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Abstract—In humans, the DNA molecule encodes a program

written in a 4-character language using a 3-billion-long-text,

which defines the behavior and function of each cell in the

organism.

Understanding how this code (genotype) produces it’s

output (phenotype) is the topic of decades of research.

Portions of this code - genes - contain the instructions to

build proteins. Regulating the amount of proteins in a cell at a

given time is of utmost importance for its correct functioning.

The code for the production of a protein is copied from

its storing location and delivered to its production site by

a molecule termed messenger RNA (mRNA). The variable

length 4-character-language sequence contained in the mRNA

molecule partly determines the time window it stays functional

and can be measured by its half-life. The longer the mRNA is

available, the more proteins will be produced from it.

Here, we model mRNA half-life and its variations across

different human cells through the task of predicting mRNA

half-life from its sequence.

Linear regression modeling allowed us to evaluate the

quantitative impact of each known mRNA sequence feature

on half-life and its variation across cells. Together with high

dimensional data analysis and visualization techniques, we

uncovered a previously unknown connection between a cell’s

energy production and mRNA half-life through its translation.

A multi-task deep neural network was developed to predict

a tissue’s cell mRNA half-life variation and its overall perfor-

mance indicates its further usability on other domains such as

in tissue specific gene expression modeling.

Lastly, we developed deep convolutional neural network

models for half-life prediction from sequence and subsequently

interpreted them using the tools DeepLIFT and TF-MoDISco,

revealing new possible sequence portions or motifs which

potentially regulate mRNA half-life.

1. Introduction

The genome of an organism contains all the instructions
which command its cells’ response to environmental cues
and their development throughout the life-cycle of the or-
ganism. The ultimate aim of the program encoded in the

genome is to create the set of traits and responses which
define a living being - the phenotype.

The genome program is encoded in the DNA molecule
as a text written in a 4-character vocabulary corresponding
to the DNA bases Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T). In humans this text is 3 billion-characters
long. Finding out how this text produces the phenotype
corresponds to fitting a function of domain of minimum
length 3⇥ 109 to the phenotypic space.

The main building blocks of the cell, RNAs and proteins,
are the functional products whose instructions for their
construction are encoded in certain portions of the genome
called genes. The process comprising the steps which create
a functional product from a gene is called gene expression.

The central dogma of molecular biology states that
firstly, gene expression starts in the nucleus of the cell
with the transfer of the information of a gene from the
densely packed DNA molecule to an RNA molecule through
a process termed transcription. Analogously to computer
architecture, such process can be interpreted as a reading
of the gene program from the disk (DNA molecule) into
the RAM (RNA molecule). Secondly, the resulting RNA
molecule, termed RNA transcript, is processed in a step
called splicing, were certain portions of the RNA sequence,
the introns, are removed and the remaining ones, the exons,
are put together. Thirdly, in case the functional product of
the gene is a protein, this RNA transcript is transported to the
cytoplasm of the cell and subsequently used as a template to
produce proteins in a process called translation (see Fig. 1).
In this sense the RNA molecule acts as a message carrier,
delivering the instructions for the design of a protein to
its production site. For that reason, this RNA molecule is
termed messenger RNA (mRNA).

The regulation of protein levels is vital to cellular func-
tioning. mRNA degradation is one mechanism which allows
for the regulation of protein amounts. Once in the cell’s
cytoplasm, the mRNA molecule can be used to produce mul-
tiple equal proteins through a molecular decoding machine
called ribosome. Over time, the mRNA molecule degrades,
making it unable to be used again. Therefore, the time
window an mRNA molecule stays available for translation
will influence the number of produced proteins encoded



Figure 1. The steps from a gene to a protein. The DNA molecule is stored
in the nucleus of the cell on chromosomes. A portion of this DNA molecule
- gene - is transcribed into RNA, processed in a process called splicing and
subsequently used as a template to form multiple equal proteins.

from it.
After termination of mRNA transcription, the abundance

of mRNAs over time can be described by:

mRNA abundance(t) = mRNA abundanceti ⇥ e��⇥t (1)

where, t stands for the time interval from the last instant
with steady state mRNA abundance, ti, to the current instant
and � is the degradation rate [1]. The time interval which
encompasses the reduction of the amount of available-to-
translate specific mRNAs in the cell to its half is termed
mRNA half-life. The mRNA degradation rate is proportional
to the inverse of its half-life:

mRNA half-life =
ln(2)

�
(2)

Each mRNA molecule can be divided into 5 regions:
5’Cap, 5’UTR, coding sequence, 3’UTR and poly-A tail.
The 5’UTR, coding sequence and 3’UTR regions contain
the code encoded by the gene and carried by the mRNA
molecule in the form of a unique set of Adenine (A),

Cytosine (C), Guanine (G) and Uracil (U) nucleic acids or
bases bound in a single strand. The base thymine (T), the
DNA molecule equivalent of uracil (U) is sometimes used
interchangeably to refer to the base U.

Figure 2. Schematic illustration of an mRNA molecule and its structure.
Each blue, red, green and yellow positions in the figure represent the bases
A, U, G and C respectively. [2]

The coding sequence of an mRNA contains the set
of bases which encode the design of a protein. Amino-
acids, the unit-blocks of proteins are encoded in the coding
sequence of the mRNA in sets of 3 bases termed codons.
Codons are disposed in the coding sequence as sets of
adjacent non-overlapping base triplets.

Genneraly, the coding sequence starts with the triplet
AUG, also called start codon, which encodes the amino-acid
methionine. The ending of the coding sequence is generally
marked by one of UAA, UAG, UGA which are termed stop
codons. These codons do not encode any amino-acid, their
only function is to mark the end of the coding sequence.

Given that there are 4 possible bases for each mRNA
sequence position and that each codon is composed of 3
bases, the amount of different codons is 43 = 64. Because
the number of different amino-acids in a protein is 20, a
number of codons will encode the same amino-acid. This
property is termed codon degeneracy. A codon belonging
to a set of codons which encode the same amino-acid is
defined as synonymous codon.

The 5’UTR or 5’ untranslated region, is the mRNA
sequence which encompasses the first base from the 5’ end
of the mRNA to the last base before the start codon. This
coding region is particularly important for the assembly of
the ribosome - the translational molecular machine - on the
mRNA.

The 3’UTR or 3’ untranslated region is composed of the
sequence from the first base after the stop codon to the last
base of the gene-encoded mRNA sequence (right before the
poly-A tail).



Some proteins or small non coding RNAs (microRNAs)
bind to specific sequence portions of the 5’UTR or 3’UTR
termed motifs. This RNA binding molecules directly influ-
ence the fate of the mRNA and the translation process. Both
the 5’UTR and 3’UTR can encode diverse motifs suitable
for regulation of the mRNA in different cell conditions [3].

The sequence in the mRNA defines its interaction with
other molecules in the cell such as proteins or RNAs, its
molecular structure and in part the translation process, all
of which have a direct impact on mRNA half-life. Some
elements of the sequence have already been found to be
associated with half-life, however a quantitative measure of
the influence of these elements in mRNA half-life in human
cells to our knowledge does not exist and many are yet to
be discovered.

In [4] a model for mRNA half-life prediction on yeast
- the highly studied unicellular organism used in baking
and the production of alcoholic beverages for thousands of
years - which uses only mRNA sequence features was able
to explain 59 % of half-life variability between mRNAs.
This surprising result set the way for the extension of the
quantitative modeling and evaluation of the sequence impact
on mRNA half-life in human cells.

Furthermore, the variation of mRNA half-life between
human tissues is still far from being extensively studied and
quantitatively evaluated.

Deep learning models are now being used to predict
several properties and phenotypes of genes and RNA from
their sequence. However no such models have focused
on predicting half-life from mRNA sequence. Furthermore,
many regulatory sequence motifs influencing half-life are
still to be discovered.

The presented work leverages the modeling of mRNA
half-life through deep learning and regression techniques
to address how much of half-life variabilty in human cells
we can predict from sequence; what roles the main mRNA
known sequence features such as codons and UTRs have;
how these features’ influence vary between human cells
from different tissues; and are there novel mRNA sequence
motifs.

Addressing these questions, we developed a linear re-
gression model explaining the quantitative influence of the
most well known sequence features impacting half-life in a
specific human cell line. We created a deep convolutional
neural network for mRNA half-life prediction and applied
the interpretation tools DeepLIFT [5] and TF-MoDISco
[6] to evaluate the quantitative influence of each sequence
position in the prediction output, which revealed possible
novel regulatory motifs. We produced a multi-task neural
network model for the prediction of mRNA half-life varia-
tion between cells from different human tissues. Lastly, we
developed a new model-interpretation-based metric which
characterizes the effect of the mRNA sequence translation
in tissue specific variations of its half-life. Further inspection
of this metric uncovered a previously unknown possible
connection between a tissue’s cell specific mRNA sequence
translation effects on half-life and its energy production.

Overall, both the models and the new metric produced
in this work can be integrated in approaches to evaluate the
impact of mutations in the genetic code of individuals, which
in turn helps diagnose and prevent diseases and develop
drugs [7].

Furthermore, the quantification of the impact of several
sequence features on half-life and the possible uncovering
of a new energy-production related pathway add to our
understanding of cell biology and can further be the focus
of new research.

2. Materials and Methods

2.1. Modeling mRNA in a human cell-line

2.1.1. Data source and brief description. The half-life
dataset was obtained from transient transcriptome sequenc-
ing (TT-seq) on K562 chronic myeloid leukemia human
cells. This dataset consists of 9426 half-life values for each
transcript major isoform. The used gene annotation and
genomic sequence were GENCODE version 24 and the hg38
(GRCh38) genome assembly (Human Genome Reference
Consortium) respectively. For more details see [8].

The half-life measurements follow a distribution approx-
imately symmetric to the median in the logarithmic scale.
The 75% quantile is located at 558.27 minutes (9h:18min).
The median value is 329.08 minutes (5h:29min), and its
standard deviation 967.04 minutes (16h:07min). The maxi-
mum half-life is approximately 795 hours or 33 days.

2.1.2. Feature extraction. For each transcript major iso-
form, each sequence was retrieved using the annotations
from GENCODE version 24 and the human genomic se-
quence from GRCh38. The retrieval was made using the
Python packages pyranges, pybedtools, kipoiseq.

The sequences are retrieved as strings with variable
length encoding one of A, T, G, C in each position. For
each transcript, the 5’UTR, coding sequence and 3’UTR
are retrieved separately.

Only transcripts which have a coding sequence starting
with the string triplet ”ATG” (which corresponds to the
start codon AUG) are used, in order to avoid incomplete
or uncertain annotations.

Each codon content of the coding sequence was obtained
by counting all the non overlapping different triplets starting
from the first position of the coding sequence until the last.
Every coding sequence was checked for having length which
is a multiple of 3.

The frequency of a codon i in a coding sequence is
defined as #codoni

#codons , where #codoni is the number of codons
i in the coding sequence and #codons is the number of all
codons in the coding sequence.

The GC content of a sequence is defined as
#G+#C

#A+#T+#G+#C , where A, C, G, T are the bases in the
sequence and #A+#T+#G+#C is equal to the sequence
length .

uAUG is a binary variable defining the presence of a
”ATG” triplet in the 5’UTR of the transcript.



uORF is an integer variable defining the amount of ORFs
in the 5’UTR.

Kozak is a binary variable defining the presence of the
sequence (A orG)CCAUGG around the start codon (AUG).

PUM motif is an integer variable defining the amount
of UGUANAUA in the 3’UTR.

2.1.3. Ridge regression. The linear model used was a
Ridge regression with regularization strength ↵ = 0.01. The
explained variance score was used to evaluate the model’s
performance. After feature extraction, and data processing
the number of data points was 6524 with 78 features each.
The model was fitted in a k-fold cross-validation scheme
with 10 folds. The performance of the model was evaluated
as the mean of the explained variance scores obtained on
the 10 folds. The model was ran through the scikit-learn
Python package.

2.1.4. CNN Hyperparameter optimization. The choice of
the batch size, maximum sequence length size and model ar-
chitecture parameters - part of the model’s hyperparameters -
were optimized on the validation set using the mean squared
error as evaluation metric, through bayesian hyperparameter
optimization, implemented on the python package wandb
(Weights and Biases). The architecture parameters com-
prised the number of (1-dimensional) convolutional layers,
the number of filters on each layer, the size of the filters for
all layers, the option to double the amount of filters relative
to the previous layer, the option to halve the filters’ size
relative to the previous layer, the option to do a maxpooling
operation after each convolutional layer, the option to per-
form global maxpooling after the last convolutional layer,
the number of dense layers, the size of all dense layers and
the option to halve the size of dense layers relative to the
previous one.

After hyperparameter optimization, the final 5’UTR con-
volutional neural network had as input a batch with 9
sequences with maximum length 3625 bases during training.
If a sequence length was smaller than the maximum length,
then the sequence was padded with zeros until having maxi-
mum length. A sequence with length higher than maximum
length was cut. The resulting convolutional neural network
for the 5’UTR model had 1376 parameters and consisted of
layers with the following ordering:

• convolutional layer with 11 filters of dimension 8⇥4
and activation function ReLU

• maxpooling layer with pooling size 2
• convolutional layer with 22 filters of dimension 4⇥4

and activation function ReLU
• global max pooling layer
• dense layer with output 1 neuron

After hyperparameter optimization, the final 3’UTR con-
volutional neural network had as input a batch with 25
sequences with maximum length 4180 bases during training.
The resulting convolutional neural network had 10161 pa-
rameters and consisted of layers with the following ordering:

• convolutional layer with 16 filters of dimension 10⇥
4 and activation function ReLU

• convolutional layer with 32 filters of dimension 10⇥
4 and activation function ReLU

• global max pooling layer
• dense layer with 128 output neurons and activation

function ReLU
• dense layer with output 1 neuron

2.1.5. DeepLift. The DeepLift algorithm was applied based
on the available implementation at github on kundaje-
lab/deeplift. Ten reference sequences were created from
randomly shuffling the original one. The contribution scores
using each reference where then averaged.

2.1.6. TF-MoDISco. TF-MoDISco was applied based
on the implementation available at github on kundaje-
lab/tfmodisco. The following values for the customizeable
parameters were chosen:

sliding_window_size=10
flank_size=5
target_seqlet_fdr=0.15
trim_to_window_size=15
initial_flank_to_add=5
kmer_len=5
num_gaps=1
num_mismatches=0
final_min_cluster_size=60

2.2. Modelling the variation of mRNA half-life

across human tissues

2.2.1. Data. The used dataset comes from the Genotype-
Tissue Expression (GTEx) project version 7. It comprises
11688 RNA-seq samples from 714 individuals on 27 differ-
ent major tissue types. These samples were collected after
the death of the individual.

2.2.2. Processing of exonic and intronic coverage. Exons
were flanked by 10 bases on each side. The reads mapping
completely inside exons were selected as part of the the
gene’s exonic reads. The reads mapping completely inside
introns were selected as the gene’s intronic reads. Following
a similar procedure as in [9], the exonic and intronic reads
were separately normalized for library size. The sum of
exonic and the sum of intronic reads of each gene were
then log2 transformed and a pseudo-count of 1 was added
to the log2 argument. We define log2(exon) and log2(intron)
as the exonic and intronic reads transformation of the last
step. In the end, a value of log2(exon) and log2(intron) was
obtained for each gene in each RNA-seq sample.

For each gene in each sample the difference:

log2(exon)� log2(intron) = log2

⇣ exon
intron

⌘
(3)

was calculated. Such difference is termed exonic/intronic
ratio. The exonic/intronic ratio of a gene in two different
samples is related to �log2(half-life) by:



�log2(half-life) = log2

⇣ exon
intron

⌘

s1
� log2

⇣ exon
intron

⌘

s2
(4)

where, s1 and s2 correspond to samples 1 and 2 respectively
and �log2(half-life) is the half-life log2 difference between
a gene in sample 1 and 2.

In a last step, the exonic/intronic ratios of each gene
were centered along all samples, meaning that for each
gene, its mean exonic/intronic ratio along all samples was
subtracted from the exonic/intronic ratio of each sample.

The average exonic/intronic ratio for each gene in each
tissue was obtained by averaging the exonic/intronic ratio
of each group of samples belonging to one specific tissue.

The transcript exonic/intronic ratio tissue-specific vari-
ation from the mean exonic/intronic ratio, or centered
exon/intron ratio, is here termed as tissue-specific mRNA
half-life variation.

Genes with average TPM (transcripts per million) lower
than 2 on a tissue were assumed non-expressed genes and
discarded.

2.2.3. Major transcript isoform selection. The major tran-
script isoform was selected per tissue, by picking the gene’s
transcript with the highest median TPM (transcripts per
million) value across all samples belonging to a tissue. The
TPM values for each transcript and sample is available at
the GTEx website (GTEx version 7).

2.2.4. Feature extraction. For each transcript major iso-
form, each sequence was retrieved using the annotations
from GENCODE version 19 and the human genomic se-
quence from GRCh37/hg19. The retrieval was made using
the Python packages pyranges, pybedtools, kipoiseq.

Both the extraction process and the features were han-
dled the same as in 2.1.2.

2.2.5. Multi-task DNN hyperparameter optimization.

A multi-task deep neural network model was developed to
predict each mRNA’s half-life variation for each tissue plus
the mean (28 tasks on total). The input to this model is a set
of 69 features, namely the codon content, the GC content of
the 5’UTR and the base 2 logarithm of the 5’UTR length,
3’UTR length and coding sequence length.

The final multi-task DNN model was trained using a
batch with 10 samples. The model performing best on
a validation set composed of mRNAs corresponding to
chromosomes 4,6,9,10 and 13 (around 22% of the 82%
of mRNAs not belonging to the test set) was selected
and finally, the evaluation was made on a test set with
the mRNAs corresponding to chromosomes 3,18,19,20,21
(approximately 18% of the total amount of mRNAs). There
are on average 9798 mRNA available per tissue. The final
model is composed of 3 fully connected hidden layers with
440 neurons each and activation function rectified linear
unit. The final layer outputs 28 values for each one of the
tasks (tissue mRNA half-life variation + mean). The number
of parameters for this model is 431228.

The loss function used was the mean squared error,
taking into account that for each mRNA its half-life varia-
tion was often not available for some tissues and therefore
those had to be masked. The multi-task DNN model was
optimized using the Adam optimizer with learning rate 1e-
4.

2.3. A tissue-specific codon effect program

2.3.1. Linear regression model. The linear model used was
a Ridge regression with regularization strength ↵ = 0.01. Its
implementation followed the same characteristics as 2.1.3.

3. Modeling mRNA in a human cell-line

3.1. Association between mRNA half-life and codon

content

The plot in figure 3 represents in the y axis the pearson
correlation coefficient between the codon frequency in the
coding sequence and half-life, also termed CSC (codon
stability coefficient). It is possible to see that the frequency
of a codon in the coding sequence associates with half-
life differently, negatively or positively, depending on the
specific codon. Furthermore, the figure indicates that the
association of codons with half-life varies between synony-
mous ones.

Figure 3. CSC grouped by amino-acid. Each color corresponds to codons
encoding the same amino-acid.

3.2. Modeling results

3.2.1. Ridge regression. The mean explained variance score
of the model is 0.153 and the mean Pearson correlation
coefficient between the predicted and measure values is
0.393.

Table 1 contains an overview of the contribution of each
feature to the average explained variance of the model on
the test sets (folds). The individual value of a feature is
the average explained variance of a model fitted only with
that feature. The drop value is the difference between the
explained variance of a model fitted on all features and the
explained variance of a model fitted on all features but the
one in the row. Positions with ”-” correspond to features
with negative individual values.



The codon content feature, which is the joint contribu-
tion of the codon frequencies for all codons, has both the
highest individual and drop values, outperforming the other
features by a large margin - approximately 6 times higher
individual and drop values than the second best performing
feature (log (3’UTR length)).

Some features like PUM motifs have a much higher
individual value then drop value, indicating that their effect
on half-life can be explained by other features.

Others like the stop codons TGA and TAG have a neg-
ative explained variance individually, indicating a possibly
non-existent relevant contribution to the predicted log(half-
life).

TABLE 1. INDIVIDUAL AND DROP EXPLAINED VARIANCE SCORE FOR
EACH FEATURE IN THE RIDGE REGRESSION.

Feature Individual Drop

uAUG 9.88e-3 -4.24e-4
Stop codon TAA 7.10e-5 0.000468
Stop codon TAG - -
Stop codon TGA - -
log (3’UTR length) 0.0274 0.0154
log (5’UTR length) 0.0101 0.00122
log (CDS length) 0.0226 0.00547
GC content 5’UTR 0.0162 0.0112
GC content CDS 0.00310 -3.00e-06
GC content 3’UTR 0.00475 2.80e-05
uORF 0.0119 -2.81e-04
Kozak sequence 1.09e-3 -8.80e-5
PUM motifs 0.0123 0.000398
Codon content 0.116 0.0804

3.2.2. Convolutional Neural Networks. For the 5’UTR
CNN, the best validation performance (mean squared error
= 1.26) was achieved on epoch 134. The training process
was stopped after reaching 40 epochs with no improvement
on the validation set performance. The achieved explained
variance on the test set was 3.329 % and the Pearson
correlation coefficient between the measured and predicted
half-lives was 0.186 (p-value = 2.126e-11).

On the 3’UTR CNN, the best validation performance
(mean squared error = 1.27) was achieved on epoch 64. The
training process was stopped after reaching 40 epochs with
no improvement on the validation set performance. This
model obtained an explained variance of 4.371 % and the
Pearson correlation coefficient between the measured and
predicted half-lives was 0.217 (p-value = 7.264e-14).

3.2.3. DeepLIFT. Using the obtained 3’UTR and 5’UTR
convolutional neural network models, the contribution
scores where calculated for each mRNA 3’UTR and 5’UTR
sequence separately.

Figure 4 shows the contribution scores for the 3’UTR
of an mRNA (PUSL1-201). It is possible to see several
contiguous sequence regions with high positive or negative
contribution scores.

3.3. TF-MoDISco

The TF-MoDISco algorithm was applied for each set of
3’UTR and 5’UTR DeepLIFT contribution scores. The 4

Figure 4. DeepLIFT contribution scores for the mRNA 3’UTR belonging
to the PUSL1-201 mRNA. The y axis represents the contribution score and
the x axis each position on the 3’UTR. The height of the letters reveals
the magnitude of the contribution and the orientation (facing left or down)
indicates the sign of the contribution.

motifs with the most amount of seqlets in the 3’UTR are
represented in figure 5.

The motif with the most amount of seqlets for the 3’UTR
had 662 seqlets and the fourth one had 516. In the 5’UTR
set of sequences, the motif with highest amount of seqlets
had 1361 and the fourth highest motif had 274 seqlets.

For each motif 2 plots are shown. One having the
”real” contribution scores and the other the ”hypothetical”
ones. The ”real” scores are obtained from considering the
contribution score of each base present on the seqlet’s
UTR sequence. The ”hypothetical” scores are obtained from
considering the contribution score of every possible base
for each seqlet position, regardless of it being in the actual
sequence or not [10]. In this way, these scores provide extra
infered/hypothesized information about the contribution of
bases rarely or not seen in the sequence for certain positions
based on the knowledge acquired by the model.

Figure 5. 3’UTR motifs corresponding to the most amount of seqlets
ordered from highest on the top to lowest on the bottom. Each red box
contains one motif, where the top sequence shows the motif with the ”real”
contribution scores for each seqlet and the the bottom sequence shows
the motif with the ”hypothetical” contribution scores. A letter facing up
indicates a positive contribution to half-life a letter facing down indicates
a negative contribution.

In order to further evaluate each motif effect on half-



life, a comparison between the distribution of half-lives with
different number of motif instances in their corresponding
mRNAs was made. Figure 6 represents such a comparison,
for the motif with the most amount of seqlets on the 3’UTR
(AGNCTCA). Notice that, as suggested by the negative mo-
tif scores resulting from TF-MoDISco, this motif is present
on mRNAs with lower half-lives. The median halfl-life fold
change between mRNAs having 2 or more instances of this
motif and mRNAs having no instance is 0.73 (Wilcoxon
ranksum test p-value = 2.42e-18).

Because the UTR length is correlated negatively with
half-life (Spearman correlation coefficient = -0.194, p-value
= 1.71e-57), and the probability of having any random
motif in the UTR increases with its length, the length can
confound the relationship of a certain motif with half-life.
For this reason a new metric f(Half-life) was developed,
which takes into account the length effect. This metric is
calculated by first fitting a linear regression model to predict
log2(half-life) from each UTR’s length, and secondly by
subtracting its predictions from the measured log2(half-life).

When evaluating the motif AGNCTCA this time with the
corrected effect, f(Half-life), the distribution of having 2 or
more instances of this motif compared with 0 instances is
now more similar and the Wilcoxon ranksum test’s p-value
is higher but still significant (1.37e-3).

Figure 6. Boxplot depicting the distribution of half-life for mRNAs with
0,1 or 2 or more AGNCTCA motifs in the 3’UTR.

A similar analysis was made for the second motif with
most seqlets for the 3’UTR - TATTG and for 2 of the top
motifs with more seqlets on the 5’UTR. The sign of mRNA
half-life effects of these motifs agree with the sign indicated
by the TF-modisco motif scores.

Of noting is the statistical significance of the motif
”C (C or A) GCGC”, as measured by the p-value of a
Wilcoxon ranksum test between the distributions of half-
lives of mRNAs with 0 motif instances and with greater or
equal to 2 motif instances. If using the half-life values with
no correction for length, then this motif appears to have no
association with half-life (p-value = 0.636). On the other
hand, when using the half-life corrected by the length effect

(f(Half-life)), the motif association with half-life is positive
and seems to be significant (p-value = 0.0123).

Figure 7. Density plot showing the distribution of the relative position of
TATTG on the 3’UTR of mRNAs. The relative position is computed as the
quotient between the distance from the beginning of the 3’UTR (after the
stop codon) and the total 3’UTR length.

By looking at what position these motifs are found in
their respective UTRs, some patterns were found. Figure 7
shows the distribution of the motif TATTG position relative
to the total length of the 3’UTR. A similar analysis was
made for the motif AAAA. For each distribution its signifi-
cance was tested using a Wilcoxon ranksum test comparing
the distribution and a uniform random distribution with the
same length. The AAAA motif appears to have a preference
for a location on the 5’UTR close to the start codon, and
the TATTG motif appears to have a preference for a 3’UTR
location close to the poly-A tail.

4. Modeling tissue-specific mRNA half-life

variations

The best validation performance of the multi-task deep
neural network (mean squared error = 1.26) was achieved on
epoch 134. The training process was stopped after reaching
150 epochs with no improvement on the validation set
performance.

The Pearson correlation coefficient between measured
and predicted values for each tissue is shown in figure 8.

5. A tissue-specific codon effect program

5.1. Average human individual

We set out to explore how the specific content of codons
in an mRNA influences its half-life variation on each tissue
for the average human individual.

To that extent, for each tissue, a linear regression with
Ridge regularization was developed, taking as input the
frequencies of each codon in the mRNA but the 3 stop
ones, and as target output the mRNA half-life variation for



Figure 8. Pearson correlation coefficient per tissue and for the mean value
(mean Exonic/Intronic ratio).

that tissue. In order to separate the codon content influence
on the target variable from the influence of the coding
sequence’s GC content, this feature was added as an input
to each regression model. Then, after regression, the used
linear predictor includes the weights corresponding to all
features but GC content.

For each tissue, ti, the final obtained linear predictor can
be defined as:

�log(mRNA half-life)ti = �ti
AAAfAAA + ...+�ti

TTTfTTT +�ti
0

(5)
where �ti

0 is the intercept, �ti
codonk , k 2 1, 2, ..., 61 is the

regression coefficient corresponding to codonk on the pre-
dictor for tissue ti, and fcodonk is the frequency of codon k
in the mRNA as defined in 2.1.2.

In total, 27 linear regression models were fitted account-
ing for all available tissues. Each fitted model was evaluated
on a test set with mRNAs belonging to chromosomes 3,
18, 19, 20, 21. The highest Pearson correlation coefficient
(0.355) between predicted and measure values is on Nerve
and the median one is 0.172.

The linear model described in 5 can be used to further
inspect the effect of each codon in �mRNA half-life, as
captured by the model. As

@�log(mRNA half-life)ti
@fcodonk

= �ti
codonk (6)

such can be done by analyzing the regression coefficients
�ti

codonk .
Changing the content of a codon k by �fcodonk while

keeping constant the content of every other codon will
change �log(mRNA half-life)ti by �fcodonk�

ti
codonk .

Therefore, the sign of �ti
codonk indicates the positive or

negative effect of codonk in �mRNA half-lifeti and the
magnitude of �ti

codonk indicates the strength of this effect.

The tissue-specific codon effects on
�log(mRNA half-life) as measured by �ti

codonk can be
visualized in the form of the clustered heatmap of figure 9.

Further analysis of the heatmap reveals two distinct
tissue clusters: group ↵ and group �. Group ↵ is composed
of the tissues heart, adrenal gland, brain, liver, esophagus,
kidney and muscle, while group � comprises the remaining
tissues.

Furthermore, the heatmap codon clustering suggests two
codon patterns, easier to notice when looking at the overall
red and blue coloring on the tissues of group ↵ or the third
hierarchical level of the codon’s dendogram.

Figure 9. Clustered heatmap depicting the relationship of � across different
tissues and codons.

A tissue i specific codon effects can be described as
an n-dimensional vector composed of �ti

codonk , where n =
number of codons = 61.

By finding the principal components of the n-
dimensional space, each tissue’s coordinates where projected
into the two principal components accounting for the highest
percentage of explained variance, 31.5% for PC1 and 18.0%
for PC2.

Figure 10 shows each tissue’s specific codon effects
expressed in two coordinates PC1 and PC2. From this
representation we can see a distinction between tissue group
↵ and � coordinates in the PC1 axis. Furthermore, along
the PC2 axis, muscle shows a distinct value from all the
tissues in group ↵ (more than 3 times higher than the closest
tissue in PC2 - esophagus). Such value is closer to testis,
indicating that the codon effects of testis and muscle on
�mRNA half-life share similarities in a domain different
from the one encoding the tissue ↵ - tissue � dichotomy.

PC1 accounts for approximately one third of the total
explained variance, and therefore captures the bulk of tissue-
specific mRNA half-life variations due to codon content. In



Figure 10. Tissues projected into the PC1 and PC2 components. The colors
represent 2 clusters obtained by applying k-means clustering on the tissue’s
coordinates in the n-dimensional space.

light of this fact, we created a new metric termed tissue
codon signature, defined for each tissue as its first principal
component value.

We set out to further explore the newly developed tissue
codon signature metric by investigating its relationship with
transcript amounts.

To accomplish that, we retrieved a gene’s tissue’s tran-
script amounts, defined by a vector with length equal to the
number of tissues and whose value’s are the gene’s tissue-
specific TPM. Afterwards we defined a vector containing
the codon signature value of each tissue. We inspected
the relationship between these 2 vectors by computing the
Spearman correlation coefficient.

All 38793 genes’s TPMs were then ordered by their
Spearman correlation with the codon signature. Surprisingly,
the majority of the top correlating genes are related to mito-
chondrial pathways and more than half of those are encoded
by the mitochondrial DNA. From the 20 top correlating
genes all show such properties.

5.2. Tissue-specific codon signatures across human

individuals

Having analyzed the tissue-specific codon signatures on
the average human individual, we set out to further inspect
the codon signatures between different human individuals.
In order to accomplish that, a linear regression model was
fitted to predict �log(mRNA half-life) of each sample, that
is to say each tissue of each individual. Similarly to the steps
described on the previous section, �ti

codonk was obtained for
each individual’s tissue. Furthermore, a principal component
analysis was performed, describing each tissue-individual
pair (sample) in the space with the 2 principal components

with the most explained variance. A visualization of this
representation is shown in figure 11. It is possible to see that
overall, the samples cluster together into tissues, pointing
that the codon signatures present more variability between
tissues than individuals.

Figure 11. Samples projected into the PC1 and PC2 components. The colors
map to tissues. Only some tissues were plotted in order to allow a better
visualization.

Previously, we have shown the consistency of the codon
signature metric across same tissue types of different indi-
viduals. Now, we explore how this metric relates to specific
individual traits such as age and sex, and a specific sample
acquisition characteristic termed ischemic time.

Overall, the age of the individual correlates negatively
with codon signature (Spearman correlation: 0.049 P-value
2e-4), with the strength of the effect largely depending on
the tissue. The strongest negative Spearman correlation of
value -0.35, was found for blood vessel tissue.

Overall, the individual’s sex didn’t show any correlation
with codon signature. A Wilcoxon ranksum test between the
distribution of codon signatures of both sexes for all samples
produced a p-value of 0.72. Per tissue, sex differences
between codon signature distributions were also not found
to be significant.

Lastly, we looked at ischemic time, which is the time
interval between the actual or presumed death of the indi-
vidual and the stabilization of the tissue sample. Overall,
ischemic time shows a negative correlation with the codon
signature (Spearman correlation coefficient = -0.15, p-value
= 2.34e-34). This correlation strongly varies across tissues,
showing a high negative correlation on heart and lung tissue
(Spearman correlation = -0.69 for heart and -0.64 for lung).

6. Conclusion

Quantitative modeling of selected mRNA sequence fea-
tures through linear regression indicates codon content ex-



plains by far the highest amount of half-life variability be-
tween mRNAs in human cells, in line with other quantitative
modeling results on the yeast organism [4].

Inspecting the codon stability coefficients (CSC),
showed that different codons associate positively or neg-
atively with half-life. Interestingly, it showed synonymous
codons have an heterogeneous association with half-life. In
fact, codons encoding the same amino-acid are sometimes
found in different ends of the codon stability coefficient
spectrum. Such synonymous codon heterogeneity allows for
an mRNA to have different half-lifes while still encoding the
same protein. In fact, as shown in [11], replacing an mRNA
coding sequence with different but synonymous codons, can
increase or decrease half-life tenfold.

Both convolutional models on the 5’UTR and 3’UTR
were successful in capturing more variance than the com-
bined extracted features used in the linear model for these
UTRs. In fact, for both the 5’UTR and 3’UTR, its GC
content and length together account for approximately one
third of the variance explained by the convolutional neural
network on the test set. This indicates that both models were
able to capture new features, possibly new regulatory motifs.

The four most supported candidate motifs obtained from
TF-MoDISco were all found to be significantly associated
with half-life, with the sign of the association in accordance
to what was indicated by the TF-MoDISco output scores.
This effect was also found significant when this association
was corrected for the UTR length, which when higher is
often associated with lower half-lives. Furthermore, two of
this motifs UAUUG on the 3’UTR and AAAA on the 5’UTR
were found to have a preference for a certain position inside
the UTR, namely a preference for a position near the poly-A
tail for UAUUG, and close to the start codon for AAAA.
This fact endorses both motifs to be of relevant biological
significance. A next step to further evaluate these motifs
could be a study of their conservation throughout different
species. Lastly the function and biological significance of
these motif candidates can finally be checked by an exper-
imental assay. To our knowledge, none of this motifs were
already discovered.

Modeling mRNA half-life variations between mRNAs
in different tissues could be achieved with the multi-task
DNN. The reasoning behind developing a multi-task deep
neural network model was to leverage the possible in-
terrelationships between tissues to increase the predictive
power of the final model. The resulting model was able to
predict mRNA half-life variations with performance varying
significantly between tissues. In the end, the resulting multi-
task deep neural network performance endorses the usage of
this trained model in other settings, such as its integration
in models to predict tissue-specific mRNA levels.

The linear regression model interpretation allowed us to
evaluate the relationship between each codon and the tissue-
specific differences in half-life it associates with. It provided
a quantitative description of such relationship in the form
of �ti

codonk , which we termed tissue-specific codon effect.
Interestingly, codon effects largely vary across tissues.

Their analysis suggests that these variations follow a pattern

in which groups of tissues share similar codon effects. In
particular, one group (tissue group ↵) seems to be composed
of tissues associated with high energy demands.

The newly developed metric, codon signature, explains
most of the codon effect variability between tissues and
therefore allows us to characterize each tissue in terms of
the particular set of codon effects.

The correlation between a tissue’s codon signature and
transcript amounts uncovered a previously unknown connec-
tion between mitochondrial activity and codon effects. Such
connection opens up new research directions and questions.

The half-life of an mRNA is affected by its codon con-
tent through the translation rate, in which the decoding rate
of each codon is a determinant. By capturing the association
between �half-life on tissue i and the frequency of codon
k, �ti

codonk can convey information on the influence codon k
has on its decoding rate/time on tissue i compared to other
tissues.

In this sense, the codon signature metric not only en-
codes the relationship between codon content and tissue-
specific mRNA half-life variation but can also encode the
particular influence each codon has on its decoding rate,
conditioned on the tissue and relative to the average across
tissues.

Mitochondria produce energy in the cell by making the
energy molecule ATP, using oxygen and bio-molecules such
as derivatives of glucose. As measured by the amount of
transcripts of mitochondrial genes and reported in [12],
some tissues contain a higher amount and activity of mi-
tochondria. Therefore, the rate of ATP production and the
concentration of ATP molecules can vary across tissues.

Codon decoding is the most energy demanding step of
translation [13]. For the decoding of one codon two GTP
and ATP energy molecules are required. We hypothesize
that the GTP/ATP availability can be a time-limiting step
on decoding, whose influence varies by nature of the mito-
chondrial ATP production of the tissue or, in other words,
its overall energy production. A lower decoding rate makes
for a lower mRNA half-life and lower translated proteins as
outcome.

The association of ischemic time and age with codon
signature is consistent with this hypothesis. The longer the
ischemic time, the fewer the available oxygen in the cells,
which in turn decreases the cell’s ability to generate ATP
through mitochondria. This effect can explain the fact that
ischemic time correlates negatively with codon signature.
Meaning that, under ischemia, the codon signature of high
energy production tissues changes in the direction of the
codon signature of lower energy production tissues. Fur-
thermore, mitochondrial dysfunction is one of the main
contributors to the human aging process [14]. The older the
individual gets, the lesser the quality of the mitochondria
and therefore its energy production capability. Indeed, the
computed codon signature metric decreases with age.

In the end, we suggest that, depending on the cell’s
energy production, a specific set of codons will have an
enhanced positive/negative impact on mRNA half-life and
translation rate. Such sets can possibly drive the expression



of groups of genes with corresponding similar mRNA codon
contents. Further analysis should be made to uncover which
genes have a codon content that make their expression most
sensible to cellular energy production.

Ultimately, our analysis raises the unprecedented hy-
pothesis that the compound expression of genes involved in
certain pathways in the cell can be in part tuned/coordinated
by the cell’s energy production through mRNA translation,
and that such can explain part of the gene expression vari-
ability characterizing cells in different tissues or conditions.
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