-based cache developed by [27].

For testing the software-only version of the detector, the cache was configured with its default

values corresponding to an associative cache with 4 ways, 16 lines, 16 words of 32 bits per line,

and the Least Recently Used (LRU) replacement policy, which is a 4Kb cache.

• Timer: measures the performance (in terms of elapsed time) of the software application in one of

three possible resolutions: 1 us, 1 ms or 1 s. In the firmware, the time is calculated as with the

C time library: the clock function is called before and after the piece of code to be measured, and

the measured time corresponds to the subtraction of the start time from the end time.

• UART: used by the bootloader to transfer the firmware, and by the firmware for debugging pur-

poses (e.g., print the elapsed time of each YOLOv3-Tiny layer). The IOb-SoC platform provides a

C application executed on the user PC, called Console, that sends the firmware to the FPGA and

keeps listening to the serial port in order to print all the debug messages sent from the FPGA.

• Ethernet: transfers the network weights and biases, the input and output images and the class

labels. For the user PC, a Python script that uses raw sockets was developed and tested in a

loop-back configuration: the PC sends a frame to the FPGA; the FPGA sends the same frame

back to the PC; the PC then checks if the frame received is the same as the frame sent.

Table 6.1: IOb-SoC-Yolo address mapping.

Memory / Peripheral Address range
Internal memory 0x0000 0000 - 0x1FFF FFFF
Boot controller 0x2000 0000 - 0x3FFF FFFF

UART 0x4000 0000 - 0x4FFF FFFF
TIMER 0x5000 0000 - 0x5FFF FFFF

Ethernet 0x6000 0000 - 0x6FFF FFFF
VersatCNN IP Core 0x7000 0000 - 0x7FFF FFFF
External memory 0x8000 0000 - 0xFFFF FFFF
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6.2 Source code optimizations for hardware implementation

Darknet [17] is a full neural network framework developed in C and CUDA, supporting CPU and GPU

computation. To be able to run this software application on an resource-constrained embedded system,

the source code was firstly reduced to only cover the YOLOv3-Tiny detector, and then adapted to run

on the RISC-V soft-processor. This included the removal of dynamic memory allocation and complex

data structures. Additional optimizations, such as linear approximation of activation functions, batch-

normalization folding and post-training quantization, were deployed with the purpose of simplifying the

hardware computation and reducing the size of the network.

6.2.1 Linear approximation of activation functions

The activation functions used in the YOLOv3-Tiny CNN include the Leaky ReLU and the sigmoid. The

Leaky ReLU simply multiplies the input, x, with the slope value, 0.1 originally, when the input is negative.

The slope value can be approximated by a sum of powers of two, to replace the multiplication by a sum

of multiple right shifts of the input value, as shown in Eq. 6.1. As a result, the hardware is simplified

replacing a multiplier for two adders in each Leaky ReLU operation.

y = x× 0.1 ≈ x× 0.1015625 = x×
(
2−4 + 2−5 + 2−7

)
= (x >> 4) + (x >> 5) + (x >> 7) (6.1)

The sigmoid activation is a complex function to implement in hardware due to the exponential and

division functions. Hence, the sigmoid is usually approximated by using LUT-based or linear transforma-

tion methods. In this work, the sigmoid was implemented by the piecewise linear approximation in [28].

This approximation is good for hardware implementation because the input x is always multiplied by a

power of 2 value, which translates into a cost-free shift, as shown in Eq. 6.2.

f(x) =



1, if |x| > 5.0

2−5 × |x|+ 0.84375, if 2.375 6 |x| < 5.0

2−3 × |x|+ 0.625, if 1.0 6 |x| < 2.375

2−2 × |x|+ 0.5, if 0 6 |x| < 1.0

(6.2)

Calculations are done for positive values of the input x. For negative values, Eq. 6.3 is used instead.

f(−x) = 1− f(x) (6.3)

6.2.2 Batch-normalization folding

In [29], the batch-normalization folding is proposed, which consists of a linear transformation to fold

the parameters of the batch-normalization layer into the preceding convolutional layer, consequently

reducing the number of parameters and operations of the network. As a result, the pre-trained floating-

point weights w and biases b are updated to their new values w′ and b′ according to Eq. 6.4.
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w′ =
γ × w√
σ2 + ε

b′ = b− µ× γ√
σ2 + ε

(6.4)

Despite not changing the accuracy of the network for the floating-point model, this method has a

negative effect on the distribution of weights and biases. As shown in Figure 6.2, the distribution of the

new weights of the first convolutional layer not only has a greater value range after batch-normalization

folding, as also has a greater concentration of values around zero. In addition, the second convolutional

layer (layer 3), shows a distribution with a shorter range of values and also high concentration of values

around zero. This range variability leads to wasted precision when performing post-training static quan-

tization (Section 6.2.3): some layers will need more bits for the integer part (e.g., layer 1) and others

more bits for the fractional part (e.g., layer 3) of the fixed-point weights and biases. That is an indication

that the network would highly benefit from dynamic quantization, leading to a lower accuracy drop.

Figure 6.2: Convolutional weights of layers 1 and 3 before and after folding batch normalization.

6.2.3 Post-training quantization

As explained in Section 2.5.2, the CNN computation is typically approximated to fixed-point format for

inference in FPGAs, which is also known as post-training quantization. In order to record the range of

values of the FMs in different layers, the floating-point model was executed on a regular PC over the

MS COCO 2017 test dataset [30], which contains a total of 20288 images. Afterwards, the fixed-point

format for the weights, biases and FMs in each layer was chosen by selecting the minimum number

of bits needed for the integer part to avoid overflow, leaving the remaining bits for the fractional part.

The resulting ranges and respective fixed-point formats are shown in Table 6.2. Taking into account the

number of bits required for the integer part, all values were quantized using 16 bits.
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This analysis was performed only for the convolutional layers, as the maxpool, route and upsample

layers do not process their input values, and the yolo layers preserve the resolution of their input values.

Regarding the pre-CNN calculations, the input image is represented in Q8.8 whilst the intermediate and

output images are represented in Q1.15. The post-CNN uses the Q3.13 format for the data. If using

static instead of dynamic quantization, the weights (Q6.10), biases (Q5.11) and FMs (Q8.8) of all layers

must use the highest number of bits for the integer part for preventing overflow.

Table 6.2: Ranges and fixed-point format of weights, biases and FMs per layer.

Layer Weight Bias FM
Max Min Quant. Max Min Quant. Max Min Quant.

1 21.33 -17.70 Q6.10 3.50 -15.48 Q5.11 84.09 -8.56 Q8.8
3 0.66 -0.86 Q1.15 4.34 -1.58 Q4.12 56.68 -14.09 Q7.9
5 1.53 -1.04 Q2.14 9.40 -5.56 Q5.11 52.48 -11.31 Q7.9
7 0.82 -0.66 Q1.15 7.86 -5.84 Q4.12 45.21 -6.83 Q7.9
9 0.85 -0.52 Q1.15 2.55 -6.05 Q4.12 37.50 -4.28 Q7.9

11 0.58 -0.30 Q1.15 1.05 -4.57 Q4.12 36.97 -3.11 Q7.9
13 1.46 -1.75 Q2.14 2.29 -7.69 Q4.12 104.08 -10.55 Q8.8
14 0.31 -0.12 Q1.15 0.69 -1.09 Q2.14 18.10 -1.82 Q6.10
15 0.39 -0.65 Q1.15 3.04 -2.08 Q3.13 20.91 -3.27 Q6.10
16 0.56 -1.05 Q2.14 0.39 -3.91 Q3.13 2.17 -2.19 Q3.13
19 0.81 -1.00 Q2.14 1.55 -2.27 Q3.13 25.29 -2.59 Q6.10
22 0.22 -0.32 Q1.15 2.53 -1.46 Q3.13 25.90 -2.98 Q6.10
23 0.60 -0.76 Q1.15 0.91 -4.48 Q4.12 2.65 -2.38 Q3.13

To analyse the accuracy drop caused by the optimisations introduced in this section, several versions

of the YOLOv3-Tiny detector were run on the MS COCO 2017 test dataset and the mAP50 metric was

evaluated using the CodaLab platform [31]. The results are shown in Figure 6.3.

The approximation of the activation functions caused the mAP50 to drop by only 0.3. Using fixed-

point static quantization causes the mAP50 to further drop by 2.8. However, as expected, dynamic

quantization shows a higher mAP50 compared to static quantization, with a difference of only 1. In

summary, the final fixed-point model that runs on the IOb-SoC platform presents a mAP50 drop of 2.1 in

comparison with the original floating-point model.

Figure 6.3: mAP50 of the YOLOv3-Tiny network according to the optimization applied.
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6.3 Software-only version of the detector

In this section, the software-only version of the YOLOv3-Tiny detector is implemented in the RISC-V

soft-processor to be used as baseline for the hardware acceleration.

6.3.1 Execution flow

The execution flow of the software-only version of the YOLOv3-Tiny detector is represented in Fig-

ure 6.4a. The firmware is divided in 4 sections: setup, pre-CNN, CNN and post-CNN.

Figure 6.4: Software-only a) execution flow and b) DDR mapping of the YOLOv3-Tiny detector.

Setup: includes the initialization of the peripherals (i.e., specification of their base address) and the

preparation of the data in the external memory prior to the computation of the YOLOv3-Tiny detector,

thus, is not taken into account when measuring the performance of the detector in terms of elapsed

time. The positions in the external memory allocated for the layers that compute convolutions with 3x3
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kernels are pre-started with zero for the padding around the edges of the input FMs. The results of each

layer are stored back to the external memory without overwriting the positions used for zero-padding.

Analogously, the positions allocated for the resized image are pre-started with grey pixels. After receiving

the weights, labels and input image via Ethernet with the message flow of Figure 6.5, the horizontal and

vertical indexes and factors from the pre-processing step of the image resize algorithm (Algorithm 1) are

calculated and stored in the SRAM (i.e., as program data). Finally, the Red Green Blue (RGB) values

used for the boxes and labels in the post-CNN are computed and stored in the SRAM.

Figure 6.5: Ethernet interface message flow.

Pre-CNN: corresponds to a single function performing the width and height resize of the input image,

according to Algorithm 1.

CNN computation: englobes individual functions for computing the convolutional, maxpool, yolo

and upsample layers. The arguments of these functions indicate specific characteristics of the layer

(e.g., the width and height of the feature map, the number of input channels, etc). The implementation

of the route layers resides in basically choosing the desired base values for the output Double Data

Rate (DDR) memory pointers. As shown in Figure 6.4b, the output of layer 9 is stored after the output of

layer 20, as this position is more convenient to later use the output of these layers as the input of layer 22.

Post-CNN: constituted by three functions to: 1) get the detections with a score above the threshold;

2) apply non-maximum suppression (following Algorithm 2) and 3) draw the labels and bounding boxes,

if any detections are found. Note that the detections are drawn over the initial input image. The execution

flow of the firmware ends with the transmission of the output image (with or without detections) to the

external PC via Ethernet.

6.3.2 Profiling

The execution time of the software-only version of the YOLOv3-Tiny detector running on the IOb-SoC

platform (using O3 optimizations) at 143MHz is shown in Table 6.3. The total execution time is 969

seconds (above 16 minutes) which is almost completely spent for the computation of the CNN, where
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the convolutional layers alone take 99.8% of the CNN execution time. The target frame rate for this work

is 30 FPS, which corresponds to a total execution time of 33.3 ms. Therefore, all CNN layers need to be

accelerated in hardware, using the accelerator core introduced in Chapter 5. Note that the route layers

(layers 18 and 21) are not included in Table 6.3 because these layers do not consume execution time.

Table 6.3: Performance of the software baseline.

Section Execution
time (ms) To be done in

Resize (pre-CNN) 1,040 HW
Layer 1 25,786 HW
Layer 2 748 HW
Layer 3 62,122 HW
Layer 4 375 HW
Layer 5 65,437 HW
Layer 6 188 HW
Layer 7 69,110 HW
Layer 8 94 HW
Layer 9 67,923 HW

Layer 10 48 HW
Layer 11 66,084 HW
Layer 12 93 HW
Layer 13 264,160 HW
Layer 14 29,183 HW
Layer 15 66,071 HW
Layer 16 14,332 HW
Layer 17 31 HW
Layer 19 3,607 HW
Layer 20 17 HW
Layer 22 203,425 HW
Layer 23 28,786 HW
Layer 24 126 HW

Get detections (Post-CNN) 1.94 SW
Non-maximum suppression (Post-CNN) 0.14 SW

Draw detections (Post-CNN) 11.91 HW
Total time (s) 969

The pre-CNN process takes approximately 1 second on the CPU and must also be accelerated in the

same hardware as the CNN. This is possible as the resize method (Algorithm 1) only uses multiplications

and additions that can be handled by the MACs in the IP core. The post-CNN process, in spite of

depending on the number of objects detected in the input image, is fast enough in software, except the

draw detections method, which can be accelerated in hardware using a DMA engine.

To achieve 30 FPS, the software baseline needs to be accelerated nearly 29000 times. The software

baseline is slow, not only due to the low performance of the soft-processor and the high computation

requirements of the detector, but also because of the low bandwidth of the Advanced eXtensible Interface

(AXI) cache available at the time, which interfaces the processor and the DDR memory. The cache read

burst length was configurable but not pipelined, requiring 2 cycles per word. For cache writes, the

scenario is even worst: words are sent to the external memory 1 by 1 because the cache uses the write-

through policy. Hence, the IP core developed in Chapter 5 not only must accelerate the computation

using parallel MACs but also provide adequate memory bandwidth by using a DMA core.
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6.4 Setting the synthesis parameters of the IP core

Most of the synthesis parameters that determine the internal architecture of the VersatCNN IP core

(Table 6.4) are defined by the loop unroll and loop tiling factors chosen to accelerate the YOLOv3-Tiny

network. As studied in Section 2.5.3, previous works performed design space exploration in order to

choose the factors that achieve the maximum computational throughput. This work follows a slightly

different approach by theoretically choosing the factors that allow to achieve a target frame rate of 30

FPS (i.e., 33.3 ms) taking into account the characteristics of the YOLOv3-Tiny CNN.

Table 6.4: Synthesis parameters chosen for the IP core.

Parameter Value Parameter Value
nCols 16 VREAD BIAS ADDR W 3
nRows 13 VREAD WEIGHT ADDR W 14
nMACs 4 VREAD TILE ADDR W 15

DDR ADDR W 32 VREAD PATTERN ADDR W 10
DATAPATH W 16 VWRITE ADDR W 8

VREAD TILE EXT ADDR W 15

6.4.1 Loop unrolling

The execution time for the computation of the convolutional layers in the VersatCNN IP core can be esti-

mated according to Eq. 6.5. As expected, the execution time decreases when increasing the parallelism

factor (i.e., the number of MAC units performing computations in parallel in the design) and the clock

frequency. For achieving an execution time of 33.3 ms, the parallelism factor must be between nearly

835 and 584 for clock frequencies between 100 and 147 MHz, as represented in Figure 6.6.

Execution time ≈ # MAC operations

Total parallelism factor× Frequency
× Efficiency (6.5)

The VersatCNN IP core exploits 3 different sources of parallelism (inter-FM, intra-FM and inter-

convolution), hence, the total parallelism factor corresponds to the product of the 3 loop unroll factors.

These factors must be carefully chosen taking into account the network characteristics for not leading to

the underutilization of the MAC resources:

• Inter-FM parallelism factor: the loop 4 unroll factor depends on the number of kernels of the

convolutional layers. In the YOLOv3-Tiny network, the layer 1 presents the lowest number of

kernels (16) whilst all the other layers have a number of kernels also multiple of 16, except only

from layers 16 and 23. Therefore, the loop 4 unroll factor chosen was 16, which is defined by the

nCols parameter. A kernel of padding is added to layers 16 and 23 to become multiple of 16.

• Intra-FM parallelism factor: as each matrix row of custom FUs in the IP core computes a different

line of the output FM, the loop 3 unroll factor depends on the height of the input FMs. In the

YOLOv3-Tiny network, all layers present an input FM with a height multiple of 13, hence, to ensure

that all matrix rows of custom FUs are used, the loop 3 unroll factor selected was 13 (nRows

synthesis parameter).
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• Inter-convolution parallelism factor: with the unroll factors chosen for loops 4 and 3, the total

parallelism factor is 208 (16x13), which is still insufficient by 3 or 4 times to achieve the target

frame rate. The loop 2 unroll factor depends on the number of input channels of each layer. In the

YOLOv3-Tiny network, all layers present a number of input channels multiple of 4, except from the

first layer. As a result, the loop 2 unroll factor chosen was 4 (nMACs synthesis parameter) and an

extra input channel of padding is added to layer 1 to also become multiple of 4.

The total parallelism factor chosen for the IP core is then 832 (16x13x4), which leads to estimated

execution times between 33.4 ms and 23.4 ms for clock frequencies between 100 and 147 MHz, as

represented in Figure 6.6.

Figure 6.6: Estimated parallelism factor and execution time per frequency.

6.4.2 Loop tiling

The IP core was designed to perform 3D convolutions of input FM tiles in a single run, which requires all

input channels to be stored in the on-chip memory for both weight and FM tile vReads. As each matrix

row of custom FUs computes a different line of the output FM, each tile shall only have the number of

lines (i.e., height) required to compute one line of results from the output FM. For instance, for layer 1, as

the kernel is 3x3 and the maxpool is performed in the same run (as further explained in Section 6.5.3),

the tile needs 4 lines from the input FM to output one line of results.

The width tiling factor must be a divisor of the width of the input FM to ensure that it is equally splitted,

consequently avoiding an utilization ratio of the MACs lower than one. At the same time, the tiles should

be as wide as possible in order to reduce the number of pixels repeated in the borders between tiles of

the same vRead and to read data from the DMA with large bursts, further reducing the communication

time. Figure 6.7 shows how the average time of each read burst of 256 bits decreases when increasing

the tile width for the convolutional layer 3, as the number of bursts per AXI transaction is also increased.
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Figure 6.7: Average time of each burst read per tile width for layer 3 .

In this work, the width of the tiles for each layer is chosen so that the communication time is below

the computation time in each run. The computation time of the tile convolution is expressed by:

Computation time =

(ker w× ker h× c× tile w× clk per) /nMACs ,without maxpool

(ker w× ker h× c× tile w× clk per× 2) /nMACs ,with maxpool
(6.6)

where tile w is the tile width and clk per is the clock period. In turn, the communication time is the

sum of the times to read the kernels and FM tiles, which are estimated by:

Kernel comm. time = (ker w× ker h× c× nCols× burst avg) /16 (6.7)

Tile comm. time =


(tile w× nRows× c× burst avg) /16 , for 1x1 conv

((tile w+ 2)× (nRows+ 2)× c× burst avg) /16 , for 3x3 conv

((tile w+ 2)× (nRows× 2 + 2)× c× burst avg) /16 ,with maxpool

(6.8)

where burst avg is the average time of each burst. The communication times are divided by 16

as each burst of 256 bits is composed of 16 words of 16 bits each. The DDR4 controller executes at

a higher frequency (200MHz), hence, the DMA writes are approximately performed in parallel with the

DMA reads. As the data to be written during a run is lower than the data to be read, the communication

time estimated only considers the DMA reads. Note that there are runs where only one between the

kernel and FM tile is transferred.

The chosen dimensions of the input FM tiles per layer are represented in Table 6.5. The width of

the tile must be added by two when the kernel is 3x3. For example, for layer 1, the width tiling factor is

208 (divisor of 416) but the width of the tile is 210. The biggest FM tile belongs to the layer 22 and has

32256 pixels (28x3x384), therefore, VREAD TILE ADDR W is 15 (215 = 32768). As each pixel is 16 bits,

each FM tile memory requires 64kB. For the layers where the tiles cover the entire width of the input FM

(i.e., layers 9 to 23), the FM tile memories are not used in ping-pong fashion, as they are transferred only
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once or twice depending on the scale (13x13 or 26x26). As a result, the size of the FM tile memories

does not double due to the ping-pong operation as in the other memories in the design.

Table 6.5: Memory requirements for vRead and vWrite FUs.

Layer 3D kernel size Input FM Tile Results per tile
1 (3x3)x3 (210x4)x3 104
3 (3x3)x16 (106x4)x16 52
5 (3x3)x32 (54x4)x32 26
7 (3x3)x64 (28x4)x64 13
9 (3x3)x128 (28x3)x128 26

11 (3x3)x256 (15x3)x256 13
13 (3x3)x512 (15x3)x512 13
14 (1x1)x1024 (13x1)x1024 13
15 (3x3)x256 (15x3)x256 13
16 (1x1)x512 (13x1)x512 13
19 (1x1)x256 (13x1)x256 13
22 (3x3)x384 (28x3)x384 26
23 (1x1)x256 (26x1)x256 26

Max (3x3)x512 (28x3)x384 104

The address width of the vWrite memories depends on the number of results computed per tile in

each run, which in turn depends on the tiling factor chosen for the width of the tiles. For instance, layer

1 has a width tiling factor of 208, then, as maxpooling is done in the same run, this layer computes

104 results per tile, which actually corresponds to the maximum number of results per tile, as shown in

Table 6.5. As the vwrite memories always work in ping-pong fashion, the double of the results must be

considered, hence, VWRITE ADDR W is 8 (28 = 256).

Table 6.5 also shows that layer 13 presents the biggest 3D kernel with a total of 4608 (3x3x512)

weights. The double of weights must be taken into account as the weight memories also work in ping-

pong fashion, therefore, VREAD WEIGHT ADDR W is 14 (214 = 16 384). The weights are also represented in

16 bits, thus, each weight memory requires 32Kb.

6.5 Final firmware using VersatCNN

The execution flow of the final firmware using the VersatCNN IP core to accelerate the YOLOv3-Tiny

detector is also divided in 4 parts: setup, pre-CNN, CNN and post-CNN. This section shows how the

acceleration of the YOLOv3-Tiny detector is handled by the VersatCNN core, without details about the

software code, as that is subject of other dissertation work [15]. Note that the final firmware program

occupies over 34kB, hence, the SRAM of the IOb-SoC-Yolo platform is increased from 32kB to 64kB.

6.5.1 Setup

The setup is similar to the software baseline, with some modifications in the data storage. The values

calculated in the pre-processing step of the image resize algorithm and the RGB values are stored in

the external memory, instead of the SRAM, to later be accessed by the IP core via the DMA. Also, the

horizontal indexes are loaded into the pattern memory to be used during the width resize in the pre-CNN.
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In the software baseline, the weights and FMs are stored in XYZ format, which means that each

channel is first stored by column and row before the next channel. For the final firmware, the data is

converted to ZXY format, which corresponds to storing first by channel and only then by column and row.

Figure 6.8 illustrates an example of a 3x3x3 FM in both XYZ and ZXY formats. This example also shows

that, when reading a 2x2 tile from the FM in XYZ format, 3 loops are required: one for iterating through

the columns, one for iterating through the rows and another one for iterating through the channels.

However, when using the ZXY format, as the channels and columns are adjacent, only 2 loops are

required. As a result, the external AGUs from the vReads and vWrites of the IP core only require 2 loops

for addressing the external memory, thereby saving hardware resources and simplifying the software

configurations. The usage of the ZXY format also eases the reading from the vRead memories as each

MAC inside the custom FU computes different channels in parallel.

Figure 6.8: Example of 3x3x3 FM in XYZ and ZXY format.

As explained in Section 5.2.3, the DMA reads must consist of 256-bit (i.e., 32-byte) aligned transac-

tions, thus, the base address of each kernel and of each line of the input FM must be multiple of 32.

All the layers in the network, except from the first layer, have a number of input channels multiple of 16,

therefore, as the data is represented in 2 bytes, the base addresses are always aligned. For the first

layer, both kernel and FM lines must be padded until being a multiple of 32.

6.5.2 Pre-CNN acceleration

As stated in Algorithm 1, the pre-CNN image resize method is divided in width and height resize, which

are accelerated in the IP core by performing two accumulations per MAC:

• Width resize: each line of the input image is stored in a different FM tile vRead, hence, if the height

of the input image is not a multiple of 13, padding lines must be added. The pixels in the vRead

memories are addressed by the pattern memory that stores the irregular patterns of the horizontal

indexes, instead of using directly the internal AGU. Thus, the TILE EXT parameter is set to one.

The horizontal factors are stored in the weight vReads. For each matrix row, only one custom FU
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is used per input channel instead of using all the custom FUs in the row, as unlike the kernels in

the convolutional layers, there is no parallelism between horizontal factors. Also, only one MAC

is used per custom FU by setting the bypass adder parameter to one as the channels are not

summed as in the convolutions. The input image is padded to include 4 channels, therefore, the

total parallelism factor for the computation of the width resize is 52 (13x4).

• Height resize: the lines from the intermediate image (i.e., the image resulting from the width

resize) to be stored in the FM tile vReads depend on the values of the vertical indexes. As these

values do not follow any regular pattern, the ext addr parameter of each external AGU cannot

simply be calculated by adding the base address with an offset. Consequently, only the first matrix

row of custom FUs is used and the ext addr parameter of its external AGU is determined by

the base address configured in software according to the lines selected by the vertical indexes.

Analogously to the width resize, the vertical factors are stored in the weight vReads and only

4 MACs are used per matrix row. Given that only one matrix row is used, the total parallelism

factor for the computation of the height resize is only 4, which will not result in a bottleneck as the

pre-CNN is bounded in communication and not in computation.

6.5.3 CNN acceleration

The configurations of the custom FUs for each layer (or pair of layers) are represented in Table 6.6.

Table 6.6: Configurations of custom FUs per layer.

Layers Bias Leaky Sigmoid Maxpool Bypass
(1-2), (3-4), (5-6), (7-8) 1 1 0 1 0

10, 12 X X X 1 1
9, 11, 13, 14, 15, (19-20), 22 1 1 0 0 0

(16-17), (23-24) 1 0 1 0 0

As explained in Section 5.2.2.2, the VersatCNN IP core can compute the convolutional and maxpool

layers in the same run. Therefore, the first 4 maxpool layers are computed jointly with their previous

convolutional layer and, as a result, the computation of these maxpool layers is hidden in the computation

of the convolutional layers. Moreover, the communication time in these layers is further reduced as less

input and output FMs are transferred between the IP core and the external memory.

Figure 6.9 shows that, when performing both convolution and maxpool, the access pattern when

reading pixels from the tiles requires 5 loops: 2 for iterating according to the kernel size, other 2 for

iterating according to the 2x2 block and the last one for iterating through the tile width. This access

pattern is supported by the internal AGU shared among all tile vReads that performs 6 loops.

The maxpool in layer 10 cannot be computed alongside the convolution in layer 9 as the output of

layer 9 is required for the second route layer in order to be part of the input of layer 22. Therefore, the

maxpool in layer 10 is computed standalone. The same applies for layer 12 as the maxpool is performed

with a stride of 1, thus adding an extra column and line to the input FM.
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Figure 6.9: Example of 5 loops for simultaneous convolution and maxpool computation.

The yolo layers are also computed in the same run as the previous convolutional layer as they simply

consist of the application of the sigmoid activation function to some of the channels. The route layers

are handled the same way as in the software baseline (i.e., pointer manipulation).

Finally, the upsample layer is also coupled with the previous convolutional layer and is handled by

configuring the internal and external AGUs of the vWrite FUs. For instance, when writing the result of the

computation in the vWrite memories, the internal AGU is configured with a duty of two in order to store

the same result twice in adjacent positions, which corresponds to upsampling inside the line. Then, the

external AGU is configured to send the same line twice to the external memory in adjacent positions,

which corresponds to upsampling the line.

6.5.4 Post-CNN

As concluded in Section 6.3.2, the methods to get the detections with a score above the threshold and to

apply non-maximum suppression are fully handled in software by the soft-processor. The only method

from the post-CNN accelerated by the VersatCNN IP core regards to the drawing of labels and boxes, if

any detections are found.

When drawing labels, each label pixel has to be multiplied by the RGB value computed during the

setup (each class is associated to a different RGB colour). Hence, the FM tile vRead stores the label and

the weight vRead stores the RGB values. Analogously to the pre-CNN, the post-CNN is bounded in com-

munication, therefore, only 4 MACs are used for the computation of the coloured labels (bypass adder

parameter set to one). In turn, when drawing boxes, only the RGB values are stored in the FM tile vRead

and the weight vRead is not used (bypass parameter set to one).
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6.6 Final remarks

The software baseline of the YOLOv3-Tiny detector is executed on the IOb-SoC platform, which includes

additional peripherals such as a timer to profile the embedded code, and the Ethernet module to send the

network parameters to the FPGA. Several optimizations were implemented in the source code, namely

the approximation of activation functions, batch-normalization folding and post-training quantization. The

final fixed-point model presents a mAP50 of 30.8 and takes over 16 minutes per frame running on the

CPU only. The functionalities of the VersatCNN IP core are tested by accelerating the YOLOv3-Tiny

detector. To achieve the target frame rate of 30 FPS, the IP core is pre-configured with a total of 16

weight memories of 32kB, 13 FM tile memories of 64kB and 208 custom FUs, each with 4 MACs,

making a total parallelism factor of 832. The FM tiles are chosen so the communication time is lower

than the computation time for each run. The IOb-SoC-Yolo system integrates the VersatCNN IP core

with the IOb-SoC platform and is responsible for executing the final firmware for accelerating the full

YOLOv3-Tiny detector (i.e., including pre and post-CNN). The next chapter presents the performance

results achieved by IOb-SoC-Yolo.

66



Chapter 7

Results

This chapter reports the performance results achieved for accelerating the YOLOv3-Tiny detector within

the IOb-SoC-Yolo platform. After describing the target device used, the results are presented in terms

of the FPGA resource consumption, the execution time of the detector and a comparison with other

FPGA-based works.

7.1 Target device

The development board available for this work is the Kintex UltraScale KU040 [32]. Within the features

provided by this board, the most relevant for this work include:

USB-UART interface: for terminal communications between the board and the external PC. This

interface is used by the bootloader of the SoC platform described in Section 6.1 and for debugging.

Ethernet PHY interface: to implement high-speed data links (in this case, 100 Mbps). This inter-

face is needed to transfer the parameters of the YOLOv3-Tiny CNN, which would be too slow over UART.

DDR4 SDRAM: this 1GB external memory stores the data transferred through the Ethernet interface

and the intermediate results, as they do not fit in the FPGA on-chip memory.

Xilinx XCKU040 FPGA: the available resources of this FPGA are represented in Table 7.1.

Table 7.1: Available resources of Xilinx XCKU040 FPGA.

36Kb BRAM FF LUT Logic LUT memory DSP
600 484,800 242,400 112,800 1,920

The main primitives of this FPGA include Look-Up Tables (LUTs), Flip-Flops (FFs), Block RAMs

(BRAMs) and DSPs. A LUT is a small RAM that stores a function truth table. In the UltraScale FPGAs,

the LUTs have 6 inputs (LUT6), which is equivalent to 64 bits RAM. The BRAMs provide on-chip data

storage and can be configured as two independent 18Kb RAMs or one 36Kb RAM and as simple or true

dual port. When mapping the VersatCNN IP core into the FPGA, the vWrite and the bias memories are

implemented using LUTRAMs whilst the other vRead memories are implemented with BRAMs.
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The UltraScale FPGAs have DSP48E2 blocks, whose internal constitution is represented in Fig-

ure 7.1. The main function of the DSP block is P = (A + D) x B + C which consists of a 27-bit pre-adder,

a 27x18 multiplier and a 48-bit ALU (post-adder/subtracter, accumulator or logic unit). Each MAC of

the VersatCNN IP core is implemented in the FPGA by one DSP (due to 16-bit data as concluded in

Table 2.2) with 4 pipeline stages, no pre-adder and the ALU configured as an accumulator.

Figure 7.1: DSP48E2 internal constitution (adapted from [33]).

7.2 Resource consumption

Table 7.2 presents the resource consumption in terms of the FPGA primitives of the IOb-SoC-Yolo

system, highlighting the resources required by the hardware accelerator developed in the scope of this

work. Most of the resources are occupied by the hardware accelerator.

Table 7.2: IOb-SoC-Yolo resource consumption.

Component 36Kb BRAM FF LUT Logic LUT memory DSP
AXI Interconnect 0 9,887 1,366 2,176 0
DDR4 Controller 25.5 11,918 9,245 452 3

RISC-V CPU 0 902 2,521 48 4
Internal memory 17 41 60 0 0

AXI Cache 1 592 349 280 0
VersatCNN IP 339 86,319 103,655 16,792 871

Ethernet 1 382 193 0 0
UART 0 89 86 0 0
Timer 0 130 2 0 0
Others 0 728 448 32 0
Total 383.5 (64%) 110,988 (23%) 119,166 (49%) 19,780 (18%) 878 (46%)

Overall, the design requires less than half of the resources available at the target device, with the

exception of the BRAMs, which are used as on-chip memory to store all channels from 3D kernels

and input FM tiles in order to perform 3D convolutions in a single run. The implementation of shared

configurations between the same type of FUs allowed the system to be scalable in terms of both Flip-

Flop and LUT consumption. Only 46% of the DSPs are used, thus, the parallelism factor could still be

doubled from 832 to 1664 if requiring a higher target frame rate.
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Regarding the timing characteristics, for a frequency of 143 MHz, the post-router timing reports a

Worst Negative Slack (WNS) of 0.05 ns and a Worst Hold Slack (WHS) of 0.03 ns, therefore, the final

system meets the timing constraints for a clock period of 7 ns.

7.3 Execution time

The execution time of the YOLOv3-Tiny detector implemented over the IOb-SoC-Yolo platform is repre-

sented in Table 7.3. The total execution time is 30.9 ms, exceeding the target frame rate of 30 FPS.

Table 7.3: Performance of the YOLOv3-Tiny detector in the IOb-SoC-Yolo platform.

Section Execution time (us) Section Execution time (us)
Width resize (pre-CNN) 1,089 Layer 13 6,629
Height resize (pre-CNN) 1,941 Layer 14 539

Layer 1/2 856 Layer 15 1,657
Layer 3/4 1,627 Layer 16/17 274
Layer 5/6 1,645 Layer 19/20 116
Layer 7/8 1,644 Layer 22 4,966
Layer 9 1,679 Layer 23/24 632
Layer 10 236 Get detections (post-CNN) 1,941
Layer 11 1,642 Filter boxes (post-CNN) 136
Layer 12 267 Draw detections (post-CNN) 1,370

Total time (ms) 30.9

In comparison with the software baseline (Table 6.3), the pre-CNN was accelerated from 1s to only

3ms and the drawing detections method from the post-CNN was improved from approximately 12ms to

nearly 1.4ms, both mainly due to the reduction of the communication time between the FPGA and the

external memory by using the DMA engine inside the IP core. The highest speed-up was achieved for

the acceleration of the CNN from 968 seconds to only 24.4ms, which is very close to the theoretical

value estimated in Section 6.4.1 (i.e., 23.4 ms).

Table 7.4 compares the execution time of the fixed-point model of the YOLOv3-Tiny detector imple-

mented over the IOb-SoC-Yolo platform with the original floating-point model from Darknet executed in

both CPU and GPU. IOb-SoC-Yolo is nearly 27 times faster than the CPU version and only 2 times

slower than the GPU version, being however more suitable for embedded systems.

Table 7.4: Performance comparison of the YOLOv3-Tiny detector in different platforms.

Platform Execution time (ms) FPS
CPU (Intel i7-8700 @ 3.2 GHz) 828.3 1.2

GPU (RTX 2080 Ti) 15.4 64.9
FPGA (IOb-SoC-Yolo) 30.9 32.4

One key aspect when accelerating the detector with the developed IP core was to ensure that the

communication time of the weights and FMs between the external memory and the accelerator was

lower than the time required to compute the results in each run by choosing adequate width tiling factors.

Figure 7.2 compares the communication and computation times of the detector for each CNN layer. In

most layers, the computation time doubles the communication time, which means that the CNN could

still be accelerated with a higher parallelism factor.
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Figure 7.2: Comparison between the computation and communication times.

The execution time of the CNN is always constant, as long as the parallelism factor is kept. On

the other hand, the pre-CNN execution time depends on the dimensions of the input image whilst the

post-CNN execution time depends on the number of candidate and final detections. For both software

baseline and final firmware, the timing results obtained were for an 768x576 input image from which the

detector finds 5 candidate boxes and 4 final detections.

Figure 7.3 represents the variation of the execution time of the pre-CNN according to the resolution of

the input image. The width resize method is slower for wider input images and the height resize method

increases its execution time for squarer input images.

Figure 7.3: Execution time of the pre-CNN depending on the input image resolution.
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In turn, Figure 7.4 shows how the post-CNN execution time rises when detecting more candidate

boxes and final detections, which could result from the reduction of the threshold score. Note that the

increase of the execution time of the detector when requiring a higher input image resolution or a lower

score threshold can be compensated with the reduction of the execution time of the CNN by applying a

higher parallelism factor, as mentioned above.

Figure 7.4: Execution time of the post-CNN depending on the number of detections.

7.4 Comparison with FPGA-based implementations

At the time of writing of this document, three others implementations of the YOLOv3-Tiny detector in

FPGA are reported in the literature. All three implementations consist of hardware/software co-designs.

The IOb-SoC-Yolo is compared with these implementations in Table 7.5.

Table 7.5: Comparison of FPGA-based implementations of the YOLOv3-Tiny detector.

[34] [35] [36] IOb-SoC-Yolo
FPGA UltraScale+ XCZU9EG Virtex-7 XC7VX485T Zynq 7020 UltraScale XCKU040

Frequency (MHz) - 200 100 143
LUT (K) - 49 26 119
BRAM - 70 93 384
DSP - 2304 160 878

Images/s 104.2 - 1.9 32.4
Unrolled loops - 1,2,4 1,2,4 2,3,4
Precision (bits) 8 18 16 16

GMAC/s - - 5.3 90
MMAC/s/kLUT - - 203.8 756.3
MMAC/s/DSP - - 33.1 102.5

In [34], the YOLOv3-tiny model is first trained using the Caffe framework over a dataset for pedestrian

signalling and then quantized with 8-bit fixed-point. The backbone network is accelerated by the FPGA

whilst the detection layers are handled in software by the hard processor. The author claims a throughput

of 104.2 FPS without detailing the hardware architecture or resource consumption.
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[35] applies batch-normalization folding and post-training quantization of 18 bits. Only the convo-

lutions are handled in hardware and all the other layers and activation functions are implemented in

software. The hardware architecture exploits the inter-FM, inter-convolution and intra-convolution par-

allelisms with a total parallelism factor of 2304. In comparison with IOb-SoC-Yolo, the total parallelism

factor is over 2.5x higher, which would justify a higher throughput. However, the only performance metric

reported is the number of MAC operations per second, calculated from the product between the number

of DSPs and the frequency. Therefore, the actual throughput is not reported and no fair performance

comparison can be done between the two works.

[36] accelerates all YOLOv3-Tiny layers in hardware. In comparison with IOb-SoC-Yolo, the intra-

convolution parallelism (loop 1) is exploited instead of the intra-FM (loop 3), the data is also quantized

with 16 bits and the throughput is about 17x lower. Note that the Zynq 7020 device has between 4 and

8x less hardware resources than the UltraScale XCKU040 (depending on the specific FPGA primitive).

Both works perform 16-bit MAC operations and, based on the MAC operations per second, IOb-SoC-

Yolo has better performance and also better area efficiency in terms of LUT and DSP consumption.

The IOb-SoC-Yolo platform is constituted by a soft-processor with a lower performance and executed

at a lower frequency in comparison with the hard processor present in the other works. Still, the system

is capable of achieving a real-time performance as the software development is simplified at the expense

of the features supported by the hardware accelerator. For instance, the integration of the DMA frees

the CPU from handling data transfers to only execute the configurations of the FUs. The number of

configurations are invariant to the number of FUs in the design, consequently reducing the configuration

time and the size of the firmware code. The hardware also abstracts the CPU from managing the

configurations in pipeline fashion and the ping-pong operation of the memories.

All the other works only focus on the acceleration of the CNN part of the YOLOv3-Tiny detector. In

turn, this work executes the full process flow of the detector by adding the image resize prior to the CNN

and the drawing of the detections after the CNN. The reconfigurable interconnections of the VersatCNN

IP core allow to form different datapaths to accelerate more than only CNNs. As a result, the core is also

able of accelerating the pre and post-precessing parts of the detector.

7.5 Final remarks

Most of the target FPGA resources used by the IOb-SoC-Yolo system are occupied by the VersatCNN

IP core. Less than half of the majority of the resources available are required, which means that higher

parallelism can still be exploited if requiring a higher target frame rate. The system achieves 32.4 FPS

for the full YOLOv3-Tiny detector (i.e., including pre and post-CNN), which is nearly 27x faster than the

original floating-point model running on an external CPU and only 2x slower than the GPU version. In

comparison with other implementations of the YOLOv3-Tiny detector in FPGAs, IOb-SoC-Yolo presents

better performance and better area efficiency for the case where a fair comparison is possible. The real-

time performance obtained demonstrates that the VersatCNN IP core is a valid solution for accelerating

CNN-based networks.
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Chapter 8

Conclusions

This work presents the development of a new extension for the Versat reconfigurable processor called

VersatCNN, which is optimized for the acceleration of CNNs. This hardware accelerator is added as

another peripheral in the IOb-SoC platform with the purpose of accelerating the YOLOv3-Tiny object

detector. The IP core is parameterized taking into account the characteristics of the CNN and the

available resources in the target device, achieving a performance over 30 FPS.

8.1 Achievements

The state-of-art object detectors are firstly studied and divided in two categories: two-stage and one-

stage detectors. The two-stage detectors achieve higher localization and object recognition accuracy.

In turn, one-stage detectors obtain higher inference speed. Besides of being the detector with the best

trade-off between accuracy and execution time, YOLOv3 includes an alternative network for constrained

environments called YOLOv3-Tiny, which is the one accelerated in this work.

The source code from the Darknet framework is reduced to cover only the YOLOv3-Tiny detector and

adapted for resource-constrained embedded systems, which includes the removal of dynamic memory

allocation and complex data structures. The activation functions are approximated by replacing the

multiplications with adders and shifts. The batch-normalization layers are fused with their previous

convolutional layers, thereby reducing the number of parameters and operations of the network. The

original floating-point parameters are quantized for inference using dynamic fixed-point quantization with

a precision of 16 bits. As a result, the fixed-point model presents a mAP50 drop of only 2.1 in comparison

with the original floating-point model.

The software-only version of the YOLOv3-tiny detector is executed on the IOb-SoC platform as base-

line for the hardware acceleration. This system is composed of several peripherals such as a timer to

profile the embedded code, the Ethernet module to send the network parameters to the FPGA and the

UART module to receive the firmware and for debugging. The software baseline presents an execution

time over 16 minutes and the profiling results show that the pre-CNN, all CNN layers and the drawing

detection method of the post-CNN must be accelerated in hardware to achieve the target frame rate.
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The Deep Versat CGRA is analysed and consists of a highly configurable and customisable hardware

accelerator suitable to speed up loop-based applications. This system presents limitations for the accel-

eration of CNNs, which lead to development of the VersatCNN IP core for efficient CNN computation.

The core is an improvement from Deep Versat but inherits features such as the configuration register

files and shadow registers and the AGUs. The improvements involve the implementation of vector FUs

that share configurations between the same type of FUs, the integration of a DMA for fast data transfers,

heterogeneous stages, automatic ping-pong memories and higher loop-level AGUs.

VersatCNN is composed of vRead FUs for reading weights and FM tiles from the external memory,

custom FUs for computation and vWrite FUs for writing the results back to the external memory. The

reconfigurable connections inside the custom FUs allow to form different datapaths to accelerate differ-

ent CNN layers and activation functions. The custom MAC-based FUs are structured in a matrix form to

exploit three types of parallelism (Inter-FM, Intra-FM and Inter-Convolution) and to enhance both pixel

and weight sharing. The core embraces a total of 72 run-time configurable parameters.

The IP core is tested for the acceleration of the YOLOv3-Tiny detector in a FPGA. Its architecture

is pre-configured with a total of 16 weight memories of 32kB, 13 FM tile memories of 64kB and 208

custom FUs, each with 4 MACs, for a total parallelism factor of 832. The yolo, upsample and most

of the maxpool layers are executed alongside the previous convolutional layer. The pre-CNN and the

drawing of the detections from the post-CNN are also accelerated by the IP core. As a result, the system

composed of IOb-SoC and VersatCNN achieves a performance of 32.4 FPS for the full YOLOv3-Tiny

detector, which shows that VersatCNN is a valid solution for accelerating CNN-based networks.

8.2 Future Work

Future developments on this work may include the deployment of a generic infrastructure to demonstrate

the object detector in real-time. For instance, the system could include a camera for receiving input

images in real-time and an appropriate video interface for displaying the resulting images (e.g., HDMI

monitor), instead of transmitting both via Ethernet. Thus, two extra modules for interfacing the camera

and the video stream need to be developed and added as peripherals in the IOb-SoC platform.

In turn, the IOb-SoC platform can be improved in terms of the performance of the soft-processor

and the Ethernet module. Using a CPU with a lower CPI would accelerate the performance of the post-

CNN methods fully executed in software (i.e., getting the detections with score above the threshold and

filtering boxes with NMS). The transfer of the CNN parameters via Ethernet still takes minutes as the

data received goes through the soft-processor and the cache. Coupling a DMA with the Ethernet module

would allow to bypass both soft-processor and cache, reducing the transfer time to seconds.

Finally, the VersatCNN IP core could be further validated by accelerating other CNN-based networks

as the core handles the most common layers (i.e., convolutional, non-linear activation, maxpool). This

hardware accelerator can also be improved for supporting other type of layers. For example, to acceler-

ate the shortcut layers present in the YOLOv3 network, an optional adder can be placed between each

two FM tile vReads to sum pixels from different input FMs prior to the convolution operation.
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