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Resumo

Os mecanismos de atenção visual são um componente importante das redes neuronais profundas

com aplicação em visão computacional, permitindo-lhes identificar elementos relevantes em conjuntos

finitos de objetos ou regiões. Para representar a pontuação indicativa da importância de cada feature no

domı́nio probabilı́stico, estes mecanismos empregam uma função diferenciável – usualmente a função

softmax, cujo resultado é estritamente denso, atribuindo probabilidade de massa a todos os elementos

do conjunto. Esta densidade é, muitas vezes, um desperdı́cio, porque não evita que features irrelevantes

sejam consideradas, afetando negativamente a interpretabilidade dos modelos. Até agora, a atenção

visual foi apenas aplicada a domı́nios discretos, o que pode levar a uma perda de foco, devido a uma

dispersão excessiva da atenção sobre a imagem.

Nesta tese, exploramos alternativas de domı́nio contı́nuo aos modelos discretos, propondo soluções

que se focam tanto na continuidade como na esparsidade das distribuições de atenção, sendo ad-

equadas para selecionar regiões simultaneamente compactas e esparsas (e.g., elipses). A primeira

caraterı́stica encoraja a seleção de regiões contı́nuas, enquanto a segunda permite destacar as fea-

tures mais importantes, atribuindo uma probabilidade nula às partes irrelevantes. Utilizamos o facto

de os Jacobianos destas transformações serem covariâncias generalizadas para derivar algoritmos de

retropropagação eficientes, tanto para distribuições unimodais como multimodais. Experiências em vi-

sual question answering mostram que os nossos modelos contı́nuos permitem gerar mapas de atenção

mais suaves (aparentemente mais próximos da perceção humana), conduzindo também a melhorias

de precisão em relação a um modelo de base treinado com os mesmos dados.

Palavras-chave: aprendizagem profunda, mecanismos de atenção visual, transformações

contı́nuas, esparsidade
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Abstract

Visual attention mechanisms have become an important component of neural network models for Com-

puter Vision applications, allowing them to attend to finite sets of objects or regions and identify relevant

features. A key component of attention mechanisms is the differentiable transformation that maps scores

representing the importance of each feature into probabilities. The usual choice is the softmax transfor-

mation, whose output is strictly dense, assigning a probability mass to every image feature. This density

is wasteful, given that non-relevant features are still taken into consideration, making attention models

less interpretable. Until now, visual attention has only been applied to discrete domains – this may lead

to a lack of focus, where the attention distribution over the image is too scattered.

Inspired by the continuous nature of images, we explore continuous-domain alternatives to discrete

attention models. We propose solutions that focus on both the continuity and the sparsity of attention

distributions, being suitable for selecting compact and sparse regions such as ellipses. The former en-

courages the selected regions to be contiguous and the latter is able to single out the relevant features,

assigning exactly zero probability to irrelevant parts. We use the fact that the Jacobian of these trans-

formations are generalized covariances to derive efficient backpropagation algorithms for both unimodal

and multimodal attention distributions. Experiments on Visual Question Answering show that continuous

attention models generate smooth attention maps that seem to better relate with human judgment, while

achieving improvements in terms of accuracy over grid-based methods trained on the same data.

Keywords: deep learning, visual attention mechanisms, continuous transformations, sparsity
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Chapter 1

Introduction

1.1 Motivation

The human visual system selectively attends to the most relevant parts of visual stimuli for quick per-

ception, being able to process large amounts of visual information in parallel: it becomes possible to

interpret complex scenes in real time, despite the limited processing resources [1, 2]. Different ways to

model human visual attention have long been studied in the Computer Vision (CV) and Machine Learn-

ing (ML) communities, trying to generate more biologically inspired results and liberating resources to

focus on more important parts of the input [3–6].

In the last few years, the increased amount of available training data and the development of more

powerful computer hardware and software has led to the rise of Deep Learning (DL). An important archi-

tectural innovation, attention mechanisms, started to be integrated in neural networks, first in Natural

Language Processing [7, 8] and then in Computer Vision (e.g., image captioning [9], visual question

answering [10], action recognition [11] and salient object detection [12]). Visual attention mechanisms

appear as a way to mimic the human visual system – they can automatically learn the relevance of any

element of the input by generating a set of weights and take them into account while performing the pro-

posed task. Furthermore, since most commonly used neural network architectures are very complex,

they remain black-box models: humans cannot easily understand their inner decision making process.

In addition to boosting the performance of a model, attention mechanisms can partially provide insights

into the model’s reasoning behind its prediction [13, 14]. For both language and vision applications,

the visualization of attention weights can help us analyze the outputs of a neural network and possibly

understand some unpredictable outcomes [15].

In the context of Aerospace Engineering, visual attention mechanisms have been used for a wide

range of tasks such as improving the performance and robustness of off-road robots [16], for tracking

objects with unmanned aerial vehicles [17], in Earth Observation [18–20], among others. Specially in

what concerns human computer interaction, where real applications of DL take place in safety-critical

fields, intelligent agents are likely to be implemented and asked to perform autonomous vision-based

tasks such as navigation, aerial mapping and object delivery [21–23].

1



Despite recent improvements in the quality of attention-based vision systems, there are limitations

that motivate current work. In this thesis, we focus on the following ones:

• In state of the art models for many vision tasks, images are represented using bounding box fea-

tures [24]: an object detector trained on a dataset annotated with ground truth bounding boxes is

used to acquire those features, making the process computationally expensive, time consuming

and dependent on external resources, becoming less suitable for practical and real-time applica-

tions.

• A key component of visual attention mechanisms is the differentiable transformation that maps

scores representing the importance of each feature into probabilities. The usual choice is the soft-

max transformation, whose output is strictly dense, assigning a probability mass to every image

feature. This density is wasteful, given that non-relevant features are still taken into consideration,

making attention models less interpretable [25].

• Although image data is naturally continuous, visual attention mechanisms have only been applied

to discrete domains, meaning that the input object is usually split into a finite set of pieces (e.g.,

an image is split into a set of regions or pixels) and its continuity is not taken into account by

attention models. In certain applications this may lead to a lack of focus, where the attention

distribution over the image is too scattered.

In this thesis, we address the limitations above by considering continuous-domain alternatives to

discrete attention models. We construct 2D continuous attention mechanisms that are able to increase

focus on relevant image regions, leading to more interpretable predictions. Our solutions focus on both

the continuity and the sparsity of attention distributions, being able to select compact and sparse

regions in images. The first takes adjacency into account and encourages the selected regions to be

contiguous, that is, to have a compact structure. The second is able to single out the relevant features,

assigning exactly zero probability to irrelevant regions.

1.2 From discrete to continuous attention in 2D

Currently, a neural network with visual attention attends to finite sets of objects or regions and identifies

relevant features (we refer to this as discrete attention, hereinafter). Alternatively, inspired by the con-

tinuous nature of images, we propose continuous attention mechanisms. These mechanisms attend to

inherently continuous domains and are suitable for selecting compact regions such as ellipses. Further-

more, we introduce multimodal continuous attention mechanisms that efficiently model more complex

attention distributions.

Discrete attention. Usual discrete attention mechanisms for images work as follows. Assume an input

image split in L pieces: an image represented by L grid-level or object-level features. A discrete attention

mechanism computes a score vector in which high scores should correspond to more relevant parts of

2
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Figure 1.1: Examples of attention maps for VQA. Top left: original image. Top right: state-of-the-art
with discrete attention. In the bottom, the results of our methods: 2D continuous softmax (left) and
2D continuous sparsemax (right, where the outer ellipse encloses all probability mass). The answers
provided by each model are presented above the corresponding image.

the input. Then, a discrete transformation is applied to the score vector to produce a probability vector

– the attention weights; softmax is the usual choice for this transformation, assigning a probability mass

to every image feature. Finally, the probability vector is used to compute a weighted average of the input

(known as the context vector ), that is used to produce the network’s decision.

Continuous attention. Instead of assuming a finite set, we assume a continuous measure space such

as the R2 plane and represent the image as a continuous function. Then, a score function is mapped

to a probability vector by using an extension of regularized prediction maps, originally defined on finite

domains by Blondel et al. [26], to arbitrary measure spaces [27]. By choosing a regularization function

based on the Tsallis α-entropies [28], we construct 2D continuous α-entmax attention mechanisms. For

α ∈ {1, 2} this is called 2D continuous softmax and 2D continuous sparsemax attention, respectively.

The attention density corresponds to a bivariate Gaussian, in the first case, and to a truncated paraboloid

distribution, whose support corresponds to an ellipse, in the second.

Attention visualization. Figure 1.1 shows an example of the attention maps generated by different

attention models for Visual Question Answering (VQA), whose goal is to provide an answer, given an

image and a question about it. In the discrete model, the attention is too scattered, possibly mistaking

the lamp with a TV screen; contrarily, our continuous attention models focus on the right region and

answer the question correctly, with 2D continuous sparsemax enclosing all the relevant information in its

supporting ellipse.

3



Multimodal continuous attention. As a natural follow-up, we propose multimodal continuous atten-

tion by using mixtures of unimodal attention densities. These mechanisms are able to generate more

flexible attention maps (e.g., attention distributions with multiple peaks), while enjoying some of the

properties of their unimodal counterparts.

1.3 Contributions

In this thesis, we present continuous alternatives to the usual visual attention mechanisms, some of

which being simultaneously sparse. Our transformations are able to improve focus on the relevant

image regions, while providing higher interpretability. We identify the main contributions of this thesis as

follows:

1. We propose a framework for using continuous attention with image data, in which the parame-

ters of continuous attention densities are obtained from discrete attention weights using moment

matching. This is done for both softmax and sparsemax attention.

2. We derive efficient algorithms for the evaluation and gradient computation of 2D α-entmax contin-

uous attention mechanisms, for α ∈ {1, 2}. For α = 1, we obtain closed-form expressions valid

for any number of dimensions (including the 2D case). For α = 2, we reduce the problem to a

univariate integral, easy to compute numerically.

3. We introduce novel multimodal continuous attention mechanisms: we generalize continuous atten-

tion to multimodal distributions by using mixtures of unimodal attention densities. We parametrize

the attention density as a mixture of Gaussians, adapting the Expectation Maximization algorithm

to deal with weighted data (e.g., discrete attention weights) by changing the way the parameters

of the mixture are estimated and computing a weighted likelihood function. Even though we focus

on the 2D case, this approach is also valid for 1D data (e.g., speech or text segments).

4. We plug our 2D continuous attention mechanisms in a VQA attention-based model in order to

improve focus and possibly provide better explanations via smoother attention maps. In terms

of accuracy, we obtain small improvements over grid-based methods trained on the same data.

Moreover, we open-sourced our pytorch implementation; our code is available at https://github.

com/antonio-farinhas/mcan-vqa-continuous-attention, along with additional information on

how to reproduce our experimental results.

Part of this work was published as a spotlight paper at the Thirty-fourth Conference on Neural Infor-

mation Processing Systems (NeurIPS 2020) [27] and a journal paper is to be submitted [29].
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1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we start by reviewing the Machine Learning con-

cepts that our work builds upon; then, we explain how attention mechanisms have become a crucial

component in current Deep Learning models, first, in NLP and then in CV applications. We focus on

fully-differentiable attention mechanisms that can be plugged in neural networks and trained end-to-end.

In Chapter 3, we explain how these attention mechanisms can be generalized to continuous spaces,

focusing on naturally continuous domains such as image data.

In Chapter 4, we derive efficient algorithms for the evaluation and gradient computation of 2D α-

entmax continuous attention mechanisms, for α ∈ {1, 2}, with Gaussian RBFs. The reader is referred to

Appendices A.1 and A.2 for detailed derivations when α = 2. In Chapter 5, we construct multimodal con-

tinuous attention mechanisms with mixtures of attention densities as a natural follow-up of the previous

chapter. We point out the difference between these novel multimodal continuous attention mechanisms

and the usual multi-head attention for discrete domains. Finally, in Chapter 6, we describe in detail

the experiments in VQA and present attention maps generated by our continuous transformations (see

Appendix B.1 for details about our computing infrastructure).
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Chapter 2

Background

In this chapter we discuss key topics that will be used throughout this work. We begin by reviewing the

Machine Learning concepts that are the foundations of our work, in Section 2.1. This is not intended to

be an extensive explanation of recent neural network architectures but only to serve as an overview of

some topics our work rely on. Then, we explain the reason why attention mechanisms are important for

both language and vision applications in current Deep Learning models, in Section 2.2. We pave the

way for developing continuous attentions mechanisms by presenting an overview of popular methods

and using them to motivate our own approach.

2.1 Machine Learning

Supervised Learning. Consider an input x from a set of possible inputs X and an output y ∈ Y. In

supervised learning problems we assume we are provided a dataset containing N training inputs paired

with its correspondent outputs,

DN = {(x1, y1), ..., (xN , yN )} ⊆ X × Y. (2.1)

The goal is to maximize some performance measure defined with respect to the test set, based on

training data. We use the training data to learn a classifier f : X → Y that generalizes well to arbitrary

inputs. To do so, we can define a parametrized prediction model as a mapping f(x; θ) from a given input

x to an output y by learning the value of the parameters θ that lead to the best fit. At test time, we predict

ŷ = f(x) that should be as similar to y as possible.

Since we just have access to a finite training set of examples, we don’t know the true underlying

distribution of the data pdata. To solve this as an optimization problem we can represent the discrepancy

between the predicted and the actual outputs by means of a loss function L and try to find the parameters

θ that minimize the value of L evaluated on the training set. This is known as empirical risk minimization,

minimize
1

N

N∑
i=1

L(f(xi; θ), yi), (2.2)
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and should not be confused with the risk minimization in optimization problems, where pdata is known.

The choice of the loss function L in (2.2) is an important aspect when training Machine Learning models

and it depends on the problem we are considering. For instance, for multiclass classification we can

use the principle of maximum likelihood and choose the cross-entropy between the training data and

the model’s predictions as the loss function, i.e., consider a loss function that is simply the negative

log-likelihood function, given by

L(f(x; θ), y) = −
N∑
i=1

yi log(f(xi; θ)). (2.3)

Deep Learning. Deep Learning (DL) is a very powerful tool for supervised learning. Deep models

appeared as an alternative to linear models, being able to deal efficiently with nonlinear data by learning

complex functions through multiple layers of computation. Recall that a linear model outputs y through

an affine transformation

flinear(x;w, b) = x>w + b, (2.4)

where w is a vector of weights and b is a bias term. We can choose an appropriate loss function and

minimize it with respect to the parameters w and b. To overcome the limitations of linear models, we can

consider a classic DL model – a deep feedforward network – by choosing a nonlinear transformation or

a mapping φ and, instead of applying the linear model to x itself, applying it to a transformed input φ(x).

For a feedforward neural network with one hidden layer defined by φ, we can consider a model

fnonlinear(x; θ, w) = φ(x; θ)>w, (2.5)

where θ are parameters used to learn φ from a broad class of functions and w are parameters that

map φ(x) to the desired output. In this case, the representation is parametrized as φ(x, θ) and the

optimization algorithm is used to find a θ that leads to a good representation. By adding more hidden

layers or more units within a layer, a deep network can represent functions of increasing complexity.

Deep models are not limited to deep feedforward neural networks where the information flows from

x to y, passing through the intermediate computations of f , without feedback connections from y to

x. In fact, when these networks include feedback connections, they originate the so called Recurrent

Neural Networks (RNNs) that are commonly used in natural language applications. They can also

have a known grid-like topology, leading to Convolutional Neural Networks (CNNs) that are extremely

successful in computer vision (Goodfellow et al. [30]).

Backpropagation. Optimizing Equation (2.2) for DL models, i.e., update the network’s parameters,

can be a difficult task. A usual approach is to use stochastic gradient-based optimization algorithms that

require the computation of the gradient of the loss function with respect to the network’s parameters,

∇θL(θ) =
1

N

N∑
i=1

∇θLi(θ), (2.6)
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where Li(θ) = L(f(xi; θ), yi) in the simpler unregularized case.1 This can be done using the gradient

backpropagation algorithm [32], also known as backprop.2 Backpropagation can be used to evaluate

(2.6) at a given point, using the chain rule of calculus by performing Jacobian-gradient products, i.e.,

multiplying the Jacobian matrix by the gradient, for each node in the graph.

2.2 Attention mechanisms

Based on the idea that we need to attend to a certain part of a large input (e.g., some words in a

sentence or regions in an image) when processing it, attention mechanisms became one of the most

powerful concepts in the Deep Learning field. Each element composing the input may have different

relevance to the task we are solving: for instance, in machine translation, each word in the source

sentence can be more or less relevant for translating the next word; in image captioning, the background

regions of an image can be irrelevant to describe an object but crucial to characterize the landscape.

To solve this problem, the prevailing solution consists in using attention mechanisms by automatically

learning the relevance of any element of the input, i.e., by generating a set of weights (one per element

of the input) and take them into account while performing the proposed task.

2.2.1 Sequence-to-sequence learning

Consider a sequence-to-sequence task, e.g., neural machine translation, where the goal is to find the

output sequence y that maximizes the conditional probability of y given a input sequence x and note

that it is unmanageable to enumerate all y to maximize p(y|x). Generally, these problems are performed

using an encoder-decoder architecture: the encoder takes a variable-length sequence, converts it to

an intermediate fixed-length vector representation and then passes it to the decoder that produces the

output variable-length sequence. The two components of these models are jointly trained to maximize

the likelihood of generating the correct output sequence, usually using a gradient-based algorithm to

estimate the model parameters, as discussed in Section 2.1.

The simplest approach is to consider that both the encoder and the decoder are RNNs [34]. The

encoder converts the input sentence into a context vector c,

c = q({h1, ..., hTx}), (2.7)

where the hidden state at time t is given by ht = f(ht−1, xt) ∈ Rn and both q and f are nonlinear

functions. The decoder is trained to predict the next symbol yt′ given the context c and all the previously

1Since some complex deep models are able to ”memorize” the training set, a slightly different approach is usually used in DL.
Different techniques (e.g. regularization) can be used to reduce the so called overfitting. See Goodfellow et al. [30, Chapter 7] or
Bishop [31, Chapter 5] for an overview of these methods.

2Although this term only refers to the procedure for computing the gradients, it is often confused as the learning algorithm itself,
e.g. the classic stochastic gradient descent or Adam optimizer [33].
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predicted symbols {y1, ..., yt′−1}, defining a probability over y = (y1, ..., yt′−1),

p(y) =

T∏
t=1

p(yt|{y1, ..., yt′−1}, c), (2.8)

with

p(yt|{y1, ..., yt′−1}, c) = g(yt−1, st, c), (2.9)

where g is a nonlinear function that must produce valid probabilities and st is the hidden state of the

RNN.

One problem with this approach is that of compressing all the necessary information of an input

sequence into a fixed-length vector (specially difficult when dealing with large sequences). Bahdanau

et al. [7] addresses this problem introducing an attention mechanism that develops a context vector that

is filtered in a proper way for each time step to improve the information the decoder has available. Now,

each conditional probability in (2.8) depends on a different context vector ci (unlike the first approach

with a single c),

p(yi|{y1, ..., yi−1}, x) = g(yi−1, si, ci), (2.10)

where si = f(si−1, yi−1, ci). The context vector ci is obtained as a weighted sum of the hidden states of

the encoder:

ci =

L∑
j=1

αijhj , (2.11)

where L is the number of symbols of the input sequence and α is a normalized vector of attention scores

that can be seen as probability distribution over the input sequence - whose values reflect the importance

of hj with respect to the previous hidden state si−1 in deciding the next state si and the output yi - and

that can be computed, for instance, as:

αij = softmax(e) =
exp (eij)∑L
k=1 exp (eik)

, (2.12)

where eij = a(si−1, hj) is an alignment model that measures how well the inputs around position j

and the output at i match and that can be defined in multiple ways. For instance, Bahdanau et al. [7]

parametrizes the alignment model as a feedforward neural network which is jointly trained with all the

other components of the system. Other approaches will be discussed in Section 2.2.3.

2.2.2 The Transformer

The transformer was first introduced by Vaswani et al. [8] as an attention mechanism based alternative

to the usual models for sequence-to-sequence tasks that use the encoder-decoder architecture intro-

duced before (possibly connected through an attention mechanism), dispensing with recurrence and

convolutions at all. This model builds upon the concepts of scaled dot-product attention, multi-head

attention and self-attention, which we now explain. See Figure 2.1 to understand how these modules

are connected in this architecture.
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Figure 2.1: The transformer: model architecture including scaled dot-product and multi-head attention.
Adapted from Vaswani et al. [8, Figure 1 and 2]

Scaled dot-product attention. Consider a set of key-values pairs (K,V ) and a query Q, where both

K, V and Q are vectors3. In general, an attention function can be defined as a mapping from Q and

(K,V ) to an output as a weighted sum of V , where the weight associated with each V depends on both

Q and K. It can be computed as

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V, (2.13)

where dk is the dimension of the queries and the keys. Note that this construction is the same as the

one presented in Subsection 2.2.1 – see Expression (2.11) and (2.12) – considering that K = V = ht

and Q = si−1.

Multi-head attention. As the name suggests, multi-head attention consists in obtaining a different

representation of (Q,K, V ) per head h in parallel, computing scaled dot-product attention (2.13) for each

representation, concatenating the results and projecting them through a feedforward layer. Formally, we

can write:

headi = Attention(QWQ
i ,KW

K
i , V W

V
i ), (2.14)

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO, (2.15)

3In practice, both K, V and Q can be packed as matrices so that it is possible to compute the attention function on a set of
queries simultaneously.

11



where the projections Wi and WO are parameter matrices. Unlike with a single attention head, with

multi-head attention the model is able to attend to information from different representations, meaning

that the ability of the model to focus on different positions is expanded.

Self-attention. Self-attention is an attention mechanism that consists in relating different positions in

the same sequence, regardless of their relative distance, in order to compute a representation of that

sequence. An intuitive way of thinking of self-attention is as some inputs interacting with each other and

learning what parts are more relevant or, in other words, what they should pay more attention to. In

practice, this is achieved by considering that both Q, K and V in Expression (2.13) are equal. See, for

instance, the masked multi-head attention block in Figure 2.1.

Architecture. The overall architecture of the transformer is similar to the ones described in Subsec-

tion 2.2.1 with the difference that it is composed of a stack of N = 6 encoder and decoder layers. Each

encoder has 2 sub-layers: a multi-head self-attention mechanism as described in the last paragraph, fol-

lowed by a simple feedforward neural network, introduced in subsection 2.1. Each decoder is composed

by 3 sub-layers: the first and the last are identical to the ones in the encoder; the second sub-layer

consists of a multi-head attention over the output of the encoder stack.

2.2.3 Attention mechanisms in Natural Language Processing

In subsections 2.2.1 and 2.2.2 we introduced attention mechanisms using two different formulations. In

the former, we followed Bahdanau et al. [7] approach and explained how to introduce attention mecha-

nisms in an encoder-decoder architecture; in the latter, attention was described as a mapping from query

vectors to output vectors via a mapping table of key-value pairs [8]. In fact, both formulations are equiva-

lent and materialize the same principle: from (2.11) we can obtain a context vector as a weighted sum of

values ci =
∑L
j=1 αijhj , where

∑L
j=1 αij = 1: αij is a probability vector (attention scores/weights) and

hj is the value that in the first formulation corresponds to the encoder hidden state. By going back to

the previous subsections it is possible to note that the only difference in the two approaches lies in how

αij is computed. Different lines of work introduced distinct attention mechanisms by choosing different

alignment models or using different distribution functions.

Choosing the alignment model. The alignment model defines how keys and queries are matched or

combined. Table 2.1 contains a summary of several popular attention mechanisms in NLP and corre-

sponding alignment models.

Choosing the distribution function. To obtain normalized attention weights from the computed align-

ment scores we need to choose a distribution function. The most common choice is the softmax nor-

malizing transform, leading to dense alignments and strictly positive output probabilities, i.e., a non-zero

attention weight is assigned to all the parts of the input. Arguably, some parts might be completely
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ATTENTION ALIGNMENT MODEL REFERENCE

Additive v>a tanh(Wasi−1 + Uah) Bahdanau et al. [7]
Dot-product h>si−1 Luong et al. [35]
General h>Wa si−1 Luong et al. [35]
Scaled dot-product (1/

√
d) h>si−1 Vaswani et al. [8]

Table 2.1: Summary table of different attention mechanisms and correspondent alignment models. Note
that va, Wa and Ua are weight matrices and d is a constant that corresponds to the dimension of the
queries and the keys. We simplified the notation by writing h instead of hj , as in Subsection 2.2.1.

irrelevant for the matter. This problem has been recently addressed by choosing sparse normalizing

transforms such as sparsemax [36],

sparsemax(z) = arg min
p∈4L

||p− z||2, (2.16)

where 4L is the L-dimensional probability simplex or α-entmax [37] as the distribution function - this

allows us to produce sparse alignments and to assign exactly zero probability to some of the possible

outputs.

2.2.4 Visual attention mechanisms in Deep Learning

Although attention mechanisms were first introduced in NLP for machine translation [7], previous work

by Larochelle and Hinton [3] in Computer Vision had already proposed an object recognition model that

learns where to look from scratch using glimpses, inspired by the idea that biological vision systems need

to sequentially fixate relevant parts for a specified task because their retina has a limited resolution that

falls very quickly with eccentricity. Later, when the work by Mnih et al. [4] - a novel neural network model

capable of processing only a selected sequence of regions in an image or video - outperformed the state

of the art in both static vision tasks (e.g., image classification) and dynamic visual environments (e.g.,

object tracking), visual attention mechanisms gained popularity. Nowadays, this is a trending research

topic and alternatives to these hard attention mechanisms are constantly being presented, including soft

and, more recently, sparse visual attention approaches.

Hard vs soft attention. Hard attention mechanisms [4–6] rely on a controller to select the relevant

parts of the input; mechanisms like these are not differentiable end-to-end and, for that reason, cannot

be trained with the standard backpropagation algorithm - instead, they require the use of reinforcement

learning techniques. Although these models perform well on simple datasets, it has been difficult to

use them in real-world applications [38]. To make training easier, soft attention mechanisms commonly

used for natural language tasks [7, 8, 35] were introduced in tasks that also require vision (e.g., image

captioning [9] and visual question answering [10]). These mechanisms are fully differentiable: they

can be plugged in neural networks and trained end-to-end with gradient backpropagation algorithm.

Whereas models that use hard attention make decisions on only a subset of pixels in the input image,
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with soft attention the model has access to the entire image but certain areas may be more attended

than others.

Sparse and structured visual attention. Soft attention mechanisms can be used to encourage mod-

els to look to the most relevant part of an input image. To enable end-to-end training with gradient

backpropagation they require a differentiable mapping from scores z ∈ RL (that represent the impor-

tance of each feature) to a probability distribution p ∈ 4L, where 4L is the L-dimensional probability

simplex. As explored in Subsection 2.2.3, the usual choice is the softmax transformation, whose output

is strictly dense, assigning a probability mass to every image feature. Very recent work by Martins et al.

[25] addressed this problem by introducing selective visual attention mechanisms: sparse alternatives

that are able to select only the relevant features. A first approach consists in replacing softmax with

sparsemax [36]. Then, in order to select contiguous regions of an image and to encourage the weights

of related adjacent spatial locations to be the same, they introduce Total-Variation Sparse Attention (TV-

MAX). These alternatives allow us to select sparse and compact regions in images; they can better

relate to human attention, conducing to higher interpretability.
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Chapter 3

Continuous attention mechanisms

In this chapter, we provide an overview of the work done on continuous attention mechanisms. Although

its definition is fully general concerning the dimension of the input, continuous attention had only been

applied to text data before this work. We begin by introducing Ω-regularized prediction maps (Ω-RPM),

in Section 3.1. We then discuss possible choices of regularization functions that lead to different Ω-

RPM, in Section 3.2. Finally, we use the concepts introduced in the previous sections to explain how to

construct continuous attention mechanisms, in Section 3.3, focusing on naturally continuous domains

such as image data.

Notation. Consider a measure space (S,A, ν), where S is an underlying set,A is a σ-algebra on S and

ν is a measure on (S,A). We denote the set of ν-absolutely continuous probability measures asM1
+(S).

From the Radon-Nikodym theorem [39, §31], each element of M1
+(S) is identified (up to equivalence

within measure zero) with a probability density function p : S → R+, with
∫
S
p(t) dν(t) = 1. We refer to

the support of a density p ∈ M1
+(S) as supp(p) = {t ∈ S | p(t) > 0}. Moreover, we denote as 4|S| the

|S|-dimensional probability simplex. For some A ∈ A, when the base measure is clear enough from the

context, we often drop dν(t) from
∫
A
p(t) dν(t), simply writing

∫
A
p(t) and we denote the measure of A

as |A| = ν(A) =
∫
A

1. Furthermore, given functions φ : S → Rm and ψ : S → Rn, we write expectations

and covariances as Ep[φ(t)] :=
∫
S
p(t)φ(t) and covp(φ(t), ψ(t)) := Ep[φ(t)ψ(t)>] − Ep[φ(t)]Ep[ψ(t)]>.

Finally, we refer to max{a, 0} as [a]+.

3.1 Regularized prediction maps

The work by Blondel et al. [40] introduced Ω-regularized prediction maps for finite domains. Consider an

input vector x ∈ X and a parametrized model f : X → R|S|, producing a score vector θ = f(x) ∈ R|S|.

For instance, θ can be label scores computed by a neural network model, f . A particular case of this

general framework that is very relevant for our work consists in assuming a regularization function Ω,

with dom(Ω) ⊆ 4|S|. In this case, this framework allows us to map vectors θ ∈ R|S| into probability
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vectors in the simplex 4|S|. The prediction function can be written as

ŷΩ(θ) ∈ arg max
p∈4|S|

〈θ, p〉 − Ω(p), (3.1)

where p is a discrete probability distribution. Intuitively, the first term captures the affinity between x

and y and the latter is a confidence term that encourages uniform distributions. Furthermore, when

dom(Ω) is the probability simplex, generalized negative entropies are an important class of Ω; in fact, a

natural choice of regularization function is Ω = −H, where H is a generalized entropy, a function used

to measure the uncertainty in a probability distribution [26]. Particular choices of H recover well-known

transformations such as argmax, softmax, sparsemax [36] and others.

Martins et al. [27] extended the Ω-regularized prediction maps defined as in (3.1) to arbitrary measure

spaces M1
+(S), assuming that Ω : M1

+(S) → R is a lower semicontinuous, proper and strictly convex

function. The Ω-regularized prediction map (Ω-RPM) p̂Ω : F →M1
+(S) is defined as

p̂Ω[f ] = arg max
p∈M1

+(S)

Ep[f(t)]− Ω(p), (3.2)

where F is the set of functions for which the maximizer exists and is unique. Again, the regularizer Ω

in (3.2) can be chosen in order to recover transformations such as softmax and sparsemax, when S is

finite. For the case where S is continuous, more interesting examples of regularizational functionals are

shown in Section 3.2.

3.2 Choosing the regularization function Ω

The choice of the regularization function Ω is very important and leads to different regularized prediction

maps – depending on its properties, it can lead to distributions with fixed support within the same family

(e.g. distributions in the exponential family) (§ 3.2.1) or to alternatives with varying and sparse support,

assigning zero probability mass to some entries (§ 3.2.2). In this section, similarly to Blondel et al. [40],

we consider regularization functions in the class of the generalized negative entropies.

Tsallis [28] proposed a generalization of the well known Shannon’s negentropy
∫
s
p(t) log p(t), using

the notions of β-exponential and β-logarithm [41]. Suppose that β is a fixed positive number; the

β-exponential function is defined as

expβ(u) =

[1 + (1− β)u]
1/(1−β)
+ , β 6= 1

expu, β = 1

(3.3)

and the β-logarithm function as

logβ(u) =


u1−β−1

1−β , β 6= 1

log u, β = 1

. (3.4)

Considering the limit β → 1, the β-exponential and the β-logarithm recover the standard exponential and
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the standard logarithm, respectively. Note that the expβ : R→ R is the inverse of the logβ : R≥0 → R.

The α-Tsallis negentropy is then defined as

Ωα(p) =


1

α(α−1)

(∫
S
p(t)α − 1

)
, α 6= 1∫

S
p(t) log p(t), α = 1

, (3.5)

where Ω1(p) is the Shannon’s negentropy and Ω2(p) = 1
2

∫
S
p(t)2 − 1

2 is known as Gini-Simpson index

[42]. These 2 choices of α are of particular interest in this thesis.

Let α > 0 and f ∈ F . Martins et al. [27, Proposition 1] shows that the Ωα-RPM in (3.2) can be simply

written as

p̂Ωα [f ](t) = exp2−α(f(t)−Aα(f)), (3.6)

where Aα : F → R is a normalizing function,

Aα(f) =
1

1−α +
∫
S
pθ(t)

2−αf(t)∫
S
pθ(t)2−α − 1

1− α
. (3.7)

Furthermore, it is possible to show (see Martins et al. [27, Proposition 2] or Amari and Ohara [41,

Theorem 5] for a proof) that the normalizing function, Aα (3.7), is a convex function and its gradient is

given by

∇θAα(θ) = Ep̃2−α
θ

[φ(t)] =

∫
S
pθ(t)

2−αφ(t)∫
S
pθ(t)2−α , (3.8)

where p̃β(t) is the β-escort distribution [28]:

p̃β(t) =
p(t)β

‖p‖ββ
, with ‖p‖ββ =

∫
S

p(t′)βdν(t′) and p̃1(t) = p(t). (3.9)

The expression for the gradient of Aα (3.8) will be used in the Chapter 4 to compute the Jacobian of

continuous α-entmax attention mechanisms.

3.2.1 Shannon’s negentropy and Ω1-RPM

For α = 1, Ω1(p) is the Shannon’s negentropy and the corresponding Ω1-RPM is given by

p̂Ω1 [f ](t) =
exp f(t)∫

S
exp (f(t′))dν(t′)

= exp (f(t)−A(f)), (3.10)

where A(f) = log
∫
S

exp f(t) is the log-partition function (see Martins et al. [27, App. A] for a proof). If S

is finite and ν is the counting measure, we can write f as a vector in R|S| and the Ω1-RPM recovers the

softmax transformation,

p̂Ω1
[f ] = softmax(f) =

exp(f)∑|S|
k=1 exp(fk)

∈ 4|S|. (3.11)
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For continuous domains with S = RN , ν the Lebesgue measure, µ ∈ RN , Σ ∈ RN×N � 0 and choosing

f(t) = − 1
2 (t− µ)>Σ−1(t− µ), the Ω1-RPM transformation is a multivariate Gaussian,

p̂Ω1
[f ] = N (t;µ,Σ) =

1

2π |Σ|
1
2

exp

(
−1

2
(t− µ)>Σ−1(t− µ)

)
. (3.12)

In particular, this becomes a univariate or a bivariate Gaussian if N ∈ {1, 2}, respectively.

Exponential families. Let φ(t) ∈ RM be a vector of statistics and θ ∈ Θ ⊆ RM a vector of canonical

parameters and consider a function fθ(t) = θ>φ(t). A family of the form (3.10) parametrized by θ ∈

Θ ⊆ RM is called an exponential family [43]. Exponential families include many of the most common

distributions (e.g., the Gaussian distribution) and have a large number of properties that make them

extremely useful, including having fixed support (dictated by the base measure) within the same family,

i.e., its support remains the same across all parameter settings in the family.

3.2.2 Gini-Simpson index and Ω2-RPM

For α = 2, Ω2(p) is the Gini-Simpson index and the corresponding Ω2-RPM can be obtained from f by

subtracting a constant λ (that can be both positive or negative) and truncating such that
∫
S
p̂Ω2 [f ](t) = 1:

p̂Ω2
[f ](t) = [f(t)− λ]+. (3.13)

For finite S the Ω2-RPM is the sparsemax transformation. On the other hand, for continuous domains

with S = RN , Σ ∈ RN×N positive definite and choosing f(t) = − 1
2 (t − µ)>Σ−1(t − µ), the Ω2-RPM

transformation is a multivariate truncated paraboloid,

p̂Ω2
[f ](t) =

[
−1

2
(t− µ)>Σ−1(t− µ)− λ

]
+

, (3.14)

with

λ = −

(
Γ(N/2 + 2)√

det(2πΣ)

) 2
2+N

, (3.15)

where Γ(t) is the Gamma function. See Martins et al. [27, Section 2.4] for details.

Deformed exponential families and sparse families. For the same parametrization fθ(t) = θ>φ(t)

and α > 0, deformed exponential families [44, 45] are distributions with the form of (3.6). For α > 1,

Martins et al. [27] called these α-sparse families. Unlike the case where α = 0, these distributions may

not have full support, being able to return zero probability values.

Figure 3.1 shows the distributions generated by the Ωα-RPM for α ∈ {1, 2}. The former has full

support in R2 while the latter is able to assign zero probability values.
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Figure 3.1: 2D distributions generated by the Ωα-RPM for α ∈ {1, 2}. Left: For α = 1, bivariate Gaussian
N (t; 0, I). Right: For α = 1, truncated paraboloid T P(t; 0, I). Note that we did not use the same vertical
axis’ scale and colour scheme for both plots: the peak of the density for α = 1 (N ) is much smaller
than for α = 2 (T P). Also, the support of the Gaussian density is the whole R2 plane, whereas for the
truncated paraboloid it corresponds to an ellipse (or a circle if it is parametrized by a diagonal covariance
matrix such as the 2× 2 identity matrix, I).

3.3 Building continuous attention mechanisms

3.3.1 Relation with discrete attention

Usual discrete attention mechanisms work as follows. Assume and input object split in L pieces (e.g., an

image with L pixels or regions) with a D-dimensional representation each. It is possible to obtain a matrix

representation V ∈ RD×L, coming from an encoder in an encoder-decoder architecture (or directly from

a CNN). A discrete attention mechanism computes a score vector f = (f1, ..., fL), in which high scores

should correspond to more relevant parts of the input. Then, a discrete transformation ρ : RL → 4L

is used to map scores into probabilities, i.e., ρ is applied to the score vector f to produce a probability

vector p = ρ(f) – the attention weights; softmax is the usual choice for this transformation. Finally, p is

used to compute a weighted average of the input (known as the context vector ), c = V p ∈ RD, that is

used to produce the network’s decision.

3.3.2 Score and value functions

The transformation ρ can be seen as an Ω-RPM and used to construct continuous attention mecha-

nisms. We explain this procedure assuming that we have an input image. Instead of assuming a finite

set, we assume a continuous measure space such as the R2 plane and represent the image as a con-

tinuous value function V : S ⊆ R2 → RD that maps points in the R2 plane onto a D-dimensional vector

representation. The score vector f is replaced by a score function f : S → R that can be mapped to

a probability density p ∈ M1
+(S). Instead of using a discrete transformation for that mapping, we can

use the Ωα-RPM. The output weighted average (context vector) becomes an expectation of the value

function with respect to the probability density, c = Ep[V (t)] =
∫
S
p(t)V (t) ∈ RD. Note that we could

have taken an audio or text signal as input and considered S ⊆ R.
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In this construction M1
+(S) can be of an arbitrary dimension – including infinite dimensional – so,

the score function f and the value function V need to be parametrized: the simplest solution is to

consider linear parametrizations defined in terms of a vector of basis functions (e.g., power, sine, cosine

or Gaussian basis functions) and a vector of parameters. We can then define fθ(t) = θ>φ(t) and

VB(t) = Bψ(t), where φ : S → RM and ψ : S → RN are basis functions and θ ∈ RM and B ∈ RD×N are

parameters. Given this, the attention mechanism can be extended to continuous domains and formally

defined.

Defining continuous attention mechanism. Consider that Ω :M1
+(S) → R is a regularization func-

tional. An attention mechanism is a mapping ρ : RM → RN from an input parameter vector θ ∈ RM to a

vector r ∈ RN ,

ρ(θ) = r = Ep[ψ(t)], (3.16)

with p = p̂Ω[fθ] and fθ(t) = θ>φ(t). If Ω = Ωα, this is called α-entmax attention, denoted as ρα. The

values α = 1 and α = 2 lead to softmax and sparsemax attention, respectively. The context vector can

then be computed as c = Br, which is equivalent to the expression presented above, c = Ep[VB(t)].

Defining the value function. An input image is usually represented as a discrete matrix H ∈ RD×L

(e.g., a matrix with D channels and L image locations so that each location is represented by a D-

dimensional vector that encodes the representation of the image in that region, obtained from a CNN).

We can use multivariate ridge regression to approximate H and obtain a continuous signal, a value

mapping VB : S → RD. Given that VB(t) = Bψ(t), this consists in optimizing over B to minimize the

squared loss plus a ridge penalty. Assuming that tl = ( l1√
L
, l2√

L
) for l1, l2 ∈ [0,

√
L] and choosing the

columns of the matrix F ∈ RN×L to be the basis vectors ψ(tl), we obtain

B? = argmin
B
‖BF −H‖2F + λ‖B‖2F

= H F>(FF> + λIN )−1︸ ︷︷ ︸
G

= HG,
(3.17)

where ‖B‖F is the Frobenius norm of B which corresponds to the Euclidean norm of the vector obtained

by listing the coefficients of the matrix,

‖B‖F = (tr(B>B))1/2 = (

m∑
i=1

n∑
j=1

B2
ij)

1/2, (3.18)

and G = F>(FF> + λIN )−1 is a L × N matrix (see Alg. 1 for pseudo-code). For a specific value of L

and N , both F and G depend only on the value of ψ(tl) and can be obtained offline. Also, the number of

regions L in an image is usually constant. Typically, we choose N << L, so that the resulting expression

for VB has ND coefficients, much cheaper than the LD coefficients of H.
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Algorithm 1: Defining the value function VB using multivariate ridge regression.

Parameters:
• Representation for discrete parts H := [h1, . . . , hL] ∈ RD×L

• Corresponding locations [t1, . . . , tL] ∈ SL, with tl = ( l1√
L
, l2√

L
) for l1, l2 ∈ [0,

√
L]

• Basis functions ψ : S → RN

• Ridge penalty λ ≥ 0

Output: Continuous representation VB(t) = Bψ(t) with B ∈ RD×N

Function Regression(H, t1:L, λ):
F ← [ψ(t1), . . . , ψ(tL)] // Can be computed offline

G← F>(FF> + λIN )−1 // Can be computed offline

B ← HG // Eq. 3.17

return B

3.3.3 Gradient backpropagation

To train models with gradient-based optimization the Jacobian of the α-entmax transformation ρα is

needed. Martins et al. [27] introduced and proved an expression for evaluating Jρα that uses the β-

escort distribution (3.9). For β ≥ 0, a generalized β-covariance is defined,

covp,β [φ(t), ψ(t)] = ‖p‖ββ ×
(
Ep̃β

[
φ(t)ψ(t)>

]
− Ep̃β [φ(t)]Ep̃β [ψ(t)]>

)
, (3.19)

that for β = 1 recovers the usual covariance; for β = 0 it can be expressed as a covariance taken with

respect to a uniform density on the support of p, scaled by |supp(p)|. The Jacobian of the α-entmax

transformation is then

Jρα(θ) =
∂r(θ)

∂θ
= covp,2−α(φ(t), ψ(t)), (3.20)

with p = p̂Ω[fθ] and fθ(t) = θ>φ(t). This expression allows efficient gradient backpropagation with con-

tinuous attention and will be used in the next chapter to derive expressions for the gradient computation

of 2D α-entmax continuous attention mechanisms for α ∈ {1, 2}.
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Chapter 4

2D continuous attention with

Gaussian RBFs

In this chapter, we derive expressions for the evaluation and gradient computation of 2D continuous

attention mechanisms where ψ(t) are Gaussian radial basis functions (RBFs), i.e., each ψj is of the

form ψj(t) = N (t;µj ,Σj). We begin by showing how to obtain the parameters µ and Σ for the attention

densities, in Section 4.1. The theoretical derivation of 2D continuous attention and its gradient for back-

propagation is done in Section 4.2: the cases α = 1 (softmax) and α = 2 (sparsemax) are studied in

Subsections 4.2.1 and 4.2.2, respectively. The reader is referred to Appendices A.1 and A.2 for detailed

derivations concerning the second case. Finally, in Section 4.3, we perform a study regarding the im-

plementation of the backward pass, for α = 2. We suggest the reader to analize Alg. 2, 3 and 4 along

with the text for a better understanding on how to implement 2D continuous attention mechanisms. In

this chapter, we keep the notation we have used so far.

4.1 How can we write the attention density?

In Section 3.3 we defined continuous attention mechanism as a mapping ρ : RM → RN from an input

parameter vector θ ∈ RM to a vector r = Ep[ψ(t)] ∈ RN , where p = p̂Ω[fθ] and fθ(t) = θ>φ(t). We

also saw that, when considering Ω = Ωα, the values α = 1 and α = 2 lead to softmax and sparsemax

attention, respectively. Taking S = R2, the distribution p̂Ω1 [fθ] is a bivariate Gaussian N (t;µ,Σ) and

p̂Ω2
[fθ] becomes a bivariate truncated paraboloid T P (t;µ,Σ). In both cases, the mean µ and the

covariance matrix Σ are related to the canonical parameters by θ = [Σ−1µ,− 1
2Σ−1].

In this Chapter, we focus on a combined attention setting where we assume that we have access to

L discrete attention weights αi, where i ∈ {1, ..., L}. First, we obtain p ∈ 4L from discrete attention. For

2D continuous softmax we have µ = Ep[t] and Σ = Ep[tt>]− µµ>, given that the covariance matrix of a

Gaussian coincides with its scale parameter [46]. This convenient property does not hold for multivariate

truncated paraboloid distributions thus, for 2D continuous sparsemax, we need to find out how to obtain

the parameter Σ from the variance Ep[tt>]− µµ>.
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To estimate Σ of a T P(t;µ,Σ) from discrete attention weights we perform the following steps:

• express the variance as a function of Σ, f(Σ) =
∫∫
T P(t;µ,Σ)tt>dt;

• from discrete attention, obtain the variance Var = Ep[tt>]− µµ>;

• invert f to obtain Σ = f−1(Var).

We now put forward a theorem that results from the direct application of this approach. A detailed proof

is in Appendix A.1.

Theorem 1. Let T P (t;µ,Σ) be a d-dimensional multivariate truncated paraboloid where t, µ ∈ Rd

and Σ ∈ Rd×d � 0, defined as in [27, Section 2.4]. Let λ = −
(

Γ(d/2+2)
|2πΣ|1/2

) 2
2+d

be the constant that

ensures the distribution normalizes to 1, where Γ(t) is the Gamma function. Then, the variance of

T P is related to Σ by

Var(Σ) = f(Σ) = − λ Σ
d
2 + 2

. (4.1)

4.1.1 Examples

The most relevant cases are d = 1 (e.g., a 1D text segment or audio input) and d = 2 (e.g., an image

input). From Theorem 1, we have

• d = 1

Var(σ2) = −λ σ
2

5/2
=

1

5

(
3σ2

2

)2/3

. (4.2)

We can easily invert (4.2) and obtain

σ2 =
2

3

(
5Var(σ2)

)3/2
, (4.3)

that can be used to compute σ2 in a truncated parabola density (1D continuous sparsemax atten-

tion), given Var(σ2) computed from discrete attention weights.

• d = 2

Var(Σ) = −λΣ

3
=

Σ

3
√
π |Σ|1/4

. (4.4)

Using properties of the determinant,

|Var(Σ)| =
∣∣∣∣ Σ

3
√
π |Σ|1/4

∣∣∣∣ =
|Σ|2

9π
. (4.5)

Then, using (4.5) to invert (4.4), we obtain the expression that can be used to compute Σ in a

truncated paraboloid density (2D continuous sparsemax attention), given Var = Ep[tt>] − µµ>

computed from discrete attention weights:

Σ = 9π|Var|1/2Var. (4.6)
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Algorithm 2: Defining the score function fθ for 2D α-entmax continuous attention mechanisms
with α ∈ {1, 2}.

Parameters:
• α ∈ {1, 2}
• p ∈ 4L from discrete attention weights [α1, . . . , αL]

• Corresponding locations [t1, . . . , tL] ∈ SL, with tl = ( l1√
L
, l2√

L
) for l1, l2 ∈ [0,

√
L]

Output: Continuous representation fθ(t) = θ>φ(t) with θ ∈ RM

Function Score(α, p, t1:L):
µ← Ep[t]
Σ← Ep[tt>]− µµ>
if α == 2 then

Σ = 9π|Σ|1/2Σ // Eq. 4.6

θ ← [Σ−1µ,− 1
2
Σ−1]

return θ

Alg. 2 illustrates how to use this result in order to obtain the score function fθ for bidimensional

α-entmax continuous attention mechanisms with α ∈ {1, 2}.

4.2 Evaluation and gradient computation

We derive expressions for the evaluation and gradient computation of 2D continuous α-entmax attention

mechanisms for α ∈ {1, 2}. Again, we consider that ψ(t) are Gaussian RBFs.

4.2.1 2D continuous softmax (α = 1)

Let us consider an arbitrary D-Dimensional scenario and take D = 2 for the 2D continuous softmax

case. If S = RD, for φ(t) = [t, tt>], the distribution p = p̂Ω1 [fθ], with fθ(t) = θ>φ(t), is a multivariate

Gaussian where the mean µ and the covariance matrix Σ are related to the canonical parameters as

θ = [Σ−1µ,− 1
2Σ−1]. Now, we derive closed-form expressions for the attention mechanism output ρ1(θ) =

Ep[ψ(t)] in (3.16) and its Jacobian Jρ1
(θ) = covp,1(φ(t), ψ(t)) in (3.20), when ψ(t) are Gaussian RBFs,

i.e., each ψj is of the form ψj(t) = N (t;µj ,Σj). Check Alg. 3 for pseudo-code containing a condensed

version of our results.

Forward pass. Each coordinate of the attention mechanism output becomes the integral of a product

of Gaussians,

E[ψ(t)] =

∫
RD
N (t;µ,Σ)N (t;µj ,Σj). (4.7)

The product of two Gaussians is a scaled Gaussian, i.e., a Gaussian times a scale factor:

N (t;µ,Σ)N (t;µj ,Σj) = s̃N (t; µ̃, Σ̃), (4.8)

where

s̃ = N (µ;µj ,Σ + Σj), Σ̃ = (Σ−1 + Σ−1
j )−1, µ̃ = Σ̃(Σ−1µ+ Σ−1

j µj). (4.9)
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Algorithm 3: Continuous softmax attention with S = RD, Ω = Ω1 and Gaussian RBFs.
Parameters:

• Gaussian RBFs ψ(t) = [N (t;µj ,Σj)]
N
j=1

• Basis functions φ(t) = [t, vec(tt>)]

• Value function VB(t) = Bψ(t) with B ∈ RD×N // Alg. 1

• Score function fθ(t) = θ>φ(t) with θ ∈ RM // Alg. 2

Function Forward(θ := [Σ−1µ,− 1
2
Σ−1]):

rj ← Ep̂Ω[fθ ][ψj(t)] = N (µ, µj ,Σ + Σj), ∀j ∈ [N ] // Eq. 4.10

return c← Br (context vector)

Function Backward( ∂L
∂c
, θ := [Σ−1µ,− 1

2
Σ−1]):

for j ← 1 to N do
s̃← N (µ, µj ,Σ + Σj)
Σ̃← (Σ−1 + Σ−1

j )−1

µ̃← Σ̃(Σ−1µ+ Σ−1
j µj)

∂rj
∂θ
← covp̂Ω[fθ ](φ(t), ψj(t)) = [s̃(µ̃− µ); s̃(Σ̃ + µ̃µ̃> − Σ− µµ>)] // Eqs. 4.11,4.12

return ∂L
∂θ
←
(
∂r
∂θ

)>
B> ∂L

∂c

Therefore, the forward pass can be computed as:

E[ψ(t)] = s̃

∫
RD
N (t; µ̃, Σ̃) = s̃

= N (µ;µj ,Σ + Σj).

(4.10)

Backward pass. To compute the backward pass, we have that each row of the Jacobian Jρ1(θ) be-

comes a first or second moment under the resulting Gaussian,

covp,1(t, ψ(t)) = Ep[tψj(t)]− Ep[t]Ep[ψj(t)]

=

∫
RD

tN (t;µ,Σ)N (t;µj ,Σj)− s̃µ

= s̃

∫
RD

tN (t; µ̃, Σ̃)− s̃µ

= s̃(µ̃− µ),

(4.11)

and, noting that Σ = E[(t− µ)(t− µ)>] = E[tt>]− µµ>,

covp,1(tt>, ψ(t)) = Ep[tt>ψj(t)]− Ep[tt>]Ep[ψj(t)]

=

∫
RD

tt>N (t;µ,Σ)N (t;µj ,Σj)− s̃(Σ + µµ>)

= s̃

∫
RD

tt>N (t; µ̃, Σ̃)− s̃(Σ + µµ>)

= s̃(Σ̃ + µ̃µ̃>)− s̃(Σ + µµ>)

= s̃(Σ̃ + µ̃µ̃> − Σ− µµ>).

(4.12)
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4.2.2 2D continuous sparsemax (α = 2)

For α = 2, we show in Appendix A.2 how to reduce both the forward and the backward passes to

expressions including univariate integrals (with closed form-expression in terms of the erf function) over

an interval – easy to integrate numerically – by using the change of variable formula and working with

polar coordinates. We prove that for this case both the attention mechanism output,

ρ2(θ) = Ep[ψj(t)] =

∫∫
R2

[
−λ− 1

2
(t− µ)>Σ−1(t− µ)

]
+︸ ︷︷ ︸

T P (t;µ,Σ)

N (t;µj ,Σj) dt, (4.13)

and its Jacobian,

Jρ2
(θ) = covp,2(φ(t), ψ(t)), (4.14)

can be written in terms of functions of the form −λ
∫ 2π

0
s̃(θ)F (θ) and can be easily computed using sim-

ple 1D numerical integration methods. Alternatively, we could use 2D methods for numerical integration

to solve (4.13) and (4.14) directly; yet, to obtain good results we would have to use complicated bivari-

ate adaptive methods that take a lot of time to reach convergence and that are not GPU friendly – it

would become impracticable to plug these mechanisms in neural networks and train them end-to-end.

Nevertheless, in Section 4.3, we study different ways to compute 2D integrals over ellipses, including

the simplistic approach that we use in this work: in Chapter 6, we show that for Visual Question Answer-

ing, in practice, we can approximate these integrals with naive sums, without compromising the overall

performance of the model.

4.3 Computation of 2D integrals over ellipses

As discussed before, in order to plug continuous attention mechanisms in neural networks we must have

an efficient way of computing both the forward and backward passes within a reasonable amount of time.

Both the expectation (4.13) and its Jacobian (4.14) involve solving a bidimensional integral over a region

bounded by an ellipse. As we could not find a closed form solution for this problem (that would make

this process very fast) we analyzed different approaches to solve it numerically, taking into account its

running time and ease of implementation.

First, note that all the integrals in (4.13) and (4.14) are computed over regions bounded by the ellipse

that corresponds to the support of a bivariate truncated paraboloid T P (t;µ,Σ) – formally defined by

{t ∈ R2 | 1
2 (t− µ)>Σ−1(t− µ) ≤ −λ}, as in Subsection 3.2.2. We now focus on solving (4.13), given by:

Ep[ψj(t)] =

∫∫
R2

[
−λ− 1

2
(t− µ)>Σ−1(t− µ)

]
+︸ ︷︷ ︸

T P (t;µ,Σ)

N (t;µj ,Σj) dt,

and then make the appropriate changes for the other cases.

A reasonable first approach to solve (4.13) would be to use the fact that in our problem of interest

the support of the density p should be in a square (e.g., the unit square [0, 1]2 or, to be more inclusive, a
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Table 4.1: Comparison between different methods for numerical integration in 2D and 1D. For 1D-Naive,
the integrand function was evaluated 100 times with θ linearly spaced between [0, 2π]. All calculations
were done on CPU with NumPy arrays, for a fair comparison.

METHOD RUNNING TIME DEPENDENCIES GPU ALLOWANCE

2D-Num 25.749633 NumPy and SciPy No
2D-Num-Circle 5.290754 NumPy and SciPy No
2D-Num-Polar 0.247879 NumPy and SciPy No
1D-Num 0.023887 NumPy and SciPy No
1D-Naive 0.014022 NumPy or PyTorch Yes

10 × 10 box) if we normalize the input (e.g., an image) to that bound. Given this, we could use numeric

integration libraries such as SciPy [47] to directly compute approximations of this integral. Note that this

is only possible if we assume that the bound constraints we put on the input are valid; although they are

not too restrictive to most of the problems we thought of, it would be good not to rely on this assumption.

To tackle this concern and make our approach as clean as possible, we propose to use the expres-

sions we proved in Appendix A.2 in order to analytically reduce the 2D integral in (4.13) to a 1D integral

over an interval, that could be solved using different methods: we could use the same numeric integra-

tion library as before or, as a simpler alternative, we could simply evaluate the integrand function on a

finite set of points (after reducing the dimension of the 2D integral) and use a weighted sum of these

values to approximate the integral over the unit circle.

In order to better understand the pros and cons of each approach, we consider the following methods

based on the the ideas described in the previous paragraphs:

• 2D numerical integration (2D-Num) – approximate the integral on a 10× 10 box;1

• 2D numerical integration in a unit circle (2D-Num-Circle) – compute an affine transformation so

that the support of the density is a unit circle instead of an ellipse. Then, approximate the integral

on a 1× 1 box;2

• 2D numerical integration in polar coordinates (2D-Num-Polar) – compute affine transformation so

that we can integrate in a unit circle and then reparametrize to polar coordinates;

• 1D numerical integration (1D-Num) – reduce the integral analytically to 1D following the approach

discussed in Appendix A.2 and then integrate numerically;

• 1D naive sum (1D-Naive) – reduce the integral analytically to 1D following the approach discussed

in Appendix A.2 and then do naive sum.

Comparison between methods. Table 4.1 shows the average running time of 100 integrals computed

using the 5 methods discussed above, where the parameters µ, Σ, µj and Σj were chosen randomly.

All methods excluding 1D-Naive require SciPy library (or similar) for numerical integration; hence, the

implementation of these methods cannot make use of GPU parallelization, making them unfeasible for
1The support of the function should be on a 10× 10 box.
2The support of the function should be on a 1× 1 box.
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Algorithm 4: Continuous sparsemax attention with S = R2, Ω = Ω2 and Gaussian RBFs.
Parameters:

• Gaussian RBFs ψ(t) = [N (t;µj ,Σj)]
N
j=1

• Basis functions φ(t) = [t, vec(tt>)]

• Value function VB(t) = Bψ(t) with B ∈ RD×N // Alg. 1

• Score function fθ(t) = θ>φ(t) with θ ∈ RM // Alg. 2

• Number of integration intervals I

Function Forward(θ := [Σ−1µ,− 1
2
Σ−1]):

λ← −(π
√

det(Σ))
− 1

2

for β ← 0 to 2π do
s̃(β)← (A.17)
F (β)← (A.22)
rj ← rj − 2πλs̃(β)F (β)/I, ∀j ∈ [N ] // Solving integral numerically using 1D-Naive

β = β + 1/I
return c← Br (context vector)

Function Backward( ∂L
∂c
, θ := [Σ−1µ,− 1

2
Σ−1]):

for j ← 1 to N do
for β ← 0 to 2π do

s̃(β)← (A.17)
G(β)← (A.31), H(β)← (A.34), M(β)← (A.40)
// Solve integrals numerically using 1D-Naive

β = β + 1/I
∂rj
∂θ
← covp̂Ω[fθ ](φ(t), ψj(t)) // Eqs. A.24,A.25

return ∂L
∂θ
←
(
∂r
∂θ

)>
B> ∂L

∂c

Deep Learning applications. On the contrary, 1D-Naive only requires simple calculations that can be

easily done using, for instance, PyTorch [48] tensors. Alg. 4 contains pseudo-code illustrating how to

implement 2D continuous sparsemax using 1D-Naive as integration method.
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Chapter 5

Multimodal attention densities

In this chapter, we construct multimodal continuous attention mechanisms with mixtures of attention

densities. We begin by introducing mixture models, in Section 5.1. Then, we propose to extend the

framework presented in Chapters 3 and 4 to multimodal distributions as a natural follow-up on the pre-

vious work, pointing out the difference between the novel multimodal attention mechanisms and the

standard multi-head attention [8], in Section 5.2. In Section 5.3, we study the case where the attention

density can be parametrized as a mixture of Gaussians, adapting the well known Expectation Maximiza-

tion (EM) algorithm to work with weighted data (e.g., discrete attention weights).

5.1 Mixture models

Although the success of unimodal distributions such as Gaussians is unquestionable, it is also known

that they have some limitations when modelling real datasets: by its own nature, they only have a single

maximum and so cannot model multimodal distributions properly. Hence, mixture models appear as a

very important tool to represent arbitrarily complex probability density functions.

Consider that we are provided with data that has 2 distinct clumps, as in Figure 5.1. A unimodal

distribution would fail to capture them, putting much of its probability mass in the central region between

them, where the data is scarcer. On the other hand, a better representation would be given by fitting

a multimodal distribution (with 2 peaks) by maximum likelihood, using techniques that we will discuss

later. By taking linear combinations of 2 or more distributions (e.g., a unimodal Gaussian), we form

the so called mixture distributions. Formally, if x is a d-dimensional vector representing a data point, a

mixture model assigns it the probability

p(x|Θ) =

K∑
k=1

πkp(x|θk), (5.1)

where the parameters πk are called mixing coefficients and satisfy πk ≥ 0 for k = 1, . . . ,K and∑K
k=1 πk = 1; each θk is the set of parameters defining the k-th component of the mixture; and

Θ = {θ1, . . . , θK , π1, . . . , πK} is the complete set of parameters needed to specify the mixture. The
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Figure 5.1: Fitting data with 2 clumps using unimodal and multimodal distributions. Contours of constant
density have the same colour. Left: Single Gaussian distribution fitted to the data using maximum
likelihood. Right: Mixture of two Gaussians fitted to the data using the EM algorithm (discussed below).

definition of mixture is completely general regarding the functional form of each component, meaning

that p(x|θk) can take different forms. For instance, a Gaussian Mixture Model (GMM) withK components

is a superposition of K Gaussian densities (i.e., p(x|θk) = N (x|µk,Σk)) of the form

p(x|µ,Σ, π) =

K∑
k=1

πkN (x|µk,Σk). (5.2)

The complete set of parameters of a Gaussian mixture distribution includes π = {π1, ..., πK}, µ =

{µ1, ..., µK} and Σ = {Σ1, ...,ΣK}. We discuss how to set these parameters in Section 5.3.

5.2 Multimodal continuous attention

We can extend the framework presented in Chapters 3 and 4 to multimodal distributions by considering

mixtures of unimodal distributions,

p(t) =

K∑
k=1

πkpk(t), (5.3)

where each pk = p̂Ω[fθk ] is a unimodal distribution (e.g., a Gaussian or a truncated paraboloid) and

π ∈ ∆K are mixing coefficients defining the weight of each component of the mixture. For instance, in

the first example, p(t) becomes a mixture of Gaussians; we discuss later possible methods for obtaining

the mixing coefficients, π.

Using the definition of continuous attention mechanism presented in Section 3.3 and, from the lin-

earity of expectations, we can compute the output of the multimodal attention mechanism as

r = Ep[ψ(t)] =

K∑
k=1

πk Epk [ψ(t)]︸ ︷︷ ︸
rk

=

K∑
k=1

πkrk, (5.4)
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where rk is the output of an individual (unimodal) attention mechanism. The context representation is

c = Ep[Bψ(t)] = Br =

K∑
k=1

πk Brk︸︷︷︸
ck

, (5.5)

where each ck is the context representation of each individual attention mechanism; that is, c is a mixture

of the context representations for each component. The backpropagation step for the multimodal case

is simple, since this decomposes into a linear combination of unimodal attention mechanisms, each of

which has a simple/closed-form Jacobian.

Relation to multi-head attention. It is important to note that our construction is not the same as the

standard multi-head attention scenario, where the projection matrices learned as model parameters are

head-specific (remember (2.14) and (2.15)) [8]. On the contrary, we assume that B is fixed for each k,

i.e., B does not depend on k. From a computational point of view, this property seems appealing given

that it is possible to compute a single B for each example and still obtain a context vector that contains

information from different ”heads”, through different unimodal attention mechanisms.

How can we obtain π? We may assume that π ∈ ∆K is given by a discrete transformation such

as softmax or sparsemax on some scores that may depend on {pk}Kk=1, defining the weight of each

component of the mixture; in the latter case, the number of components in a mixture may vary (K

becomes a maximum number of components, but fewer may be selected depending on the input data).

What if we have access to a set of attention weights? Consider that we are provided with a set

of points equally spaced in the unit square [0, 1]2 and its correspondent discrete attention weights (the

same setting considered in Chapter 4). Intuitively, one could say that higher the attention weight, more

important the contribution of that specific point to the network’s decision. We have seen that by using

moment matching we could parametrize the attention density as a unimodal distribution. For multimodal

distributions, we can think of this problem as that of fitting a mixture model to weighted data. In that

context, we have to deal with 2 different issues: how to estimate the number of components, which we

discuss in Subsection 5.3.3; and how to estimate the parameters defining the mixture model. To the

latter question, the usual answer is the EM algorithm [49, 50], which converges to a maximum likelihood

estimate of the mixture parameters. For instance, for α = 1 the corresponding unimodal attention density

is a Gaussian; we can easily adapt EM to deal with weighted data, allowing us to obtain the full set of

parameters of a mixture of Gaussians – defining a multimodal attention density, p(t).

5.3 The EM algorithm for GMMs

In this section, we explain how to use the EM algorithm to fit a GMM to both non-weighted and weighted

data. Bear in mind that we present a brief summary (almost like a recipe) on the EM algorithm, whose

detailed exposition can be found in [49, 50].
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5.3.1 Non-weighted data

Let X = {x1, ..., xN} be the observed data. Given a GMM, the goal is to maximize the likelihood

function with respect to the parameters (means and covariance matrices of the components and mixing

coefficients). The EM algorithm for Gaussian mixtures goes as follows:

1. Initialize the parameters µk, Σk and πk and evaluate the initial value of the log likelihood function

ln p(X|µ,Σ, π) =

N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
. (5.6)

2. E step. Evaluate the responsibilities1 using the current parameter values

γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj ,Σj)

. (5.7)

3. M step. Re-estimate the parameters using the current responsibilities

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn, (5.8)

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k )(xn − µnew

k )>, (5.9)

πnew
k =

Nk
N
, (5.10)

where

Nk =

N∑
n=1

γ(znk). (5.11)

4. Re-evaluate the log likelihood (5.6) using the current parameter values and check for convergence

of either the parameters or the log likelihood. Return to step 2 if the convergence criterion is not

satisfied.

5.3.2 Weighted data

Let X = {x1, ..., xN} be the observed data and W = {w1, ..., wN} the weights associated with X, where

wn ≥ 0 is the weight indicating the relevance of observation xn. Note that, if obtained from a softmax

transform, we have wn > 0. Gebru et al. [51] proposed to incorporate the weights into the model by

“observing x w times” and changing the log likelihood function accordingly: they raise N (x;µ,Σ) to the

power w and notice that N (x;µ,Σ)w ∝ N (x;µ,Σ/w), deriving a new mixture model where w plays the

role of precision. However, they focus on the case where the weights are treated as random variables.

1This is also known as the membership weight of datapoint xn in cluster k. The membership weights reflect the uncertainty,
given xn and the parameters Θ, about which of the K components generated xn. Note that we assume that each xn was
generated by a single component in our generative mixture model.
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Our approach is simpler; we can change the algorithm for non-weighted data in Subsection 5.3.1

and include the information provided by the weights by changing the way we re-estimate the parameters

each iteration. For the M step, the parameters should now be updated using

µnew
k =

1

Nk

N∑
n=1

wnγ(znk)xn, (5.12)

Σnew
k =

1

Nk

N∑
n=1

wnγ(znk)(xn − µnew
k )(xn − µnew

k )>, (5.13)

πnew
k = Nk, (5.14)

where

Nk =

N∑
n=1

wnγ(znk). (5.15)

Instead of using (5.6), we should now evaluate a weighted log likelihood function,

N∑
n=1

wn ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
, (5.16)

where the log likelihood of each point is multiplied by the correspondent weight. Note that if we consider

that the weight associated with each observation is the same, i.e., wn = 1
N , we recover the usual

expressions for the EM algorithm.

5.3.3 Estimating the number of components

The maximum likelihood criterion cannot be used to estimate the number of components K in a mixture

density. If Mk is a class composed by all Gaussian mixtures with K components, it is trivial to show

that MK ⊆ MK+1 and thus the maximized likelihood is a non decreasing function of K, useless as a

criterion to estimate the number of components [52].

Several model selection methods were proposed to tackle the concern of estimating the number of

components of a mixture [53, Chapter 6]. The likelihood function as defined in (5.16) is of no direct use,

since it increases with k. We focus on penalized likelihood methods such as the Bayesian Information

Criterion (BIC) [54], the Akaike Information Criterion (AIC) [55] and the Minimum Description Length

(MDL) [56], where the EM algorithm is used to obtain different parameter estimates for a range of values

of k, {Θ̂k, k = kmin, . . . , kmax}, and the number of components is chosen according to

k? = arg min
k
{C(Θ̂k, k), k = kmin, . . . , kmax}, (5.17)

where C(Θ̂k, k) is a model selection criterion that usually has the form

C(Θ̂k, k) = −2 ln (X|Θ̂k) + P(k), (5.18)

where P(k) is an increasing function penalizing higher values of k (e.g., PBIC(k) = k lnn, with n being
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the number of data points). For the weighted data scenario presented in Section 5.3.2 we cannot use

the number of points; thus, we can write

P(k) = λ k, (5.19)

where λ > 0 is an hyperparameter that can be obtained, for instance, using cross-validation. The

resulting model selection criterion

C(Θ̂k, k) = −2 ln (X|Θ̂k) + λ k, (5.20)

will be used in Section 6.3 to estimate the number of components in a multimodal continuous attention

density.

5.3.4 Initialization

The EM algorithm requires an initial choice for the complete set of parameters Θ (an initialization);

when applied to GMMs, Θ includes not only the means µ = {µ1, ..., µK} and covariance matrices Σ =

{Σ1, ...,ΣK} of each component but also the set of mixing coefficients π = {π1, ..., πK}. This becomes

an issue of the utmost importance because EM is not guaranteed to converge to a global maximizer of

the log likelihood function, getting stuck at a local maximizer most of the times [57], meaning that the

final estimate depends on the initialization.

A common strategy to alleviate this issue consists of considering several different initializations (e.g.,

multiple random initializations), run EM that number of times and choose the final estimate that leads to

the highest likelihood [50].
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Chapter 6

Applications in Visual Question

Answering

With both the forward and backward passes solved, we are now able to plug continuous attention mech-

anisms in neural networks and train them end-to-end via the gradient backpropagation algorithm. In this

chapter, we experiment with α-entmax attention mechanisms in visual question answering – a task that

combines language and vision – in order to improve focus and possibly provide better explanations via

smoother attention maps. We begin by making a brief introduction on this task, in Section 6.1. Then, we

describe our experiments with 2D continuous attention and discuss the results according to the standard

metrics, in Section 6.2. Moreover, we present some attention plots showing the promising results of our

approach. Finally, in Section 6.3 we perform experiments with Multimodal Continuous Attention (MCA),

showing the improved attention maps that they are able to generate.

6.1 Understanding the task

Visual Question Answering (VQA) is a task whose main goal is to provide an accurate answer, given an

image and a question about it (both the question and the answer are in natural language). Given this,

VQA requires a fine-grained simultaneous understanding of images and text-based questions, combin-

ing the researching fields of Computer Vision and Natural Language Processing. For example, to answer

the question “Who is wearing glasses?” in Figure 6.1, first of all, the model must understand the ques-

tion. Then, it should have some common-sense knowledge to know where to look for the glasses and

to distinguish between the man and the woman. This is only possible if the model is capable of focusing

on the right region (or regions), understanding which visual information is more relevant to answer that

particular question.

In the last few years using bounding box features to represent images became the standard choice

for many tasks that require both vision and language, including VQA - this is known as bottom-up at-

tention [24] and requires the use of pre-trained object detectors [59]. The process of acquiring those

features involves two main steps (region selection and region feature computation) that are computa-
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Figure 6.1: Examples of open-ended questions from the VQA-v2 dataset requiring common sense
knowledge along with a visual understanding of the scene to answer questions. From Goyal et al.
[58, Figure 1].

tionally expensive and time consuming, making this process less suitable for practical applications. On

the contrary, when using directly VGG [60] or ResNet [61] grid features we can skip some of the expen-

sive steps related to the bottom-up attention approach, resulting in noticeable speed-ups that might be

crucial at inference time. In this thesis we focus on the second case.

6.2 Experiments with 2D continuous attention

We now plug our 2D continuous attention mechanisms in a VQA model that uses grid features to repre-

sent the images. Throughout this section, all the models we experimented with use the same features

and were trained only on the train set without data augmentation.

6.2.1 Dataset and architecture

We used the VQA-v2 dataset [58] with the standard splits (443K, 214K, and 453K question-image pairs

for train/dev/test, the latter subdivided into test-dev, test-standard, test-challenge and test-reserve). We

adapted the implementation of [62],1 consisting of a Modular Co-Attention Network (MCAN): our archi-

tecture is the same as its encoder-decoder version except that we represent the image input with grid

features generated by a ResNet pretrained on ImageNet [61, 63], instead of bounding-box features [24].

Architecture. The images are resized to 448 × 448 before going through the ResNet that outputs a

feature map of size 14×14×2048. To represent the input question words we use 300-dimensional GloVe

word embeddings [64], yielding a question feature matrix representation. The architecture inspired by

the Transformer [8] consists of a deep co-attention learning phase that takes the question and the image

representations as inputs and passes them through an encoder-decoder architecture (see figure 6.2):

1https://github.com/MILVLG/mcan-vqa
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Figure 6.2: Deep co-attention learning phase: encoder-decoder approach including self-attention and
guided-attention units. Adapted from Yu et al. [62, Figure 2 and 5].

this can be seen as an encoder to learn the question representation Y and a decoder to learn the image

representation X, where Y guides the attention given to the image features. In this case, the encoder

is composed by L stacked self-attention layers and the decoder by L self-attention followed by guided

attention layers - after this phase, Y and X already contain rich information about the attention weights

over the question words and image regions. Y andX are then passed through an output attention model

using discrete or 2D continuous attention for X, in order to obtain the final attended features ỹ and x̃,

respectively (in the next paragraphs we explore different methods to obtain ỹ and x̃). A fused feature

z can be obtained as z = LayerNorm(Wy ỹ + Wxx̃), where Wy and Wx are linear projection matrices.

Finally, z is projected into a vector s ∈ RN , where N is the number of possible answers.

6.2.2 Attention model

We consider 3 different attention models: discrete attention, 2D continuous softmax attention and 2D

continuous sparsemax attention. The discrete attention model attends over a 14×14 grid and x̃ is ob-

tained as x̃ =
∑L
i=1 αixi, where α = softmax(affine(X)). Since our focus is to experiment with different

2D attention mechanisms, the final attended question feature x̃ is always obtained with the same pro-

cedure, using discrete attention. For continuous attention, we normalize the image size into the unit

square [0, 1]2 with each coordinate tl positioned at ( l1√
L
, l2√

L
) for l1, l2 ∈ [0,

√
L] creating a meshgrid. We

fit a 2D Gaussian (α = 1) or truncated paraboloid (α = 2) as the attention density; both correspond to

f(t) = − 1
2 (t − µ)>Σ−1(t − µ), with Σ � 0. We use the mean and variance according to the discrete

attention probabilities and obtain µ and Σ with moment matching. We use N ∈ {49, 100} � 142 Gaus-

sian RBFs, with µ̃ linearly spaced in [0, 1]2 and Σ̃ = 0.001 · I. Overall, the number of neural network

parameters is the same as in discrete attention.
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How can we use 2D continuous attention after all? We want to obtain the final attended feature

x̃ from an image matrix representation X ∈ RD×L, where D = 2048 is the channel dimension and

L = 14×14 is the spacial dimension - a square grid. Also, we assume that we have access to L discrete

attention weights αi, where i ∈ {1, ..., L}.

We opt to use N Gaussian RBFs as basis functions ψ(t) in order to represent the image as a

continuous function VB(t) = Bψ(t). Now, how can we obtain the optimum value B?, i.e., how can we

choose B so that VB is a good representation of the image? One simple option is to use multivariate

ridge regression: we evaluate each basis function on every normalized image location and pack the

basis vectors as the columns of a matrix F ∈ RN×L; from expression (3.17), we can compute G ∈

RL×N and, finally, obtain B? ∈ RD×N .2 The parameters µ and Σ for the attention density – a bivariate

Gaussian N (t;µ,Σ) for 2D continuous softmax and a bivariate truncated paraboloid TP(t;µ,Σ) for 2D

continuous sparsemax – can be obtained with moment matching according to the discrete attention

weights αi, following the procedure discussed in Section 4.1. With this, we have everything that we need

to compute x̃: from expression (3.16) we can write r = Ep[ψ(t)] ∈ RN and the final attended feature is

x̃ = B? r ∈ RD. The diagram in Figure 6.3 summarizes our method to obtain the final attended image

feature x̃ via a 2D continuous attention mechanism.

Figure 6.3: Diagram of a 2D continuous attention mechanism as the output attention for VQA. λ repre-
sents a Ridge penalty and IN is the N ×N identity matrix. Note that for given L and N , G depends only
on the value of the basis functions and can be obtained offline.

2In practice, we can extend the image area using padding – considering a square of side 2 instead of 1, containing the unit
square in its center – and evaluate each basis function on it. Then, we compute G and ignore the image locations we added. This
helps to make sure that near the outer limits of the image VB approximates zero. Our experiments show that by doing this it is
possible to get +0.5% overall accuracy on the validation set.
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Table 6.1: Hyperparmeters for VQA. The second part of the table includes the hyperparameters for
continuous attention models. l.s. means linearly spaced in.

HYPERPARAMETER VALUE

Batch size 64
Word embeddings size 300
Input image features size 2048
Input question features size 512
Fused multimodal features size 1024
Multi-head attention hidden size 512
Number of MCA layers 6
Number of attention heads 8
Dropout rate 0.1
MLP size in flatten layers 512
Optimizer Adam
Base learning rate at epoch t starting from 1 min(2.5t · 10−5, 1 · 10−4)
Learning rate decay ratio at epoch t ∈ {10, 12} 0.2
Number of epochs 13

N {49,100}
µ̃ l.s. [0, 1]2

Σ̃ 0.001 · I
Padding Yes
Ridge penalty 0.01
Number of integration intervals (2D continuous sparsemax) 100

6.2.3 Implementation

Hyperparameters and implementation. Table 6.1 shows the hyperparameters used for all the VQA

experiments presented, including the hyperparameters for continuous attention models. Remember

that to compute both the forward and the backward passes for 2D continuous sparsemax attention with

Gaussian RBFs, we need to integrate univariate integrals over the unit circle numerically (see section A.2

for all the derivations and formulas). Instead of using adaptive methods for numerical integration (e.g.,

Gauss-Kronrod quadrature rules - see Laurie [65] for an overview of these methods) we found out that

we could simply evaluate the integrand function on a finite set of points and use a weighted sum of these

values to approximate the integral over the unit circle, without comprising the performance of the VQA

model. This is an important finding given that it allows an easy implementation of parallel computations,

reducing the running time when compared to adaptive numerical integration methods (see Section 4.3).

Our computing infrastructure consists of 4 machines with the specifications shown in appendix B.1

and all our experiments were executed in a single GPU. Moreover, we open-sourced our pytorch im-

plementation based on the original MCAN repository. Our code is available at https://github.com/

antonio-farinhas/mcan-vqa-cont, along with additional information on how to reproduce our results.

6.2.4 Results and attention visualization

Results. The results in Table 6.2 show the accuracies for all the attention models: the results are

similar, with a slight advantage for 2D continuous softmax with N = 100 basis functions. Even though

we used less basis functions than image regions (N � L = 14×14), 2D continuous attention performed

as well as (or even better than) discrete attention. Moreover, we can see that we don’t need a large
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Table 6.2: Accuracies of different models on the test-dev and test-standard splits of VQA-v2. For the
continuous attention models we used N ∈ {49, 100} Gaussian RBFs N (t; µ̃, Σ̃), with µ̃ linearly spaced
in [0, 1]2 and Σ̃ = 0.001 · I.

ATTENTION N Test-Dev Test-Standard
Yes/No Number Other Overall Yes/No Number Other Overall

Discrete softmax - 83.40 43.59 55.91 65.83 83.47 42.99 56.33 66.13

2D continuous softmax 100 83.40 44.80 55.88 65.96 83.79 44.33 56.04 66.27
2D continuous softmax 49 83.32 44.29 55.78 65.82 83.57 43.70 56.07 66.12

2D continuous sparsemax 100 83.10 44.12 55.95 65.79 83.38 43.91 56.14 66.10
2D continuous sparsemax 49 83.38 44.25 55.87 65.88 83.69 43.00 56.09 66.10

What is the woman looking at? tv
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1E-01

1E+01

computer
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9

computer

Figure 6.4: Attention maps for an example in the VQA-v2 dataset: original image, discrete attention,
2D continuous softmax (N = 100) and 2D continuous sparsemax (N = 100). The latter encloses all
probability mass within the outer ellipse.

number of basis functions to obtain good results given that for N = 49, that is, by choosing the number

of basis functions to equal a quarter of the number of image regions, the results are already satisfying:

the results for all the attention models are very similar on the test-standard split; on the test-dev split,

2D continuous sparsemax performed a bit better than the other variants.

Attention visualization. We use the standard way in the literature to visualize where discrete atten-

tion is looking when making a decision: splitting the image in a 14 × 14 grid and superimposing the

attention weights. However, as we constructed 2D continuous attention in a different manner, attention

visualization should be done in other way. The best way to represent the ellipses that our method is able

to identify in images consists in superimposing the contours of the (unnormalized) attention density and

the image. Moreover, we use the same colormap for both softmax and sparsemax for a fair comparison;

for sparsemax, however, we make the zero-level contour thicker to emphasize sparsity and to show the

qualitative difference between the two mechanisms.

Figure 6.4 shows an example where, in the baseline model, discrete attention is too scattered, pos-

sibly mistaking the lamp with a TV screen; contrarily, our continuous attention models focus on the right

region and answer the question correctly, with 2D continuous sparsemax enclosing all the relevant infor-

mation in its supporting ellipse. Similarly, in Yes/No questions discrete attention tends to be more diffuse

than its continuous counterpart, sometimes leading incorrect answers (Figure 6.5). Figure 6.6 illustrates

the difficulties that continuous attention models may face when trying to focus on objects that are too far
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Is the man wearing a hat? yes
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Figure 6.5: Attention maps for an example in the VQA-v2 dataset: original image, discrete attention,
2D continuous softmax (N = 100) and 2D continuous sparsemax (N = 100). The latter encloses all
probability mass within the outer ellipse.
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Figure 6.6: Attention maps for an example in the VQA-v2 dataset: original image, discrete attention, 2D
continuous softmax (N = 100) and 2D continuous sparsemax (N = 100). Failure of continuous attention
models.

from each other or that seem to have different relative importance to answer the question. Intuitively, in

VQA, this becomes a problem when counting objects in those conditions. However, Figure 6.8 shows

that continuous attentions ellipses are also capable of becoming wide, including relevant objects that

are far from each other. On the other side, in counting questions that require the understanding of a

contiguous region of the image only, continuous attention may perform better (Figure 6.7).

Previously, we explained that the parameters of the attention densities for continuous attention mod-

els were firstly obtained from discrete attention weights with moment matching. Notwithstanding this,

our models were able to learn where they should focus and adapt the attention density parameters so

that they do not end up being just the mean and the variance of the discrete attention weights. This

is clearly shown in Figures 6.4 and 6.6 where it is possible to distinguish 2 separated regions of high

discrete attention probability and the means of the continuous attention densities are located in one of

those regions and not in somewhere in the middle of both.

To sum up our findings, we can say that usually discrete attention is more diffuse than its continuous

counterpart (which is very intuitive) and attends to multiple regions in the image. For VQA, this might be

good for very complex question/image pairs. Note, however, that continuous attention ellipses are also

capable of becoming wide, including different regions of interest. On the other hand, when the relevant

part of the image is concentrated in a specific region our method conduces to better and more self-

explanatory answers. Furthermore, it is important to compare the 2 continuous mechanisms: by fitting

a Gaussian as the attention density (continuous softmax) every region in the image is assigned with
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Figure 6.7: Attention maps for an example in the VQA-v2 dataset: original image, discrete attention, 2D
continuous softmax (N = 100) and 2D continuous sparsemax (N = 100). Continuous attention models
had a better understanding of a small contiguous region in the image.
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Figure 6.8: Attention maps for an example in the VQA-v2 dataset: original image, discrete attention, 2D
continuous softmax (N = 100) and 2D continuous sparsemax (N = 100). Continuous attention ellipses
are capable of becoming wide.

some probability mass; by fitting a truncated paraboloid (continuous sparsemax), the attention density

becomes sparse, that is, only the relevant regions of the image are assigned with non-zero probability

mass – we found out that this usually results in better explanations.

6.3 Experiments with multimodal continuous attention

Following Section 5.2, we experiment with Multimodal Continuous Attention (MCA) by using mixtures

of continuous attention densities. In these experiments, we use the same dataset and architecture as

in Subsection 6.2.1. Throughout this section, we omit some of the implementation details regarding

unimodal continuous attention models as they can be found in Subsections 6.2.2 and 6.2.3. The hyper-

parameters are the same as in Table 6.1.
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6.3.1 Attention model

We consider 2 different scenarios. First, we choose a fixed number K and train a model from scratch,

assuming that each attention density can be modeled as a K-component multimodal distribution (we

refer to this attention model as K-MCA, hereinafter). Second, we use a model trained with unimodal

continuous attention and, at test time, consider multimodal distributions, using the model selection crite-

rion (5.20) to choose the number of components from a set of possible choices. We refer to the latter as

test-MCA.

K-MCA. We consider multimodal attention densities with K ∈ {2, 4} components. Instead of initial-

izing the parameters Θ = {µ1, . . . , µK ,Σ1, . . . ,ΣK , π1, . . . , πK} randomly, we split the image in K re-

gions/pieces (i.e., for K = 2 we consider the upper and lower halves of the image and for K = 4 we

resplit each upper and lower half into left and right); then, we obtain {µ1, . . . , µK} and {Σ1, . . . ,ΣK}

with moment matching according to the discrete attention weights in the corresponding region, as in

the experiments in Section 6.2. The initial mixing coefficients {π1, . . . , πK} can be obtained according

to the probability mass in the corresponding region. Then, we run the EM algorithm for weighted data

proposed in Subsection 5.3.2 to obtain the final estimates for Θ. Instead of evaluating the log likelihood

function (5.16) each iteration to check for convergence, we re-estimate the parameters of the mixture

model for a fixed number of iterations, which can be considered an extra hyperparameter. According

to (5.5), we compute K individual 2D continuous softmax attention mechanisms in order to obtain the

context representations {c1, ..., cK}. The final context is a mixture of the context representations for each

component, c =
∑K
k=1 πk ck.

test-MCA. We use a model trained with unimodal continuous attention (2D continuous softmax with

N = 100, from Table 6.2) and, at test time, consider multimodal distributions. We consider models

with a number of components in the range K ∈ {Kmin, . . . ,Kmax}, with Kmin = 1 and Kmax = 5. For

K = 1 we use the same setup as in the previous section. For K > 1 we follow the procedure described

in Subsection 5.3.4 and consider multiple random initializations for each K (we opt to use 3 different

initializations, i ∈ {1, 2, 3}). We use the EM algorithm for weighted data to obtain different parameter

estimates Θ̂Ki. All in all, we consider 1+3×4 = 13 estimates Θ̂ ∈ {Θ̂1, Θ̂21, Θ̂22, Θ̂23, . . . , Θ̂51, Θ̂52, Θ̂53},

and choose the model that minimizes the model selection criterion (5.20),

C(Θ̂,K) = −2 ln (X|Θ̂) + λ K.

If the optimum number of components K? > 1, the final context is computed as a mixture of the context

representations for each component, c =
∑K?

k=1 πk ck, where each ck is obtained through an individual

2D continuous softmax attention mechanism. In fact, this can be thought of as a 2 step procedure: for

each example, we first obtain K? and then compute K?-MCA with a random initialization.
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Table 6.3: Accuracies of different models on the test-dev and test-standard splits of VQA-v2. For the
continuous attention models we used N = 100 Gaussian RBFs N (t; µ̃, Σ̃), with µ̃ linearly spaced in
[0, 1]2 and Σ̃ = 0.001 · I. For the MCA models, we used the following number of iterations: 2,5,20,20,20.

ATTENTION λ Test-Dev Test-Standard
Yes/No Number Other Overall Yes/No Number Other Overall

Discrete - 83.40 43.59 55.91 65.83 83.47 42.99 56.33 66.13

2D continuous softmax - 83.40 44.80 55.88 65.96 83.79 44.33 56.04 66.27
2D continuous sparsemax - 83.10 44.12 55.95 65.79 83.38 43.91 56.14 66.10

2-MCA - 83.35 44.28 56.07 65.97 83.59 43.65 56.24 66.21
4-MCA - 83.39 43.52 55.96 65.85 83.72 43.47 56.03 66.14

test-MCA 10 83.30 44.60 55.81 65.86 83.76 44.08 56.00 66.21
test-MCA 100 83.35 44.75 55.86 65.92 83.77 44.28 56.02 66.25
test-MCA 500 83.39 44.75 55.87 65.95 83.79 44.36 56.04 66.27

Table 6.4: Optimum number of components when using K?-MCA for different values of λ (in percentage
of examples).

λ K? = 1 K? = 2 K? = 3 K? = 4 K? = 5

10 58.58 20.81 8.02 6.77 5.82
100 84.87 11.22 2.51 1.00 0.41
500 96.17 3.30 0.40 0.10 0.03

6.3.2 Results and attention visualization

Results. The results in Table 6.3 show the accuracies for all the attention models – we include the

best results from Table 6.2 for comparison purposes. Again, the results are very similar, suggesting

that there is no clear gain in terms of accuracy when using MCA models to answer the questions in the

VQA-v2 dataset. Note, however, that these models also use less basis functions than image regions

(N � L = 14× 14).

In Section 6.2 we obtained slightly better results when using 2D continuous softmax (unimodal con-

tinuous attention) instead of discrete attention. We argued that the former was more focused and, even

in counting questions that require to focus on objects that are far from each other, continuous attention

ellipses would become as wide as necessary (most of the times). With MCA, the results are almost the

same as with unimodal attention for K = 2 and slightly worse for K = 4. Although we can now identify

different regions of interest in images (attention focuses), in terms of accuracy, for VQA, that seems not

to be a big advantage.

When using test-MCA, an optimum value of components K? is chosen to answer each question.

Table 6.4 shows that the percentage of examples in which K? = 1 increases with λ, as expected from

(5.20). From Table 6.3 it is possible to see that the overall accuracy also increases with these, suggesting

that a small value of K is better for the model’s accuracy.
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Figure 6.9: Attention maps generated when answering the question: How many planes have blue as
their main body colour? Top left: 2D continuous softmax (N = 100). Top right: MCA-2. Bottom left:
MCA-4. Bottom right: MCA-test (λ = 500).

Attention visualization. More interesting than the results in terms of accuracy is to look at the atten-

tion densities generated by each model. Figure 6.9 shows an example in which the models are asked

how many planes have blue as their main body colour. There are 2 blue planes – the leftmost and the

rightmost ones. When using a continuous attention model such as 2D continuous softmax, the attention

density corresponds to a bivariate Gaussian and the region of interest is correctly identified. However,

due to its unimodal nature, it attributes a lot of probability mass to the yellow plane’s positions, that

corresponds to the central region in between the 2 blue planes. Although a similar situation appears to

happen when using the model with MCA-2 attention, the difference in the values of the presented con-

tours shows that the attention density is more spread across the 5 planes instead of being concentrated

in the yellow one. Both MCA-4 and MCA-test (in this example, K? = 3) are not only capable of identi-

fying 2 blue planes but also to ”isolate” its positions, suggesting that these models are able to produce

more flexible attention densities, while enjoying the advantages of modeling attention as a continuous

function.
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Figure 6.10: Attention maps generated when answering the question: How many people are wearing
helmets? Top left: 2D continuous softmax (N = 100). Top right: MCA-2. Bottom left: MCA-4. Bottom
right: MCA-test (λ = 500).

We now revisit the second example in Figure 6.8, where we stated that the ellipses generated by

unimodal attention mechanisms were capable of becoming as wide as necessary. Figure 6.10 shows the

attention maps generated by multimodal continuous attention mechanisms when answering the same

question (How many people are wearing helmets?). It is clearly seen that these models are looking to the

right regions when answering the question. One could anticipate that the model with more components

(MCA-4) would become too unfocused due to the higher level of freedom; however, this is not the case:

the mixing coefficients of 2 of the components become so small that the attention density has only 2

relevant peaks, identifying 2 people as it should do.

Figure 6.11 shows the same example of Figure 6.4, in which the models are asked what is the woman

looking at. Remember that discrete attention was too scattered, possibly mistaking the lamp with a TV

screen; using 2D continuous softmax/sparsemax solved the issue by considering continuous and more

focused attention densities. When using continuous attention models with more that one mode (e.g.,

MCA-2 and MCA-4) the attention maps tend to become less focused, putting some probability mass in

the region where the lamp is. This can be solved by using test-MCA that selects the optimum number of

components for each example – in this case, the best option is to consider an attention distribution with

just 1 mode, which corresponds to 2D continuous softmax attention as before.
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Figure 6.11: Attention maps generated when answering the question: What is the woman looking
at? Top left: 2D continuous softmax (N = 100). Top right: MCA-2. Bottom left: MCA-4. Bottom right:
MCA-test (λ = 500).
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Chapter 7

Conclusions

To wrap up, in this chapter, we start by summarizing our work, in Section 7.1. Afterwards, we present

some interesting avenues for future research, in Section 7.2. Finally, we discuss the broader impact of

our work, including possible societal consequences, both positive and negative, in Section 7.3.

7.1 Achievements

Over the course of this thesis, we took an in-depth look at current attention mechanisms for vision tasks

and addressed some of their known issues. We focused on fully differentiable transformations that can

be plugged in deep models and trained end-to-end with backpropagation.

A key component of attention mechanisms is the transformation that maps scores into probabilities

– usually a discrete transformation. On the contrary, we presented continuous alternatives based on

the extension of regularized prediction maps, originally defined on finite domains, to arbitrary measure

spaces. By choosing a regularization function based on the Tsallis α-entropies, we constructed 2D

continuous α-entmax attention mechanisms. For α = 1 we obtained 2D continuous softmax attention,

where the attention density is a Gaussian distribution. For α = 2 (2D continuous sparsemax), the

attention density becomes a truncated paraboloid distribution with sparse support. We derived their

Jacobians, allowing for efficient forward and backward propagation (Chapters 3 and 4).

A unimodal attention distribution may not be enough for certain applications where the relevant fea-

tures are not located in contiguous regions of an image. As a natural follow-up, we proposed multimodal

continuous attention by using mixtures of unimodal attention densities (Chapter 5). These novel at-

tention mechanisms enjoy some of the properties of their unimodal counterparts, while they are able

to generate more flexible attention maps and thus can model more complex attention distributions. The

backpropagation step for the multimodal case is simple, since this decomposes into a linear combination

of unimodal attention mechanisms, each of which has a simple or closed-form Jacobian.

Finally, we performed experiments on Visual Question Answering with promising results (Chapter 6).

Continuous attention allowed for obtaining smooth and interpretable attention maps that are difficult to

generate with discrete attention based models.
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7.2 Future work

The research we have carried out opens up interesting possibilities of future work, both in terms of

theoretical developments and more efficient implementations. We discuss both short-term and long-

term directions. The former are more accessible while the latter may benefit from our work but require

some conceptual modifications.

Multimodal continuous attention for other vision tasks. For VQA, we obtained small improvements

in terms of accuracy when using 2D continuous attention (unimodal) over discrete models. Although we

were able to obtain better attention maps with multimodal continuous attention, we did not observe

relevant improvements in the model’s predictive capacity. An interesting direction for future research

consists in using multimodal continuous attention for other vision tasks that could benefit more from it.

For instance, the state-of-the-art on some visual counting tasks is an attention-based model that uses

grid features and therefore could work with multimodal continuous attention [66].

Truncated paraboloid RBFs for 2D continuous sparsemax attention. We obtained an image rep-

resentation by parametrizing the value function as VB(t) = Bψ(t), where ψ(t) were Gaussian RBFs.

Another option is to consider truncated paraboloid RBFs for 2-entmax continuous attention (sparsemax).

Transformer models with reduced time/memory complexity. Transformer models have demon-

strated impressive results in a wide variety of tasks, from NLP and speech to vision. However, its

self-attention module processes L-length inputs with a quadratic memory and time complexity O(L2),

becoming hard to train in practice. In the recent months, a wide spectrum of new transformer models has

been proposed to tackle this problem [67, 68]. An interesting direction for future research is to consider

continuous transformer models where the self-attention would involve O(N2) operations, with N being

the number of basis functions that define the value function. As N << L, this would be much cheaper

than the O(L2) requirement of the standard transformer model.

The case with truncated paraboloids and varying number of modes. Mixtures of exponential family

distributions (and Gaussians, in particular) are well studied; they have many interesting properties and,

one of them, is that of having constant support within the same family. On the other hand, we have seen

that α-sparse families (for α > 1) abandon that property, having varying support (light tails). A possible

way of future research lies in considering mixtures of sparse family distributions, including mixtures of

truncated paraboloids; the case where different components have disjoint supports seems particularly

interesting to explore. Moreover, if the mixing coefficients π ∈ ∆K in (5.3) are obtained from a discrete

transformation that produces sparse results (e.g., sparsemax), the number of components in a mixture

may vary (K becomes a maximum number of components, but fewer may be selected depending on the

input data). This approach eliminates the need for a model selection criterion such as in (5.20), making

the training of multimodal attention models with varying number of modes easier.
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7.3 Broader impact

We can now discuss the broader impact our work may have, including possible societal consequences,

both positive and negative. While we could discuss the impact of visual attention in some specific tasks,

we choose to broaden our focus so as to consider the longer term impact of our work. Our methods are

not yet tested in broader applications and our contribution is mainly theoretical; thus, this discussion is

mainly speculative.

It is well known that interpretability of neural network models can be essential to better discover any

ethically harmful biases that exist in both the data or the model itself [69, 70]. However, current state-

of-the-art models use discrete softmax attention, whose interpretative ability has been questioned in

previous work [71, 72]. On the contrary, our continuous attention models may lead to more interpretable

decisions via smoother and less scattered attention maps. Moreover, the variance term of a Gaussian

or truncated paraboloid continuous attention density can be possibly thought of as a measure of the

model’s confidence about where it should attend.

While advances in CV have led to considerable technological improvements, they also raise a great

deal of ethical concerns that should not be neglected. Although it might be difficult to control how new

technologies are used downstream, it is imperative to study their potential societal implications as they

are developed, e.g., by carrying out user studies before deploying such systems. For CV applications,

ethical concerns hold over certain intelligent systems, with reports of discrimination [73] and privacy

violations [74]. For instance, the VQA-v2 dataset used in the VQA experiments uses COCO images,

which have documented biases [75]. 2D continuous attention holds the promise to scale to larger and

multi-resolution images, which may, in the longer term, be deployed in such undesirable domains.

Although our models share the same problem of other Deep Learning models in terms of energy

consumption [76], there is nothing specific about our research that poses increased environmental con-

cerns. The computational requirements for training systems with 2D continuous attention do not seem

considerably higher than the ones which use discrete attention; although, as discussed in the previous

section, there are interesting avenues for future research that hold promise to reduce the computational

cost by using fewer basis functions.
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J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris,

A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

doi: https://doi.org/10.1038/s41592-019-0686-2.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-

amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
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Appendix A

Continuous attention with Gaussian

RBFs

A.1 Obtaining the parameter Σ from the variance for a multivariate

truncated paraboloid distribution

Theorem 1. Let T P (t;µ,Σ) be a d-dimensional multivariate truncated paraboloid where t, µ ∈ Rd

and Σ ∈ Rd×d � 0, defined as in [27, Section 2.4]. Let λ = −
(

Γ(d/2+2)
|2πΣ|1/2

) 2
2+d

be the constant that

ensures the distribution normalizes to 1, where Γ(t) is the Gamma function. Then, the variance of

T P is related to Σ by

Var(Σ) = f(Σ) = − λ Σ
d
2 + 2

. (A.1)

Proof. Since the variance does not depend on the location parameter µ, we assume µ = 0 without loss

of generality. Starting with

Var(Σ) =

∫
1
2 t
>Σ−1t≤−λ

(
−λ− 1

2
t>Σ−1t

)
tt>dt, (A.2)

we first use the change of variable formula to reparametrize s = Σ−1/2 t so that we can compute the

integral over a ball, {s ∈ Rd | ||s||2 ≤ −2λ}. In practice, this means that t = Σ1/2s and we can write:

Var(Σ) =

∫
||s||2≤−2λ

Σ1/2 s

(
−λ− 1

2
||s||2

)
s> Σ1/2 |Σ|1/2 ds

= Σ1/2

(∫
||s||2≤−2λ

s

(
−λ− 1

2
||s||2

)
s> ds

)
|Σ|1/2 Σ1/2. (A.3)

Consider the change of variable s = γ r, where γ lies on the unit hypersphere of dimension (d− 1) and
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r ∈ [0, (−2λ)1/2]. Note that ||s|| = r. From the substitution rule for integration, we can write:

Var(Σ) = Σ1/2

(∫ (−2λ)1/2

0

r(d−1)

(∫
||γ||=1

γr (−λ− r2

2
)rγ>dγ

)
dr

)
|Σ|1/2 Σ1/2, (A.4)

where r(d−1) is the determinant of the Jacobian matrix of the transformation. Applying Fubini’s theorem,

we have:

Var(Σ) = Σ1/2

(∫
||γ||=1

γγ> dγ

)
︸ ︷︷ ︸

1
d Sd−1 Id

1

(∫ (−2λ)1/2

0

r (−λ− r2

2
)rrd−1dr

)
|Σ|1/2 Σ1/2, (A.5)

where Sd−1 denotes the surface of a (d− 1) hypersphere, given by:

Sd−1 =
dπd/2

Γ(d2 + 1)
. (A.6)

Making use of properties of the Gamma function, we can write:

Var(Σ) = Σ1/2

(
πd/2

Γ(d2 + 1)
Id

)(∫ (−2λ)1/2

0

(
−λrd+1 − rd+3

2

)
dr

)
|Σ|1/2 Σ1/2

=
πd/2

Γ(d2 + 1)

(
−λ(−2λ)( d+2

2 )

d+ 2
− (−2λ)( d+4

2 )

d+ 4

)
|Σ|1/2 Σ

=
πd/22(d/2+1)

Γ(d2 + 1)

(
(−λ)( d+4

2 )

d+ 2
− (−λ)( d+4

2 )

d+ 4

)
|Σ|1/2 Σ

=

(
2

(d+ 2)Γ(d/2 + 1)

)
︸ ︷︷ ︸

1
(d/2+1)Γ(d/2+1)

= 1
Γ(d/2+2)

2(2π)d/2(−λ)
d+4

2

d+ 4
|Σ|1/2 Σ.

=
(2π)d/2(−λ)

d+4
2 |Σ|1/2

(d/2 + 2) Γ(d/2 + 2)︸ ︷︷ ︸
Γ(d/2+3)

Σ =
(2π)d/2(−λ)(d/2+2)|Σ|1/2

Γ(d/2 + 3)
Σ. (A.8)

Finally, noting that:

(−λ)(d/2+1) =
Γ(d/2 + 2)

|2πΣ|1/2
=

Γ(d/2 + 2)

(2π)d/2|Σ|1/2
, (A.9)

yields:

Var(Σ) = − λΣ
d
2 + 2

. (A.10)

1First, note that this result must be a diagonal matrix: for i 6= j,
∫
Sd
γiγj equals zero by symmetry – the integral over half of

the sphere cancels out the integral over the opposite half. This means that we only need to be concerned with terms with even
exponents like γ2i . Furthermore,

∫
Sd
γ2i does not depend on i by the rotational symmetry of the region of integration and thus the

result must be proportional to the identity matrix. Finally, using [77, Theorem] we have∫
Sd

γ2i =
2Γ(3/2)Γ(1/2)d−1

Γ(d/2 + 1)
=

1

d
Sd−1. (A.7)
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A.2 Continuous sparsemax in 2D

Consider the case where D = 2. For φ(t) = [t, tt>], the distribution p = p̂Ω2
[fθ], with fθ(t) = θ>φ(t),

becomes a bivariate truncated paraboloid where µ and Σ are related to the canonical parameters as

before, θ = [Σ−1µ,− 1
2Σ−1]. We obtain expressions for the attention mechanism output ρ2(θ) = Ep[ψ(t)]

and its Jacobian Jρ2(θ) = covp,2(φ(t), ψ(t)) that include 1D integrals (simple to integrate numerically),

when ψ(t) are Gaussian RBFs, i.e., when each ψj is of the form ψj(t) = N (t;µj ,Σj).

Lemma 1. LetN (t, µ,Σ) be a D-dimensional multivariate Gaussian, Let A ∈ RD×R be a full column

rank matrix (with R ≤ D), and b ∈ RD. Then we have N (Au+ b;µ,Σ) = s̃N (u; µ̃, Σ̃) with:

Σ̃ = (A>Σ−1A)−1

µ̃ = Σ̃A>Σ−1(µ− b)

s̃ = (2π)
R−D

2
|Σ̃|1/2

|Σ|1/2
exp

(
−1

2
(µ− b)>P (µ− b)

)
, P = Σ−1 − Σ−1AΣ̃A>Σ−1.

If R = D, then A is invertible and the expressions above can be simplified to:

Σ̃ = A−1ΣA−>

µ̃ = A−1(µ− b)

s̃ = |A|−1.

Proof. The result can be derived by writing:

N (Au+ b;µ,Σ) = (2π)−R/2|Σ|−1/2 exp(− 1
2 (Au+ b− µ)>Σ−1(Au+ b− µ)), (A.11)

and splitting the exponential of the sum as a product of exponentials.

Forward pass. For the forward pass, we need to compute

Ep[ψj(t)] =

∫∫
R2

[
−λ− 1

2
(t− µ)>Σ−1(t− µ)

]
+

N (t;µj ,Σj)dt, (A.12)

with

N (t;µj ,Σj) =
1

2π |Σj |
1
2

exp

(
−1

2
(t− µj)>Σ−1

j (t− µj)
)
, (A.13)

and from (3.15):

λ = −

(
1

π
√

det(Σ)

) 1
2

. (A.14)

Using Lemma 1 and the change of variable formula (which makes the determinants cancel), we can

reparametrize u = (−2λ)−
1
2 Σ−

1
2 (t− µ) and write this as an integral over the unit circle:

Ep[ψj(t)] =

∫∫
‖u‖≤1

−λ(1− ‖u‖2)N (u; µ̃, Σ̃)du, (A.15)
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with µ̃ = (−2λ)−
1
2 Σ−

1
2 (µj − µ), Σ̃ = (−2λ)−1Σ−

1
2 ΣjΣ

− 1
2 . We now do a change to polar coordinates,

u = (r cos θ, r sin θ) = ar, where a = [cos θ, sin θ]> ∈ R2×1. The integral becomes:

Ep[ψj(t)] =

∫ 2π

0

∫ 1

0

−λ(1− r2)N (ar; µ̃, Σ̃)r dr dθ

=

∫ 2π

0

∫ 1

0

−λr(1− r2)s̃N (r; r0, σ
2) dr dθ, (A.16)

where in the second line we applied again Lemma 1, resulting in

σ2(θ) ≡ σ2 = (a>Σ̃−1a)−1

r0(θ) ≡ r0 = σ2a>Σ̃−1µ̃

s̃(θ) ≡ s̃ =
1√
2π

σ

|Σ̃|1/2
exp

(
−1

2
µ̃>Pµ̃

)
, P = Σ̃−1 − σ2Σ̃−1aa>Σ̃−1. (A.17)

Applying Fubini’s theorem, we fix θ and integrate with respect to r. We use the fact that, for any u, v ∈ R

such that u ≤ v: ∫ v

u

N (t; 0, 1) =
1

2

(
erf

(
v√
2

)
− erf

(
u√
2

))
, (A.18)

∫ v

u

tN (t; 0, 1) = −N (v; 0, 1) +N (u; 0, 1), (A.19)

∫ v

u

t2N (t; 0, 1) =
1

2

(
erf

(
v√
2

)
− erf

(
u√
2

))
− vN (v; 0, 1) + uN (u; 0, 1), (A.20)

and ∫ v

u

t3N (t; 0, 1) = −N (v; 0, 1)(2 + v2) +N (u; 0, 1)(2 + u2). (A.21)

We obtain a closed from expression for the inner integral:

F (θ) =

∫ 1

0

r(1− r2)N (r; r0, σ
2) dr

= (2σ3 + r2
0σ + r0σ)N

(
1− r0

σ
; 0, 1

)
− (2σ3 + r2

0σ − σ)N
(
−r0

σ
; 0, 1

)
−r

3
0 + (3σ2 − 1)r0

2

[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
. (A.22)

The desired integral can then be expressed in a single dimension as

Ep[ψj(t)] = −λ
∫ 2π

0

s̃(θ)F (θ), (A.23)

which may be integrated numerically.

Backward pass. For the backward pass we need to solve

covp,2(t, ψj(t)) =

∫∫
E

tN (t;µj ,Σj)−
1

|E|

(∫∫
E

t

)(∫∫
E

N (t;µj ,Σj)

)
(A.24)
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and

covp,2(tt>, ψj(t)) =

∫∫
E

tt>N (t;µj ,Σj)−
1

|E|

(∫∫
E

tt>
)(∫∫

E

N (t;µj ,Σj)

)
(A.25)

where E = supp(p) = {t ∈ R2 | 1
2 (t − µ)>Σ−1(t − µ) ≤ −λ} denotes the support of the density p, a

region bounded by an ellipse. Note that these expressions include integrals of vector-valued functions

and that (A.24) and (A.25) correspond to the first to second and the third to sixth row of the Jacobian,

respectively. The integrals that do not include Gaussians have closed form expressions and can be

computed as
1

|E|

(∫∫
E

t

)
= µ,

1

|E|

(∫∫
E

tt>
)

= µµ> +
Σ

|E|
, (A.26)

where |E| is the area of the region E given by

|E| = π√
det
(

1
−2λ Σ−1

) . (A.27)

All the other integrals are solved using the same affine transformation and change to polar coordinates

as in the forward pass. Given this, µ̃, Σ̃, a, σ2, r0 and s̃ are the same as before. To solve (A.24) we write

∫∫
E

tN (t;µj ,Σj) =

∫∫
‖u‖≤1

(
(−2λ)

1
2 Σ

1
2u+ µ

)
N (u; µ̃, Σ̃)du (A.28)

in polar coordinates, ∫ 2π

0

∫ 1

0

r
(

(−2λ)
1
2 Σ

1
2 ar + µ

)
s̃N (r; r0, σ

2)dr dθ, (A.29)

which can be then expressed in a single dimension as

∫∫
E

tN (t;µj ,Σj) =

∫ 2π

0

s̃(θ)G(θ)dθ, (A.30)

with

G(θ) =

∫ 1

0

r
(

(−2λ)
1
2 Σ

1
2 ar + µ

)
N (r; r0, σ

2) dr

=

∫ 1−r0
σ

− r0σ
(sσ + r0)

(
(−2λ)

1
2 Σ

1
2 a(sσ + r0) + µ

)
N (r; r0, σ

2) ds

=
(

(−2λ)
1
2 Σ

1
2 aσ(r0) + µσ

)
N
(
−r0

σ
; 0, 1

)
−
(

(−2λ)
1
2 Σ

1
2 aσ(1 + r0) + µσ

)
N
(

1− r0

σ
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+

1
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(
(−2λ)

1
2 Σ

1
2 a(σ2 + r2

0) + µr0

)[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
. (A.31)

We do the same for

∫∫
E

N (t;µj ,Σj) =

∫∫
‖u‖≤1

N (u; µ̃, Σ̃)du =

∫ 2π

0

∫ 1

0

rs̃N (r; r0, σ
2)dr dθ, (A.32)
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which can then be expressed in a single dimension as

∫∫
E

N (t;µj ,Σj) =

∫ 2π

0

s̃(θ)H(θ)dθ, (A.33)

with

H(θ) =

∫ 1

0

rN (r; r0, σ
2) dr =

∫ 1−r0
σ

− r0σ
(sσ + r0)N (r; r0, σ

2) ds

= σ

[
N
(
−r0

σ
; 0, 1

)
−N

(
1− r0

σ
; 0, 1

)]
+
r0

2

[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
. (A.34)

Finally, to solve (A.25) we simplify the integral

∫∫
E

tt>N (t;µj ,Σj) =

∫∫
‖u‖≤1

(
(−2λ)

1
2 Σ

1
2u+ µ

)(
(−2λ)

1
2 Σ

1
2u+ µ

)>
N (u; µ̃, Σ̃)du

=

∫ 2π

0

∫ 1

0

r(r2A+ rB + C)s̃N (r; r0, σ
2)dr dθ (A.35)

with

A = (−2λ)Σ
1
2 aa>(Σ

1
2 )> (A.36)

B = (−2λ)
1
2

(
Σ

1
2 aµ> + µa>(Σ

1
2 )>
)

(A.37)

C = µµ>. (A.38)

The integral can then be expressed in a single dimension as

∫∫
E

tt>N (t;µj ,Σj) =

∫ 2π

0

s̃(θ)M(θ)dθ, (A.39)

with

M(θ) =

∫ 1

0

(r3A+ r2B + rC)N (r; r0, σ
2)dr

=

∫ 1−r0
σ
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(s3Ã+ s2B̃ + s C̃ + D̃)N (s; 0, 1) ds

=

[(
2 +

(
−r0

σ

)2
)
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(
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)[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
(A.40)

where

Ã = σ3A, B̃ = σ2(3r0A+B), C̃ = σ(3r2
0 A+ 2r0B + C), D̃ = r3

0 A+ r2
0 B + r0 C. (A.41)
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Appendix B

Experimental details

B.1 Computing infrastructure

Our infrastructure consists of 4 machines with the specifications shown in Table B.1. The machines were

used interchangeably, and all experiments were executed in a single GPU. Despite having machines with

different specifications, we did not observe large differences in the execution time of our models across

different machines.

# GPU CPU

1. 4 × Titan Xp - 12GB 16 × AMD Ryzen 1950X @ 3.40GHz - 128GB
2. 4 × GTX 1080 Ti - 12GB 8 × Intel i7-9800X @ 3.80GHz - 128GB
3. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB
4. 3 × RTX 2080 Ti - 12GB 12 × AMD Ryzen 2920X @ 3.50GHz - 128GB

Table B.1: Computing infrastructure.
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