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Abstract. As a decarbonized viable option, railway transport is increasingly optimizing its operation and becoming 

an efficient service. There is the need to develop intelligent tools and methodologies that can support predictive 

maintenance. The bogie, as a leading system of the railway rolling stock, is responsible for a great fraction of its 

maintenance costs. In this paper, the reliability and availability of a cargo locomotive bogie is assessed using the 

reference behaviour of a freight locomotive bogie of a Spanish train operating company as a case study. As part 

of a RAMS analysis, this work starts by obtaining a reference use case of the bogie, a reliability block diagram 

(RBD) of the reliability-wise relationships of the bogie is established and simulation models of both reliability and 

availability of the bogie are modelled following a discrete event simulation approach. Emphasis is put on the 

variability of the stochastic parameters, which are modelled in alternative scenarios. The results confirm the models 

to be decisive solutions to predict the reliability and availability of cargo locomotive bogie systems and serve as 

valuable diagnosis and prognosis models in the decision-making of railway maintenance. 

Keywords: Railway maintenance; Asset management; Reliability; Availability; RAMS; Discrete event simulation 

(DES); Monte Carlo simulation. 

 

1. Introduction 

To meet decarbonization milestones in the near future 

and to mitigate the dependence of fossil fuels in the 

transportation industry, the railway transport has had 

significant investment in order to achieve a more 

competitive and efficient service. Subsequently, to 

fulfil these needs, the railway industry has put focus 

in the development of adequate maintenance plans, 

which not only improve the railway system reliability 

and operationality but also reduce its lifecycle costs. 

This is achieved with the assessment and 

development of component prediction methods based 

on predictive tools. Moreover, condition-based and 

predictive maintenance strategies play a fundamental 

role in a centralized European rail traffic system, 

where common advanced monitoring solutions of 

railway assets serve as performance metrics for the 

development of digital maintenance rules. It is, 

therefore, crucial that in order to meet such goals, 

appropriate condition-based and prediction tools are 

developed, existing a clear interest regarding their 

research.  

 Several works devoted to the numerical 

simulation of the reliability and availability of 

complex systems can be found in the literature. 

Particularly, works in which the aim is the use of 

Monte Carlo Simulation models together with a 

Discrete Event Simulation (DES) approach to assess 

the stochastic behaviour embedded in the reliability 

and maintainability analysis. No application 

comprises the railway bogie.  

 As a pioneer in the application of 

simulation models in reliability engineering, A. 

Chrisman proposes a DES model to study large-scale 

system reliability in his initial simulation studies [1], 

where a framework for assessing the reliability of 

complex electro-mechanical systems is additionally 

proposed by the author. A significant development 

of DES applications has been put in structural 

reliability analysis, where a review of applications is 

gathered by J. Faulin et. al [2] book. In fact, all 

applications follow the same methodology for 

performing a structural reliability and availability 

analysis through DES, which makes use of statistical 

distributions and techniques, such as survival 

analysis, to model component-level reliability. 

Emphasis is put on the differences between a 

standalone MCS versus a combinatorial of a DES 

with a MCS approach, where in addition to obtaining 

the structural lifetime generated by simulation, the 

DES also enables to acquire detailed understanding 

on the lifetime progression of the analysed structure. 

Moreover, Gascard et al. [3] suggest that in order to 

challenge the disadvantages of MCS, such as high 

computational efforts and times, a dynamic fault tree 

simulation performed with a DES approach is the 

best solution. With a DES approach, gate 

simulations that produce no change in the output of 

a gate are excluded enhancing the speed up of the 

simulation. More related to maintenance policies 

implementations, where the reliability and 

availability projections are crucial, A. Alrabghi and 

A.Tiwari [4] were the first to model complex 

maintenance systems using a DES algorithm, where 

condition-based, preventive, and corrective 

maintenance can be applied. Using A. Alrabghi and 

A.Tiwari work, O. Golbasi and M.O. Turan [5] 

develop a discrete-event simulation algorithm to 

evaluate and optimize maintenance policy decisions 

for production systems, with the addition of 

including opportunistic maintenance actions for 

different inspection intervals. Their DES algorithm 
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proposes a bi-optimization criterion that can be 

either of maximizing availability or minimizing total 

maintenance cost, allowing multiple different 

scenarios to be modelled.  

In the railway industry, some works comprise the use 

of DES to assess the reliability and availability of 

railway assets. Mielnik et. al [6] propose a dynamic 

DES to study the reliability of railway crossing 

signalling devices based on the track rail circuit. 

Rhayma et al. [7] analyse the behaviour of the 

railway track geometry by means of a numerical 

analysis which goes in accordance with a discrete 

event and MCS approach. Nevertheless, for railway 

rolling stock, reliability and availability evaluations 

following a DES algorithm has not been published, 

addressing the need for its study. Therefore, a 

combination of the DES algorithm with a MCS is 

implemented, where the aim is to assess maintenance 

policies and project the reliability and availability of 

railway rolling stock.  

 As the main driver of operating costs within 

the lifecycle of railway rolling stock, the railway 

bogie is designed to support the rail vehicle body and 

to distribute its weight through the locomotive. As a 

result of its functional purpose, its system tends to be 

more susceptible to wear, leading to higher lifecycle 

costs and active maintenance. This work addresses 

the reliability and availability of a freight locomotive 

bogie. The goal of this paper is to develop a 

framework to assess the reliability and availability of 

a bogie system and therefore serve as a diagnosis and 

prognosis model in the decision-making of railway 

maintenance. 

2. RAMS Analysis 

The RAMS (reliability, availability, maintainability, 

and safety) analysis process is an engineering 

technique, that comprises analytical methods and 

integrative concepts for a system to meet its 

functional requirements. The analysis outlines the 

long-term operation of a system, which is 

characterized as an indicator of the systems global 

function, the systems basic function, the systems 

hierarchical dependency and, most importantly, the 

interdependencies of the systems functionalities [8]. 

This is achieved through the definition, assessment 

and control of all hazards that influence the systems 

behaviour with the main goal of increasing 

productivity, reducing costs, and mitigating failure 

risks and undesirable events. 

2.1 Reliability 

Reliability (R) is typically evaluated as the 

probability that an item performs its function for a 

required period, under specified environmental and 

operational conditions. From a mathematical point 

of view, reliability 𝑅(𝑡) is defined as the probability 

that an item successful operates in the time interval 

(0, 𝑡), and is still operating at time 𝑡. Failure 𝐹(𝑡) is, 

contrarily, defined as the probability that an item 

fails within time interval [0, 𝑡]. Both failure and 

reliability functions can be defined as follows, 

respectively [8,9]: 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

 , 𝑡 > 0 (2.1) 

𝑅(𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡) = 1 − 𝐹(𝑡) (2.2) 

where 𝑇 is a continuously distributed random 

variable, which represents the time to failure of an 

item, and 𝑓(𝑡) its probability density function 

(PDF). The failure function 𝐹(𝑡) is also referred to 

as the cumulative distribution function (CDF) of the 

continuous random variable 𝑇, while the reliability 

function is also referred to as the survivor function. 

Analytically, the PDF 𝑓(𝑡) is defined as follows: 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
= lim

∆𝑡→0

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)

∆𝑡
 (2.3) 

Alternatively, the PDF can be defined with the use 

of the reliability function 𝑅(𝑡), where 𝑓(𝑡) =

−
𝑑𝑅(𝑡)

𝑑𝑡
.  

The mean time to failure (𝑀𝑇𝑇𝐹) is defined as an 

indicator that measures the average amount of time a 

non-repairable item performs its function before it 

fails. If one considers a continuously random 

variable 𝑇, it is possible to analytically define the 

𝑀𝑇𝑇𝐹 with the estimated value of a distribution 

function, which is given as: 

𝑀𝑇𝑇𝐹 = 𝐸(𝑇) = ∫ 𝑡 ∙ 𝑓(𝑡)𝑑𝑡
∞

0

 (2.4) 

Any practical related estimation of the 𝑀𝑇𝑇𝐹 or any 

stochastic failure prognosis based on the 𝑀𝑇𝑇𝐹, 

requires that the system or component is working 

within its useful life period, where failure rates are 

assumed to be quasi-static (constant). Assuming this, 

equation (2.4) can be simplified to: 

𝑀𝑇𝑇𝐹 =
1

𝜆
 (2.5) 

where 𝜆 is the constant failure rate of the system or 

component.  

2.2 Availability 

Availability (A) is commonly defined as the 

probability that a system or a component is executing 

its required function at a given time when operating 

in normal conditions and maintained in accordance 

with its standards. It can be interpreted as the 

percentage of time a system or component is 

operational over some interval, having in mind its 

unsuccessful operation. Consequently, the 

availability is defined as follows [10]: 

𝐴 =
𝑢𝑝𝑡𝑖𝑚𝑒

𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 + 𝑢𝑝𝑡𝑖𝑚𝑒
 (2.6) 

where 𝑢𝑝𝑡𝑖𝑚𝑒 is the period of time the system or 

component has been operational, i.e. available, and 

𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 is the value of time the system or 

component is not operational, i.e. not available.  

When taking into consideration that an unsuccessful 

operation is a consequence of failure, where the 

system requires maintenance to repair its 

functionality, the availability is given by: 
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𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 (2.7) 

Where 𝑀𝑇𝑇𝐹 is the mean time to failure of a system 

or component and 𝑀𝑇𝑇𝑅 the mean time to repair of 

a maintenance task. As one can verify, the 

availability is dependent on both reliability and 

maintainability analysis. In order to predict 

availability, both failure and repair, deterministic or 

stochastic behaviours must be considered.  

2.3 Maintainability and Safety 

Maintainability (M) is the probability that a 

maintenance activity performed to an item under 

given environmental and operational conditions can 

be achieved within an established period of time. 

Therefore, it is referred to as an item’s ability to 

undergo maintenance to restore its functionality. 

There are several measures to quantify 

maintainability, nonetheless, the most widely used 

term is the mean time to repair (𝑀𝑇𝑇𝑅).   

 Safety (S) is defined as a parameter which 

indicates the level of risk associated with a system or 

component. It is related to all the previous concepts 

(reliability, availability and maintainability) since a 

combination of these ensures high levels of safety. 

Therefore, it is a result of a RAM guideline, which 

guarantees the freedom of unacceptable harm with 

regard to operation, maintenance, people, 

environment and equipment.  

2.4 RAMS in the Railway Industry 

Reliability, availability, maintainability, safety and 

cost-optimisations are critical topics in the present 

global railway industry, since the complexity of the 

railway systems is continuously increasing. 

Therefore, in order to meet the requirements of 

having a railway system, able to reach high levels of 

safety, availability and cost effectiveness, railway 

organisations have introduced engineering 

guidelines to perform railway system analysis and 

railway development projects more successfully.  

 The goal of a railway system is to achieve a 

defined level of traffic in a given time under safe 

conditions. Consequently, the RAMS standards and 

guidelines help to achieve this goal by providing 

guidance and confidence that a particular railway 

system is going to achieve its goals, safely. 

Moreover, it describes benchmarks on how to 

establish targets to assure reliability, availability, 

maintainability and safety of railway systems, 

influencing the systems functionality, regularity of 

service and the frequency of service, thus increasing 

the quality of service delivered to the customer. This 

is accomplished with the use of the British and 

European standard BS EN 50126 “Railway 

Applications: The Specification and Demonstration 

of Reliability, Availability, Maintainability and 

Safety (RAMS)” [11], which provides a common 

process throughout the European Union (EU) for the 

specification and demonstration of the RAMS 

requirements. To guarantee a reliable, safe, cost-

effective, and enhanced quality of railway systems, 

the standard recommends a system life cycle, 

composed by sequences of tasks and feedback loops 

that go from initial concepts in design through to 

decommissioning and conclusion [12], which are 

extremely relevant in design phases of railway 

systems. In railway RAMS, safety and availability 

are strong correlated since a mismanagement of one 

can result in a sub-optimal performance of the 

system. Both are highly dependent on the reliability 

and maintainability of the system, which are 

influenced by three main influence factors, namely: 

the system conditions, the operating conditions, and 

the maintenance conditions. From a mathematical 

point of view, the analytical concepts, definitions 

and terminologies related to a railway RAMS 

analysis defined in the BS EN 50126 [11] standard 

go according to IEC 61703:2016 [12] international 

standard.  

3. Discrete event simulation (DES) 

Modelling the reliability and availability of complex 

systems can be often hard and unrealistic with 

analytical methods, which represent the system by a 

mathematical model, evaluating it with 

mathematical solutions. Therefore, the model used in 

such analysis is often simplified, where the output is 

limited to expected values. When considering simple 

systems, where only the failure characteristics are 

considered, analytical approaches are typically used 

[13]. Nevertheless, when considering modern 

engineering systems with complex environments, 

repairable systems and multiple events, analytical 

models are impossible to solve analytically, bringing 

the need for simulation models, which can 

incorporate any system characteristic that is 

recognized as crucial in the system’s behaviour. 

3.1 General principles of DES modelling 

Within the discrete systems, there are models that 

can be further distinguished from traditional 

dynamic system models. These are defined by how 

the models treat the passage of time, on this case 

time-driven or event-based, and how they treat 

interdependencies of component elements, on this 

case synchronous or asynchronous [14]. In both 

approaches, a clock recording the simulation time is 

used. While in time-driven systems, the state 

changes of the system are synchronized by the 

system clock, in event-based systems the event 

occurs asynchronously, meaning that several events 

can occur simultaneously. The advantage of using an 

event-based approach, is that periods of inactivity 

are excluded, resulting in a simulation time 

improvement. Moreover, time-driven approaches 

need to use smaller simulation time steps to obtain 

more accurate results [3]. A typical DES algorithm 

starts by defining the number of simulations 𝑁 and 

simulation time 𝑇. The number of simulations 𝑁 

desired should be associated with the confidence 

interval the user aims, in order to have a more 
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rigorous analysis of the behaviour of the system (to 

see convergence or not). The simulation starts by 

allocating each information of the system in its 

desired workflow and generates stochastic events, 

which go according to the input data that entered the 

system. The generated events create state changes to 

the system, which increment the simulation clock 

with a time step ∆𝑡. A DES algorithm conducts the 

progress of the stochastic model in each simulation 

of a Monte Carlo Simulation. In each simulation, a 

random failure or repair time for each component is 

generated, where a system component is 

characterized by a probability density function of 

failure and/or repair. These failures or repairs are 

then linked in accordance with the relationship and 

hierarchy between functions and components of the 

system, which is defined by the RBD. Therefore, this 

simulation approach samples for each component the 

next state change event (failure and/or repair) with 

the use of random numbers and the inverse of the 

cumulative density function (CDF). Each simulation 

reproduces the evolution of the system until the 

simulation time 𝑇 is over. After the simulation time 

has reached its limit, the operational behaviour data 

of the system is stored to quantify the aspects of 

interest and the simulation is finished.  

 The stochastic failure and/or repair 

behaviour of components is typically represented by 

different probability distribution functions which are 

characterized by parameters. The most typical 

distributions to describe the reliability and 

availability of complex systems are the Exponential 

distribution, the Normal distribution, the Weibull 

distribution and the Lognormal distribution. For 

each distribution, the DES algorithm generates a 

random Time of failure (𝑇𝑜𝐹), which goes in 

accordance with each distribution function. 

 

3.2 Uncertain Maintenance Durations 

To model the uncertainty in the repair durations, the 

PERT distribution is considered, which is based on 

[15] implementation of uncertain maintenance 

durations. Motivated by the Project Evaluation 

Research Technique (PERT), the PERT distribution 

is a continuous distribution function, which is a 

transformation of the four-parameter Beta 

distribution with an expected value 𝜇 assumed as 

[16] 

𝜇 =
𝑎 + 4𝑏 + 𝑐

6
 (3.1) 

Where 𝑎 is the minimum value, 𝑏 is the most likely 

value (mode) and 𝑐 is the maximum value. The three 

parameters are referred to as the PERT parameters 

and serve as input to the function. To generate a 

random time to repair (𝑇𝑜𝐹), it is essential to derive 

the quantile of the CDF of a PERT distribution. The 

CDF of a PERT distribution is based on the 

regularized incomplete Beta function 𝐵(𝑥|𝑎, 𝑏) and 

the complete Beta function 𝐵(𝑎, 𝑏) which are 

defined as: 

𝐵(𝑥|𝛼, 𝛽) = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡
𝑥

0

 (3.2) 

𝐵(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
 (3.3) 

𝐹𝑧(𝛼, 𝛽) = Ι𝑧 (𝛼, 𝛽) =
𝐵(𝑧|𝛼, 𝛽)

𝐵(𝛼, 𝛽)
 (3.4) 

Where 𝐵(∙) is the Beta function and Γ the gamma 

function. In order to obtain the CDF, some 

transformations have to be obtained, namely: 

𝛼 = 1 + 4
𝑏 − 𝑎

𝑐 − 𝑎
 (3.5) 

𝛽 = 1 + 4
𝑐 − 𝑏

𝑐 − 𝑎
 (3.6) 

𝑧 =
(𝑥 − 𝑎)

(𝑐 − 𝑎)
 (3.7) 

The quantile (𝑇𝑇𝑅) of the PERT distribution is 

obtained with 𝑇𝑇𝑅 = 𝑥 = 𝑧(𝑐 − 𝑎) + 𝑎, where 𝑧 =
𝐹−1(𝑝|𝛼, 𝛽) and with 𝑝 = 𝑈𝑖[0,1] randomly 

generated. 

3.3 Correlated Failure Modes - Multivariate 

Normal Random Numbers 

When modelling complex systems, with strong 

interdependencies, the failure of some components 

can either bring an abrupt wear-out to other 

components or bring no effect to function-related 

components. Therefore, to better model a system, 

one can consider correlation of the 

interdependencies of each subsystem, component, or 

the associated failure modes. This can be modelled 

with the use of a multivariate Gaussian process 

(MGP) model, which applies multivariate normal 

random numbers to generate correlated failures [17].  

 The multivariate normal distribution is an 

extension of the univariate normal distribution (or 

Gaussian) by assuming two or more variables. It is 

based on two parameters, the mean vector 𝜇 and the 

covariance matrix ∑, which are related to the mean 

and the variance of the univariate normal 

distribution. The covariance matrix ∑ measures the 

dependency of each specific proportion and is 

defined as [18]: 

∑ = E[(X − 𝜇)(𝑋 − 𝜇)𝑇]

= (

𝜎1,1

𝜎2,1

…
𝜎𝑑,1

𝜎1,2

𝜎2,2

…
𝜎𝑑,2

…
…
…
…

𝜎1,𝑑

𝜎2,𝑑

…
𝜎𝑑,𝑑

)  
(3.8) 

Where 𝑑 is the dimension of the proportions being 

analysed. The covariance 𝜎𝑖,𝑗 of proportions 𝑖 and 𝑗 

is defined as: 

𝜎𝑖,𝑗 = E[(𝑥𝑖 − 𝜇𝑖⃗⃗⃗⃗ )(𝑥𝑗 − 𝜇𝑗⃗⃗ ⃗⃗ )
𝑇

] (3.9) 

Considering that 𝜎𝑖,𝑗 = 𝜎𝑗,𝑖 , 𝜎𝑖,𝑗 ≥ 0 for ∀𝑖, 𝑗 and 

that 𝜎𝑖,𝑗 = 𝜎2 for 𝑖 = 𝑗 the covariance matrix ∑ is 

positive semi-definitive. The generation of 

multivariate normal random numbers is defined in 

[19]. After generating normally distributed random 

numbers 𝑋, the multivariate normal probabilities are 
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obtained by applying 𝑋 to the Standard Normal 

Distribution CDF Φ𝑍(𝑧). Then, the normal 

correlated random probability is introduced to a 

quantile of interest. For each correlation scenario, a 

mean vector 𝜇 and a covariance matrix ∑ is needed. 

 

4. Case Study - FGC Freight Locomotive 

The scope of this work is the study of the reliability 

and availability of a cargo locomotive bogie of a 

Spanish train operating company. The freight 

locomotive involved in the case study, the 254-class 

locomotive, is used for the transportation of cars and 

potash and is shown in Figure 4.1. In total, FGC 

operates 3 units of the Series 254 Class locomotives. 

Each of these is equipped with a supercharged two-

stroke diesel engine, which provides the power that 

generates the direct current needed in the traction 

system. The traction engine, which supplies motion 

to the wheelsets, is assembled in the bogie structure. 

The global locomotive structure is made up by the 

locomotive box and the running gear, which in the 

case of interest is the bogie vehicle. There are 2 

bogies per locomotive, 3 wheelsets per bogie and 1 

electric traction engine per wheelset. Each traction 

engine is directly employed to an axle.  

 

       Figure 8.1 – FGC Series 254 Class Locomotive 

5. Simulation Model of FGC 

5.1 Reliability Block Diagram (RBD) 

The RBD for the present case study was built with 

the guidance of Figure 5.1 configuration of the 

bogie. For the analysis, the failure data and part of 

the repair data were obtained from previous studies 

[20,21], while the additional repair data was 

obtained from previous maintenance experiences 

using expert judgment techniques. The reliability-

wise relationships, which link each block, were also 

based in the FTA analysis performed in [20]. 

Moreover, the number of elements were not only 

based on FGC’s technical drawings (in fact, some 

technical drawing of the bogie were provided to the 

case study, nevertheless, the scarce information 

embedded in these drawings was impractical to 

process), but also on KTH Railway Book [22], a 

reference handbook of railway systems and vehicles 

composition and configuration. Note that bogie is 

considered to be in series, which indicates that an 

item’s or associated FM failure, will bring the 

system down i.e. the system will fail, which will 

consequently lead to the systems repair. 

 

Figure 5.1 – RBD configuration of the 254 Class 

Locomotive Bogie 

5.2 DES model 

In a RAMS analysis, tasks are modelled as discrete 

and the simulation is run with chronologically 

ordered steps. Consequently, simulations assess the 

importance of the time-dependent tasks, such as the 

failure or the repair of some component, over the 

operation of the system. By characterizing each task 

with its failure and/or repair time distribution 

function, the overall sequence of events is obtained, 

and the reliability and availability of the total system 

is gathered. From a practical perspective, a DES 

model starts by considering the total system 

operational until a failure of a component occurs. 

The event of failure switches the total system 

functionality to a down-state, until the repair event 

of the components failure is achieved, where the total 

system functionality reverts its state to an up-state. 

This sequence of events is chronologically ordered 

until a certain simulation time. All the performance 

measures, such as the downtime of the system or the 

time the system failed, are collected to produce the 

reliability and availability of the system. The 

implementation was done using an already under 

development program created by [23] and modelled 

in the commercial software package Simulink of 

MATLAB. Two distinctive models were created, a 

reliability model and an availability model, where in 

each model several scenarios were considered. Both 

are based on DES, where some activity blocks are 

identical.  

5.2.1 Reliability and Availability model 

Considering that the reliability is defined as the 

probability that the system has not failed by time 𝑡, 

the reliability DES model is built with the ambition 

of producing failure events that contribute to the 

definition of the bogie system reliability. Therefore, 

a single simulation objective is to compute the first 

1.1 Axle
FM – Axle Crack
Lognormal

1.2 Wheels
FM – (…)
Normal

2.1 Bearings
-
Weibull

Wheelset Subsystem

2.2.1 Axlebox
FM – Abs. of cov. Box
Exponential

Axlebox Subsystem

2.2.2 Axlebox
FM – Hous. n. wt.
Exponential

3.1 Frame
-
Weibull

Bogie Frame Subsystem

4.1.1 Brake
FM – p. of bra. Rig. h. 
Exponential

Brake Subsystem

4.1.2 Brake
FM – Bra. Iso. cock
Exponential

4.1.3 Brake
FM – Cast Iron Br. Bl.
Exponential

4.1.4 Brake
FM – Compos. Br. Bl.
Exponential

4.2.1 P. Brak. system
FM – F. Air Valve dam.
Exponential

4.2.2 P. Brak. system
FM – Br. Cyl. dam. 
Exponential

4.2.3 P. Brak. system
FM – Air distr. dam. 
Exponential

4.2.4 P. Brak. system
FM – Slack adj. dam. 
Exponential

4.3 M./Aux. Comp. 
-
Weibull

4.4 M./A. C. D. M. 
-
Weibull

4.5 S. M. in B. Syst. 
-
Weibull

4.6 Other El. P. B. Sys.
-
Weibull

4.7 Other El. B. Sys.
-
Weibull

5.1 Helical Spring
FM – Spring Buckle Fr.
Exponential

5.1 Helical Spring
FM – Helic. Spring br.
Exponential

5.2 Other susp. El.
-
Exponential

Suspension Subsystem

6.1 Power Trans. Sys.
–
Weibull

6.2 Shaft Coupling 
–
Weibull

6.3 Traction Motor
–
Weibull

Electric Traction Engine Subsystem
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system’s failure, which with an adequate number of 

simulations 𝑁, will lead to a histogram and, 

consequently, to a reliability curve. If no failure is 

observed in the system, then the simulation time is 

used as a right censored object/data. For the 

availability, considering that in a given simulation, 

the availability is defined as the mean availability 

due to all downing events, i.e. the system is not 

operating, the availability DES model is constructed 

with the objective of defining all downtime events 

which contribute to the definition of the availability 

of the bogie system. Consequently, a single 

simulation objective is to compute all system’s 

failures and its associated repairs, in order to gather 

the total downtime considering the simulation time 

𝑇. Figure 5.2 presents the flowchart algorithm of the 

reliability (a) and availability (b) DES model for 

𝑁 simulations. Note that 𝑇𝐶𝑇𝑖  is the total cumulative 

time that component 𝑖 is operating, 𝐶𝑙𝑜𝑐𝑘𝑖  each 

component individual clock, 𝐺𝐹𝑆 the Global final 

signal and 𝑆𝑖 each component signal. 

 To model the operational behaviour of the 

cargo locomotive bogie of FGC, there was the need 

to consider several assumptions. The assumptions 

for each block and for the simulation model go 

according to [23] and are the following: 

- Each component starts the simulation in a 

state “As Good as New” (AGAN); 

- Each component has its own activity-block 

that produces a Boolean signal (𝑆𝑖): 

o 1 = the component is up and operating; 

o 0 = the component is down; 

- Each component has its own unique 

reliability and maintainability characteristics: 

o 𝑀𝑇𝐵𝐹𝑖  and Failure rate 𝜆𝑖; 

o 𝑀𝑇𝑇𝑅𝑖; 

- Each component has its own uniform 𝑇𝑜𝐹 

generator, which is based on the failure 

distribution function associated with each 

individual component; 

- Failures correspond to state changes and 

occur instantaneously; 

- Each component is connected to two clocks: 

an individual clock and the system’s clock 

(interdependency of each component with the 

system): 

o A failure of a component of the system, 

which brings the system down, 

generates a delay in the operational 

clock of other components clock 

(internal clock); 

- Each component behaves with an operation – 

failure – maintenance and delay cycle; 

- Each component has its own Time to Repair 

generator, which is a constant in some 

scenarios or a randomly generated number, 

based on a distribution function, in others; 

- Whenever a failure occurs, maintenance 

starts immediately, and its duration is 𝑇𝑇𝑅𝑖; 

- The model assumes idealized repairs, which 

restore a component to as good as new 

condition; 

- Failures of other components, delay the internal 

clocks of other non-failing components by the 

same amount of time the system is not 

operational; 

- The simulation ends at a predetermined time 𝑇. 

 

Figure 5.2 – Flowchart describing the algorithm of the 

reliability (a) and availability (b) DES model  

Following the configuration and assumptions of the 

model and to test the robustness of the results of the 

model in the presence of uncertainty, five scenarios 

were created to study the reliability of the bogie 

system and each subsystem, while for the 

availability, ten scenarios were modelled . Table 5.1 

summarizes each individual scenario, where 

a)

=

=

b)
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emphasis is put on the generation of the 𝑇𝑜𝐹 and the 

uncertain maintenance durations.  

Table 5.1 – Summary of the different scenarios 

considered for the reliability and availability DES model 

of the cargo locomotive bogie 

Reliability 

Scenarios Description 

Scenario 1 - each individual block has an independent 𝑈𝑅𝑁𝐺 

Scenario 2 
- all blocks (122) failures are correlated with a correlation 

factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 3 
- all blocks (122) failures are correlated with a correlation 

factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

Scenario 4 
- within each subsystem (6), all failures are correlated 

with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 5 
- within each subsystem (6), all failures are correlated 

with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

Availability 
Scenarios Description 

Scenario 1 
- each individual block has an independent 𝑈𝑅𝑁𝐺 and the 

repair duration is deterministic 

Scenario 2 
- each individual block has an independent 𝑈𝑅𝑁𝐺 and the 

repair duration follows a PERT Dist. 

Scenario 3 
- Sc.1 where all blocks (122) failures are correlated with a 

correlation factor 𝜌𝑖,𝑗of 𝟎. 𝟐 

Scenario 4 
- Sc.1 where all blocks (122) failures are correlated with a 

correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟓 

Scenario 5 
- Sc.1 within each subsystem (6), all failures are correlated 

with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟐 

Scenario 6 
- Sc.1 within each subsystem (6), all failures are correlated 

with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟓 

Scenario 7 
- Sc.2 where all blocks (122) failures are correlated with a 

correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 8 
- Sc.2 where all blocks (122) failures are correlated with a 

correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

Scenario 9 
- Sc.2 within each subsystem (6), all failures are correlated 

with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟐 

Scenario 10 
- Sc.2 within each subsystem (6), all failures are correlated 

with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟓 

For the scenarios where correlation of failure is 

modelled, the standard normal distribution is 

considered and the correlation factor 𝜌𝑖,𝑗 = 𝜎𝑖,𝑗.  For 

the scenarios which consider uncertain maintenance 

durations, the repair durations are considered 

random variables, where the stochastic process is 

represented by a PERT distribution. The PERT 

parameters are the following: 

𝑎 = 0.8 × 𝑀𝑇𝑇𝑅𝑖 𝑏 = 𝑀𝑇𝑇𝑅𝑖 𝑐 = [1.5: 2] × 𝑀𝑇𝑇𝑅𝑖 

Where 𝑎 is the minimum value the repair duration 

can take, 𝑏 is the most likely value (mode) and 𝑐 is 

the maximum value. For the maximum value 𝑐, a 

pseudorandom number between [1.5: 2] is generated 

in order to admit different repair durations. 
 

6. Simulation Results 

6.1 Reliability Simulation Results 

Considering the reliability DES model algorithm, in 

each scenario a histogram of each subsystem and 

system failure is obtained, where a survival analysis 

is posteriorly performed to get each reliability curve. 

For scenario 1, Figure 6.1 shows the total system 

histogram (a), and each single subsystem histogram 

(b) which provokes the bogie to fail. As a matter of 

fact, in the initial time steps, the system which causes 

the bogie to fail most times is the wheelset system 

(above 10 failures). Nonetheless, in the long run, the 

braking system is clearly what persistently fails the 

most, followed by the axlebox system, the 

suspension system, electric traction engine system, 

wheelset system and, finally, the bogie frame 

system. Note that what defines the time range (x-

axis) is the total system failures, which for the 

following scenario is lower than 700ℎ for all failures 

of the bogie (from all 𝑁 = 1100 simulations). 

Consequently, some system failures, like the failures 

from the bogie frame are not included in the total 

system since its failure occurs very rarely. To verify 

the reliability DES model, an analytical reliability 

model was developed. When comparing exact values 

from scenario 1 results with the analytical, for a 

reliability of 𝑅𝑠 = 0.8 and 𝑅𝑠 = 0.5, the system 

needs to operate 𝑇𝑠 ≅ 26 and 𝑇𝑠 ≅ 82ℎ, 

respectively, as in the analytical model, verifying the 

DES implementation. 

 

Figure 6.1 – Scenario 1 a) bogie total system histogram 

and b) each subsystems histogram 

A summary of all scenarios is graphically exposed in 

Figure 6.2 where all the bogie total system reliability 

scenarios are represented.  

 

Figure 6.2 – Summary of the total bogie system reliability 

for scenarios S1 to S5 

a)

b)
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As expected, the bogie’s reliability is higher in 

scenarios 2 to 5 than in the initial scenario 1 since a 

positive correlation of the failures is modelled in 

these scenarios. In addition, if one compares 

scenario 2 and scenario 3 with the bogie’s reliability 

of scenario 4 and scenario 5, respectively, one can 

identify that by modelling a correlation of all failures 

within a system versus modelling the correlation of 

failures only in subsystems, results in higher 

reliabilities, with a histogram of failures more 

dispersed and with lower failures in each time bin. 

Moreover, the higher the correlation factor 𝜌𝑖,𝑗 

between failures, the higher the bogie’s reliability 

(S2 vs. S3 and S4 vs. S5). 

6.2 Availability Simulation Results 

For scenario 1, Figure 6.3 shows the mean 

availability results for each simulation (a), the mean 

availability in function of the simulation time for one 

simulation, where the mean availability in one 

simulation is identical to the average availability 

obtained from all simulations (in this particular case 

𝑛 = 22)  (b) and the mean availability results for all 

simulations of all subsystems represented in a 

Boxplot (c). The Boxplot is a measure of how 

distributed a data is from a data set. The Boxplot 

function represents (from bottom to top) the 

minimum, the first quartile, the median (2nd quartile), 

the third quartile and the maximum in the data set. 

 

 

 

Figure 6.3 – Scenario 1 (a) mean availability results of 

the bogie system for each simulation, (b) mean 

availability in function of time for one simulation (𝑛 =
22) and (c) the mean availability results for all 

simulations of all subsystems  

For scenario 1, the average availability of all 

simulations is 𝐴𝑆,1 = 90.53%. Based on the bogie 

configuration, an analytical model was developed to 

verify the availability DES implementation. If 

compared with the analytical availability (𝐴𝑆,𝐴 =

89.77%), all availabilities, i.e. the bogie system and 

its subsystems, are higher, since in the analytical 

availability calculations, the failures of other 

components do not “delay” other components 

failures, resulting in lower availability projections. 

In addition, the most impactful systems as the 

braking system or the axlebox system, although they 

have a higher variability of mean availabilities for all 

the simulations, their lowest mean availability is 

higher than the analytical projections, resulting in a 

higher total system availability. 

 A summary of the bogie’s system mean 

availability results for each scenario is presented in 

Figure 6.4. 

 

Figure 6.4 – Summary of the bogie’s mean availability 

for each scenario 

Observe that an additional scenario (𝑆1_𝑚𝑜𝑑𝑒𝑙2) 

was created, in order to model the acquisition of a 

new turning machine by FGC maintenance. The new 
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turning machine reduces all wheelset repair 

durations to 𝑀𝑇𝑇𝑅𝑖 = 0.5ℎ, resulting in a model 

equal to 𝑆1 but with the slight difference of having a 

new 𝑀𝑇𝑇𝑅𝑖  for the wheelset (6 blocks). From Figure 

6.4, it is possible to retrieve that the main difference 

between all scenarios is the variability of its results. 

Starting with 𝑆1 and 𝑆1_𝑚𝑜𝑑𝑒𝑙2 (𝐴𝑆,1𝑚𝑜𝑑𝑒𝑙2
=

90.93%), it is clear that the new turning machine 

improves the availability projections (in this case by 

0.44%), provoking less impact from the wheelset 

system to the total system availability. A major 

difference can be verified in 𝑆2 from the remaining 

scenarios (since 𝑆2 mean availability results differ 

very much from the remaining scenarios, an 

additional validation of 𝑆2 model is performed and 

is demonstrated in Appendix B3). What causes such 

low availability projections is the fact that the PERT 

distribution is considered to be a penalizing 

representation by assuming higher values of a 

random variable (in this case for the 𝑇𝑇𝑅𝑖), since its 

distribution function has a heavy tail, meaning the 

higher values are more widely distributed from the 

mode value than the minimum values. Indeed, the 

PERT parameters used for 𝑆2 penalize extremely the 

repair durations since the PERT parameter 𝑐 is 

considered to be more far apart from 𝑏 than 𝑎. By 

comparing the remaining scenarios (𝑆3 − 𝑆10) with 

the initial scenario 𝑆1, one can confirm that 

assuming a correlation of failures does not have such 

an impact on the availability projections as one could 

expect. Especially, if one compares the scenarios 

availability projections with the results obtained 

from the reliability simulations projections. 

Nevertheless, the main difference to be identified in 

scenarios 𝑆3 to 𝑆10 is the variability of the results. 

First, the scenarios with correlation of failures in the 

component level (i.e. all blocks have correlated 

failures, 𝑆3 − 𝑆4 and 𝑆7 − 𝑆8) have a higher 

variability than the scenarios with correlation of 

failures in the subsystem level (i.e. only correlated 

failures within a subsystem, 𝑆5 − 𝑆6 and 𝑆9 − 𝑆10). 

Second, the scenarios with a low failure correlation, 

i.e. the correlation factor between failures is 𝜌𝑖,𝑗 = 0.2 

(𝑆3, 𝑆5, 𝑆7, 𝑆9), have a higher median availability 

than the scenarios with a higher correlation between 

failures, i.e. the correlation factor between failures is 

𝜌𝑖,𝑗 = 0.5 (𝑆4, 𝑆6, 𝑆8, 𝑆10). Nevertheless, the greater 

the correlation of failures, the greater the variability 

of the availability is. Third, the scenarios which 

consider deterministic repair durations (𝑆3 − 𝑆6) 

have, as expected, higher availability projections and 

at the same time a lower variability of results than 

the scenarios which consider a stochastic repair 

duration (𝑆7 − 𝑆10), respectively, due to having a 

stochastic behaviour in more than one variable (𝑇𝑜𝐹𝑖  

and 𝑇𝑇𝑅𝑖) and due to the penalizing factor of the 

PERT distribution. Nonetheless, the scenarios with 

correlated failures and stochastic repair durations are 

not so penalized in terms of availability projections 

by the PERT distribution as 𝑆2.  

 

6.3 Discussion 

In this work a reliability and availability DES model 

is built and implemented. With the aim of 

representing the real-case scenario of FGC, several 

scenarios are implemented and analysed. With the 

results obtained from the reliability and availability 

DES model, as well as with the development of the 

actual models and scenarios, a robust prognosis 

model is developed that can support decision-

making in railway maintenance. For both models, 

the introduction of the variability of one or more 

parameters increases the reality of the operation in 

the model, therefore, allowing a greater flexibility in 

the estimation of possible scenarios that can 

represent a wider range of different circumstances in 

operation. As a result, these scenarios allow to 

identify the reliability and availability variations to 

that same variation of parameters. Special emphasis 

should be put on the availability results, since the 

variability of the results recognize where focus can 

be put on the uncertainty embedded in correlation of 

possible failures and/or in maintenance durations.  

Finally, to mitigate risks of access to maintenance 

data, where detailed specifications can be scarce, the 

inclusion of several scenarios to project the 

reliability and availability of a bogie system is 

essential in order to model the sources of uncertainty 

which influence the most every estimate of the 

reliability and availability of a bogie system.  

 

7. Conclusion 

This paper presents a reliability and availability 

assessment framework of a freight locomotive bogie, 

which follows a RAMS approach, with the objective 

of contributing to the maintenance decision-making in 

the railway industry as a diagnosis and prognosis 

model.  

 After identifying the critical components 

and functional breakdown of the bogie, a Reliability 

Block diagram (RBD) of the bogie is obtained to 

identify the reliability-wise relationships of the bogie 

system. Based on the RBD, analytical and simulation 

models of both reliability and availability of the 

bogie of interest are modelled where emphasis is put 

on the variability of the stochastic parameters, which 

are modelled in alternative scenarios. The modelling 

approaches for each simulation model follow a 

Discrete Event Simulation (DES) approach. The 

verification of the simulation model is obtained by 

comparing the analytical results with the simulations 

results. The reliability simulation results show that a 

correlation of all failures in a component level 

compared to the correlation of failures in a sub-

system level, as well as a higher correlation factor 

𝜌𝑖,𝑗 between failures, brings greater reliability 

projections. Most notably, and in opposition to the 

clear results obtained in the reliability model, the 

availability results show that the correlation of 
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failure modes do not have significant impacts on the 

mean availability of the bogie system itself, but on 

its variability. Additionally, the results of the 

simulations show the penalizing impact of the PERT 

distribution, embedded in the repair durations, in the 

availability projections. The proposed simulation 

models confirm to be a useful solution to predict the 

reliability and the availability of a cargo locomotive 

bogie system. The simulation models might be 

extrapolated for more complex systems. 
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