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This work presents a novel extension to the paradigm of Imitation Learning from
Observations by integrating frequency information into the learning structure,
in the context of 3D physically-based running animation. This kind of animation
is very repetitive, thus it may be possible to improve the system by introducing
frequency information. We proposed a Model for Wavelet Augmented Imitation
Learning from Observations, by implementing a Wavelet Transform extraction
component on top of DeepMimic, and conducted empirical tests to further de-
velop and test our approach against the DeepMimic framework. Results show
that the implemented model offered no benefit to the trained policy. Moreover,
there was a dramatic increase in training time and the obtained policy had sim-
ilar performance but was less resilient to external forces, compared to the base
system. The code is available at https://github.com/jocarias/DeepMimic.

Main Concepts

Imitation Learning from Observations; Continuous Wavelet Transform; Convo-
lutional Neural Network; Reinforcement Learning; DeepMimic.

1 Introduction

1.1 Motivation

In the context of 3D computer games, virtual characters play a fundamental
role in the quality of immersion experience provided to the player. In order for
a character to blend in with its surroundings, and thus providing a believable
setting, it must show a natural and realistic animation - often as common forms
of locomotion like walking and running.

Traditionally, these kinds of animations require specialized skills and are time-
consuming to produce. Moreover, they are not able to react to unforeseen or
unprepared interactions, which are bound to happen in complex scenarios, de-
grading the player’s experience.
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Physically-based animation [1, 2, 3, 1] promotes the correct behavior of objects
and characters by exposing them to the laws of physics and thus, providing a
realistic experience. A simple example is Ragdoll Physics, commonly used to
animate a character’s body in specific situations, like unconscious/death anima-
tion.

In recent times, important developments in Deep Reinforcement Learning and to
the hardware which it is run on are allowing new efforts to emerge leading to the
creation of a controller that is able to command the members of the simulated
body, orchestrating a set of synchronized actions that produces an intended
animation, reacting naturally and intelligently to unplanned interactions. In this
context, locomotion animations, like walking and running, are an active area of
intensive research and several approaches have been presented, which can be
divided by the ones that need motion data [1, 2] and the ones that don’t [3, 4].
In terms of the former, while achieving impressive results, some limitations need
to be addressed, such as improving the flexibility of the animation time-wise and
the robustness, given external forces.

It’s also worth noting that improving locomotion of a virtual agent in a simula-
tion may offer benefits, in some cases, to the control of robotics systems in the
real world.

1.2 Problem

This work will focus on the development of a system that, on a human-like 3D
character in a physics-based simulation, will be capable of generating realistic
and robust running animation, from motion data.

The system characteristics we seek to improve are at the level of robustness, the
ability to overcome external random forces, and the time it takes for the system
to reach a realistic animation, one that agrees with a person’s expectation. An
relevant benefit of contextualizing this problem in a physics-based simulation is
the inherent possibility of finding policies capable of recoveries from unexpected
forces, making the locomotion more realistic.

1.3 Hypothesis

Motion data can be a flexible source of different locomotion types and styles.
Imitation Learning from Observations - learning a policy with data from another
agent performing a task - appears to us as the ideal framework from which a
system can be based on, in order to learn simple or even complex motions. For
these types of systems in this context, the input information is often a set of
state variables (position, angles, velocities) with the current configuration of the
character’s body (a set of members/links connected by joints).

In this work, we will explore a new idea based on the observation that the
animation that is our focus - running on even ground - is very repetitive, meaning
every so often the same movement is executed just with minor adjustments



that are needed for a stable locomotion. Given the periodicity of the various
movements, it is our belief that it can be processed in the frequency domain
along the traditional time domain, adding otherwise hidden information that
may help our objectives.

The Fourier Transform and its close variants have been used to better analyze
periodic signals though it suffers from the inability to localize, with some pre-
cision, frequency in time, which will be a necessity for the types of signals that
change abruptly. Wavelets, a more recent approach, have both good time and
frequency localization. This rationale has guided good results, both in images
and sound processing and particular speech recognition, though these types of
signal are quite different among themselves and from the task at hand. Addi-
tionally, Wavelets have been used to analyze walking patterns [5, 6] and even to
compress Human Motion Capture [7].

We believe that the use of Wavelets may bring additional unexplored advantages
to assist in solving our problem so it is our interest to explore the possibility of
using this mathematical tool to transform how the system processes data and
understand its effects on tasks previously mentioned, advantages, if any, and its
limitations.

2 Related work

Here, we present some of the relevant work in two different areas that are perti-
nent to this work. The Character Locomotion Animation section explores some
of the work done in this area and pays particular attention to Deep Mimic, a
state-of-the-art approach. Wavelets in Gait Analysis section presents some of the
work done that is believed to provide a better understanding of their uses and
capabilities in this work’s context.

2.1 Character Locomotion Animation

Being an area of intense past and present research, much ground has been laid
to this day. In the context of physics-based biped character, a diverse number of
techniques are presently available to tackle this challenge.

Due to several recent developments in the field of Machine Learning - particu-
larly in Deep Reinforcement Learning - some approaches have been gathering
notoriety due to their impressive results. In [3] a character learns, using the PPO
algorithm, a large set of locomotion styles with environment awareness.

Muscle-based locomotion [8] provides, to a character, a realistic foundation along
with the proper range and reaction of movement of body members. For instance,
in [9], the authors developed a generic control method compatible with different
bipedal simulated creatures, where no motion data is needed. It consists of the
optimization of muscle routing and control parameters resulting in the ability of



moving in a target direction at a target speed on irregular ground while being
the focus of external perturbation.

Deep Mimic [!] is a framework for synthesizing physics-based character an-
imation that fuses two distinct learning strategies - Imitation Learning from
Observation and goal-direct Reinforcement Learning.

It is composed of several pre-existing components from different sources com-
bined in such a way that, for a character model, it produces robust animations
that closely follow the given motion data while able to achieve a goal, defined
by a given reward function.

The system handles motion data from two different sources, motion capture
(mocap) and keyframes. Mocap data, which has a duration between 0.5 and 5
seconds, is obtained from Carnegie Mellon University! and Simon Fraser Uni-
versity? Motion Capture Databases while keyframes data comes from artist-
authored animations. The data was manually processed and retargeted to the
different characters.

Following the authors’s convention, the motion data is a sequence of target poses
{G:} and the control policy m(a|s¢, g¢) is the mapping of the character’s state s;
and goal g; to an action ay.

The state s represents the current configuration of the character’s body, de-
fined by several properties for each joint - position (x,y,2), quaternion rotation
(w,x,y,2), linear and angular velocities (both x,y,z). Properties are computed in
the local coordinate frame of the character, being the root (pelvis) at the origin
and the facing direction being along the x-axis. There is also a phase variable ¢
due to the fact that the motion data’s target poses change with time. Its value
sits between 0 and 1, where 0 indicates the start and 1 the end of the motion
where, in the case of a cyclic motion like walking and running, ¢ is reset to 0. An
instance of the state vector starts with the phase variable followed by the root
y value, then a sequence of position and rotation of each joint for all 15 joints,
and ending with a sequence of the linear and angular velocities of each joint for
all joints, totaling 197 variables.

The action contains a set of target angles that are transformed by proportional-
derivative (PD) controllers into torques, which are applied to the model’s joints.
Targets for spherical joints and revolute joints are represented as axis-angle form
and scalar rotation angles respectively.

2.2 Wavelets in Gait Analysis

Human gait analysis, the study of locomotion, is performed taking in consider-
ation the characteristics of the data that supports it - low frequency shape and
high frequency discontinuities [10].

! http://mocap.cs.cmu.edu

2 http://mocap.cs.sfu.ca
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For human muscle activity signals, wavelet analysis has also been extensively
used for diagnostics in a clinical context [11]. Moreover, the differentiation of
gaits from different people, is a useful feature in several different applications;
for instance, the detection of early stages of Parkinson’s disease [5].

Given the variability of options in terms of Wavelet analysis characteristics, it’s
important to find the appropriate ones for the task at hand and some studies
have tried to shed some light on this, particularly for scale [12] and Mother
wavelet [0]. The later work serves the purpose of investigating, in the context
of detecting gait events using Continuous Wavelet Transform (CWT), the dif-
ferences in performance of different mother wavelets for both hemiplegic and
healthy individuals. The authors argue that being able to detect gait events is
essential for several applications in the Human healthcare area like control mech-
anisms in drop foot correction devices, recognizing human activity and aiding the
decision on rehabilitation strategies. When walking, two gait events - heel strike
(HS) and toe off (TO) - are commonly regarded as the most relevant ones in a
normal gait cycle, providing swing, stance and stride parameters information.
Hence, these were the gait events with this type of locomotion that this work
focused on. The source of the data for this study was provided by 16 individu-
als (3 of them were hemiplegic patients) using a wireless tri-axial accelerometer
device on one of the lower legs, just below the knee.

As explained by the authors, the walking cycle can be divided into a double
repetition of a sequence composed of a stance and a swing phase, which begin-
nings are indicated by HS and TO gait events, respectively. These events can be
detected using CWT to process gait data, given the time-frequency connection
between gait event and gait cycle, proved by previous studies that showed the
effectiveness and stability of the CWT, even when subjected to disturbances.

3 Towards a Model for Wavelet Augmented ILFO

In this section we present a Model for Wavelet Augmented Imitation Learning
from Observations (WAILFO). Finishing the chapter, there’s a discussion of the
results.

3.1 WAILFO

DeepMimic [1] applies Imitation Learning from Observations to obtain similar
animations as those shown by the given motion data while under the constraints
of a physics-based simulation. With the objective of developing a system capa-
ble of imitating, robustly, motion data of a running animation, with the same
constraints, we based our system on DeepMimic, a fully functioning system.

The gist of our work is the integration of the Continuous Wavelet Transform
coefficients, obtained from State data, into the system. By making use of the
structure already in place, capable of finding good policies, the implementa-
tion complexity is reduced and the chances of success grow. Thus, the existing



neural networks are the target of the set of modules developed/used in this
work. The added modules are a Memory Buffer (to save State data), a CWT
(to transform several instances of the State data) and a CNN (that outputs
scalogram features). These are connected by the following pipeline: a sequence
of DeepMimic’s State variables are saved in the Memory Buffer, which feeds into
a Continuous Wavelet Transform (CWT) that, for each state variable, returns
the respective coefficient matrix. Each coefficient matrix, like an image, is the
input of a Convolutional Neural Network (CNN) that outputs high level scalo-
gram features to DeepMimic’s existing network, alongside the State Vector. The
complete network can be seen in Figure 1.
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Fig. 1. Architecture of the policy network of the proposed WAILFO model. The mod-
ules of the new pipeline are in red (Memory Buffer and CWT) and green (CNN). Its
output, alongside state variables, provide the input for the sequence of two fully con-
nected layers. The final layer contains linear units that outputs target angles for the
PD controllers of the joints. In the scalogram, which shows the CWT coefficients of
the signal above it, the red color represents positive coefficients, blue color represents
negative coefficients and white represents values close to zero.



It was expected that the new additions would represent a significant computa-
tional weight to the CPU on an already demanding load - state variables may
need to be acquired more frequently, i.e. among policy updates; then stored/disposed
in a first-in first-out (FIFO) buffer; the history of each variable is transformed
by the CWT into a scalogram; all the scalograms are processed by the CNN. Of
notice is the ability of DeepMimic to train with several parallel agents using dif-
ferent CPU threads. Since the state is unique to each agent, all the calculations
mentioned previously have to be performed in each thread.

The humanoid model is used to provide the embodiment for the system in the
environment whose state information (this model’s joints and phase variable)
are fed to a network of 2 fully connected layers. By using the PPO algorithm, 2
similar networks are created in order to find the best policy - one used as actor,
outputting the target angles for the PD controllers of the joints of the humanoid
model, and one used as critic, returning the believed value of the current state.
While being part of DeepMimic’s capabilities, the goal input is ignored for this
work alongside the ability to add terrain height information, since only regular
terrain is used. The running animation, which is the target of the policy, is the
one provided by mocap data already included in DeepMimic. In terms of Wavelet
Transform type, the choices depend on the application. For our case - the need
to analyze state signals - Continuous Wavelet Transform was chosen. This had
the predicted drawback of being more computational intensive.

A reduced state was adopted, which contains the phase variable (1D), root linear
velocity (3D), and the rotations from the right (4D) and left (4D) ankles, root
(4D), right hip (4D), right knee (1D), right shoulder (4D), right elbow (1D), left
hip (4D), left knee (1D), left shoulder (4D) and left elbow (1D) for a total of 36
variables.

Additionally, DeepMimic uses a strategy called early termination (ET) - stopping
the learning episode when the character falls on the ground - that could interfer
with the new model. To replace it, a new learning strategy, named Baby Walker,
was introduced that allowed the character to remain in a straight position and
floating in the air, by applying forces to the root joint.

3.2 Evaluation

In Figure 2 a) we can observe the performance difference between the base Deep-
Mimic system and the WAILFO model. The base system reaches 0.91 while the
new model does not surpass 0.88; as an additional comparison, the reduced state
with Baby Walker system passes over 0.89. Figure 2 b) shows the training times
of each system. The WAILFO model takes close to 2.4x more time than Deep-
Mimic (or the reduced state) without bringing any improvements. Additionally,
empirical tests show that the character using the policy is less resilient to external
forces. All tests used an Intel Pentium G4560 CPU (Hyper-threading enabled)
with 8GB RAM, running 2 agents (2 threads).
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Fig. 2. Performance a) and training time b) comparison between DeepMimic baseline
(blue), Reduced state with Baby Walker (orange) and the implementation of WAILFO
model (green). Wall_Time is in hours.

4 Conclusions

The WAILFO model is a first instantiation of the novel approach, for this con-
text, of introducing frequency information to the learning structure. The results
are clear - the implemented model offered no observed benefits at the cost of
training time and resilience to external forces. Some limitations may explain the
results - the CWT calculations are demanding and the resulting scalograms, due
to memory constraints, needed to be small and fewer; the CNN also increased the
CPU load and there was the need for a simple network since it was not possible
to use the GPU for the calculations. Despite this, we learned that some aspects
of the implementation aren’t advisable, namely saving scalograms in the replay
buffer and calculating higher CWT scales (which we can consider wasted com-
putational resources) or using a logarithmic scale distribution. We conclude that
the broad approach is worth further investigation, whether with this particular
model or other, but always with more computational power. Some compelling
alternatives are introduced in the next section.

During this work, some realizations about the base system were obtained. Deep-
Mimic is a marvellous framework with advanced capabilities, very complete and
optimized; the lacking of GPU support and the inability to resume training are
the main shortcomings of an otherwise great system. In terms of learning assis-
tance and as an alternative to early termination (ET), the Baby Walker strategy
seems a simple and effective way to help the learning process and can be con-
sidered a valid Curriculum Learning procedure - learning a task with increasing
steps of difficulty.



4.1 Future work

The most pressing change to the model’s implementation is separating the CNN
and the existing neural networks. The CNN is trained, independently, with an
augmented mocap data (synthetic intermediary data with small random varia-
tions is introduced) to predict the respective value of the phase variable. Then the
weights are saved and locked from further learning. When building the pipeline
with DeepMimic, the output unit (along with its connections) is discarded and
the last fully connected layer values are fed into the input placeholder of the
existing networks. This brings several advantages: the CNN learns more useful
features since it trained with small variations of a perfect running animation;
during policy learning, the computational load is reduced since the CNN only
processes the input and does no longer learn; an array with the values of the last
fully connected layer is saved in the replay buffer instead of a set of scalograms
(eliminating the memory limitations of the current implementation), allowing
for more channels and a more detailed scalograms.

To further improve this new implementation, logarithmic scale distribution will
bring faster CW'T processing and more detailed to higher frequencies. It may also
be worth checking if discarding (and, if possible, preventing the processing of)
the COI area from the scalogram helps the learning. Finally, looking into other
mother wavelets might reveal one more appropriate (with better performance)
for this problem.
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