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Black holes are some of the simplest objects predicted by General Relativity, yet they give rise to a
number of interesting phenomena in their vicinities. Amongst these is the interaction of matter fields
with the geometry, through quasi-normal oscillations and gravitational wave emission. Studying such
phenomena could provide valuable insights towards dark matter searches from gravitational wave
astronomy and other sources of astrophysical data.

In this thesis we explore the scattering of real scalar fields, described by the Klein-Gordon equa-
tion, with black hole spacetimes. Our approach focuses on the use of spherical coordinates to take
advantage of the approximate symmetries of the problem. To do so, we start by introducing the
formalism of Numerical Relativity and the BSSN formulation, along with techniques that allow the
use of general curvilinear coordinate systems. Then, we make use of those techniques to evolve both
the metric quantities and matter variables in a non-linear fashion. We implemented, within the
code generation tool NRPy+, modules that allow for the evolution of scalar fields minimally cou-
pled to gravity. Our results for the non-linear scattering of massless fields, as well as the evolution
of pseudo-bound states of massive fields, are consistent with previous linear and non-linear studies
in the literature.

I. INTRODUCTION

General Relativity (GR) is currently the most widely
accepted theory of gravitation. It was proposed by Ein-
stein in 1915, and since then it has been able to ex-
plain several different phenomena, such as the bending
of starlight by the sun [1] or the appearance of gravita-
tional wave signals from binary black hole mergers [2].
Amongst its predictions are Black Holes (BH), regions of
spacetime where the gravitational pull is so strong that
nothing, not even light, can escape. BHs are very in-
teresting objects because they are rather simple – they
are described by the Kerr-Newman family of solutions
[3], which depends only on the mass M , charge Q and
spin per unit mass a – but they are responsible by exotic
events, such as the aforementioned emission of gravita-
tional waves. Therefore, they are extremely interesting
to study, and quite important to move our understanding
of the universe forward.

There are some problems for which GR does not pro-
vide an answer. One such problem is dark matter: ac-
cording to GR predictions, the detectable matter present
in galaxies is not enough to provide sufficient gravita-
tional attraction to hold them together. Therefore, it
is theorised that a form of matter that does not emit
or reflect electromagnetic radiation is present, in large
quantities, in most galaxies, and it is usually referred to
as dark matter.

The literature lists several dark matter candidates that
may help resolve this issue, and each of them may present
different measurable signals one might detect from astro-
physical sources. One such possibility is that of ultra-
light bosonic fields, of scalar or vector nature. This sort
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of matter can interact with rotating BHs and extract
energy from them, in a phenomenon known as superradi-
ance (see [4] for a review on the subject). It was demon-
strated by Zel’dovich in 1972 [5] that a field of the form
ψ ∝ e−iωt+imϕ is subject to superradiant amplification
by an object with rotational velocity Ω if condition

ω > mΩ (1)

is met. This is what happens in the vicinity of a Kerr BH
if a scalar field with these characteristics is present. Fur-
thermore, if the field is massive, an attractive potential
is created and the field remains confined around the BH,
whilst continuing to extract energy from it. This leads
to exponential amplification of the scalar cloud, in a phe-
nomenon that is commonly designated as a superradiant
instability or black hole bomb.

This work aims to study some of the characteristic be-
haviours of scalar fields in BH spacetimes. To do so,
we use Numerical Relativity (NR) techniques to perform
non-linear evolutions of these systems. Furthermore, our
approach is characterised by the use of spherical coordi-
nates, which are better adapted to the problem at hand,
but pose some additional difficulties.

This paper is structured as follows. In sec. II we intro-
duce the basic concepts of numerical relativity, namely
the 3+1 decomposition of the Einstein equations and the
BSSN formulation. Then, in sec. III we address the chal-
lenges one is faced with when wanting to use NR tech-
niques in curvilinear coordinate systems. In sec. IV we
detail the implementation of initial data and evolution
equations for the fields, in secs. V and VI we go over
the results of our study, and in sec. VII we present our
conclusions.
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II. NUMERICAL RELATIVITY IN A
NUTSHELL

NR is the study of Einstein’s equations of GR using nu-
merical techniques, and it emerged as a field of research
almost at the same time that computers were created.
Although numerical techniques for PDEs are well-known,
solving Einstein’s equations on a computer requires ma-
jor theoretical work. There are several approaches to
this, but the most used one – and the one onto which we
focus our attention – is the 3+1 Formalism. It is based
on a Hamiltonian formulation of GR by Arnowitt, Deser
and Misner [6] and, in simple terms, it amounts to decom-
posing spacetime into 3-dimensional space which evolves
along a time coordinate t. For complete references on the
subject, we recommend the books [7–9].

The split between time and space is done by intro-
ducing a foliation consisting of a family of spacelike 3-
dimensional hypersurfaces {Σt} , t ∈ R, each correspond-
ing to a level surface of the scalar field t, which acts as
a global time coordinate. Defining a future-directed unit
normal vector to Σt, n

a, the metric induced on each sheet
of the foliation by the spacetime metric gab is

γab = gab + nanb. (2)

We describe the embedding of Σt into spacetime through
the extrinsic curvature, defined as

Kab = −1

2
Lnγab, (3)

where Ln is the Lie derivative along na. It is also use-
ful to define two quantities, the lapse function α and the
shift vector βa. The lapse tells us how much proper time
elapses, for a Eulerian observer, when going from a hy-
persurface Σt to another Σt+dt, while the shift is related
to the change of the local coordinates when moving from
one slice to the next.

Taking the 4-dimensional Riemman tensor and per-
forming multiple contractions with na and projections
onto Σt gives the Gauss-Codazzi equations. Manipulat-
ing them, with the aid of the Einstein equations, yields
evolution equations for γij , Kij (henceforth we use spa-
tial indices, i, j, ... = 1, 2, 3, which can be shown to be the
only relevant ones when dealing with spatial quantities)
and two sets of constraints, referred to as the Hamilto-
nian and momentum constraints. These evolution equa-
tions are, however, only weakly hyperbolic, and are often
unstable under numerical evolution.

The solution to this problem is the so called BSSN
formulation, named after its creators [10, 11]. In this
formulation, the spatial metric is conformally rescaled
by a function φ, the conformal factor, through

γ̄ij = e−4φγij , (4)

with γ̄ij being the conformally related metric. The con-
formal factor is obtained by

φ =
1

12
ln

(
γ

η

)
, (5)

where γ = det γij and η = 1 is the determinant of the flat
metric in Cartesian coordinates. The extrinsic curvature
is split into its trace K and a traceless part Aij ,

Kij = Aij +
1

3
γijK, (6)

and the traceless part is conformally rescaled in the same
way as the spatial metric. Furthermore, we introduce the
conformal connection functions,

Γ̄i = γ̄jkΓ̄ijk = −∂j γ̄ij , (7)

which, if evolved alongside the rest of the metric quan-
tities, renders the system strongly hyperbolic. Manipu-
lation of the 3+1 evolution equations, along with these
new definitions, gives the BSSN evolution equations,

∂tφ = −1

6
αK + βi∂iφ+

1

6
∂iβ

i, (8a)

∂tγ̄ij = −2αĀij+β
k∂kγ̄ij+γ̄ik∂jβ

k+γ̄kj∂iβ
k−2

3
γ̄ij∂kβ

k,

(8b)

∂tK =− γijDjDiα+ α

(
ĀijĀ

ij +
1

3
K2

)
+ 4πα (ρ+ S) + βi∂iK, (8c)

∂tĀij =e−4φ
[
− (DiDjα)

TF
+ α

(
RTF
ij − 8πSTF

ij

)]
+ α

(
KĀij − 2ĀilĀ

l
j

)
+ βk∂kĀij

+ Āik∂jβ
k + Ākj∂iβ

k − 2

3
Āij∂kβ

k, (8d)

∂tΓ̄
i =− 2Āij∂jα+ βj∂jΓ̄

i − Γ̄j∂jβ
i +

2

3
Γ̄i∂jβj

+ 2α

(
Γ̄ijkĀ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Āij∂jφ

)
+

1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβ
i, (8e)

where the superscript TF stands for the trace free part
of that quantity. We also obtain the constraints

H ≡− 16πρ+
2

3
K2 − ĀijĀij

+ e−4φ
(
R̄− 8γ̄ijD̄jφD̄iφ− 8γ̄ijD̄jD̄iφ

)
= 0, (8f)

Mi ≡ e−4φ
(
D̄jĀ

ij + 6ĀijD̄jφ−
2

3
γ̄ijD̄jK

)
= 0. (8g)

The equations above include the source terms ρ, S, Sa
and Sab, which are given by the expressions

ρ = nanbT
ab, (9a)



3

Sa = −γbancTbc, (9b)

Sab = γcaγ
d
bTcd and S = gabSab. (9c)

The lapse α and the shift βi are gauge quantities, and
they represent, in NR, the intrinsic coordinate freedom
of GR. However, the choice of gauge can make or break
the stability of numerical evolutions. We postpone our
choice until the next section.

III. BSSN IN CURVILINEAR COORDINATES

The derivation of the BSSN equations (8) above as-
sumes Cartesian coordinates, namely when setting the
determinant of the flat metric to unity. Although these
coordinates are the most common in numerical evolu-
tions, they are not the most natural choice for systems
with exact or approximate symmetries. However, if the
BSSN equations are to be written in other coordinate sys-
tems, one needs to consider the tensor density weights of
each quantity, and the transformation rules can become
quite cumbersome.

This difficulty was overcome by Brown [12], who in-
troduced a covariant formulation of the BSSN equations.
The approach is based on setting up a reference metric
γ̂ij , usually taken as the flat metric in whichever coordi-
nates one chooses, and decomposing the conformal spa-
tial metric into a perturbation over γ̂ij ,

γ̄ij = γ̂ij + εij . (10)

Furthermore, the conformal factor φ is now given by

φ =
1

12
ln

(
γ

γ̄

)
, (11)

and instead of imposing γ̄ = η, we instead provide an
evolution equation to γ̄, using Brown’s Lagrangian choice

∂tγ̄ = 0, (12)

and provide the initial condition γ̄ (t = 0) = γ̂.
The issue of covariance is taken care of by noticing

that Christoffel symbols do not transform as tensors, but
differences between two sets of them do. With that in
mind, we can define

∆i
jk = Γ̄ijk − Γ̂ijk. (13)

With this new quantity, we define a new evolution vari-
able, analogous to the conformal connection functions of
eq. (7), as

Λ̄i −∆i = 0, (14)

with ∆i being obtained by contraction of ∆i
jk with the

inverse conformal metric γ̄ij . This allows us to re-write
the evolution equations as

(∂t − Lβ) εij =
2

3
γ̄ij
(
αĀkk − D̄kβ

k
)

+ 2D̂(i β j) − 2αĀij ,

(15a)

(∂t − Lβ) Āij =− 2

3
ĀijD̄kβ

k − 2αĀikĀ
k
j + αĀijK

+e−4φ
[
−2αD̄iD̄jφ+ 4αD̄iφD̄jφ+ 4D̄(iαD̄ j)φ

−D̄iD̄jα+ αR̄ij
]TF

, (15b)

(∂t − Lβ)φ =
1

6

(
D̄kβ

k − αK
)
, (15c)

(∂t − Lβ)K =
1

3
αK2 + αĀijĀ

ij

− e−4φ
(
D̄iD̄iα+ 2D̄iαD̄iφ

)
, (15d)

(∂t − Lβ) Λ̄i =γ̄jkD̂jD̂kβ
i +

2

3
∆iD̄jβ

j +
1

3
D̄iD̄jβ

j

−2Āij (∂jα− 6∂jφ) + 2Ājk∆i
jk −

4

3
αγ̄ij∂jK.

(15e)

The constraint equations keep their form of eqs. (8f, 8g).
In regards to the gauge choice, we employ a covariant

alternative to the standard gauge [13], as recommended
by Brown [12]. This is done by imposing that α evolve
according to the 1+log condition,

∂tα = −2αK, (16)

while βi evolves through a modified hyperbolic Gamma
driver equation. This equation is second order in time,
so we introduce an auxiliary variable Bi, defined as(

∂t − βj∂j
)
βi = Bi, (17a)

thus making the system first order. The evolution of Bi

is then given by(
∂t − βj∂j

)
Bi =

3

4

(
∂t − βj∂j

)
Λ̄i − ηBi, (17b)

where η here is a damping parameter and not the deter-
minant of the flat metric.

The second problem with trying to evolve NR quan-
tities in curvilinear coordinates, such as spherical polar
coordinates, is that of coordinate singularities. It is easy
to show that taking vector and tensor components from
Cartesian to spherical coordinates results in expressions
that diverge wherever r sin θ = 0. This behaviour is also
evident in differential operators that feature in the evo-
lution equations.

The solution for this issue is two-fold. Firstly, when
setting up a numerical grid, one can avoid these sin-
gular points by, for example, setting up a cell-centred
grid. An additional measure that can be taken is that
of analytically eliminating these divergent dependences,
as proposed in ref. [14]. This is done by writing tensor
components in a non-coordinate basis, where the basis
vectors are given by

e(i) =
1

Fi

∂

∂xi
, (18)
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where Fi are the orthogonal scale factors. These scale
factors are defined, assuming an orthogonal coordinate
system, by

Fi =
√
γ̂ii, (19)

where there is no implied sum over the index i. The
assumption of an orthogonal coordinate system garantees
a diagonal reference metric. Computationally, writing
tensor components in this way amounts to rescaling the
usual components, in the coordinate system of choice,
by multiplication of the adequate combination of scale
factors. In the context of BSSN, we define new quantities
hij , aij , λ

i, Vi and Bi as rescaled versions of εij , Āij ,
Λ̄i, βi and Bi, respectively, and rescale the evolution
equations accordingly.

The third and final issue one needs to address in order
to successfully evolve the BSSN quantities in curvilin-
ear coordinates is that of inner boundaries. In Cartesian
coordinates, the limits of the coordinate ranges corre-
spond to physical outer boundaries of the system under
study. However, in curvilinear coordinates, these may
correspond to inner boundaries, due to the periodic na-
ture of some coordinate functions (like the angular coor-
dinates in spherical or cylindrical systems). This leads to
the identification of grid points across inner boundaries
with others in the interior of the domain, and necessi-
tates the application of parity conditions to vector and
tensor components.

The need for grid points across inner boundaries, com-
putationally, stems from the fact that approximation of
spatial derivatives, through methods such as finite differ-
ences, require the sampling of grid functions at a certain
number of neighbouring points in each direction. There-
fore, numerical implementations often resort to ghost
points, which have coordinate values outside their defined
ranges. Across inner boundaries, grid function values at
the ghost points must be substituted by the correspond-
ing values inside the domain, and this correspondence
procedure requires that both the grid points correspond-
ing to inner boundaries, as well as their inner images,
be identified prior to evolution. This identification can
be done, for example, by taking the coordinates of the
ghost point, converting them to Cartesian and then back
to the original coordinate system. If the original coordi-
nates values match the converted ones, the point is at an
outer boundary, otherwise it is at an inner boundary and
the converted coordinates are those of the corresponding
inner point.

When going across an inner boundary, the unit basis
vectors in which we express vector and tensor quantities
may flip their direction. Therefore, tensor components
need to have parity conditions applied to them when a
correspondence is made between a ghost point and the
corresponding inner point. This can be done by comput-
ing the dot products between the unit basis vectors in
the coordinates of the ghost point and the corresponding

inner point,

Pi =
∂

∂xi

(
xjgp
)
·

∂

∂xi

(
xjnew

)
= ±1, (20)

where xjgp and xjnew are the original and converted co-
ordinates of the ghost point, respectively. These parity
values allow the correspondence of inner and ghost points
to be made according to

T ijk...lmn... (x
a) =

(∏
α

Pα

)
T ijk...lmn... (x

a
new) , (21)

with α ∈ {i, j, k, ..., l,m, n...}. Since, in BSSN, quantities
are, at most, of rank 2, it is easy to establish, a priori,
the set of all 10 parity conditions describing all possible
parity types for scalars, vectors and rank-2 tensors.

IV. NUMERICAL IMPLEMENTATION

We now focus in our numerical implementation of the
formalisms detailed above, as well as the coupling of
scalar fields to the evolution of the geometric quantities.
Our implementation is based on NRPy+ [14], a Python-
based tool that aims to generate highly optimised C code
for NR. The base code of NRPy+ was augmented by
several modules that add the ability for the evolution of
scalar fields in curved geometries.

A. Overview of NRPy+

Before the details of the new modules are revealed, let
us quickly review some features of NRPy+. In broad
terms, NRPy+ has the ability to define symbolic expres-
sions for evolution equations and initial data, through its
use of the Python library SymPy. Then, using common
subexpression elimination, it outputs C code that imple-
ments these expressions, as well as means to evolve them
in time, using OpenMP parallelisation [15] and SIMD
vectorisation.

NRPy+ implements a Method of Lines (MoL) evolu-
tion scheme, where the grid functions are sampled in a
discrete spatial grid and are evolved through time us-
ing a time-stepping algorithm, such as a Runge-Kutta
method. The grid is, as discussed above, set up to be
cell-centred, meaning that singular points are avoided,
and one can choose from a number of coordinate systems,
such as Cartesian, spherical, cylindrical and rescalings of
these. A particularly important coordinate system for
the scope of this work is the SinhSpherical one, in which
the radial coordinate r is given by

r = Rmax

sinh
(

x0
ws

)
sinh

(
1
ws

) (22)
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in terms of the NRPy+’s internal radial coordinate x0,
which takes values in between 0 and 1 in this case. This
rescaling of r allows for a higher sampling of the space-
time near the origin, whilst pushing the boundary away
to reduce the propagation of numerical error from the
boundary conditions. The spatial derivatives appear-
ing in the evolution equations are approximated at ev-
ery time step by finite difference methods, with order of
accuracy NFD chosen by the user. The time stepping
algorithm can also be chosen from several options, but
in this work we always choose the well-known 4th order
Runge-Kutta method (RK4). Finally, regarding bound-
ary conditions, NRPy+ implements the method previ-
ously described to distinguish inner and outer boundary
points and to assign the corresponding values to ghost
points, including the parity changes for vectors and ten-
sors. For the outer boundaries we use a Sommerfeld radi-
ation boundary condition, which aims to have the evolved
functions act as waves that go through the boundary with
minimal reflections.

B. Scalar field initial data and evolution equations

The approach used in this work to non-linearly couple a
scalar field Φ to BH geometries is based on that of Okawa
et al. [16], who developed constraint satisfying initial
data for these systems. The scalar fields are described
by the Klein-Gordon equation,(

∇µ∇µ − µ2
S

)
Φ− V ′ (Φ) = 0. (23)

where V ′ (Φ) is a self-interaction potential, set to zero for
the purposes of this work.

It is useful to introduce a new variable Π that will make
the system first order in time, in analogy with what is
done for the spatial metric γij with the definition of the
extrinsic curvature Kij . This variable is defined as

∂tΦ = −αΠ + βi∂iΦ, (24a)

which acts as the evolution equation for Φ. Performing
a 3+1 decomposition of eq. (23) yields the evolution
equation for Π,

∂tΠ =α
(
−e−4φγ̄ij∂i∂jΦ + e−4φγ̄ijΓ̄kij∂kΦ

−2e−4φγ̄ij∂jΦ∂iφ+KΠ + µ2
sΦ
)

− e−4φγ̄ij∂jα∂iΦ + βi∂iΠ. (24b)

The minimal coupling of the scalar field evolution to
the covariant BSSN equations is done through a non-zero
stress-energy tensor, which plays the role of a source of
gravitational field. The stress-energy tensor for a Klein-
Gordon field with V ′ (Φ) = 0 reads

Tµν =− 1

2
gµν

(
∂αΦ∗∂αΦ + µ2

SΦ∗Φ
)

+
1

2
(∂µΦ∗∂νΦ + ∂µΦ∂νΦ∗) . (25)

From this expression for Tµν it is easy to derive the ADM
source terms, defined in eqs. (9). These read

ρ =
1

2

(
Π∗Π + µ2

SΦ∗Φ +DkΦ∗DkΦ
)
, (26a)

Si =
1

2
(ΠDiΦ

∗ + Π∗DiΦ) , (26b)

Sij =
1

2
γij
(
Π∗Π− µ2

SΦ∗Φ−DkΦ∗DkΦ
)

+
1

2
(DiΦ

∗DjΦ +DiΦDjΦ
∗) . (26c)

Constraint-satisfying initial data for the Einstein-
Klein-Gordon system were established by Okawa et al.
[16] for several configurations. In this work we focus our
implementation efforts on Gaussian and dipolar initial
configurations for a scalar field around a Schwarzschild
BH, in isotropic coordinates.

For both sets of initial data, the spacetime configu-
ration is set up by NRPy+’s UIUC BH module, which
generates initial data for a Kerr BH with mass M and
dimensionless spin χ. This module is based on the work
of Liu et al. [17], who proposed a quasi-isotropic radial
coordinate r, which reduces to the Schwarzschild coor-
dinate when χ = 0, and computed the spatial metric
and extrinsic curvature for the spacetime in these coor-
dinates. These initial data allow for the stable evolution
of rapidly rotating BHs. To derive the initial data for the
fields, we take the ansatz

Π =
ψ−5/2√
rπ

F (r)Z (θ, ϕ) , (27a)

ψ = ψS +
∑
l,m

ulm (r)

r
Ylm (θ, ϕ) , (27b)

where ψ = eφ and ψS = 1+M/2r is the conformal factor
of the Schwarzschild metric in isotropic coordinates. Fur-
thermore, Φ is set to zero initially. Imposing this ansatz,
the momentum constraints are trivially satisfied, while
the Hamiltonian constraint is reduced to an ODE for the
ulm,

∑
lm

(
u′′lm −

l (l + 1)

r2
ulm

)
Ylm = −F 2 (r)Z2 (θ, ϕ) .

(28)
By setting F and Z in eq. (28) to

F (r) = A00

√
re−

(r−r0)2

w2 , (29a)

Z (θ, ϕ) =
1√
4π
, (29b)
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where r0 and w are the Gaussian profile centre and width,
respectively, we find the only non-zero ulm for this con-
figuration to be that with l = m = 0, which reads

u00 =A2
00

w
[
w2 − 4r0 (r − r0)

]
16
√

2

{
erf

[√
2 (r − r0)

w

]
− 1

}

−A2
00

r0w
2

8
√
π
e

−2(r−r0)2

w2 . (30)

This initial data configuration is spherically symmetric
with a Gaussian field profile.

It is also possible to establish a dipole configuration by
setting the functions F and Z to

F (r) = A11re
− (r−r0)2

w2 , (31a)

Z (θ, ϕ) = Y1−1 − Y11 =

√
3

2π
sin θ cosϕ. (31b)

The non-zero components of ulm that solve eq. (28) for
this choice are

u22 = u2−2 =− A2
11w

2

80r2

√
3

10π
e−

2(r−r0)2

w2
[
4
(
r4 + r3r0 + r2r20 + rr30 + r40

)
+ w2

(
4r27rr0 + 9r20

)
+ 2w4

]
+A2

11

√
3

5

w
(
−16r5 + 16r50 + 40r30w

2 + 15r0w
4
)

320r2

{
erf

[√
2 (r − r0)

w

]
− 1

}

+A2
11

√
3

5

wr0
(
16r40 + 40r20w

2 + 15w4
)

320r2

[
erf

(√
2r0
w

)
+ 1

]

+A2
11

√
6

5π
e−

2r20
w2

2w2
(
4r40 + 9r20w

2 + 2w4
)

320r2
, (32a)

u20 = −
√

2

3
u22, (32b)

u00 =
A2

11w

16

−2w
(
2r20 + w2

)
e−

2(r−r0)2

w2

√
π

−
√

2
[
4 (r − r0) r20 + (r − 3r0)w2

] [
erf

(√
2 (r − r0)

w
− 1

)] . (32c)

We also propose a simplified, albeit constraint-
violating alternative to the pseudo-bound states detailed
in [16]. The expressions for the initial data can be
achieved by taking the real part of eq. (53) of the refer-
ence, and setting Z (θ) = sin θ. The expressions for the
scalar field, obtained with this method, read

Φ (t, r, θ, ϕ) =
AP√
π
e

−(r−r0)2

w2 cos (ωt+mϕ) sin θ, (33)

Π =
AP
α
√
π
e

−(r−r0)2

w2 (mβϕ − ω) sin (ωt+mϕ) sin θ, (34)

where ω is a frequency and m is an integer.
The evolution equations, BSSN source terms and ini-

tial data detailed above were implemented into NRPy+
by the construction of four modules that generate these
expressions and output them to C code. To test the im-
plementation, convergence tests were made for both the
Gaussian and dipolar initial data. Since this work will be
focused almost exclusively in the latter, we show in Fig.

1 we show the results for that case. For these tests, the
scalar field was initialised with parameters A11 = 0.075,
r0 = 5.0, w = 0.5 and µS = 0. The spacetime configu-
ration was initialised with M = 1 and χ = 0, with the
boundary at Rmax = 20.0, Nθ = 16 and Nϕ = 32.

For this set of parameters, Fig. 1 shows a convergence
of H to zero at the expected rate. This is especially
evident in the vicinities of r0, where the scalar field dom-
inates, while in the rest of the domain the plots coincide
if |H| is not rescaled, hinting at effects such as floating
point precision dominating the numerical error.

V. NON-LINEAR SCATTERING OF MASSLESS
SCALAR FIELDS

Now we turn our attention to the numerical simula-
tions of massless fields in BH spacetimes performed with
the implementation detailed above. For the simulations
detailed in this section, the fields were initialised with the
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TABLE I. Parameters for all simulations performed in this work. In the simulation names, S refers to Schwarzschild, K refers
to Kerr, W means wide, N means narrow and PB means pseud-bound. For the PB case, we chose ω = 0.3929 and m = 1.

Simulation M χ A r0 w µS Nr Nθ Nϕ Rmax ws
SW 1 0 0.04 6.0 2.0 0 398 16 32 100.0 0.25
SN 1 0 0.075 5.0 0.5 0 544 16 32 50.0 0.37
KW 1 0.95 0.04 6.0 2.0 0 452 16 32 100.0 0.22
KN 1 0.95 0.075 5.0 0.5 0 626 16 32 50.0 0.32
PB 1 0.95 0.003 25.0 10.0 0.35 1172 8 16 1000.0 0.17

FIG. 1. Convergence tests for the nonlinear evolution of a
scalar field Φ in a isotopic Schwarzschild spacetime with initial
data of dipole configuration.

dipolar configuration, even in the case of rotating BHs
where these initial data are constraint violating. The
aim is to qualitatively explore the scattering behaviour
of the fields in these spacetimes.

A. Massless scalar fields in a Schwarzschild
background

To begin our qualitative study of the scalar field scat-
tering off a Schwarzschild BH, with constraint-satisfying
initial data, we performed a simulation with parameters
corresponding to the SW line of Table I. To visualise
the results, we performed a slicing of the spatial hyper-
surfaces along the plane ϕ = ±π/2, and redefined the x
coordinate accordingly. The plots for four time slices are
show in Fig. 3.

The first plot to the left shows an early configuration of
the field – Φ is initialised to zero, so it would be pointless
to plot t = 0. As expected, this gives a dipolar config-
uration with Gaussian radial profile. The field is, then,
propagated towards the origin and towards infinity. The
second plot shows the begining of the interaction between
the field and the event horizon, which results in the peri-
odic emission of scalar pulses with decreasing amplitude
over time. This behaviour is consistent with the quasi-
normal ringdown [18], a consequence of the Teukolsky
equations [19] for linear perturbations of BH spacetimes,
where the perturbing fields are expected to oscillate with

constant frequency ωR with exponential damping of os-
cillation amplitude.

To further probe the quasi-normal oscillations of mass-
less scalar fields in Schwarzschild geometries, a narrow
field profile, corresponding to parameters SN in Table I,
was evolved. Then we extracted the scalar field at the
point of coordinates r/M ≈ 15, θ ≈ π/2, ϕ ≈ 0, as well
as the gravitational wave signal, through the Weyl scalar
[20] Ψ4, decomposed into modes of l = 2 at r/M ≈ 30.
The results of these extractions are shown in Figs. 3 and
4. In the scalar channel, the quasi-normal ringdown is
apparent: there is an exponentially damped oscillation
of approximately constant frequency. At t/M ≈ 90 we
see evidence of propagation of error from the boundary,
which is expected from the fact that Rmax/M = 50.0
for this simulation. The gravitational wave channel sees
similar behaviour, which is consistent with the findings
of Okawa et al. [16] and BH perturbation theory.

With the data presented above for the scalar field at
a constant point, as a function of time, an attempt was
made to determine the quasi-normal frequencies for the
dominant modes of oscillation. This was done by de-
composing the scalar signal into spherical harmonics and
fitting a exponentially damped sinusoid to the data. The
results of this analysis, however, were not satisfactory,
revealing a 10% to 20% difference between our results
and those predicted in the data files provided in [21] (see
[18, 22] for details on the calculation of the quasi-normal
frequencies), so we chose not to show them. The ex-
traction of BH mass and spin shown in reference [16] for
similar evolutions sheds some light on the effects that
may justify this difference. The authors show that the
interaction of the scalar cloud with the BH is responsi-
ble for accretion of a relevant portion of the scalar field,
leading to increase of BH mass and spin-up for fields
with large enough amplitude. This change of BH pa-
rameters leads to a change in the predicted quasi-normal
frequencies and, in fact, the increase in BH spin of 15%
to 20% shown in the reference can account for the in-
creased quasi-normal frequency obtained from our fits.
Nevertheless, without accurate measurement of BH prop-
erties, e.g. through the deployment of an apparent hori-
zon finder, we can not take this argument with certainty.
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FIG. 2. Snapshots of the scalar field profile in a Schwarzschild background, for four instants of time, corresponding to parameters
SW of Table I.

FIG. 3. Quasi-normal ringdown of a Schwarzschild BH, seen
in the scalar channel.

FIG. 4. Quasi-normal ringdown of a Schwarzschild BH, seen
in the gravitational wave channel.

B. Massless scalar fields in a Kerr background

To gain a phenomenological understanding of how the
scattering situation, studied above, would change if it oc-
curred in a rotating BH background, and even though
the initial data implemented for the scalar field vio-
late the constraints for these spacetimes, two simulations
were performed, in analogy with the non-spinning case.
For the first simulation, corresponding to the parame-
ters KW of Table I, we proceeded in a similar way to
the Schwarzschild case and ploted the scalar field pro-

file on a plane of ϕ = ±π/2 for four coordinate time
values. These are shown in Fig. 5. Comparison with
the Schwarzschild case of Fig. 2 shows an asymmetry of
the scalar profile, which wasn’t present in the previous
case. This might be explained by the frame dragging ef-
fects present in the Kerr geometry, which force the field
to co-rotate with the BH near the horizon. Neverthe-
less, evidence of quasi-normal oscillation is still present,
as before.

Following, again, the same path as for the
Schwarzschild case, a narrower field profile was evolved
in order to better probe the quasi-normal oscillations in
the Kerr geometry. The initial data parameters for this
simulation are listed in Table I, corresponding to the KN
case. To obtain a visualisation of the quasi-normal ring-
down, we again sampled the scalar field at r/M ≈ 15,
θ ≈ π/2, ϕ ≈ 0, and plotted the results in Fig. 6 as
a function of coordinate time t. Comparing with the
results of Fig. 3, we observe that the spinning case is
characterised, at least on average, by a greater oscilla-
tion frequency – we see around 8 half-periods of oscilla-
tion in this case before the boundary effects dominate,
compared to around 6 in the Schwarzschild case. This
observation is consistent with perturbative calculations
of the frequencies of quasi-normal modes for Kerr BHs,
as ωR, the real part of the quasi-normal frequency ωQNM

should increase when the dimensionless spin χ increases
for the dominant l,m = 1,±1 modes. However, both
the oscillation frequency and the exponential damping
parameter appear not to be constant over time. This
can be due to the aforementioned change of BH parame-
ters from accretion and superradiant amplification of the
field, but also from the fact that rapidly spinning BHs
are capable of exciting modes with larger l, which decay
faster than the fundamental modes, leading to a mixture
of modes at early times.

In Fig. 7 we show the decomposition of the gravi-
tational wave signal into l = 2 spin-weighted spherical
harmonics at r/M ≈ 30 for simulation KN. Comparing
with the results for simulation SN show a split between
the m = 0 mode and the m = ±2 modes, which wasn’t
present in the previous case. However, as before, the
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FIG. 5. Snapshots of the scalar field profile in a Kerr background, for four instants of time, corresponding to parameters KW
of Table I.

FIG. 6. Quasi-normal ringdown of a Kerr BH, seen in the
scalar channel.

FIG. 7. Quasi-normal ringdown of a Kerr BH, seen in the
gravitational wave channel.

behaviour is consistent with the expected quasi-normal
ringdown, where the metric oscillates with a definite fre-
quency and approximately exponential decay in ampli-
tude over time.

VI. PSEUDO-BOUND STATES OF MASSIVE
SCALAR FIELDS

To conclude our analysis, we now show the results for
the evolution of a pseudo-bound initial state around a

Kerr BH, corresponding to parameters PB in Table I.
These can be seen in Fig. 8. Contrary to the previous
plots of this kind, here we show an equatorial slicing of
the spatial hypersurfaces. The plot on the left shows the
initial configuration of Φ, which evolves by being prop-
agated in both radial directions. Furthermore, in the
second plot, the scalar cloud is observed to be rotating,
which is consistent both with the initial data imposed as
well as the frame-dragging effects of the Kerr geometry.
The two middle plots show the emission and propagation
of quasi-normal modes, but these propagate slower than
in the massless cases above due to the attractive poten-
tial created by the non-zero mass coupling µS . Finally,
the two plots on the right show the creation of a long-
lived scalar cloud which slowly disperse over time. These
results are consistent with those for constraint-satisfying
pseudo-bound states presented by Okawa et al. [16].

For this simulation the Weyl scalar Ψ4 was also ex-
tracted, at r/M ≈ 30, and decomposed into spin-
weighted spherical harmonics. Other than the expected
quasi-normal ringdown shown in all previous simulations,
there were no distinguishing features of the pseudo-bound
modes in the gravitational wave channel, which we at-
tribute to the short evolution performed (the time scales
for superradiant instabilities are much larger than our
evolution time). Therefore, for the sake of brevity, we
omit a graphical display of these results here, leaving it
to the main document of this thesis.

VII. CONCLUSIONS

The analysis of the previous sections shows that this
work has achieved a successful implementation of the
evolution equations and initial data for a Klein-Gordon
field into NRPy+. This was shown by the observation
of quasi-normal modes in both scalar and gravitational
wave channels, as well as the creation of long-lived scalar
clouds from pseudo-bound initial data. However, the
work is not without its shortcomings, the most promi-
nent of which being the lack of precise measurement of
significant quantities, such as quasi-normal frequencies



10

FIG. 8. Snapshots of the scalar field profile, initialised to a pseudo-bound state in a Kerr background, corresponding to
parameters PB of Tab. I.

and time evolution of BH mass and spin.
Most of the shortcomings can be justified by the time

constraints this type of work is subject to. Indeed, imple-
mentation of features into an already complex NR code
is not trivial, and many challenges had to be faced along
the way. Therefore, this work should be regarded as an
early implementation, to be completed by future works.
Amongst the many features that should be added to the
implementation, we highlight constraint-satisfying ini-

tial data for scalar fields in Kerr geometries, constraint-
satisfying pseudo-bound states and the ability to evolve
complex fields as the main priorities of future efforts.
Such implementations would allow for the exploration of
yet uncharted effects, such as the superradiant instabil-
ity for scalar fields, which would, in turn, be useful for
dark matter searches and experiments probing beyond
Standard Model physics in astrophysical scenarios.
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