
1

Multimodal and Longitudinal Approaches to
Alzheimer’s Disease Classification

Beatriz Oliveira Ferreira

Abstract—Alzheimer’s disease is a degenerative brain disease,
without a known cure. However, its progress can be delayed,
when diagnosed in early stages. MRI and PET imaging are
precious tools for this purpose, as they can help to identify
this disease years before symptoms appear. The present work
analyzed how several classifiers performed in different scenarios.
These scenarios included binary and multiclass classification
(up to 4 classes), predicting the future diagnosis, predicting the
current diagnosis having access to data from multiple previous
timesteps and predicting whether a subject’s diagnosis would get
worst. In this last scenario there was an extra obstacle, since the
data was highly imbalanced. SMOTE, random undersampling,
and a combination of both were the approaches used to deal with
the imbalance. The classifiers used were SVM, RF, NN and RNN.
In scenarios where more than one timestep was being considered,
the input data was adapted to SVM and RF, by concatenating the
features of all timesteps. In addition to the standard classifiers,
kSVM was proposed and tested. This classifier’s objective was to
improve the SVM score when there were several timesteps, by
breaking up the features by timestep. However, its performance
proved to be worse than the one of SVM, which makes this
classifier not very promising. A classifier to predict changes of
diagnosis was also proposed.

Index Terms—AD, MCI, MRI, RF, RNN, SVM

I. INTRODUCTION

Alzheimer’s disease (AD) is a degenerative brain disease,
and the most common type of dementia. In the early stages it
causes damage to brain cells in parts of the brain involved
in cognitive functions, which translates in difficulties with
memory, language, problem-solving and other cognitive skills.
In later stages, neurons in other parts of the brain are also
damaged or destroyed, affecting a person’s ability to perform
basic body functions like walking or swallowing, which means
that people in these stages are bed-bound and need around-
the-clock-care. AD is ultimately fatal [1]. Alzheimer’s disease
prevalence increases with age. Due to the fact that the popula-
tion in developed countries is aging, the worldwide prevalence
of AD is increasing. Therefore, the costs associated with the
disease have also increased [1].

Early diagnosis of the disease is very important, since there
is still no cure for AD. There are some drugs that can slow or
even stop the progression of the disease, but their effectiveness
varies from person to person and is limited in duration [1].

Part of identifying dementia in early stages is to identify
Mild Cognitive Impairment, or MCI, which is a condition in
which an individual has mild changes in thinking abilities, that
affects 15-20% of people aged 65 or more. Subjects with MCI
can usually carry everyday tasks, but the cognitive changes are
noticeable to friends and family [1]. MCI is a major indicator
that a subject may develop Alzheimer or other dementia: 32%

of individuals with MCI developed AD in the following 5
years [1].

AD’s diagnosis is usually a combination of behavioral
changes and biomarkers. The behavioral changes are identified
by obtaining a medical and family history from the individual,
asking a family member to provide input about changes in
thinking skills and behavior, and conducting cognitive tests
and physical/neurological examinations are some of the tools
to provide AD diagnosis. The biomarkers are signs of physical
changes in the brain, like the accumulation of beta-amyloid
plaques outside neurons and of protein tau inside neurons.
The first change contributes to the decay of number of cells by
interfering with synapses, and the second one causes the block
of transportation of nutrients and other essential molecules to
neurons. Other brain changes include inflammation and atro-
phy [2]. AD (and MCI, with less severity) is also associated
with reduced cortical thickness and surface area in a few brain
regions associated with cognitive impairment. These changes
are identified with the use of PET, MR imaging and CSF
biomarkers [2]. These methods can hint that a subject will
convert to AD up to 15 years before symptoms appear [1],
[2].

The outline of the remaining document is as follows:
in section II the classification methods used are explained.
Section III discusses imbalanced data and how to deal with
it. Section IV has a brief description of the methods used to
evaluate the performance of classifiers. In section V, the data in
which the experiments were based on is described. In chapter
VI, the specific parameters of each classifier are presented.
In chapter VII, the results of the different experiments are
presented. At last, in chapter VIII, the conclusions of this
work are presented, and some suggestions for future work are
discussed.

II. CLASSIFICATION METHODS

A. SVM

A support vector machine (SVM) is a supervised machine
learning method for binary classification problems, that can be
applied to both linearly separable and non-linearly separable
data. It can also be extended to multi-class problems.

Consider a set of L training points, xi, i = 1, ..., L, where
each input xi belongs to <D and to a class yi ∈ {−1, 1}. The
main idea behind SVM is to find the optimal hyperplane to
separate the two classes in the training data. This hyperplane
is the decision boundary. New data is classified simply by
checking in which side of the boundary it falls.

If the problem is binary and the data is linearly separable,
the hyperplane that divides the two classes is found by solving

2

the optimization problem in equation 1. The dual form of the
problem is presented in equation 2, where Hij ≡ yiyjxi ·xj .
The full demonstration is available in [3].

minimize
1

2
‖w‖2

subject to yi(xi ·w + b)− 1 ≥ 0,∀i
(1)

LD ≡
L∑
i=1

αi −
1

2
αTHα

s. t. αi ≥ 0 ∀i,
L∑
i=1

αiyi = 0

(2)

Since Hij depends only on the dot product between pairs
of points xixj , and not on each input xi, the extension of the
SVM algorithm to nonlinear classification can be done with
relative ease: rather than mapping each training patterns by a
map φ, it is enough to know k(xi, xj) = φ(xi) ·φ(xj), where
the function k is called the kernel. Therefore there is no need
to explicitly compute φ [3]. The most common kernels are
the polynomial (equation 3), the sigmoid (equation 4) and the
radial basis function (RBF) (equation 5).

k(xi, xj) = (xi · xj + a)b (3)

k(xi, xj) = tanh(axi · xj − b) (4)

k(xi, xj) = e−
1

2σ2
‖xi−xj‖2 = e−γ‖xi−xj‖

2

(5)

SVM can also be used for multi-class classification, however
the best way to do this extension is still an on-going research
issue. The method used in this work is the one implemented
in the scikit-learn library, one-against-one. Another common
method is one-against-all [4].

One-against-one trains a model for every pair of classes, so
if there are k classes it will train k(k − 1)/2 classifiers. The
decision for a new data point x is made by majority voting: if
the SVM for the pair of classes i, j says x is in the ith class,
the vote for this class is incremented. Otherwise is the jth class
that is incremented.

One-against-all starts by building k different SVM models,
where k is the number of different classes. The mth SVM
is trained by labeling all patterns of the mth class in the
training dataset with +1 and all of the other patterns with
−1. This leads to having k different decision functions,
f1(x), f2(x), ..., fk(x). A new data point x is labeled with
the class that has the largest value of the decision function:
x ≡ argmaxm=1,...,k(fm(x)).

B. RF

Random forest is an ensemble learning technique, that can
be used for both classification and regression. Although it
is very simple, it is very powerful, achieving state-of-the-art
accuracy in many problems [5].

The base classifier of random forest is the decision tree.
Decision trees’ structure is made of a root and nodes, which
can be internal or leaf nodes. The former correspond to data

being internally split and the later correspond to single classes.
There are several algorithms to build decision trees; the most
used ones are ID3, C4.5 and CART [5]. They all have the
same basis: starting with a training set T and a root node,
find the best attribute to splitting the node, using a measure of
node impurity (can be misclassification error, entropy or Gini
index).

Besides decision trees, the random forest algorithm uses the
bagging algorithm and the random subspace method.

The random forest algorithm benefits from having multiple
tree classifiers, because this compensates for the bias of a
single classifier. The strength of random forest classifiers
increases with the strength of individual tree classifiers, but
decreases with their correlation. So, to improve accuracy,
the ”randomness” has to minimize the correlation between
different trees, while maintaining strength [6]. This is achieved
using sampling from a random feature subspace and bagging.

One of the methods used to ensure that the different
trees are independent is randomly sampling from the feature
subspace [7]. This means that each tree is constructed with
only some features, rather than all of the available ones, that
are randomly selected. The number of this feature subset is a
hyper-parameter of the random forest algorithm.

The other method, bagging or bootstrap aggregation, con-
sists in creating multiple training sets from a single one, by
drawing samples with replacement from the original training
set [6]. The number of training sets, and therefore of trained
trees, is another hyper-parameter of random forests.

At last, the random forest algorithm needs to combine the
decisions of the individual trees. It does this by averaging the
conditional probability of each class at the leaves [7].

C. NN

Neural networks are made of several units (also called
neurons), organized in different layers. The structure of these
networks consists of an input layer, one or more hidden layers,
and an output layer, with as many units as network outputs.

Each node receives n input signals xi (with connection
weights wi) which sum to an activation value y (that is,
y = wi · xi + b, where b is the bias of the node). A suitable
transfer (or activation) function F transforms it into the
output F (y). The knowledge of a network is contained in the
connection weights, which assume their values in the training
phase. This training is often done using the backpropagation
learning algorithm [9].

The most popular activation function in deep learning, for
both input and hidden layers, is RELU, which is given by
f(x) = max (0, x). The activation function of the final layer
depends on the purpose of the network. For multiclass and
single-label classification the softmax function is used. For
binary problems a sigmoid function is preferred [8].

The backpropagation algorithm is used to modify the con-
nection weights wi, in such a way that they minimize the value
of the loss function. To do so, the gradient-descent algorithm
is used. It starts from a generic data point p0 and calculates
the gradient ∇, which gives the direction in which to move
in order to reach the maximum increase (or decrease, if −∇

3

is considered). A new point p1 is found by moving from
p0 a distance of η∇ in the found direction, where η is the
learning rate. The gradient is recalculated in the new point
p1, and algorithm continues iteratively until the gradient is
smaller than a given threshold. The backpropagation algorithm
can be divided into two steps: forward step, where the input
data to the network is propagated through all the layers,
and then the loss function is computed; and backward step,
where the loss is propagated backwards, and the weights are
updated appropriately [9]. The loss function that yields better
results depends on the problem’s characteristics (for example,
whether it is regression, binary classification or multiclass
classification). Usually, binary or categorical cross-entropy are
used.

A recurrent neural network (RNN) is a type of neural
network commonly used with sequential data that has an
internal loop, that is, it processes sequences by iterating
through the sequence elements and maintaining a state con-
taining information relative to what it has seen so far. These
networks have a feedback architecture, which means that they
have memory: they processes sequences by iterating through
its elements and maintaining a state containing information
relative to what it has seen so far [8]. When training the RNN,
the weights of the different layers are adjusted according to
the backpropagation algorithm, which can be easily automated,
using proper software like Keras and TensorFlow. However, it
is not as simple to find the optimal hyper-parameters, like the
architecture of the network (number of layers and how many
units per layer), batch size, dropout rate and regularization.
To tune hyper-parameters, the data is split into test, train and
validation sets, and then cross-validation is used.

In general, when training a neural network the performance
of the model starts by improving rapidly: both the test and
the validation losses decrease substantially. However, after a
certain number of iterations over the training data, the model
starts to overfit: the loss on the training data may continue
to drop, but it is because the model has lost generalization
ability, and is now learning patterns specific to the data at hand.
Meanwhile, the loss on the validation data starts increasing
[8]. The most straightforward solution to overfitting is to
get more training data, although that is not always possible.
Other solutions include reducing the network’s size, weight
regularization and dropout.

Weight regularization is a way of forcing the network
weights to be smaller, because larger weights means that
the network is more complex. Like it was seen previously,
with the network size, a simple explanation leads to better
generalization. To apply weight regularization, a cost is added
to the loss function of the network. The cost added can be
either proportional to the L1 or L2 norm of the weights, which
leads to L1 or L2 regularization [8].

Dropout is one of the most effective techniques to deal with
overfitting. It is applied to layers, rather than to the whole
network. It consists in randomly dropping a fraction of the
weights (usually 0.2 to 0.5) of the layer during training. The
idea behind this technique is that by adding some noise to the
output of the layers the patterns with less significance, which
are specific to the training data rather than a general trend, are

broken [8].

D. kSVM

A fourth classification method, kSVM, was considered, with
the objective of improving the SVM classification for multiple
timesteps, as it is a simplified version of what RNN are to NN.
The first SVM receives features from the first timestep, and
proceeds as described in the SVM subsection, except that it
outputs the probability of each class for each subject in the
dataset, rather than a single label.

These probabilities are an input to the following SVM, along
with the features from the next timestep. The second SVM is
similar to the first one. The k SVM, rather than outputting the
probability for each class, outputs the final classification for
each subject. A schematic for k = 3 is presented in figure 1.

Fig. 1. Structure of the classifier composed by 3SVM. The three sets of
numbers represent hypothetical outputs for three input patterns.

E. Training

After building a model, and having the tools to train it, it
is necessary to evaluate how well it behaves with new data.
In order to do so, rather than training the model with all of
the data available, the data is split into three independent sets,
called training, test and validation.

The training set is used to train the model, using predeter-
mined hyper-parameters. Then the model is evaluated using the
validation set. The hyper-parameters are changed, the model is
trained again on the training set and evaluated on the validation
set, and so on, until the model has a good performance on the
validation set. After the model is trained, it is evaluated on data
it has never seen before, the testing set. It is very important to
make no changes to the model based on information from the
testing set, because it would insert a bias into the model and
defeat the purpose of having an independent evaluation of the
model [8].

If there are not many data points for training, the validation
score may have a high variance depending on the validation
slip. Cross-validation is a tool to have a more robust validation.

There are several data resampling strategies, with different
degrees of complexity. In practice, k-fold stratified cross-
validation is often applied, with k equal to 5 or 10. K-fold
cross-validation consists in splitting the data in k partitions,
and train k different models. Each model is trained into k− 1
partitions and evaluated on the remaining one. The validation
score of the model is the average of the k scores obtained from
each of the k models. This method is represented in figure 2.
The stratified part means that the proportions of classes in the
different partitions reflect the proportions in the learning set.

4

Fig. 2. 3-fold cross validation. Image from Deep Learning with Python [8].

III. IMBALANCED DATA

Although any data set that has unequal distribution between
classes can be considered imbalanced, the term imbalanced
data is more commonly used when the data set has a significant
imbalance, in the order of 100:1, 1,000:1 or even 10,000:1. The
main problem when using imbalanced data sets is that they
significantly compromise the performance of most standard
learning algorithms: they often fail to properly represent the
distributive characteristics of the data, and in result provide
unfavorable accuracy across the classes of the data. To deal
with this problem there are some solutions: resampling, cost-
sensitive methods, kernel-based methods, active learning meth-
ods, among others [10]. The first two are more common,
and achieve state-of-the-art performance in many problems,
so they will be explained in more detail. Despite not actually
improving the classification, changing the performance metrics
can also be a helpful tool when dealing with imbalanced data
[10].

Resampling

1) Random oversampling and undersampling: Random
oversampling consists in appending to the original data set, S,
an extra data set, E, gathered by sampling from the minority
class. This means that the number of examples of the minority
class in S will increase by |E|, which allows to adjust the
degree of imbalance. However, if the number of samples in E
is too large, the examples of the minority class are repeated
many times, which leads to very specific rules, which in turn
leads to overfitting [10].

Random undersampling is very similar to random oversam-
pling: rather than appending data from the minority class,
it removes data that belongs to the majority class from the
original data set, S. The problem with this technique is that
removing examples from the majority class may cause the
classifier to miss important concepts regarding this class [10].

2) Synthetic samples: The SMOTE (synthetic minority
oversampling technique) algorithm [11] creates artificial data
points for the minority class based on the similarities between
minority examples. To create a synthetic sample, xnew, it starts
by considering an element of the minority class, xi and its
K nearest neighbors that belong to the same class. Then it
randomly chooses one of the K neighbors, x̂i, and a δ between
0 and 1. At last this vector is added to the original sample:
xnew = xi+(x̂i−xi)×δ. Figure 3 presents an example of the
generation of a synthetic sample using SMOTE, for K = 6.

Fig. 3. Example of the creation of a new sample using the SMOTE algorithm.
Image from Learning from Imbalanced Data [10].

This method has the same benefits as random oversampling,
without the drawbacks. However, the SMOTE algorithm still
has some problems, including over generalization and variance
[10].

Cost-sensitive methods

Cost-sensitive methods, rather than trying to balance the
data set, tackle the imbalanced data problem by using differ-
ent cost matrices to describe misclassification. These square
matrices are composed by as many rows as classes and each
cell represents the cost of misclassifying a sample of the class
j into the class i, C(i, j) [10].

There are several ways of implementing these methods.
The most general ones include dataspace weighting, where
the misclassification costs are used to select the best training
distribution, and applying cost-minimizing techniques to the
combination schemes of ensemble methods. These two meth-
ods are commonly used together. However, if there is not an
explicit cost matrix available, they cannot be applied.

The alternative is to incorporate cost-sensitive functions
directly into classification paradigms, to fit the cost-sensitive
framework into these classifiers, but these techniques are often
specific to each particular paradigm. For example, in decision
trees, cost-sensitive fitting can be applied in the adjustment of
the decision threshold, at the split criteria at each node, and
in pruning schemes. In neural networks, cost sensitivity can
be introduced in four ways: first, cost sensitive modifications
can be applied to the probabilistic estimate; second, the
neural network outputs can be made cost-sensitive; third, cost-
sensitive modifications can be applied to the learning rate;
and fourth, the error minimization function can be adapted to
account for expected costs [10].

IV. PERFORMANCE METRICS

Performance metrics are key to evaluating a classifier’s
performance, and to compare different methods. While chang-
ing the performance metrics doesn’t actually improve the
classification, it may provide a better understanding of the
classifier. The most frequently used metrics, like accuracy
and error rate, provide a simple, and often useful, way of
describing a classifier’s performance. However, these metrics
can be deceiving when dealing with imbalanced data sets [12],

5

which is why in these situations more complex methods, like
f1-score, are preferred.

A. Accuracy

Accuracy is the most widely used metric for evaluating per-
formances. It is defined simply as the percentage of correctly
classified samples [12]. However, there are shortcomings when
dealing with imbalanced data, as it was already mentioned.
Accuracy also has problems when dealing with ordinal data:
since only correct hits are considered, it does not care about
how close/far the misses were.

B. F1-score

F1-score, or f-measure, is a performance metric designed for
binary classification, however it can be extended for multiclass
classification. It can be interpreted as a weighted average of
precision and recall, as presented in equation 6, where β is
usually 1. Precision is defined as TP/(TP + FP) and recall
is defined as TP/(TP + FN), where TP is the number of
true positives, FP is the number of false positives and FN is
the number of false negatives [12].

f1-score =
(1 + β)2 ·Recall · Precision
β2 ·Recall + Precision

(6)

To apply this method to multiclass classification, the final
f1-score equals the weighted average f1-score of each class.

V. DATA DESCRIPTION

The data used for the experiments comes from the ADNI
database [13]. ADNI has data from 3 different phases: ADNI
1, from 2004 to 2009, and ADNI GO/ADNI 2, from 2010 to
2016 (ADNI3 data collection is currently in progress). This
work uses data from the 3 available phases (ADNI 1, ADNI
2 and ADNI GO). The number of participants in each one,
as well as their clinical status, are presented in table I, where
CN means Control Normal, EMCI is Early Mild Cognitive
Impairment, LMCI is Late Mild Cognitive Impairment and AD
is Alzheimer’s Disease. IN ADNI1 there was no distinction
between EMCI and LMCI, so there are 400 subjects labeled
simply as MCI. ADNI GO only collected data on EMCI
subjects.

TABLE I
NUMBER OF PARTICIPANTS IN EACH ADNI PHASE, ACCORDING TO THEIR

CLINICAL STATUS.

ADNI1 ADNI GO ADNI2 Total

CN 200 - 150 350
EMCI 400 200 150 900LMCI - 150

AD 200 - 200 400

In the ADNI database there are different types of data:
CSF markers of amyloid-beta and tau deposition, MRI, PET
with three tracers (FDG, AV45 and AV1451), cognitive assess-
ments, genetic information and general demographic informa-
tion [13]. This work focuses on MRI and PET data.

The main advantages of MRI (magnetic resonance imaging)
are being noninvasive and that its images have rich and
versatile tissue contrast, which can be tuned by different
parameters [14].

PET, or positron emission tomography, is an imaging tech-
nique that uses radioactive substances, or tracers, to detect
functional changes. It is used both in the field of oncology
and neuroimaging [15].

MRI and PET data was collected for every subject at
the beginning of the study, the baseline (or month 0). Most
subjects have measurements for several timesteps: figure 4
presents the number of subjects by visit (every subject that
went to visit n went also to visit n − 1). The time interval
between subjects’ visits depends on the diagnosis and ADNI
phase. A summary of the data collected in function of time
and diagnosis is displayed in figure 5.

Fig. 4. Number of subjects by visit.

(a) MRI

(b) PET

Fig. 5. Data available in the ADNI database, broken down by diagnosis and
ADNI phases, and by timesteps. Figures from [13].

The imaging data used was made available by the TAD-
POLE challenge [16]. Since it was pre-processed, the data
used for classification was already in the form of quantitative
numeric measurements.

The pre-processing of MRI scans included correction of
gradient non-linearity, B1 non-uniformity scans and peak
scans. The relevant regional features, like volume and cortical
thickness, were extracted using Freesurfer cross-sectional and
longitudinal pipelines. For PET scans, each image is composed

6

by a series of dynamic frames. Its frames were co-registered,
averaged across the dynamic range, standardized with respect
to the orientation and voxel size and smoothed do produce a
uniform resolution of 8mm full-width/half-max [16].

The start point for the remainder of this work was the
resulting database.

The features used in the model, rather than selected through
feature engineering, were features known to be relevant, based
on previous research. More specifically, the features used were
the surface area and volume of several regions of interest: ven-
tricles, hippocampus, whole brain, fusiform, middle temporal
gyrus and entorhinal cortex. The volumes were normalized
with respect to the intracranial volume.

After handling missing data, the MRI dataset had 83
features and the PET dataset had 54 features. The number
of subjects in each dataset depended on the timestep being
considered. Since PET data from ADNI2 was available only
for month 0 and 24, in the following sections the dataset
consists only of MRI data, unless stated otherwise.

The maximum number of timesteps considered was 5. There
were more timesteps available (figure 5), but they were not
evenly distributed.

VI. EXPERIMENTAL DESIGN

This section describes the specific parameters and optimiza-
tion process of each classifier and the methods used in the
following experiments.

A. Data preparation
Often, subjects don’t have measurements for all timesteps

and for all features. The database used for SVM and RF results
from the following process: the features that are blank for more
than a predetermined threshold of subjects are dropped. Then,
all the subjects that are missing information for the remainder
features are also dropped. The threshold is chosen so that the
number of subjects dropped is minimized, with the condition
of keeping at least 10 features.

Before every classification, the features are standardized (for
every sample the mean is subtracted and it is divided by the
standard deviation).

B. Performance score
All experiments were evaluated using a 5-fold cross-

validation process. The final result was the average of the
f1-score of each fold. For multiclass problems, the f1-score
was computed using the weighted average of the f1-score of
each label. For binary problems, the f1-score was simply the
one of the positive class.

C. SVM and kSVM
For each fold, the train data is divided into train and

validation sets. The train set is used to find the optimal
hyper-parameters (kernel, C and γ), through a grid-search
(the kernel can be either linear or RBF, C is chosen from
[10−4, 10−3, 10−2, 0.1, 1, 10, 100], and for a RBF kernel γ is
chosen from [10−4, 10−3, 10−2, 0.1, 1, 10, 100]). The model is
then trained using these parameters and the training set. The
f1-score is obtained with the predictions from the test set.

D. RF

For each fold, the train set is split, to find the optimal hyper-
parameters. However, since it would be computationally heavy
to optimize a large number of parameters, only the number of
trees and the max features are regarded in the optimization
process. The number of trees is chosen from [100, 200, 500,
750, 1000, 1500, 2000] and the maximum number of features
is chosen from [None,

√
n, log2(n)], where n is the number of

features.
Other parameters, like maximum depth, minimum samples

before splitting and minimum samples per leaf, are not op-
timized. The model is then trained in the training set and
evaluated in the test set.

E. NN

The process starts by converting integer labels into categor-
ical ones, using one hot encoding.

For each fold, two callbacks are used: early stopping and
model checkpoint. The early stop one monitors the validation
loss. When it has not decreased for a predetermined number
of epochs the model stops its training. The model checkpoint
monitors the validation accuracy, and saves the model weights
that performed better. The model was built using keras library.
After some trial and error, the network that showed better
results was a sequential network, composed of three layers.
The input layer had 25 neurons and the second one had
20. Both have RELU as the activation function. The dropout
between these layers was set to 0.2. The number of neurons
in the output layer is equal to the number of classes being
considered. The output layer is activated by softmax.

VII. EXPERIMENTAL RESULTS

A. Predictions for a timestep, given data from that timestep

The first classification problem tackled was to classify
subjects into only two classes, AD and CN.

For data corresponding to month 0, there are 1737 subjects.
Of those, 865 belong to either AD or CN. After dealing with
missing data, there were 852 subjects and 83 features left for
MRI data, and 431 subjects and 54 features for PET data. A
dataset containing all the common subjects in the MRI and
PET database was also considered. This dataset had 424 sub-
jects and 137 features. The labels were converted to numeric
values (0 for CN and 1 for AD). F1-scores in percentage and
their respective standard deviation are presented in table II.

A second set of results was obtained for month 0, using 3
classes (CN, MCI and AD). The number of features remained
equal to what was described in the previous paragraph. The
number of subjects in the MRI dataset changed to 1714, in
the PET dataset to 890 and in the combined dataset to 877.
The average f1-scores in percentage are presented in table III.

A third set of results was obtained for month 0, using 4
classes: MCI was split into EMCI and LMCI. This information
is available only for month 0. Table IV presents the average
f1-scores.

RF score could be improved by optimizing more parameters.
NN could also be improved, by having a systematic optimiza-
tion of parameters, rather than trial and error. However, both

7

TABLE II
AVERAGE F1-SCORE FOR CLASSIFYING SUBJECTS INTO CN OR AD, WITH

DATA RELATIVE TO MONTH 0.

PET MRI MRI & PET

SVM 83.1± 2.8 84.4± 3.9 86.4 ± 5.5
RF 81.9± 2.4 83.8± 1.4 84.8± 5.7
NN 82.8± 3.4 83.4± 2.6 84.9± 5.6

TABLE III
AVERAGE F1-SCORE FOR CLASSIFYING SUBJECTS INTO CN, MCI OR AD,

WITH DATA RELATIVE TO MONTH 0.

PET MRI MRI & PET

SVM 51.9± 5.4 50.9± 1.7 53.7± 2.3
RF 51.2± 3.4 52.2± 2.0 53.1± 1.8
NN 53.4± 3.8 53.7± 2.6 55.7 ± 4.1

Fig. 6. Confusion matrix obtained for classification of subjects in 3 classes,
using MRI and PET imaging. The classifier used was a neural network.

TABLE IV
AVERAGE F1-SCORE FOR CLASSIFYING SUBJECTS INTO CN, EMCI,

LMCI OR AD, WITH DATA RELATIVE TO MONTH 0.

PET MRI MRI & PET

SVM 41.9± 1.9 41.4± 7.1 47.5± 1.9
RF 41.1± 4.0 43.1± 3.4 48.0 ± 3.8
NN 42.3± 5.7 43.0± 2.8 47.6± 2.1

classifiers are already quite slow. SVM is by far the fastest
classifier, and at the same time is the most optimized method.
Its results could still be improved, by using a narrower grid
to find the optimal parameters.

None of the classifiers under performed or outperformed
significantly the others, so all of them were considered in the
following sections. Having a combination of MRI and PET
measurements always yielded better results than considering
a single imaging modality. However, PET data from ADNI2
was available only for month 0 and 24, so in the following
sections the dataset consists only of MRI data.

Adding a class between AD and CN lowers the scores
significantly. The confusion matrices show that most of the
misclassifications are between MCI and CN, as shown in figure
6. This CM was obtained for a combination of MRI and PET
features, using a NN as the classifier. It is worth mentioning
that approximately half of the subjects in the database belong
to the MCI class, so it is expected that this class is favored.
When MCI is split into EMCI and LMCI (this data is only

available for month 0) there is no longer a bias towards this
class. It becomes clear CN and EMCI are often mixed-up, and
the same happens for AD and LMCI. This was verified for all
the classifiers. As an example, the confusion matrix obtained
using SVM, for the database composed of both PET and MRI
features, is presented in figure 7.

Fig. 7. Confusion matrix obtained for classification of subjects in 4 classes,
using MRI and PET imaging. The classifier used was a SVM.

It is likely that classification scores would be improved
by filling in missing data rather than just not considering
features/subjects with missing data.

B. Predictions for a timestep, given data from the previous
timestep

The classification methods used in this section were the
same as the ones used in the previous one. The difference
was in the training: rather than using data from a given month
to obtain a prediction for that same month, the model is trained
with features from a previous one and given labels of the given
month. Therefore the model has data from the current month,
and is trying to predict the future diagnosis.

Below are the results of trying to predict the labels of month
24, using features from month 24 (as a baseline), 12, 6 and 0.
The classes considered were CN, MCI and AD. The subjects
that converted from one class to another were considered into
the class they were converting into (for example, if a subject is
classified as ”CN to MCI”, it is considered MCI). The results
are presented in table V. The experiment was repeated using
month 12 as reference. The results are presented in table VI.

TABLE V
AVERAGE F1-SCORE FOR PREDICTING THE SUBJECTS’ CLASS ON MONTH

24, WITH BASELINE INFORMATION FROM MONTH 24, 12, 6 OR 0.

Month 0 Month 6 Month 12 Month 24

SVM 52.0± 2.6 56.4± 4.1 58.2± 2.9 57.2± 2.6
RF 54.5± 2.5 58.3± 3.6 59.8 ± 2.3 58.5± 2.6
NN 53.8± 1.0 55.3± 2.5 56.4± 3.2 55.7± 3.4

The results show that the predictions get better when using
more recent data, which was expected, since the test data used
is more similar to the training data. However, unlike what was
expected, the results are worse when using features and labels
from the same month. For example, in table V the prediction

8

TABLE VI
AVERAGE F1-SCORE FOR PREDICTING THE SUBJECTS’ CLASS ON MONTH

12, WITH INFORMATION FROM MONTH 12, 6 OR 0.

Month 0 Month 6 Month 12

SVM 51.3± 1.9 51.8± 3.9 52.2± 1.8
RF 50.2± 3.4 55.7 ± 2.7 54.4± 0.8
NN 53.7± 2.3 54.0± 3.2 53.8± 5.0

using data from month 0 is worse than the prediction using
data from month 6, which in turn is worse than the prediction
using data from month 12. However, the prediction using
data from month 24 is worse than the one using data from
month 12. The results in table VI are similar, which discards
the possibility of a statistical outlier. This behavior could be
explained by some kind of systematic error, like the time
between visitations not being exactly the one considered.

C. Predictions for a timestep, given data from more than one
previous timestep

First, subjects were classified into three different classes
(AD, MCI and CN) using data from 3 points in time: month
0, 12 and 24.

Two of the classifiers used were the usual SVM and RF.
The ”memory”, or the ability to use information from more
than 1 period of time, was created by concatenating features
from several timesteps. In this particular case, the information
was from month 0, 12 and 24. So, rather than having the usual
83 features, these classifiers had to deal with 249 features (83
features times 3 timesteps). This means that these methods
had to look at all the information at once, without having the
advantage of ”broken-down” sequences.

The third classifier was a RNN. Since memory is its biggest
advantage, there was no need to adapt it to receive information
from several timesteps. Another upside is that it can easily
deal with missing data, by using a masking layer. However,
to allow for a more direct comparison, the database used
consisted of the same subjects and features as the one used
for other classifying methods. The network used consisted of
2 simple RNN layers, each with 32 neurons, dropout equal to
0.1, l1 regularization equal to 0.0001, l2 regularization equal
to 0.001 and relu as activation function. The final layer was a
dense layer with 3 units, with softmax as activation function.
The callbacks Early Stop and Model Checkpoint were used
to monitor the validation loss and the validation accuracy,
respectively.

The fourth classifier considered was kSVM, with k = 3,
which means that 3 SVM’s were used.

For RF and SVM, the dataset had 249 features and 1016
subjects. The dataset used for both RNN and 3SVM had the
same 1016 subjects, with 83 features for each timestep. The
subjects were classified into AD, MCI and CN. The results
obtained for each method are presented in figure 8.

RF achieved the best score, but the 5-fold validation took 44
minutes to run. SVM took only 89 seconds. RNN and 3SVM
took 26 minutes and 6 minutes, respectively.

The same experiment was repeated, but using only the
subjects who had measurements for all timesteps (that is,

Fig. 8. Average f1-score obtained with different methods for classifying
subjects into three classes, using information from months 0, 12, 24.

months 0, 12, 24, 36 and 48). The final database had only 196
subjects and 83 features. Table VII shows the average f1-score
and its respective error for each method, obtained through a
k-fold cross-validation with k = 5. The results of all methods
plotted together, so they can be more easily compared, are in
figure 9.

Apart from the result of RF for 3 timesteps, all methods
have a similar behavior. Figure 9 shows that RNN is the worst
method for only two timesteps, but that it improves with each
new timestep. Unlike SVM and RF, that can perform well with
few training data, RNNs tend to work better with more data.
It would be interesting to see if, either with more subjects or
with more timesteps, RNN would become the best classifier.

kSVM and SVM have a very similar behavior, despite
kSVM being more complex and computationally heavier.
Therefore there was no significant advantage in breaking up
the features by timesteps before feeding it to kSVM, rather
than just using the concatenated version.

TABLE VII
AVERAGE F1-SCORE OBTAINED WITH DIFFERENT METHODS FOR

CLASSIFYING SUBJECTS INTO 3 CLASSES, IN FUNCTION OF THE NUMBER
OF TIMESTEPS.

of Timesteps 2 3 4 5

SVM 52.1± 4.4 52.0± 6.3 52.7± 4.6 55.4± 7.8
RF 52.3± 5.8 56.6± 5.2 54.2± 5.1 56.7 ± 7.1

RNN 50.4± 8.2 51.2± 6.4 52.9± 5.5 55.9± 4.6
kSVM 52.7± 6.7 51.7± 2.0 52.2± 5.5 54.8± 4.1

Fig. 9. Comparison of average f1-score obtained with different methods for
classifying subjects into three classes, with different number of time steps.

9

D. Predicting changes of diagnosis

The focus of this experiment was in predicting if a subject’s
condition got more severe. Using month 0 as starting point and
month 24 as the ending point, there were 1020 subjects. In
these 2 years, 30 subjects showed improvement (transitioned
from MCI to CN or from AD to MCI), so they were removed
from the database. 172 subjects transitioned to a worse state,
so they were labeled as 1. 818 subjects kept their diagnosis,
and were labeled as 0. The features used for SVM, RF and
NN were the concatenation of the usual 83 features for months
0 and 24.

This dataset is much more imbalanced than the previous
ones, so it was necessary to implement strategies to deal with
it: random undersampling (RU), SMOTE and a combination
of both. The results are presented in table VIII.

TABLE VIII
AVERAGE F1-SCORE OBTAINED WITH DIFFERENT STRATEGIES TO DEAL

WITH CLASS IMBALANCE AND DIFFERENT CLASSIFIERS, FOR
CLASSIFYING SUBJECTS AS HAVING CHANGED THEIR DIAGNOSIS

BETWEEN MONTH 0 AND MONTH 24.

Imbalanced SMOTE RU RU & SMOTE

SVM 33.1± 5.7 16.4± 4.4 40.8± 6.3 40.9 ± 5.2
RF 12.7± 9.7 16.6± 8.7 27.1± 6.8 35.4± 2.1
NN 10.8± 5.6 30.7± 8.2 24.8± 3.7 35.3± 4.9

Figure 10(a) presents the confusion matrix obtained for
SVM without using any approach to deal with the imbalance
and figure 10(b) presents the confusion matrix obtained when
using SMOTE & RU. Figures 11 and 12 present the same
information, for RF and NN, respectively.

The combination of SMOTE and RU was the best approach
for every classifier. As the confusion matrices in figures
10, 11 and 12 show, the accuracy of the minority class as
always improved, at the cost of decreasing the accuracy of
the majority class. Without dealing with the imbalance, both
RF and NN classified almost all test patterns as ”no change”,
which means they were initially as good as choosing always
the majority class. Using SMOTE & RU, this behavior was
altered.

Despite none of the classifiers having achieved a very good
performance, SVM and NN reached an accuracy greater than
50% for both classes. To improve the overall performance,
tuning the parameters of SMOTE and RU could be attempted.
Another strategy could be choosing 2 points in time further
apart, which would lead to more subjects converting to a
more serious diagnosis, which in turn would result in a more
balanced dataset.

VIII. CONCLUSIONS

The present thesis analyzed the performance of different
classifiers used to assign subjects into Normal (CN), Mild
Cognitive Impairment (MCI) and Alzheimer Disease (AD),
by using data from the ADNI database.

In the first experiment of subsection VII-A, the problem of
classifying subjects into AD and CN was approached. This
was a simple problem, without any real challenge. Its main
objective was to test if every classifier was working properly.

(a) With imbalance (b) SMOTE & RU

Fig. 10. Confusion matrices obtained for classifying subjects into change/no
change, using SVM. The time window considered was from month 0 to month
24.

(a) With imbalance (b) SMOTE & RU

Fig. 11. Confusion matrices obtained for classifying subjects into change/no
change, using RF. The time window considered was from month 0 to month
24.

(a) With imbalance (b) SMOTE & RU

Fig. 12. Confusion matrices obtained for classifying subjects into change/no
change, using NN. The time window considered was from month 0 to month
24.

The results were similar for all classifiers and for both imaging
modalities, PET and MRI. The best scores were obtained using
a combination of PET and MRI features. The maximum f1-
score obtained was 86.4.

In the second experiment of the same subsection, 3 classes
were considered. As in the previous case, the best results
were obtained when using a combination of MRI and PET
measurements. The maximum f1-score obtained was 55.7. CN
was often classified as MCI. Splitting MCI into EMCI and
LMCI, it become clear that MCI is harder to identify. LMCI
was often classified as AD and EMCI was often classified as
CN. The maximum f1-score obtained using 4 classes was 48.0.

In the following subsection, VII-B, the classification was

10

performed having access to features from a previous timestep
and labels from the current one. RF was the classifier that
performed better. With the exception of the original timestep,
the results are worse for timesteps further away from the
original one. However, the decay is not significant for 12 or 18
months. Unlike expected, the results were better using features
from the previous timestep than from the current timestep. This
effect was observed for both month 12 and 24, which points
to it not being a statistical outlier. There could be some kind
of systematic error, like the time between visitations not being
exactly the one considered.

In section VII-C, information about several points in time
was used to classify subjects into 3 classes: CN, MCI and AD.
4 classifiers were used: the well-known SVM, RF and NN and
a new one, kSVM. This new classifier used as many SVMs
as available timesteps, and the ith SVM received the output
from the i−1th SVM and the features belonging to timestep i.
In the first experiment, using the bigger dataset, RF obtained
the best f1-result: 57.1. However, this method was very slow,
and the second experiment showed that this value could be an
outlier. RNN and 3SVM obtained a f1-score of 55 and SVM
of 54. All of the methods achieved a better f1-score than the
ones obtained in section VII-A. In the second experiment of
this section, a smaller dataset was used. RF still had the best
results, but the value for 3 timesteps seems to be an outlier.
All classifiers had a tendency to improve their classification
with more timesteps, but RNN’s performance was the one
that improved the most. The new classifier, kSVM, performed
worse than the simple SVM, that received all the data at once,
without information regarding which features belonged to each
timestep. Since kSVM is computationally heavier, more time-
consuming and hard to escalate to many timesteps, it is better
to use the classical SVM. Even with a smaller dataset, all of
the classifiers achieved average scores significantly higher than
the ones obtained in subsection VII-A, for 5 timesteps.

At last, in subsection VII-D, the problem tackled was
different: the subjects were now classified as having changed,
or not, their diagnosis between 2 points in time. This dataset
proved to be very imbalanced. Using the original classifiers,
the ”no change” class was chosen most of the time. Using
SMOTE and RU, the results improved for all the classifiers,
and SVM managed to achieve a f1-score of 40.9. None of the
methods proved to be very good to tackle this problem, but
SVM and NN reached an accuracy greater than 50% for both
classes.

The results obtained in the first experiment using MRI and
PET were better than the ones obtained using only MRI. Most
results in the present work should improve using a combination
of MRI and PET data, rather than just MRI. There could also
be some gain in studying the different features, rather than
using the ones already used in previous work.

The ordinal nature of the data ended up not being used.
Subjects with missing data and features not present for

the majority of subjects were simply not considered, which
discarded a significant number of subjects/features. Rather
than ”throwing away” information, these ”holes” could be
filled, using a number of different imputation approaches.

All of the available parameters were optimized when using

SVM. Future work could test if RF results would improve
by optimizing more than just 2 parameters, and if NN results
would improve by systematically optimizing every parameter,
or even the architecture.

In subsection VII-B, the reasons for the classification to
be better using past features rather than the features that
correspond to the labels are unclear. It could be interesting
to see if these differences are due to some systematic error
or something else. Using data from later months, there could
also be a more thorough analysis on how the error in clas-
sification varies in function of time difference between the
measurements and the given label.

In the last experiment, corresponding to subsection VII-D,
the classifiers had to deal with an imbalanced dataset. The
strategies used to deal with it were random undersampling and
SMOTE. This strategies were not optimized, as they were im-
plemented using simply the default parameters. The next step
could include tuning these parameters and/or experimenting
with different approaches. Another possible test is using data
from more distant timesteps, so that there are more subjects
converting, and the data becomes less imbalanced naturally,
rather than adding synthetic samples or removing information.

REFERENCES

[1] Alzheimer’s Association and others. 2018 Alzheimer’s disease facts and
figures. Alzheimer’s & Dementia, 14(3):367-429, 2018.

[2] H. Yang, H. Xu, Q. Li, Y. Jin, W. Jiang, J. Wang, Y. Wu, W. Li, C. Yang,
X. Li, et al. Study of brain morphology change in Alzheimer’s disease
and amnestic mild cognitive impairment compared with normal controls.
General psychiatry, 32(2), 2019.

[3] T. Fletcher. Support Vector Machines Explained. UCL, 2008.
[4] A. J. Smola and B. Schölkopf. A tutorial on support vector regression.

Statistics and Computing, 14(3):199-222, Aug 2004.
[5] M. N. Anyanwu and S. G. Shiva. Comparative analysis of serial decision

tree classification algorithms. International Journal of Computer Science
and Security, 3(3):230–240, 2009.

[6] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct 2001.
[7] T. K. Ho. The random subspace method for constructing decision

forests. IEEE Transactions on Pattern Analysis & Machine Intelligence,
(8):832–844, 1998

[8] F. Chollet. Deep learning with Python. Manning Publications Co., 2018
[9] M. Boden. A guide to recurrent neural networks and backpropagation.

The Dallas project, 12 2001.
[10] H. He and E. A. Garcia. Learning from imbalanced data. IEEE Trans-

actions on knowledge and data engineering, 21(9):1263–1284, 2009.
[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote:

synthetic minority oversampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[12] L. A. Jeni, J. F. Cohn, and F. De La Torre. Facing imbalanced
data–recommendations for the use of performance metrics. In 2013
Humaine association conference on affective computing and intelligent
interaction, pages 245–251. IEEE, 2013.

[13] ADNI - Alzheimer’s disease neuroimaging iniciative. URL
http://adni.loni.usc.edu/.

[14] K. Möllenhoff, A.-M. Oros-Peusquens, and N. J. Shah. Introduction to
the basics of magnetic resonance imaging. In Molecular Imaging in the
Clinical Neurosciences, pages 75–98. Springer, 2012.

[15] S. Suppiah, M.-A. Didier, and S. Vinjamuri. The who, when, why, and
how of PET amyloid imaging in management of Alzheimer’s disease –
review of literature and interesting images. Diagnostics, 9(2):65, 2019.

[16] R. V. Marinescu, N. P. Oxtoby, A. L. Young, E. E. Bron, A. W. Toga,
M. W. Weiner, F. Barkhof, N. C. Fox, S. Klein, D. C. Alexander, et al.
TADPOLE challenge: Prediction of longitudinal evolution in Alzheimer’s
disease. arXiv preprint arXiv:1805.03909, 2018.

	Introduction
	Classification methods
	SVM
	RF
	NN
	kSVM
	Training

	Imbalanced data
	Random oversampling and undersampling
	Synthetic samples

	Performance metrics
	Accuracy
	F1-score

	Data description
	Experimental design
	Data preparation
	Performance score
	SVM and kSVM
	RF
	NN

	Experimental results
	Predictions for a timestep, given data from that timestep
	Predictions for a timestep, given data from the previous timestep
	Predictions for a timestep, given data from more than one previous timestep
	Predicting changes of diagnosis

	Conclusions
	References

