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Abstract

Visual attention mechanisms have become an important
component of neural network models for Computer Vision
applications, allowing them to attend to finite sets of objects
or regions and identify relevant features. A key component
of attention mechanisms is the differentiable transforma-
tion that maps scores representing the importance of each
feature into probabilities. The usual choice is the softmax
transformation, whose output is strictly dense, assigning a
probability mass to every image feature. This density is
wasteful, given that non-relevant features are still taken into
consideration, making attention models less interpretable.
Until now, visual attention has only been applied to discrete
domains – this may lead to a lack of focus, where the atten-
tion distribution over the image is too scattered. Inspired
by the continuous nature of images, we explore continuous-
domain alternatives to discrete attention models. We pro-
pose solutions that focus on both the continuity and the
sparsity of attention distributions, being suitable for select-
ing compact and sparse regions such as ellipses. The for-
mer encourages the selected regions to be contiguous and
the latter is able to single out the relevant features, assign-
ing exactly zero probability to irrelevant parts. We use the
fact that the Jacobian of these transformations are general-
ized covariances to derive efficient backpropagation algo-
rithms for both unimodal and multimodal attention distri-
butions. Experiments on Visual Question Answering show
that continuous attention models generate smooth attention
maps that seem to better relate with human judgment, while
achieving improvements in terms of accuracy over grid-
based methods trained on the same data. Code is avail-
able at https://github.com/deep-spin/mcan-
vqa-continuous-attention.

1. Introduction
Visual attention mechanisms are an important compo-

nent of modern Deep Learning models. They appear as a
way to mimic the human visual system that selectively at-

tends to the most relevant parts of visual stimuli, being able
to process large amounts of information in parallel [16]. In
the context of Aerospace Engineering, they have been used
to improve the performance of off-road robots [18] and in
Earth Observation [10]. Also, intelligent agents are likely
to be asked to perform autonomous vision-based tasks such
as navigation, aerial mapping and object delivery [4].

A neural network with attention automatically learns the
relevance of any element of the input by generating a set
of weights and taking them into account while performing
the proposed task. Moreover, these models are usually very
complex and remain black-box models: humans cannot eas-
ily understand their inner decision making process. In ad-
dition to boosting the performance of a model, attention
mechanisms can provide insights into the model’s reason-
ing behind its prediction [22]. The visualization of attention
weights can help us analyze the outputs of a neural network
and possibly understand some unpredictable outcomes [6].

A key component of visual attention mechanisms is the
differentiable transformation that maps scores represent-
ing the importance of each feature into probabilities. The
usual choice is the softmax transformation, whose output is
strictly dense, assigning a probability mass to every image
feature. This density is wasteful, given that non-relevant
features are still taken into consideration, making attention
models less interpretable [12]. Furthermore, although im-
age data is naturally continuous, visual attention has only
been applied to discrete domains. In certain applications
this may lead to a lack of focus, where the attention distri-
bution over the image is too scattered.

We explore continuous-domain alternatives to discrete
attention models. We construct 2D continuous attention
mechanisms that are able to increase focus on relevant im-
age regions, leading to more interpretable predictions. Our
solutions focus on both the continuity and the sparsity
of attention distributions, being able to select compact and
sparse regions in images. The first takes adjacency into ac-
count and encourages the selected regions to be contiguous
and the second is able to single out the relevant features,
assigning exactly zero probability to irrelevant regions.
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Summing up our main contributions, we propose a
framework for using continuous attention with images and
derive efficient algorithms for the evaluation and gradient
computation of 2D α-entmax continuous attention mecha-
nisms, for α ∈ {1, 2}. Then, we introduce novel multi-
modal continuous attention mechanisms by using mixtures
of unimodal attention densities. Finally, we plug our 2D
continuous attention mechanisms in a Visual Question An-
swering model in order to improve focus and possibly pro-
vide better explanations via smoother attention maps. In
terms of accuracy, we obtain small improvements over grid-
based methods trained on the same data.

Notation. Consider a measure space (S,A, ν), where S
is a set, A is a σ-algebra and ν is a measure. We denote
the set of ν-absolutely continuous probability measures as
M1

+(S). From the Radon-Nikodym theorem [8, §31], each
element ofM1

+(S) is identified with a probability density
function p : S → R+, with

∫
S
p(t) dν(t) = 1; for conve-

nience, we often drop dν(t) from the integral. We denote
the measure of A as |A| = ν(A) =

∫
A

1 and the support of
a density p ∈ M1

+(S) as supp(p) = {t ∈ S | p(t) > 0}.
Given φ : S → Rm, we write expectations as Ep[φ(t)] :=∫
S
p(t)φ(t). Finally, we define [a]+ := max{a, 0}.

2. From discrete to continuous attention in 2D

2.1. Regularized prediction maps

The work by Blondel et al. [3] introduced Ω-regularized
prediction maps for finite domains. Consider an input vec-
tor x ∈ X and a parametrized model f : X → R|S|, pro-
ducing a score vector θ = f(x) ∈ R|S|. For instance, θ can
be label scores computed by a neural network model, f . As-
suming a regularization function Ω, with dom(Ω) ⊆ 4|S|,
this framework allows us to map vectors θ ∈ R|S| into
probability vectors in the simplex4|S|. Ω-regularized pre-
diction maps can be extended to arbitrary measure spaces
M1

+(S), assuming that Ω : M1
+(S) → R is a lower semi-

continuous, proper and strictly convex function. The Ω-
regularized prediction map (Ω-RPM) p̂Ω : F →M1

+(S)
is defined as:

p̂Ω[f ] = arg max
p∈M1

+(S)

Ep[f(t)]− Ω(p), (1)

where F is the set of functions for which the maximizer
exists and is unique. The regularizer Ω in (1) can be cho-
sen in order to recover transformations such as softmax and
sparsemax, when S is finite. For the case where S is con-
tinuous, more interesting examples of regularizational func-
tionals are shown in the next subsections.

2.2. Choosing the regularization function Ω

The choice of the regularization function Ω leads to dif-
ferent regularized prediction maps – depending on its prop-
erties, it can lead to distributions with fixed support within
the same family (e.g. distributions in the exponential fam-
ily) (§ 2.2.2) or to alternatives with varying and sparse
support, assigning zero probability mass to some entries
(§ 2.2.3). We consider generalized negative entropies as
regularization functions. Specifically, we consider a gener-
alization of the Shannon’s negentropy proposed by Tsallis
[20] that uses the notions of β-exponential and β-logarithm
[1]. The α-Tsallis negentropy is defined as

Ωα(p) =

{
1

α(α−1)

(∫
S
p(t)α − 1

)
, α 6= 1∫

S
p(t) log p(t), α = 1

, (2)

where Ω1(p) is the Shannon’s negentropy and Ω2(p) =
1
2

∫
S
p(t)2 − 1

2 is known in the literature as Gini-Simpson
index.

2.2.1 α-Tsallis negentropy and Ωα-RPM

Let α > 0 and f ∈ F . [11, Proposition 1] shows that the
Ωα-RPM in (1) can be simply written as

p̂Ωα [f ](t) = exp2−α(f(t)−Aα(f)), (3)

where Aα : F → R is a normalizing function:

Aα(f) =
1

1−α +
∫
S
pθ(t)

2−αf(t)∫
S
pθ(t)2−α − 1

1− α
. (4)

Furthermore, it is possible to show (see [11, Proposition 2]
or [1, Theorem 5] for a proof) that the normalizing function,
Aα (4), is a convex function and its gradient is given by

∇θAα(θ) = Ep̃2−α
θ

[φ(t)] =

∫
S
pθ(t)

2−αφ(t)∫
S
pθ(t)2−α , (5)

where p̃β(t) = p(t)β/‖p‖ββ is the β-escort distribution [20]
in which

‖p‖ββ =

∫
S

p(t′)βdν(t′) and p̃1(t) = p(t). (6)

Figure 1 shows the distributions generated by the Ωα-
RPM for α ∈ {1, 2}. The former has full support in R2

while the latter is able to assign zero probability values.

2.2.2 Shannon’s negentropy and Ω1-RPM

For α = 1, Ω1(p) is the Shannon’s negentropy and the cor-
responding Ω1-RPM is:

p̂Ω1
[f ](t) =

exp f(t)∫
S

exp (f(t′))dν(t′)
= exp (f(t)−A(f)),

(7)
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Figure 1. 2D distributions generated by the Ωα-RPM for α ∈ {1, 2}. Left: For α = 1, bivariate Gaussian N (t; 0, I). Right: For α = 2,
truncated paraboloid T P(t; 0, I). The peak of the density for α = 1 (N ) is much smaller than for α = 2 (T P).

where A(f) = log
∫
S

exp f(t) is the log-partition function
(see [11, App. A] for a proof). If S is finite and ν is the
counting measure, we can write f as a vector in R|S| and
the Ω1-RPM recovers the softmax transformation,

p̂Ω1
[f ] = softmax(f) =

exp(f)∑|S|
k=1 exp(fk)

∈ 4|S|. (8)

For continuous domains with S = RN , ν the Lebesgue
measure, µ ∈ RN , Σ ∈ RN×N � 0 and choosing
f(t) = − 1

2 (t−µ)>Σ−1(t−µ), the Ω1-RPM transformation
is a multivariate Gaussian,

p̂Ω1
[f ] = N (t;µ,Σ). (9)

In particular, this becomes a bivariate Gaussian if N = 2.

2.2.3 Gini-Simpson index and Ω2-RPM

For α = 2, Ω2(p) is the Gini-Simpson index and the corre-
sponding Ω2-RPM can be obtained from f by subtracting a
constant λ and truncating such that

∫
S
p̂Ω2

[f ](t) = 1:

p̂Ω2
[f ](t) = [f(t)− λ]+. (10)

For finite S the Ω2-RPM is the sparsemax transformation.
For continuous domains with S = RN , Σ ∈ RN×N positive
definite and f(t) = − 1

2 (t − µ)>Σ−1(t − µ), the Ω2-RPM
transformation is a multivariate truncated paraboloid,

p̂Ω2
[f ](t) =

[
−1

2
(t− µ)>Σ−1(t− µ)− λ

]
+

, (11)

with

λ = −

(
Γ(N/2 + 2)√

det(2πΣ)

) 2
2+N

, (12)

where Γ(t) is the Gamma function. See [11, Section 2.4]
for details.

2.3. Building continuous attention mechanisms

Discrete attention. Assume an input image split in L
pieces: an image represented by L grid-level or object-level
features with a D-dimensional representation each, packed
as a value matrix V ∈ RD×L. A discrete attention mech-
anism computes a score vector f = (f1, ..., fL) ∈ RL,
in which high scores correspond to more relevant parts of
the input. Then, a transformation ρ : RL → 4L (usually
softmax) is used to map scores into probabilities, i.e., ρ is
applied to the score vector to produce a probability vector
p = ρ(f). Finally, p is used to compute a context vector as
a weighted average, c = V p ∈ RD, that is used to produce
the network’s decision.

2.3.1 The continuous case: score and value function

Instead of assuming a finite set S = {1, . . . , L}, we assume
a continuous measure space S (the R2 plane) and represent
the image as a value function V : S ⊆ R2 → RD that maps
points in the R2 plane onto a D-dimensional vector repre-
sentation. The score vector is replaced by a score function
f : S → R that can be mapped to a probability density
p : S → R+, with

∫
S
p = 1. Instead of using a discrete

transformation for that mapping, we can use the Ωα-RPM.
The output weighted average (context vector) becomes an
expectation of the value function with respect to the proba-
bility density, c = Ep[V (t)] =

∫
S
p(t)V (t) ∈ RD.

The score function f and the value function V need to be
parametrized: we consider linear parametrizations in terms
of a vector of basis functions and a vector of parameters.
We can then define fθ(t) = θ>φ(t) and VB(t) = Bψ(t),
where φ : S → RM and ψ : S → RN are basis functions
and θ ∈ RM and B ∈ RD×N are parameters.

Defining continuous attention mechanism. Consider
that Ω : M1

+(S) → R is a regularization functional. An
attention mechanism is a mapping ρ : RM → RN from an
input parameter vector θ ∈ RM to a vector r ∈ RN ,

ρ(θ) = r = Ep[ψ(t)], (13)
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with p = p̂Ω[fθ] and fθ(t) = θ>φ(t). If Ω = Ωα, this
is called α-entmax attention, denoted as ρα. The values
α = 1 and α = 2 lead to softmax and sparsemax attention,
respectively. The context vector can then be computed as
c = Br, which is equivalent to c = Ep[VB(t)].

Defining the value function. An input image is usually
represented as a discrete matrix H ∈ RD×L (e.g., a matrix
withD channels andL image locations so that each location
is represented by aD-dimensional vector). We can use mul-
tivariate ridge regression to approximate H and obtain a
continuous signal, a value mapping VB : S → RD. Given
that VB(t) = Bψ(t), this consists in optimizing over B to
minimize the squared loss plus a ridge penalty. Assuming
that tl = ( l1√

L
, l2√

L
) for l1, l2 ∈ [0,

√
L] and choosing the

columns of the matrix F ∈ RN×L to be the basis vectors
ψ(tl), we obtain

B? = argmin
B
‖BF −H‖2F + λ‖B‖2F

= H F>(FF> + λIN )−1︸ ︷︷ ︸
G

= HG (14)

where ‖B‖F = (
∑m
i=1

∑n
j=1B

2
ij)

1/2 is the Frobenius
norm of B and G = F>(FF> + λIN )−1 is a L ×N ma-
trix. For given L and N , both F and G depend only on the
value of ψ(tl) and can be obtained offline. We can choose
N << L, so that the resulting expression for VB has ND
coefficients, much cheaper than the LD coefficients of H .

Gradient backpropagation. To train models with
gradient-based optimization the Jacobian of the α-entmax
transformation ρα is needed. Martins et al. [11] proved an
expression for evaluating Jρα . For β ≥ 0, a generalized
β-covariance, covp,β [φ(t), ψ(t)], is defined as

‖p‖ββ×
(
Ep̃β

[
φ(t)ψ(t)>

]
− Ep̃β [φ(t)]Ep̃β [ψ(t)]>

)
, (15)

that for β = 1 recovers the usual covariance. The Jacobian
of the α-entmax transformation is then

Jρα(θ) =
∂r(θ)

∂θ
= covp,2−α(φ(t), ψ(t)), (16)

with p = p̂Ω[fθ] and fθ(t) = θ>φ(t). (16) allows ef-
ficient gradient backpropagation with continuous attention
and will be used in the next section to derive expressions
for the gradient computation of 2D α-entmax continuous
attention mechanisms for α ∈ {1, 2}.

3. 2D continuous attention with Gaussian
RBFs

3.1. How can we write the attention density?

A continuous attention mechanism is as a mapping from
an input parameter vector θ to a vector r = Ep[ψ(t)],

where p = p̂Ω[fθ] and fθ(t) = θ>φ(t). If Ω = Ωα,
α ∈ {1, 2} leads to softmax and sparsemax attention, re-
spectively. Taking S = R2, p̂Ω1

[fθ] is a bivariate Gaus-
sian N (t;µ,Σ) and p̂Ω2

[fθ] becomes a bivariate truncated
paraboloid T P (t;µ,Σ). In both cases, µ and Σ are related
to the canonical parameters by θ = [Σ−1µ,− 1

2Σ−1].
We focus on a combined attention setting where we as-

sume that we have access to L discrete attention weights αi,
where i ∈ {1, ..., L}. First, we obtain p ∈ 4L from discrete
attention. For 2D continuous softmax we have µ = Ep[t]
and Σ = Ep[tt>] − µµ>. This property does not hold for
T P distributions; thus, for 2D continuous sparsemax, we
need to find out how to obtain the parameter Σ from the
variance. To estimate Σ of a T P(t;µ,Σ) from discrete at-
tention weights we perform the following steps:

• express the variance as a function of Σ, f(Σ) =∫∫
T P(t;µ,Σ)tt>dt;

• from discrete attention, obtain the variance Var =
Ep[tt>]− µµ>;

• invert f to obtain Σ = f−1(Var).

We now put forward a theorem that results from following
this approach (the proof in Appendix A.1 of the thesis).

Theorem 1 Let T P (t;µ,Σ) be a d-dimensional mul-
tivariate truncated paraboloid where t, µ ∈ Rd and
Σ ∈ Rd×d � 0, defined as in [11, Section 2.4]. Let

λ = −
(

Γ(d/2+2)
|2πΣ|1/2

) 2
2+d

be the constant that ensures the

distribution normalizes to 1, where Γ(t) is the Gamma
function. Then, the variance of T P is related to Σ by

Var(Σ) = f(Σ) = − λ Σ
d
2 + 2

. (17)

Example. For d = 2,

Var(Σ) = −λΣ

3
=

Σ

3
√
π |Σ|1/4

(18)

Using properties of the determinant,

|Var(Σ)| =
∣∣∣∣ Σ

3
√
π |Σ|1/4

∣∣∣∣ =
|Σ|2

9π
. (19)

Using (19) to invert (18), we obtain the expression that can
be used to compute Σ in a truncated paraboloid density,
given the variance Var computed from discrete attention:

Σ = 9π|Var|1/2Var. (20)
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Algorithm 1: Continuous softmax attention with S = RD, Ω = Ω1, and Gaussian RBFs.
Parameters: Gaussian RBFs ψ(t) = [N (t;µj ,Σj)]

N
j=1, basis functions φ(t) = [t, vec(tt>)], value function VB(t) = Bψ(t)

with B ∈ RD×N , score function fθ(t) = θ>φ(t) with θ ∈ RM

Function Forward(θ := [Σ−1µ,− 1
2
Σ−1]):

rj ← Ep̂Ω[fθ ][ψj(t)] = N (µ, µj ,Σ + Σj), ∀j ∈ [N ] // Eq.23
return c← Br (context vector)

Function Backward( ∂L
∂c
, θ := [Σ−1µ,− 1

2
Σ−1]):

for j ← 1 to N do
s̃← N (µ, µj ,Σ + Σj)
Σ̃← (Σ−1 + Σ−1

j )−1

µ̃← Σ̃(Σ−1µ+ Σ−1
j µj)

∂rj
∂θ
← covp̂Ω[fθ ](φ(t), ψj(t)) = [s̃(µ̃− µ); s̃(Σ̃ + µ̃µ̃> − Σ− µµ>)] // Eqs.24,25

return ∂L
∂θ
←

(
∂r
∂θ

)>
B> ∂L

∂c

3.2. Evaluation and gradient computation

We derive expressions for the evaluation and gradient
computation of 2D continuous α-entmax attention mech-
anisms for α ∈ {1, 2}, where ψ(t) are Gaussian RBFs.

3.2.1 2D continuous softmax (α = 1)

Let us consider an arbitrary D-Dimensional scenario and
take D = 2. If S = RD, for φ(t) = [t, tt>], the distribution
p = p̂Ω1 [fθ], with fθ(t) = θ>φ(t), is a multivariate Gaus-
sian and θ = [Σ−1µ,− 1

2Σ−1]. We derive closed-form ex-
pressions for the attention mechanism output ρ1(θ) in (13)
and its Jacobian Jρ1

(θ) in (16), when ψ(t) are Gaussian
RBFs. Check Alg. 1 for pseudo-code.

Forward pass. Each coordinate of the attention mecha-
nism output becomes the integral of a product of Gaussians,

E[ψ(t)] =

∫
RD
N (t;µ,Σ)N (t;µj ,Σj). (21)

The product of two Gaussians is a scaled Gaussian,

N (t;µ,Σ)N (t;µj ,Σj) = s̃N (t; µ̃, Σ̃), (22)

where s̃ = N (µ;µj ,Σ + Σj), Σ̃ = (Σ−1 + Σ−1
j )−1 and

µ̃ = Σ̃(Σ−1µ+ Σ−1
j µj). So, (21) can be computed as:

E[ψ(t)] = s̃

∫
RD
N (t; µ̃, Σ̃) = s̃ (23)

Backward pass. We have that each row of the Jacobian
Jρ1

(θ) becomes a first or second moment under the result-
ing Gaussian:

covp,1(t, ψ(t)) = Ep[tψj(t)]− Ep[t]Ep[ψj(t)]

= s̃

∫
RD

tN (t; µ̃, Σ̃)− s̃µ

= s̃(µ̃− µ),

(24)

and, noting that Σ = E[(t− µ)(t− µ)>] = E[tt>]− µµ>,

covp,1(tt>, ψ(t)) = Ep[tt>ψj(t)]− Ep[tt>]Ep[ψj(t)]

= s̃

∫
RD

tt>N (t; µ̃, Σ̃)− s̃(Σ + µµ>)

= s̃(Σ̃ + µ̃µ̃> − Σ− µµ>).

(25)

3.2.2 2D continuous sparsemax (α = 2)

For α = 2, we show how to reduce both the forward and the
backward passes to expressions including univariate inte-
grals (with closed form-expression in terms of the erf func-
tion) over an interval by using the change of variable for-
mula and working with polar coordinates. We prove that
for this case both the attention mechanism output (13), and
its Jacobian (16) can be written in terms of functions of the
form −λ

∫ 2π

0
s̃(θ)F (θ) and can be easily computed using

simple 1D numerical integration methods. Alternatively,
we could use 2D methods for numerical integration to solve
these expressions directly; yet, to obtain good results we
would have to use complicated bivariate adaptive methods
that take a lot of time to reach convergence and that are
not GPU friendly - it would be impracticable to plug these
mechanisms in neural networks and train them end-to-end.
Nevertheless, we study different ways to compute 2D in-
tegrals over ellipses, including the simplistic approach that
we use in this work: we show in Section 5 that for VQA,
in practice, we can approximate these integrals with naive
sums, without compromising the overall performance of the
model. We encourage the reader to look at Chapter 4 and
Appendix A of the thesis for more information, including
detailed derivations of all the expressions we use.
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4. Multimodal attention densities
4.1. Mixture models

Unimodal distributions such as Gaussians or T P have,
by its own nature, a single maximum and so cannot model
multimodal distributions properly. Hence, mixture mod-
els appear as a very important tool to represent arbitrarily
complex probability density functions. Formally, if x is a
d-dimensional vector representing a data point, a mixture
model assigns it the probability

p(x|Θ) =

K∑
k=1

πkp(x|θk), (26)

where the parameters πk are called mixing coefficients and
satisfy πk ≥ 0 for k = 1, . . . ,K and

∑K
k=1 πk = 1;

each θk is the set of parameters defining the k-th compo-
nent of the mixture; and Θ = {θ1, . . . , θK , π1, . . . , πK}
is the complete set of parameters needed to specify the
mixture. The definition of mixture is completely general
regarding the functional form of each component, mean-
ing that p(x|θk) can take different forms. For instance,
if p(x|θk) = N (x|µk,Σk), this is known as a Gaussian
Mixture Model (GMM), whose complete set of parame-
ters includes π = {π1, ..., πK}, µ = {µ1, ..., µK} and
Σ = {Σ1, ...,ΣK}.

4.2. Multimodal continuous attention

We can extend the framework presented in Sections 2
and 3 to multimodal distributions by considering mixtures
of unimodal distributions,

p(t) =

K∑
k=1

πkpk(t), (27)

where each pk = p̂Ω[fθk ] is a unimodal distribution (e.g., a
Gaussian or a truncated paraboloid) and π ∈ ∆K are mix-
ing coefficients defining the weight of each component of
the mixture. For instance, in the first example, p(t) becomes
a mixture of Gaussians; we discuss later possible methods
for obtaining π.

Using the definition of continuous attention mechanism
(13) and, from the linearity of expectations, we can compute
the output of the multimodal attention mechanism as

r = Ep[ψ(t)] =

K∑
k=1

πk Epk [ψ(t)]︸ ︷︷ ︸
rk

=

K∑
k=1

πkrk, (28)

where rk is the output of an individual (unimodal) attention
mechanism. The context representation is

c = Ep[Bψ(t)] = Br =

K∑
k=1

πk Brk︸︷︷︸
ck

, (29)

where each ck is the context representation of each indi-
vidual attention mechanism; that is, c is a mixture of the
context representations for each component. The backprop-
agation step for the multimodal case is simple, since this
decomposes into a linear combination of unimodal atten-
tion mechanisms, each of which has a simple/closed-form
Jacobian.

Note that our construction is not the same as the standard
multi-head attention scenario, where the projection matrices
learned as parameters are head-specific [21]. On the con-
trary, we assume thatB does not depend on k. From a com-
putational point of view, this property seems appealing – we
can compute a single B per example and still obtain a con-
text vector that contains information from different “heads”,
through different unimodal attention mechanisms.

What if we have access to a set of attention weights?
Consider that we are provided with a set of points equally
spaced in the unit square and its correspondent discrete at-
tention weights. Intuitively, the higher the attention weight,
more important the contribution of that point to the net-
work’s decision. For multimodal distributions, we can
think of this problem as that of fitting a mixture model to
weighted data. In that context, we have to deal with 2
different issues: how to estimate the parameters defining
the mixture model (§ 4.3.1) and the number of components
(§ 4.3.2).

4.3. The EM algorithm for GMMs

The EM algorithm is the standard method to estimate
the parameters defining a mixture model, which converges
to a maximum likelihood estimate of the mixture parameters
(see [13] for a detailed exposition). For α = 1, the corre-
sponding unimodal attention density is a Gaussian; we can
easily adapt EM to deal with weighted data and obtain the
full set of parameters of a Gaussian mixture – defining a
multimodal attention density p(t).

4.3.1 Weighted data

Let X = {x1, ..., xN} be the observed data and W =
{w1, ..., wN} the weights associated withX , wherewn ≥ 0
is the weight indicating the relevance of observation xn.
We can change the usal EM algorithm for non-weighted
data and include the information provided by the weights
by changing the way we re-estimate the parameters each it-
eration. It should go as follows:

1. Initialize the parameters µk, Σk and πk and evaluate
the initial value of a weighted log likelihood function

N∑
n=1

wn ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
, (30)
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where the log likelihood of each point is multiplied by
the correspondent weight.

2. E step. Evaluate the responsibilities using the current
parameter values

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

. (31)

3. M step. Re-estimate the parameters using the current
responsibilities

µnew
k =

1

Nk

N∑
n=1

wnγ(znk)xn, (32)

Σnew
k =

1

Nk

N∑
n=1

wnγ(znk)(xn−µnew
k )(xn−µnew

k )>,

(33)
πnew
k = Nk, (34)

where

Nk =

N∑
n=1

wnγ(znk). (35)

4. Re-evaluate the weighted log likelihood (30) using the
current parameter values and check for convergence of
either the parameters or the log likelihood. Return to
step 2 if the convergence criterion is not satisfied.

If we consider that the weight associated with each obser-
vation is the same, i.e., wn = 1

N , we recover the usual ex-
pressions for the EM algorithm.

4.3.2 Estimating the number of components

The maximum likelihood criterion cannot be used to esti-
mate the number of components K in a mixture density. If
Mk is a class composed by all Gaussian mixtures with K
components, it is trivial to show that MK ⊆ MK+1 and
thus the maximized likelihood is a non decreasing function
of K, useless as a criterion to estimate K [5].

Several model selection methods were proposed to tackle
the concern of estimating the number of components of a
mixture [14, Chapter 6]. The likelihood function as defined
in (30) is of no direct use, since it increases with k. We fo-
cus on penalized likelihood methods such as the Bayesian
Information Criterion (BIC) [19] or the Minimum Descrip-
tion Length (MDL) [17], where the EM algorithm is used
to obtain different parameter estimates for a range of val-
ues of k, {Θ̂k, k = kmin, . . . , kmax}, and the number of
components is chosen according to

k? = arg min
k
{C(Θ̂k, k), k = kmin, . . . , kmax}, (36)

where C(Θ̂k, k) is a model selection criterion that usually
has the form

C(Θ̂k, k) = −2 ln (X|Θ̂k) + P(k), (37)

where P(k) is an increasing function penalizing higher val-
ues of k. We can write

P(k) = λ k, (38)

where λ > 0 is an hyperparameter obtained using cross-
validation. The resulting model selection criterion

C(Θ̂k, k) = −2 ln (X|Θ̂k) + λ k, (39)

will be used in Section 5 to estimate the number of compo-
nents in a multimodal continuous attention density.

4.3.3 Initialization

The EM algorithm requires an initial choice for the set of
parameters Θ = {π, µ,Σ}. This becomes an issue of the
utmost importance because EM is not guaranteed to con-
verge to a global maximizer of the log likelihood function,
getting stuck at a local maximizer most of the times, mean-
ing that the final estimate depends on the initialization. A
common strategy to alleviate this issue consists of consid-
ering several different initializations (e.g., multiple random
initializations), run EM that number of times and choose the
final estimate that leads to the highest likelihood [13].

5. Applications in VQA
We now plug our 2D continuous attention mechanisms

in a VQA model that uses grid features to represent the im-
ages. All our models use the same features and were trained
only on the train set without data augmentation.

Dataset and architecture. We used the VQA-v2 dataset
[7] and adapted the implementation of [23]1: our architec-
ture is the same except that we represent the images using
grid features generated by a ResNet pretrained on ImageNet
[9], instead of bounding-box features [2].

5.1. Experiments with 2D continuous attention

Attention model. We consider 3 different attention mod-
els: discrete attention, 2D continuous softmax attention and
2D continuous sparsemax attention. The discrete atten-
tion model attends over a 14×14 grid. For continuous at-
tention, we normalize the image size into the unit square
[0, 1]2 with each coordinate tl positioned at ( l1√

L
, l2√

L
) for

l1, l2 ∈ [0,
√
L] creating a meshgrid. We fit a 2D Gaussian

(α = 1) or truncated paraboloid (α = 2) as the attention

1https://github.com/MILVLG/mcan-vqa
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Table 1. Overall accuracies of different models on the test-dev and
test-standard splits of VQA-v2. For the continuous attention mod-
els we used N ∈ {49, 100} Gaussian RBFs N (t; µ̃, Σ̃), with µ̃
linearly spaced in [0, 1]2 and Σ̃ = 0.001 · I. See Table 2 for de-
tailed results for N = 100.

ATTENTION N Test-Dev Test-Standard

Discrete softmax - 65.83 66.13

2D continuous softmax 100 65.96 66.27
2D continuous softmax 49 65.82 66.12

2D continuous sparsemax 100 65.79 66.10
2D continuous sparsemax 49 65.88 66.10

density. We use the mean and variance according to the
discrete attention probabilities and obtain µ and Σ with mo-
ment matching. We use N ∈ {49, 100} � 142 Gaussian
RBFs, with µ̃ linearly spaced in [0, 1]2 and Σ̃ = 0.001 · I.
Overall, the number of neural network parameters is the
same as in discrete attention.

Results. The results in Table 1 show that the accuracies
for all the attention models are similar, with a slight advan-
tage for 2D continuous softmax with N = 100 basis func-
tions. Even though we used less basis functions than image
regions (N � L), 2D continuous attention performed as
well as (or even better than) discrete attention. Moreover,
we can see that we don’t need a large number of basis func-
tions to obtain good results given that for N = 49 the re-
sults are already satisfying: all the results are very similar
on the test-standard split; on the test-dev split, 2D continu-
ous sparsemax performed a bit better than the other variants.

Attention visualization. Figure 2 shows an example
where the attention is too scattered in the discrete model,
possibly mistaking the lamp with a TV screen; contrar-
ily, our continuous attention models focus on the right re-
gion and answer the question correctly, with 2D continuous
sparsemax enclosing all the relevant information in its sup-
porting ellipse. By fitting a Gaussian as the attention den-
sity (continuous softmax) every region in the image is as-
signed with some probability mass; by fitting a truncated
paraboloid (continuous sparsemax), the attention density
becomes sparse, i.e., only the relevant regions of the image
are assigned with non-zero probability mass – we found out
that this usually leads to more interpretable attention maps.
Besides, other examples in the thesis suggest that discrete
attention is more diffuse than its continuous counterpart.
This might be good for very complex question/image pairs,
although continuous attention ellipses are also capable of
becoming wide, including different regions of interest.

What is the woman looking at? tv

1E-19

1E-08

1E-01

1E+01

computer

057

9

computer

Figure 2. Examples of attention maps for VQA. Top left: original
image. Top right: discrete attention. Bottom: 2D continuous soft-
max (left) and 2D continuous sparsemax (right, where the outer
ellipse encloses all probability mass).

5.2. Experiments with multimodal continuous at-
tention (MCA)

We consider 2 different scenarios. First, we choose a
fixed number K and assume that each attention density can
be modeled as a K-component multimodal distribution (we
refer to this attention model as K-MCA, hereinafter). Sec-
ond, we use a model trained with unimodal continuous at-
tention and, at test time, consider multimodal distributions,
using the model selection criterion (39) to choose the opti-
mum number of components from a set of possible choices.
We refer to the latter as test-MCA.

K-MCA. We consider multimodal attention densities
with K ∈ {2, 4} components. Instead of initializing the
parameters Θ = {µ1, . . . , µK ,Σ1, . . . ,ΣK , π1, . . . , πK}
randomly, we split the image in K regions and obtain
{µ1, . . . , µK} and {Σ1, . . . ,ΣK} with moment match-
ing according to the discrete attention weights in the
corresponding region. The initial mixing coefficients
{π1, . . . , πK} can be obtained according to the probabil-
ity mass in the corresponding region. Then, we run the EM
algorithm for weighted data proposed in Subsection 4.3.1
to obtain the final estimates for Θ. Instead of evaluating
the log likelihood function (30) each iteration to check for
convergence, we re-estimate the parameters of the mixture
model for a fixed number of iterations, which can be consid-
ered an extra hyperparameter. According to (29), we com-
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Table 2. Accuracies of different models on the test-dev and test-standard splits of VQA-v2. For the continuous attention models we used
100 Gaussian RBFsN (t; µ̃, Σ̃), with µ̃ linearly spaced in [0, 1]2 and Σ̃ = 0.001 · I. We used 2,5,20,20,20 iterations for the MCA models.

ATTENTION λ Test-Dev Test-Standard
Yes/No Number Other Overall Yes/No Number Other Overall

Discrete - 83.40 43.59 55.91 65.83 83.47 42.99 56.33 66.13

2D continuous softmax - 83.40 44.80 55.88 65.96 83.79 44.33 56.04 66.27
2D continuous sparsemax - 83.10 44.12 55.95 65.79 83.38 43.91 56.14 66.10

2-MCA - 83.35 44.28 56.07 65.97 83.59 43.65 56.24 66.21
4-MCA - 83.39 43.52 55.96 65.85 83.72 43.47 56.03 66.14

test-MCA 10 83.30 44.60 55.81 65.86 83.76 44.08 56.00 66.21
test-MCA 100 83.35 44.75 55.86 65.92 83.77 44.28 56.02 66.25
test-MCA 500 83.39 44.75 55.87 65.95 83.79 44.36 56.04 66.27

pute K individual 2D continuous softmax attention mecha-
nisms in order to obtain obtain the context representations
{c1, ..., cK}. The final context is a mixture of the context
representations for each component.

test-MCA. We use a model trained with unimodal con-
tinuous attention (2D continuous softmax with N = 100,
from Table 1) and, at test time, consider multimodal distri-
butions. We consider models with a number of components
in the range K ∈ {1, . . . , 5}. For K = 1 we use the same
setup as in the previous section. For K > 1 we follow the
procedure described in Section 4.3.3 and consider 3 ran-
dom initializations for each K, i ∈ {1, 2, 3}. We use the
EM algorithm for weighted data to obtain different param-
eter estimates Θ̂Ki. We consider 1 + 3× 4 = 13 estimates
Θ̂ ∈ {Θ̂1, Θ̂21, Θ̂22, Θ̂23, . . . , Θ̂51, Θ̂52, Θ̂53}, and choose
the model that minimizes the model selection criterion (39).
If the optimum number of components K? > 1, the final
context is computed as c =

∑K?

k=1 πk ck, where each ck is
obtained through an individual 2D continuous softmax at-
tention mechanism.

Results. The results in Table 2 show the accuracies for all
attention models. Again, the results are very similar, sug-
gesting that there is no clear gain in terms of accuracy when
using MCA models to answer the questions in the VQA-
v2 dataset. Note, however, that these models also use less
basis functions than image regions (N � L = 14×14). Al-
though we can now identify multiple regions of interest in
images (attention focuses), in terms of accuracy for VQA
that seems not to be a big advantage. When using test-
MCA, an optimum value of components K? is chosen to
answer each question; from Table 2 it is possible to see that
the overall accuracy also increases with these, suggesting
that a small K is better for the model’s accuracy.

Figure 3. Attention maps generated when answering the question:
How many planes have blue as their main body colour? Top
left: 2D continuous softmax (N = 100). Top right: MCA-2.
Bottom left: MCA-4. Bottom right: MCA-test (λ = 500).

Figure 4. Attention maps generated when answering the question:
How many people are wearing helmets? Left: 2D continuous
softmax (N = 100). Right: MCA-test (λ = 500).
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Attention visualization. Figure 3 shows an example in
which the models are asked how many planes have blue as
their main body colour. When using 2D continuous soft-
max, the attention density is a Gaussian and the region of
interest is correctly identified. However, due to its unimodal
nature, it attributes a lot of probability mass to the yellow
plane’s position – a region in between the 2 blue planes (the
leftmost and the rightmost ones). Although a similar situa-
tion appears to happen when using MCA-2, the difference
in the values of the contours shows that the attention density
is more spread across the 5 planes instead of being concen-
trated in the yellow one. Both MCA-4 and MCA-test are
not only capable of identifying 2 blue planes but also to
“isolate” its positions, suggesting that these models gener-
ate more flexible attention distributions, while enjoying the
advantages of modeling attention as a continuous function.

Although the ellipses generated by unimodal continuous
attention models are able to become as wide as necessary,
that can result in a less interpretable attention map. Multi-
modal continuous attention solves this problem (Figure 4).

6. Conclusions
We presented continuous-domain alternatives do discrete

attention models that focus on the continuity and sparsity of
attention distributions. We constructed 2D continuous α-
entmax attention mechanisms; for α = 1 the attention den-
sity is a Gaussian and, for α = 2, it becomes a truncated
paraboloid distribution with sparse support. We derived
their Jacobians, allowing for efficient forward and backward
propagation (Section 3). As a natural follow-up, we pro-
posed multimodal continuous attention by using mixtures
of unimodal attention densities (Section 4). These atten-
tion mechanisms enjoy some of the properties of their uni-
modal counterparts, while they are able to generate more
flexible attention maps and thus can model more complex
attention distributions. Finally, we performed experiments
on VQA with promising results (Section 5). Continuous
attention allowed for obtaining smooth and interpretable at-
tention maps that are more difficult to generate with discrete
attention models.

There are many avenues for future research. First, we did
not explore other vision tasks that could benefit more from
our MCA models than VQA does. For instance, the state-
of-the-art on visual counting tasks is an attention-based
model that uses grid features and therefore could work with
MCA [15]. Another possible way of future research lies
in considering mixtures of sparse family distributions (e.g.,
truncated paraboloids). Moreover, if the mixing coefficients
in (27) are obtained from a discrete transformation that pro-
duces sparse results (e.g., sparsemax), the number of com-
ponents in a mixture may vary (K becomes a maximum
number of components), possibly making the training of
MCA models with varying number of modes easier.
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