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Abstract 

As a decarbonized viable option, railway transport is increasingly optimizing its operation and becoming 

an efficient service. There is the need to develop intelligent tools and methodologies that can support 

predictive maintenance. The bogie, as a leading system of the railway rolling stock, is responsible for a 

great fraction of its maintenance costs. In this thesis, the reliability and availability of a cargo locomotive 

bogie is assessed using the reference behaviour of a freight locomotive bogie of a Spanish train 

operating company as a case study. As part of a RAMS analysis, this work starts by performing a Failure 

Mode and Effect Analysis (FMEA) to identify and prioritize the most critical components of the bogie 

system. To quantify reference failure rates, a reliability assessment method is proposed which combines 

the Cooke’s Classical model and the histogram technique. A reference use case of the bogie is obtained, 

a reliability block diagram (RBD) of its reliability-wise relationships is established and simulation models 

of both reliability and availability are modelled following a discrete event simulation approach. Emphasis 

is put on the variability of the stochastic parameters, which are modelled in alternative scenarios. The 

results confirm that such models are decisive to predict the reliability and availability of cargo locomotive 

bogie systems and serve as valuable diagnosis and prognosis models in the decision-making of railway 

maintenance.   
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(DES); Monte Carlo simulation (MCS). 
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Resumo 

Como opção descarbonizada fiável, o transporte ferroviário tem captado cada vez maiores 

investimentos, para otimizar a sua operação e ser um serviço de maior eficiência. Consequentemente, 

a necessidade de desenvolver ferramentas e metodologias inteligentes, que melhor suportem uma 

manutenção preditiva, tem sido fulcral para atingir esses objetivos. O bogie, como sistema principal do 

material rolante ferroviário, é responsável pela maior fração dos custos de manutenção. Nesta tese, a 

fiabilidade e a disponibilidade de um bogie de uma locomotiva de carga são avaliadas, usando uma 

locomotiva de carga pertencente a uma empresa ferroviária espanhola como caso de estudo. Como 

parte de uma análise RAMS, este trabalho começa por identificar, através de uma Análise de modo e 

efeito de falha (FMEA), os componentes críticos do sistema do bogie. Para quantificar taxas de falha, 

é proposto um método de avaliação de fiabilidade, que combina o modelo clássico de Cooke e uma 

técnica de histograma. Um caso de estudo do bogie é obtido, um diagrama de blocos da fiabilidade 

(RBD) é estabelecido e modelos de simulação de fiabilidade e disponibilidade são modelados, seguindo 

uma abordagem de simulação de eventos discretos. De modo a analisar a variabilidade dos 

parâmetros, vários cenários são modelados. Os resultados confirmam que os modelos são soluções 

determinantes para prever a fiabilidade e disponibilidade dos sistemas de bogies de locomotivas de 

carga e servem como modelos de diagnóstico e prognóstico decisivos na tomada de decisão de 

manutenção ferroviária. 

 

 

 

Palavras-Chave 

Manutenção ferroviária; Gestão de ativos; Fiabilidade; Disponibilidade; RAMS; Simulação de eventos 

discretos; Simulação de Monte Carlo. 
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1. Introduction 

1.1. Motivation 

As the world population grows and the demand for more uninterrupted services rises (e.g. electricity, 

public transportation, or communications), the dependency on highly mechanized and automated 

services, regarding the reliability and integrity of their physical assets, is continuously increasing. In fact, 

asset failure is gaining a relentless priority in system analysis, since a possible failure can mean not only 

an interruption of service but, in severe cases, the loss of human lives [1]. Additionally, to meet 

decarbonization milestones in the near future and to mitigate the dependence of fossil fuels in the 

transportation industry, the railway transport has had significant investment in order to achieve a more 

competitive and efficient service. Subsequently, to fulfil these needs, the railway industry has put focus 

in the development of adequate maintenance plans, which not only improve the railway system reliability 

and operationality but also reduce its lifecycle costs. As stated by the annual workplan and budget of 

Shift2Rail “…to meet these demands (higher costumer demands) and increase the operational 

performance of critical railway infrastructure assets, innovation must be delivered to enable a step-

change in reliability, availability, maintainability and safety (RAMS) whilst also optimising asset capital 

and LCC.” ([2], p.72). This is achieved with the assessment and development of component prediction 

methods based on predictive tools. Hence, there is a need to develop such tools in order to study not 

only the component and system degradation but also its impact on the real-time operation of the railway 

system. Moreover, condition-based and predictive maintenance strategies play a fundamental role in a 

centralized European rail traffic system, where common advanced monitoring solutions of railway assets 

serve as performance metrics for the development of digital maintenance rules. It is, therefore, 

significant that in order to meet such goals, the proper condition-based and prediction tools are 

developed, existing a clear interest regarding their research.  

As the main driver of operating costs within the lifecycle of railway rolling stock, the railway bogie 

is designed to support the rail vehicle body and to distribute its weight through the locomotive. As a 

result of its functional purpose, its system tends to be more susceptible to wear, leading to higher 

lifecycle costs and active maintenance. This work addresses the reliability and availability of a freight 

locomotive bogie of a Spanish train operating company. The goal of this thesis is to develop a framework 

to assess the reliability and availability of a bogie system and therefore serve as a diagnosis and 

prognosis model in the decision-making of railway maintenance. 

1.2. Literature Review 

Several works, which follow a RAMS methodology, are devoted to study the reliability and availability of 

complex systems. These are briefly explained in this section, where significance is put first on reliability 

assessment methods, followed by the studies that apply discrete event simulation approaches to 

analyse the reliability and availability of systems.  
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1.2.1. Reliability Assessment Methods 

Many studies to predict and calculate the reliability of single or complex systems have been conducted, 

while many generic methods are proposed in the literature, depending on the data and/or the application. 

One of them is reliability prediction, which has historically been used to denote the process of applying 

mathematical/statistical models and data for the purpose of estimating expected reliability of a system 

before real field data is available for the system [3]. Reliability prediction models were first developed 

during World War II, to provide a more reliable and stable electronic equipment to the military [3–5], 

which were subsequently developed to the Manned Space Flight Program, being regarded as the 

standard for reliability prediction to other commercial sources, other than the military world [6]. Although 

most of the efforts have been concentrated on electronic equipment, where reliability prediction models 

are well established, they have also been developed for mechanical systems [5,7–10]. As Wu and Yan 

[5] state, reliability prediction is a critical process of conceptual design when a system is not yet built, 

due to the limitation of operation data. These reliability models are indeed very useful during system 

definition and design phases, but according to Lu et. al [11], these models are of limited usefulness in 

day-to-day operation phases. Lu et al. [11] agree that in a day-to-day operation phase, it is extremely 

relevant to track and predict operational performance in real-time, where applications and environments 

are constantly changing. 

When studying components that are designed to have a very long life cycle, despite facing all 

kinds of extreme operating conditions, the data obtained from maintenance and inspection activities is 

often scarce and is almost always censored since it is very likely that no critical failure has actually 

occurred. In addition, Si et al. [12] conclude in their review of statistical data-driven approaches for 

remaining useful life (RUL) estimations, that there is a challenge in addressing RUL estimation models 

in cases where very few or no data are available, since the majority of the existing statistical data-driven 

approaches are based only on available past observed data. As a result, the starting point to conceive 

a reliability assessment method is that commonly available operation data to model the reliability of long 

service-life components is insufficient, and there is a need to develop a methodology to predict the 

moment by which an asset reaches a certain degradation. One approach to overcome this scarcity of 

good data and assess uncertainties is, as Cooke mentions in his original study [13], to determine lifetime 

distributions based on the use of expert opinion/judgment. In accordance with Ter Berg et al. [14], one 

could argue to which degree historical data analysis can be assumed for an adequate benchmark for 

assessing variables in the long term, since such historical data only comprises short-term information 

for the asset of interest.  

For optimal maintenance strategies and reliability assessments, expert judgment techniques 

were first used by Van Noortwijk et. al [15], where a method with the use of expert opinions for obtaining 

lifetime distributions for maintenance optimisation was proposed. This method includes a histogram 

technique for eliciting discretized lifetime distributions from experts, where the combination of the 

expert’s opinion into a consensus distribution is obtained via a Bayes scheme, which is later updated 

with failure and maintenance data. Moreover, Oien [16] describes how the histogram technique, 



 

3 

 

proposed by Van Noortwijk et. al [15], and expert judgment are adequate techniques for quantifying 

failure rates of components, in order to optimize maintenance and inspection intervals. In addition, Wang 

and Zhang [17] propose a method that uses expert judgments as additional information to predict the 

residual life distribution of the item from condition monitoring. Once again, the validity of these methods 

is dependent on historical data, which for long service-life components can be scarce. Moreover, 

according to Wang and Zhang [17], although the expert judgment technique is an added value to the 

decision process, it is also subject to problems such as the subjectivity on the experience and skills of 

the expert, which can produce inconsistent or misleading recommendations. Therefore, a performance-

based expert judgment is usually a better tool to address uncertainties, since each expert weight is 

based on his/her performance. This idea leads to structured expert judgment, also known as the Cooke 

Method, which is a mathematical approach for decision making under uncertainties, that comprises the 

expert’s know-how on the weight of her/his judgment. For the past years, this expert judgment technique 

has been applied in several industries, where most of the studies are conducted on natural hazards, in 

the ecosystems, in public health industries, as well as in the civil aviation or in the structural reliability 

industry [17–19]. This method allows the creation of performance-based probability distributions 

functions, which represent the uncertainty of interest. Nevertheless, if one wants to quantify a discretized 

point estimate, such as a failure quantity, the histogram technique is more appropriate. Therefore, a 

combination of a structured expert judgment and the histogram technique is proposed, based on Ter 

Berg et. al [14] and Van Noortwijk [15] work, which assesses the reliability of long service-life 

components. 

1.2.2. Discrete Event Simulation 

Several works devoted to the numerical simulation of the reliability and availability of complex systems 

can be found in the literature. Particularly, works using Monte Carlo Simulation (MCS) models together 

with a Discrete Event Simulation (DES) approach to assess the stochastic behaviour embedded in the 

reliability and maintainability analysis. However, no application comprises the railway bogie. 

 Since multiple variables in the reliability assessment field, such as Time to Failure (𝑇𝑇𝐹), Time 

between Failures (𝑇𝐵𝐹), Time to Repair (𝑇𝑇𝑅), down time, and other stochastic variables, are 

represented by random variables, simulation approaches are very appropriate to model them by 

numerically approximating their stochastic behaviour with various simulation techniques. As a pioneer 

in the application of simulation models in reliability engineering, A. Chrisman proposes a DES model to 

study large-scale system reliability in his initial simulation studies [20], where a framework for assessing 

the reliability of complex electro-mechanical systems is additionally proposed by the author. A significant 

development of DES applications has been put in structural reliability analysis, where a review of 

applications is gathered by J. Faulin et. al [21] book. In fact, all applications follow the same methodology 

for performing a structural reliability and availability analysis through DES, which makes use of statistical 

distributions and techniques, such as survival analysis, to model component-level reliability. Emphasis 

is put on the differences between a standalone MCS versus a combinatorial of a DES with a MCS 

approach, where in addition to obtaining the structural lifetime generated by simulation, the DES also 
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enables to acquire detailed understanding on the lifetime progression of the analysed structure. 

Moreover, Gascard et al. [22] suggest that in order to challenge the disadvantages of MCS, such as 

high computational efforts and times, a dynamic fault tree simulation performed with a DES approach is 

the best solution. With a DES approach, gate simulations that produce no change in the output of a gate 

are excluded enhancing the speed up of the simulation. More related to maintenance policies 

implementations, where the reliability and availability projections are crucial, A. Alrabghi and A.Tiwari 

[23] were the first to model complex maintenance systems using a DES algorithm, where condition-

based, preventive, and corrective maintenance can be applied. Using A. Alrabghi and A.Tiwari work, O. 

Golbasi and M.O. Turan [24] develop a discrete-event simulation algorithm to evaluate and optimize 

maintenance policy decisions for production systems, with the addition of including opportunistic 

maintenance actions for different inspection intervals. Their DES algorithm proposes a bi-optimization 

criterion that can be either of maximizing availability or minimizing total maintenance cost, allowing 

multiple different scenarios to be modelled.  

In the railway industry, some works comprise the use of DES to assess the reliability and 

availability of railway assets. Mielnik et. al [25] propose a dynamic DES to study the reliability of railway 

crossing signalling devices based on the track rail circuit. Rhayma et al. [26] analyse the behaviour of 

the railway track geometry by means of a numerical analysis which goes in accordance with a discrete 

event and MCS approach. Nevertheless, for railway rolling stock, reliability and availability evaluations 

following a DES algorithm has not been published, addressing the need for its study. Therefore, a 

combination of the DES algorithm with a MCS is implemented, where the aim is to assess maintenance 

policies and project the reliability and availability of railway rolling stock.  

1.3. Thesis Goals, Contribution and Structure  

The main goal of this dissertation is to study the availability and reliability of a cargo locomotive bogie in 

operation, proposing a framework to assess these properties, in order to contribute to the maintenance 

decision-making of railway rolling stock as a diagnosis and prognosis model. To pursue this objective, 

the following tasks are required, which typically are part of a RAMS methodology: 

- Definition of the functional breakdown and the interdependencies of the entire bogie by 

means of a Failure Mode, Effects and Criticality Analysis (FMEA/FMECA); 

- Modelling of a simulation model based on the functional breakdown and the reliability-wise 

relationships (RBD) of the bogie using a discrete event simulation approach; 

- Testing different scenarios to examine a more rigorous real-case operation in order to 

understand the effect of different approaches in the reliability and availability projections of 

the total bogie system. 

In the process of the studying the availability and reliability of the bogie system there are several 

novel aspects of this work that are worth emphasising: 

- A proposed Reliability Assessment Method using expert judgment techniques to quantify 

uncertainties such as failure rates and survival curves of long service life components, 

which is applied to the wheelset subsystem; 
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- An alternative approach to model the availability and reliability of a complex system using 

a discrete event simulation approach where not only the stochastic behaviour of Time of 

Failure (𝑇𝑜𝐹) and Time to Repair (𝑇𝑇𝑅) is considered and represented with different 

distribution functions, but also failure correlation in different system levels. 

All the studies and analyses are conducted with the use of the commercial software Matlab, together 

with its simulation program Simulink and the data analysis software RStudio. 

 

This dissertation is structured as follows: the present chapter presents the motivation, a brief 

literature review and this works structure and objectives; Chapter 2 introduces the basic concepts of a 

RAMS Analysis, where its acronyms are described, and its development in the railway industry. In the 

same chapter, the concepts of a FMEA and FMECA analysis are presented and the theory behind the 

proposed reliability assessment method using expert judgment techniques is introduced; Chapter 3 

presents the discrete event simulation theory and model formulation used to simulate the reliability and 

availability of the bogie. Emphasis is put on the construction of a DES model and the theoretical 

background of the most distribution functions that model the uncertain parameters of the bogie’s 

operation; Chapter 4 focuses on the description of the project and case study, the freight locomotive 

and the bogie of the case study. A FMEA analysis is applied to the case study of interest and due to 

lack of information of the reference bogie, the proposed reliability assessment method is used to quantify 

failure rates of the wheelset subsystem, resulting in a consolidated FMECA analysis; in Chapter 5, the 

discrete event simulation model of the bogie system is presented and the simulation results of different 

operation scenarios are demonstrated and discussed; Chapter 6 presents the conclusions and future 

lines of development suggested by this work.  
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2. RAMS Analysis 

This chapter contemplates the reliability, availability, maintainability, and safety (RAMS) analysis 

procedure on which this dissertation is developed. A brief introduction to RAMS analysis is presented, 

where all the associated concepts are explained. Then, the development of the RAMS methodology in 

the railway industry is described and the fundamental standards and railway applications are explored. 

The FMEA and FMECA analysis are briefly explained, as well as its application in the railway industry, 

which goes according to defined standards. To quantify uncertainties, embedded in the decision-making 

processes in rare events, expert judgment techniques are presented, followed by a proposed reliability 

assessment method, which aims to quantify such uncertainties in long service life components.  

2.1. The RAMS Analysis 

The RAMS (reliability, availability, maintainability, and safety) analysis process is an engineering 

guideline, that comprises analytical methods and integrative concepts for a system to meet its functional 

requirements. The RAMS analysis was firstly originated from the concepts of safety and reliability, which 

were introduced by the aerospace industry in the 1930, becoming a crucial engineering discipline in the 

late 1950’s due to the application of stochastic events in the system failure analysis [27]. The analysis 

outlines the long-term operation of a system, which is characterized as an indicator of the systems global 

function, the systems basic function, the systems hierarchical dependency and, most importantly, the 

interdependencies of the systems functionalities. This is achieved through the definition, assessment 

and control of all hazards that influence the systems behaviour. Therefore, the RAMS analysis 

guarantees that a system can be relied upon the functionalities as specified as well as being available 

and safe at the same time. This emphasizes the main goal of the analysis, which is to increase 

productivity, reduce costs, and mitigate failure risks and undesirable events. 

As part of the RAMS analysis and in order to better understand the concept embed in this 

engineering protocol, a definition and brief explanation of its acronyms, namely: reliability, availability, 

maintainability and safety, is needed. 

2.1.1. Reliability 

Reliability (R) is typically evaluated as the probability that an item performs its function for a required 

period, under specified environmental and operational conditions [28]. As a result, reliability estimations 

are used to evaluate design, compare design alternatives, trade-off system design factors, support test 

planning, monitor reliability improvements, and organize maintenance and logistics. Analytically, to 

better assess reliability and the analysis behind the area, the following concepts are relevant: 

• Reliability function or survivor function 𝑅(𝑡); 

• Failure function (or cumulative distribution function) 𝐹(𝑡); 

• Hazard rate function ℎ(𝑡) (failure rate function); 

• Mean time to failure (𝑀𝑇𝑇𝐹); 
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From a mathematical point of view, reliability 𝑅(𝑡) is defined as the probability that an item 

successful operates in the time interval [0, 𝑡], and is still operating at time 𝑡. Failure 𝐹(𝑡) is, contrarily, 

defined as the probability that an item fails within time interval [0, 𝑡]. Both failure and reliability functions 

can be defined as follows, respectively [4,27]: 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
 , 𝑡 > 0  (2.1) 

𝑅(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
= ∫ 𝑓(𝑡)𝑑𝑡

∞

𝑡
 (2.2) 

where 𝑇 is a continuously distributed random variable, which represents the time to failure of an item, 

and 𝑓(𝑡) its probability density function (PDF). The failure function 𝐹(𝑡) is also referred to as the 

cumulative distribution function (CDF) of the continuous random variable 𝑇, while the reliability function 

is also referred to as the survivor function. Analytically, the PDF 𝑓(𝑡) is defined as follows : 

𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
= lim

∆𝑡→0

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

∆𝑡
= lim

∆𝑡→0

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)

∆𝑡
 (2.3) 

Alternatively, the PDF can be defined with the use of the reliability function 𝑅(𝑡), where 𝑓(𝑡) = −
𝑑𝑅(𝑡)

𝑑𝑡
. 

Figure 2.1 illustrates a typical reliability function 𝑅(𝑡), failure function 𝐹(𝑡) and probability density 

function 𝑓(𝑡) of a continuous random variable . 

 

Figure 2.1 – Typical behaviour of a reliability function 𝑅(𝑡), failure function 𝐹(𝑡) and probabiliy 

density function 𝑓(𝑡) of a continuous random variable T 

The hazard rate function ℎ(𝑡), also known as the failure rate function, is defined in statistics as 

the “force of mortality” (FOM), which indicates the ability of an item to fail after time 𝑡 has elapsed [4]. 

Therefore, mathematically,  ℎ(𝑡) is defined as the probability that an item is going to fail within time 

interval [𝑡, 𝑡 + ∆𝑡], when one considers that the item is operating at time 𝑡. The hazard rate function ℎ(𝑡) 

is determined as follows: 

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡 | 𝑇 > 𝑡) =
𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡)

𝑃(𝑇 > 𝑡)
=

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

𝑅(𝑡)
 (2.4) 

By dividing this probability by ∆𝑡 and considering that ∆𝑡 → 0, one obtains the hazard rate function of 

the item. 
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ℎ(𝑡) = lim
∆𝑡→0

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

∆𝑡

1

𝑅(𝑡)
=

𝑓(𝑡)

𝑅(𝑡)
 (2.5) 

Where 𝑓(𝑡) and 𝑅(𝑡) are the PDF and the reliability function of a continuous random variable 𝑇, 

respectively. Since the PDF 𝑓(𝑡) is the derivative of the CDF (failure function) 𝐹(𝑡), by combining 

equation (2.5) with equation (2.3), it is possible to relate directly the reliability function 𝑅(𝑡) with the 

hazard rate ℎ(𝑡) of the item as follows: 

ℎ(𝑡) = −
𝑑

𝑑𝑡
log 𝑅(𝑡) (2.6) 

𝑅(𝑡) = 𝑒− ∫ ℎ(𝑡)𝑑𝑡
𝑡

0  (2.7) 

Where the reliability function 𝑅(𝑡) is obtained by considering that the boundary conditions of its function 

is 𝑅(0) = 1 since an item is considered to be “as good as new” (AGAN) at its starting point. Consequently, 

one can verify that the reliability function 𝑅(𝑡) provides a continuous measure of the probability of non-

failure, i.e. being operational, while the hazard rate function ℎ(𝑡) gives an instantaneous measure of the 

proneness of failure. A summary of the relationships between the reliability function 𝑅(𝑡), the failure 

function 𝐹(𝑡), the PDF 𝑓(𝑡) and the hazard rate function ℎ(𝑡) is demonstrated in Table 2.1. 

Table 2.1 – Relationships between 𝑅(𝑡), 𝐹(𝑡), 𝑓(𝑡) and ℎ(𝑡) (adapted from [4]) 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑏𝑦: 𝑅(𝑡) 𝐹(𝑡) 𝑓(𝑡) ℎ(𝑡) 

𝑅(𝑡) = 1 1 − 𝐹(𝑡) ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑡

 𝑒−(∫ ℎ(𝑡)𝑑𝑡)
𝑡

0  

𝐹(𝑡) = 1 − 𝑅(𝑡) 1 ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0

 1 − 𝑒−(∫ ℎ(𝑡)𝑑𝑡)
𝑡

0  

𝑓(𝑡) = −
𝑑

𝑑𝑡
𝑅(𝑡) 

𝑑

𝑑𝑡
𝐹(𝑡) 1 ℎ(𝑡) ∙ 𝑒−(∫ ℎ(𝑡)𝑑𝑡)

𝑡
0  

ℎ(𝑡) = −
𝑑

𝑑𝑡
ln 𝑅(𝑡) 

𝑑𝐹(𝑡)/𝑑𝑡

1 − 𝐹(𝑡)
 

𝑓(𝑡)

∫ 𝑓(𝑡)𝑑𝑡
∞

𝑡

 1 

 

Over the time a system or a component is operating, its lifetime is typically presented with three 

distinct periods of failure, which are graphically represented in a bathtub curve. The first stage of failure 

is known as the infant mortality, also referred to as burn-in period, where the failure rate is high, 

decreasing with the operating time. This may be clarified by undiscovered defects, which show up when 

an item starts its function and is related with the design and manufacturing problems that are not 

detected in control quality inspections. The item is less prone to fail as the time of service increases. 

The second phase is referred to as the useful life period, also known as the steady-state period, where 

the failure rate is characterized to be constant, operating at its lowest failure rate. Here, the failure 

causes are marked by customer use, usually assumed to be stress-related failures, where random 

fluctuations of stress exceed the items strength, causing it to fail (stochastic failures). The third and final 

period is called the wear-out period, where the failure rate of an item starts to increase. This increasing 
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failure rate stands for the aging phenomena of an item, which is indicated by the wear-out, corrosion or 

fatigue that increases the proneness of a unit to fail. When analysing a system’s reliability, the analysed 

behaviour is most typically performed with data gathered during the useful life period, or sporadically, 

during the wear-out phase [29]. The bathtub curve is graphically represented in Figure 2.2, clearly 

identifying the three periods of failure typically encountered in an asset. 

 

Figure 2.2 – The Bathtub Curve (adapted from [30]) 

The mean time to failure (𝑀𝑇𝑇𝐹) is defined as an indicator that measures the average amount 

of time a non-repairable item performs its function before it fails. If one considers a continuously random 

variable 𝑇, it is possible to analytically define the 𝑀𝑇𝑇𝐹 with the estimated value of a distribution function, 

which is given as: 

𝑀𝑇𝑇𝐹 = 𝐸(𝑇) = ∫ 𝑡 ∙ 𝑓(𝑡)𝑑𝑡
∞

0

 (2.8) 

Any practical related estimation of the 𝑀𝑇𝑇𝐹 or any stochastic failure prognosis based on the 𝑀𝑇𝑇𝐹, 

requires that the system or component is working within its useful life period (see Figure 2.2), where 

failure rates are assumed to be quasi-static (constant). Assuming this, equation (2.8) can be simplified 

to: 

𝑀𝑇𝑇𝐹 =
1

𝜆
 (2.9) 

where 𝜆 is the constant failure rate of the system or component. It is worth mentioning, that when 

studying the lifetime of an item, 𝑀𝑇𝑇𝐹 is related to a non-repairable unit, whereas the mean time 

between failure (𝑀𝑇𝐵𝐹) is related to repairable items. Both are analytically described by the previous 

equations. 

To perform a reliability analysis, the failure of a system or item is assumed to be represented by 

a distribution function with known distribution parameters. In reliability analysis, the most common 

distributions to model the degradation and failure of an asset are the Exponential distribution, the Normal 

distribution, the Weibull distribution, the Lognormal distribution, and the Gamma distribution. These 

distributions are mathematically explained in section 3.  
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2.1.2. Availability 

Availability (A) is commonly defined as the probability that a system or a component is executing its 

required function at a given period of time when operating in normal conditions and maintained in 

accordance with its standards. It can be interpreted as the percentage of time a system or component 

is operational over some interval, having in mind its unsuccessful operation. Consequently, the 

availability is defined as follows [31]: 

𝐴 =
𝑢𝑝𝑡𝑖𝑚𝑒

𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 + 𝑢𝑝𝑡𝑖𝑚𝑒
 (2.10) 

where 𝑢𝑝𝑡𝑖𝑚𝑒 is the period of time the system or component has been operational, i.e. available, and 

𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒 is the value of time the system or component is not operational, i.e. not available.  

When taking into consideration that an unsuccessful operation is a consequence of failure, 

where the system requires maintenance to repair its functionality, the availability is given by: 

𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 + 𝑀𝑇𝑇𝑅
 (2.11) 

Where 𝑀𝑇𝑇𝐹 is the mean time to failure of a system or component and 𝑀𝑇𝑇𝑅 the mean time to repair 

of a maintenance task. As one can verify, the availability is dependent on both reliability and 

maintainability analysis, which is presented in the following subsection. In order to predict availability, 

both failure and repair, deterministic or stochastic behaviours must be considered.  

2.1.3. Maintainability 

Maintainability (M) is the probability that a maintenance activity performed to an item under given 

environmental and operational conditions can be achieved within an established period of time. 

Therefore, it is referred to as an item’s ability to undergo maintenance to restore its functionality. There 

are several measures to quantify maintainability, nonetheless, the most widely used term is the mean 

time to repair (𝑀𝑇𝑇𝑅).  

Within maintenance, there are two types of actions that are commonly performed in an asset: a 

preventive maintenance action and a corrective maintenance action. A preventive maintenance  action 

is a scheduled action intended to reduce the probability of failure and the degradation of the asset. A 

corrective maintenance action is performed in response to unplanned or unscheduled downtimes of 

items, typically as a result of an unexpected failure, intended to restore an asset’s function to a 

predetermined state. Within preventive maintenance actions, there are three distinctive types of 

establishing a maintenance task: predictive, periodic and condition-based maintenance tasks. The 

predictive maintenance task is based on the prediction of failure, where through diagnostic tools and 

measurements, such as sensors, the failure of an asset can be predicted, resulting in a maintenance 

task to repair or replace the item before it actually fails. The periodic maintenance task is based on a 

scheduled calendar, usually defined with previous experiences of the use of the item or defined with the 

established design of the item [27,30]. Typically, well defined tasks such as inspections, repairs, 

adjustments, or alignments are performed. The condition-based maintenance task is based on triggers, 
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where the maintenance task is performed when individual or groups of parameters cross a certain 

threshold and/or sensors which analyse the condition of the item continuously (very related to a 

predictive maintenance task) . 

2.1.4. Safety 

Safety (S) is defined as a parameter which indicates the level of risk associated with a system or 

component. It is related to all the previous concepts (reliability, availability and maintainability) since a 

combination of these ensures high levels of safety. Therefore, it is a result of a RAM guideline, which 

guarantees the freedom of unacceptable harm with regard to operation, maintenance, people, 

environment and equipment. The objective of a RAMS management process is either to determine and 

mitigate the most significant failures which present a high impact to safety or to eradicate the 

consequences of failures throughout a systems life cycle. Consequently, as part of the safety 

characteristics, the risk assessment process embedded in a RAMS analysis should be performed to 

determine the degree of safety necessary to define each specific situation [32]. Generally, the degree 

of safety is characterized by safety criteria which are defined by manufacturers and legal authorities in 

standards and go in accordance with local rules.  

 

Note: Both reliability and maintainability terms and actions are analysed in a system or item to guarantee 

and optimise its availability and safety. Therefore, logically, the maintainability term should be described 

and explained before the availability term. Nonetheless, the availability term is presented first due to the 

chronological order of the RAMS acronyms. 

2.2. RAMS in the Railway Industry 

Reliability, availability, maintainability, safety and cost -optimisations are critical topics in the present 

global railway industry, since the complexity of the railway systems is continuously increasing. 

Therefore, in order to meet the requirements of having a railway system, able to reach high levels of 

safety, availability and cost effectiveness, railway organisations have introduced engineering guidelines 

to perform railway system analysis and railway development projects more successfully. These started 

with the application of RAMS guidelines with the US railways in the early 1980s, being established in 

the European railways in the early 1990s with the modification and introduction of systems engineering 

in railway projects [33], becoming a meaningful decision making element in the global railway industry. 

The goal of a railway system is to achieve a defined level of traffic in a given time under safe 

conditions. Consequently, the RAMS standards and guidelines help to achieve this goal by providing 

guidance and confidence that a particular railway system is going to achieve its goals, safely. Moreover, 

it describes benchmarks on how to establish targets to assure reliability, availability, maintainability and 

safety of railway systems, influencing the systems functionality, regularity of service and the frequency 

of service, thus increasing the quality of service delivered to the customer. This is accomplished with 

the use of the British and European standard BS EN 50126 “Railway Applications: The Specification 

and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS)” [34], which provides a 
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common process throughout the European Union (EU) for the specification and demonstration of the 

RAMS requirements. This European standard supports railway operators, maintainers or suppliers with 

a method which enables the implementations of systematic paths to address railway RAMS. The BS EN 

50126 standard helps to identify key aspects that influence the RAMS characteristics and manage these 

key aspects by evaluating these at each phase of the system life cycle with risk assessment techniques. 

To guarantee a reliable, safe, cost-effective, and enhanced quality of railway systems, the standard 

recommends a system life cycle, composed by sequences of tasks and feedback loops that go from 

initial concepts in design through to decommissioning and conclusion [32], which are extremely relevant 

in design phases of railway systems. This life cycle approach comprises three main areas which are 

applicable to any railroad system or component and can be simplified depending on the appropriate 

project phase. Moreover, railway organisations have continuously focused on the introduction of railway 

RAMS to improve its railway operational effectiveness (last phase of the life cycle approach). According 

to Park [33], railway organizations have generally applied three aspects to properly conduct a RAMS 

analysis: 

1) The definition of the RAMS characteristics, namely: Reliability, Availability, 

Maintainability and Safety, which belong to the analysis requirements and are extremely 

relevant in the operational context of the organization; 

2) Assessment and control of risks, such as failures, errors or faults that impact the quality 

and safety of the rail traffic service; 

3) The arrangement of controlling the risks, such as failure prevention, fault tolerances and 

fault predictions. 

These aspects are embedded in the European railway standard BS EN 50126 and are taken into 

consideration for this work. In railway RAMS, safety and availability are strong correlated since a 

mismanagement of one can result in a sub-optimal performance of the system. Both are highly 

dependent on the reliability and maintainability of the system, which are influenced by three main 

influence factors, namely: the system conditions, such as inherent weaknesses or errors in requirements 

of the system, the operating conditions, like environmental conditions or human factors, and the 

maintenance conditions, such as preventive or predictive maintenances. Figure 2.3 illustrates the 

system lifecycle process embed in the RAMS management process (a), as well as a diagram of the 

influencing factors in railway RAMS (b). 
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Figure 2.3 – a) System life cycle applicable for RAMS management process [32] b) Diagram of 
the influencing factors of railway RAMS (adopted from [34])  

From a mathematical point of view, the analytical concepts, definitions and terminologies related 

to a railway RAMS analysis defined in the BS EN 50126 [34] standard go according to IEC 61703:2016 

[32]  international standard, which are defined in section 2.1.      

2.3. FMEA Analysis 

As part of a RAMS analysis recommended in the railway standard BS EN 50126 [34] to define the factors 

which will affect the successful operation of a railway system, the failure mode and effect analysis 

(FMEA) is a methodology employed to determine potential failure modes (FM), failure effects, failure 

mechanisms and failure causes that affect a system to operate successfully and that mitigates a system 

reliability, availability, maintainability and safety [29]. In a FMEA analysis it is extremely relevant to fully 

correlate its acronyms to have a good risk assessment. A failure mode (FM) is defined as an undesired 

state or function of a system or item, which is implicit or caused, and is the explanations of the inability 

of a system or item to perform its function. A FM can lead to a failure effect. A failure effect is the result 

of a FM on the higher levels of a system, which can bring the system to fail or reach an unacceptable 

high probability of failure. A failure mechanism is a physical result of an origin cause that leads to a FM. 

RAMS

Safety Availability

System 
Conditions

Operating 
Conditions

Maintenance 
Conditions

Reliability Maintainability

a)
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A failure cause is a situation or condition which explains the fundamental causes of a problem that lead 

to a failure mechanism. Figure 2.4 illustrates a flowchart of the FM and effects relationship. 

 

Figure 2.4 – Flowchart of the failure modes and effects relation (adapted from [29]) 

The FMEA analysis was one of the first engineering techniques introduced in reliability and 

safety engineering. It was first implemented by the US Military in the 1950s with the MIL-STD-1629A 

[35] guideline to improve and verify the reliability of space program hardware, and afterwards, it was 

developed in industries such as the automotive industry, food processing industry, and electronic 

equipment industry [36][37]. As one of well-used safety and reliability assessment technique, FMEA 

provides a framework that defines, identifies, prioritizes and controls all potential FM that may include 

in the system design, manufacture phases, or functional process of a system [33]. In the railway industry, 

the FMEA analysis was first introduced with the RAMS Guideline standard “BS EN:50126 Railway 

Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety 

(RAMS) - Part 1: Generic RAMS Process” [34] and has since been developed. In the railway industry 

the most common standard to apply a FMEA analysis is the BS EN 60812 standard, which defines a 

general procedure to perform a FMEA analysis and gives guidance as to how the methodology may be 

applied to achieve various RAMS objectives. This is an international standard, which not only is 

applicable in the railway industry, but also in other major industries. 

In this section, the qualitative and quantitative background of the FMEA analysis in accordance 

with the railway standards is demonstrated, as well as the criticality analysis, which prioritizes the most 

critical subsystems, components and its associated failure modes.   

2.3.1. Risk Priority Number 

The procedure for performing a FMEA  in the railway industry is recommended in the RAMS Guideline 

standard  [34] and shown in Figure 2.5:  

Failure Cause
Failure 
Mechanism

Failure Mode Failure Effect
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Figure 2.5 – Procedure for implementing a FMEA in the rail industry [34] 

As recommended in the RAMS Guideline standard [34] procedure and in the general FMEA procedure 

standard BS EN 60812 [38], the importance of risks associated with a hazard in a railway system can 

be prioritised by using an index, named as the Risk Priority Number (𝑅𝑃𝑁). The Risk Priority Number 

takes three global indicators into account, namely: 

1. Severity, 𝑆 : a risk indicator corresponding to the consequences of the failure mode; 

2. Occurrence, 𝑂: a risk indicator corresponding to the probability of occurrence of the 

failure mode; 

3. Detectability, 𝐷: a risk indicator corresponding to the probability that a failure mode is 

detected (in an early stage). 

These indicators can be assessed on a scale from one to ten and the 𝑅𝑃𝑁 is obtained as a product of 

these. 

𝑅𝑃𝑁 =  𝑆 × 𝑂 × 𝐷 (2.12) 

Therefore, the 𝑅𝑃𝑁 takes values from 1 to 1000. 

The criteria to define each of the global indicators goes by the guidelines provided in the BS EN 

60812 [38] standard. For the Severity (S), the criteria to define the indicator can be verified in Figure 

2.6. 
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Figure 2.6 – Definition of the Severity, S in the UIC guideline [38] 

As can be seen, the Severity (S) criteria is established concerning financial losses and human 

fatalities, whereas its lowest score can have no recognizable impact on the functionality of the system 

and its highest score can bring human losses and a destructive impact in the operation of the system. 

For the Occurrence (O), the criteria is presented in Figure 2.7, established by the UIC guidelines 

[38]: 

 

Figure 2.7 – Definition of the Occurrence, O  in the UIC Guideline [38] 

The score criteria of the Occurrence (O) is dependent on the failure rate of the identified hazard. For 

low failure rates, where the probability of the event to happen is relatively small, lower scores are given. 

Contrarily, for high failure rates, where the probability of the event to happen is high, the scores are 

higher. 
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For the Detectability (D), the criteria is presented in Figure 2.8, established by the UIC 

guidelines. 

 

Figure 2.8 – Definition of the Detectability, D in the UIC Guideline [38] 

The Detectability (D) criteria is mainly based on expert judgment, where low scores mean the failure 

can be easily detected in early initial stages and high scores mean the failure can be hardly detected.  

2.3.2. Criticality Analysis - FMECA 

Failure Mode, Effects and Criticality analysis (FMECA) is an analysis identical with the FMEA, with the 

addition of including a criticality analysis. According to its definition, criticality is a relative measure of 

the consequences of a failure mode and the frequency of its occurrence. By means of equations, this 

quantitative analysis calculates the criticality of each FM, allowing to rank the failures and establish 

critical FM, components, or systems relative to criticality thresholds or benchmarks. As a result, the 

criticality analysis is very useful for prioritizing maintenance actions or design improvements, to mitigate 

risks embed in a system.  

Quantitatively, the criticality 𝐶𝑚 of a FM (also known as the Modal Criticality) and the criticality 

of an item 𝐶𝑖 is given as follows [[39,40]]: 

𝐶𝑚 =  𝛽𝑚  × 𝛼 × 𝜆𝑝 × 𝑡 (2.13) 

𝐶𝑖 =  ∑ 𝐶𝑚
𝑀
𝑚=1   (2.14) 

Where: 𝛽𝑚 is the failure effect probability of each FM, 𝛼 is the failure mode ratio, 𝜆𝑝 is the failure rate of 

each FM, 𝑡 the operating hours of each failure mode and 𝑀 the number of FMs associated to each 

component 𝑖. In fact, for FMs with a specific and assumingly constant failure rate,  𝛼 × 𝜆𝑝 = 𝜆𝑚, where 

𝜆𝑚 is the constant failure rate of the FM. The failure effect probability can be defined as the probability 

of a failure mode to happen, regarding its severity 𝛽 = 𝑆 × 𝑂, where 𝑆 is the severity of each failure 

mode and 𝑂 is the occurrence.  
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2.4. Assessing uncertainties using Expert Judgment Techniques 

For systems that are already built and in operation, reliability analysis, where a FMEA and FMECA 

analysis are incorporated, should be performed using the existing operation data, e.g. failure rate or 

warning rate, in order to have a more rigorous real case scenario and reduce uncertainties, since the 

operating conditions tend to differ for different use-cases, resulting in different component degradation. 

Considering that the usual data obtained in service is mainly collected during maintenance and 

inspection activities, research studies have demonstrated that the use of survival analysis [41] generates 

appropriate statistical models to assess failure uncertainties in components, which support the 

assessment of the reliability of the overall system [42]. In these studies, parametric and nonparametric 

approaches are used to fit the most appropriate reliability curves or function. The choice of each 

approach relies on many details of the failure data set. Nevertheless, when studying components that 

are designed to have a very long life cycle, despite facing all kinds of extreme operating conditions, the 

data obtained from maintenance and inspection activities is often scarce and is almost always censored 

since it is very likely that no failure has actually occurred. Consequently, survival analysis with available 

information will not be fruitful, and thus maintenance or inspection actions are often performed based 

on experience or expert knowledge. This idea leads to expert judgment to assess uncertainties. 

Expert Judgment (also known as expert elicitation) is an effective tool to explore the sources of 

uncertainty and to quantify them , when data is scarce or expensive to obtain [43]. According to Taylor 

et al. [44], elicitation is the procedure of developing the expertise of a person about one or more 

uncertain quantities into a probability distribution. Consequently, the success of such elicitations 

depends not only on the type and format of the questions but also on the personality, experience, and 

technical background of each expert [45]. Therefore, the definition of an expert is not only based on 

great knowledge of the subject matter but, according to Wood and Ford [46], on someone who 

represents problems in terms of formal principles and solves them with acknowledged strategies. Once 

the elicitation process is completed, and assuming the Decision Maker (DM) has access to more than 

one expert, it makes sense to aggregate/weight the different judgments for each expert. This weighting 

process of each expert can follow a mathematical or a behavioural approach, in order to produce a 

single aggregated distribution. Mathematical aggregation methods create single evaluations per variable 

by applying analytical models to each assessment, such as the Bayesian methods, Opinion pooling, or 

the Cooke’s Method. Behavioural aggregation methods, on the other hand, comprise a synergy of the 

experts to accomplish a homogeneity on the assessment of the variable of interest [47]. A typical 

behavioural method is the Delphi method, which implicates various rounds of experts providing their 

assessments, sharing that information with all the other experts, and then allowing them to review their 

assessment to move towards a general opinion. This is commonly known as group elicitation [48]. 

From the mathematical models mentioned, the Opinion Pool method is the most widely used 

technique due to its simplicity. The simplest decision-making process is seen as the linear opinion pool, 

where the aggregated distribution is obtained through an equal-weighted average of the individual 
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distributions. Nevertheless, this method is not perfect, since the weighting process does not contemplate 

the experts who are recognized to be better and to have more expertise in the required field.  

Consequently, a more refined method of the linear Opinion Pool was developed by  

Roger M. Cooke called the Structured Expert Judgment (also known as the Cooke Method), which has 

been validated over the years as a more accurate and informative assessment than the equal weighting 

of experts [49]. In the present study, a mathematical model was used to estimate the weight of each 

expert, and the associated Structured Expert Judgment (SEJ) was selected as the elicitation method. 

2.4.1. The Cooke Method 

The Cooke Method is an approach for eliciting and mathematically aggregate expert judgments based 

on the principle of objective calibration scoring and hypothesis testing in classical statistics [13]. The 

model elicits judgments from experts in a field of interest to develop probability distributions. The method 

consists of two types of questions: i) target questions and ii) calibration questions.  

Target questions are, as Cooke describes, the variables of interest, i.e. those variables that one 

wants to quantify and that cannot be assessed with other methods. Calibration questions are questions 

that are either known to the expert at the time of the elicitation, or will be known during the analysis 

period, and provide the experts' know-how on the specific topic. Experts are then scored based on their 

performance on the calibration questions, and their assessments are weighted (according to their 

scores) and combined. This subsection will explore the basic concepts of the model. An illustrative 

example is provided in the following subsection. 

In the Cooke Method, each expert quantifies his/her uncertainty for each calibration question, 

whereas his/her score is based on two variables: i) the calibration score, which measures the statistical 

accuracy of the expert, and ii) the information score, which measures the informativeness of the experts' 

assessments.  

The uncertainty quantification can take many forms, nevertheless, it tends to take a common 

structure due to application purposes, which was first presented in Cooke’s initial study [13]: the experts 

commonly specify their fifth (5%), fiftieth (50%) or median and ninety-fifth (95%) percentiles for the 

estimate of each uncertain quantity of interest, and thus each expert provide a 90% confidence interval. 

Note that with the 5% percentile, the expert is assessing a lower bound, meaning the expert believes 

that the true value (also known as realization) has a 5% chance of being below that value and a 95% 

chance of being above. Similarly, with the 95% percentile, the expert is assessing the upper bound, and 

thus he/she believes that there is a 95% chance that the true value lies below that value (or a 5% chance 

of being above). The experts' best guess, the 50% percentile (or median value) specifies that there is 

an equal chance that the true value is lower or higher than the value given. Consequently, there is a 

90% confidence (from the expert) that the true value lies between the lower and the upper bounds. This 

inter-quantile structure was described in Cooke’s initial studies, where formula (2.15) specifies a 

probability vector 𝑝(𝑥) = (𝑣1, 𝑣2, 𝑣3, 𝑣4): 
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𝑝(𝑥) = {

𝑣1, 𝑥 ∈ [0, 0.05[

𝑣2, 𝑥 ∈ [0.05, 0.5[

𝑣3, 𝑥 ∈ [0.5,0.95[

𝑣4, 𝑥 ∈ [0.95,1]

 (2.15) 

Where 𝑣i, 𝑖 = 1, … , 𝑛, represents each inter-quantile probability (with 𝑛 = 4), 𝑥 each realization in each 

inter-quantile, and 𝑝(𝑥) the total inter-quantile vector that describes the probabilities for each interval.  

These three percentile assessments (5%, 50%, and 95%) define four intervals or inter-quantile 

ranges: i) one from 0% up to the 5%, which is described by 𝑣1; ii) one from the 5% up to the 50%, which 

is described by 𝑣2; iii) one from the 50% up to the 95%, which is described by 𝑣3; and finally iv) one from 

the 95% up to 100%, which is described by 𝑣4. This leads to the theoretical probability vector: 

𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4) = (0.05, 0.45, 0.45, 0.05) (2.16) 

Where 𝑝i, 𝑖 = 1, … , 𝑛 is the absolute value of each inter-quantile probability (with 𝑛 = 4), which gives the 

expected proportion of realizations in each interval. In practice, the inter-quantile ranges of the expert 

do not usually capture the true realizations at the expected frequency. If 𝑁 quantities are assessed, 

where 𝑁 are the number of seed questions, each expert may be regarded as a statistical hypothesis, 

namely, each realization falls in one of the four inter-quantile intervals with probability vector 𝑝. 

Assuming 𝑥1, … , 𝑥𝑁 realizations of these quantities are available, one may then form the sample 

distribution of the expert’s inter-quantile intervals as: 

𝑠1(𝑒) =
1
𝑁

∑ 𝟏{𝑥𝑖≤𝑞5%}
𝑁
𝑖=1

𝑠2(𝑒) =
1
𝑁

∑ 𝟏{𝑞5%<𝑥𝑖≤ 𝑞50%}
𝑁
𝑖=1

𝑠3(𝑒) =
1
𝑁

∑ 𝟏{𝑞50%<𝑥𝑖≤ 𝑞95%}
𝑁
𝑖=1

𝑠4(𝑒) =
1
𝑁

∑ 𝟏{𝑞95%≤𝑥𝑖}
𝑁
𝑖=1

𝑠(𝑒) = (𝑠1(𝑒), … , 𝑠4(𝑒)) = (𝑠1, … , 𝑠4)

 

(2.17) 

Where 𝟏{ } is the indicator function and vector 𝑠(𝑒) is the empirical probability vector of an expert 𝑒.  

To measure how different the empirical vector 𝑠(𝑒) is from the theoretical vector 𝑝, one can 

apply the relative information measure of vector 𝑠(𝑒) with respect to vector 𝑝, also known as the 

Kullback-Leibler (K-L) divergence or distance, which measures the difference between two distributions. 

This divergence is given by: 

𝐼(𝑠(𝑒) | 𝑝) =  ∑ 𝑠𝑖  ln (
𝑠𝑖

𝑝𝑖

)

𝑛

𝑖=1

 (2.18) 

Where 𝑛 is the number of inter-quantile ranges (e.g. 𝑛 = 4). Note that the divergence is equal to 0 if 𝑠𝑖 =

𝑝𝑖 for all 𝑖, otherwise, it is positive. If the realizations are indeed drawn independently from a distribution 

with quantiles as stated by the expert, then: 

𝑇 = 2 × 𝑁 × 𝐼(𝑠 (𝑒)| 𝑝) ~𝜒(3)
2  (2.19) 

is asymptotically following a Chi-square distribution variable with 3 degrees of freedom, where 𝑁 is the 

number of seeding variables (calibration questions) and 𝑛 − 1 are the degrees of freedom (dof) of the 

Chi-square distribution. Based on this result, the calibration score for each expert 𝑒 is given by:  



22 

 

𝐶(𝑒) = 1 − 𝐹𝜒3
2(𝑡) (2.20) 

where 𝐹 is the cumulative distribution function of the Chi-square probability distribution [50], and thus 

the calibration score can vary from 0 to 1. The greater the calibration score, the more statistically 

accurate is the expert. 

Unlike the calibration score, the information score is calculated for each calibration question 

separately. To determine the information score for each expert in each question, one first needs to 

determine the intrinsic range, i.e. one needs to obtain bounds that are determined by expert 

assessments and the realizations. For this, one first takes the minimum between all the 5% percentiles 

of each expert 𝑞5%𝑒
 and the realization itself 𝑞5%, i.e. min{min𝑒(𝑞5%𝑒

), 𝑞5%} = 𝐿, which is considered as 

the lower bound 𝐿. Likewise, the maximum between all the 95% percentiles of each expert and the 

realization is assumed as the upper bound 𝑈. The intrinsic range in each seed variable (calibration 

question) 𝑖 is then given by: 

[𝐿𝑖 , 𝑈𝑖] = [𝐿, 𝑈] (2.21) 

The intrinsic range is then determined by extending the interval by an overshoot 𝑘, with 𝑘 > 0. The 

extended intrinsic range is then given by: 

[𝐿𝑖
∗, 𝑈𝑖

∗] = [𝐿 − 𝑘(𝑈 − 𝐿), 𝑈 + 𝑘(𝑈 − 𝐿) (2.22) 

A typical value for the overshoot is 𝑘 = 0.10. Hence, the information score including all assessments 

(for 𝑁 seeding variables or calibration questions), for each expert 𝑒 and for the three quantiles is 

calculated by the following formula: 

Inf(𝑒) =
1

𝑁
∑ [ln(𝑈𝑖

∗ − 𝐿𝑖
∗) + 0.05 × 𝑙𝑛

0.05

𝑞5%−𝐿𝑖
∗ + 0.45 × 𝑙𝑛

0.45

𝑞50%−𝑞5%
+𝑁

𝑖=1

0.05 × 𝑙𝑛
0.05

𝑈𝑖
∗−𝑞95%

]  
(2.23) 

Where Inf(𝑒) is the information score of each expert 𝑒. 

The combined score of an expert 𝑒 will serve as an (unnormalized) weight for each expert. It is 

based on both the calibration score 𝐶(𝑒) and the information score Inf(𝑒), and is obtained by the 

following formula: 

𝑤𝑒,𝛼
′ = 𝐶(𝑒) ×  Inf(𝑒) ×  𝟏{𝐶(𝑒)≥𝛼} (2.24) 

Where 𝟏{ } is the indicator function, i.e. 𝟏{𝐶(𝑒)≥𝛼} = 1 if 𝐶(𝑒) ≥ 𝛼, and 0 otherwise. The use of a cut-off 

threshold 𝛼 is imposed by the requirement that the weights 𝑤𝑒
′ should be an asymptotically strictly proper 

scoring rule, meaning that the long-run expected weights should correspond to the expert’s true beliefs.  

Finally, the (unnormalized) weights 𝑤𝑒
′ are then normalized across all experts to get the 

normalized weights 𝑤𝑒: 

𝑤𝑒 =
𝑤𝑒

′

∑ 𝑤𝑒
′

𝑒

 (2.25) 
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2.4.1.1. An illustrative example 

This subsection explores an illustrative example to provide a better understanding of how the calibration 

and information scores are obtained.  

Taking an example of 2 expert assessments for 10 calibration questions on the failure of 

different Bogie components (e.g. the primary suspension or the wheelset before an inspection of the 

bogie is performed). The three quantile assessments of the experts are provided and the realizations of 

the number of failures of each component are also taken into account. For the first expert, in 3 out of 

the 10 calibration questions, he/she overestimated the quantity of interest, i.e. in three questions the 

realization of the assessment is below the 5% percentile. In addition, in one calibration question, the 

expert underestimated the realization, i.e. the realization was above its 95% percentile. For the 

remaining six questions: four questions had the realizations between the 5% and the 50% percentiles, 

while two questions had the realizations between 50% and 95% percentiles. For the second expert, one 

question had the realization under the 5% percentile, six questions had the realization between 5% and 

50% percentiles, two questions between 50% and 95% percentiles, and one question above the 95% 

percentile. These assessments lead to the following vectors of observed frequencies for each expert: 

𝑠𝑒1
= (𝑠1, 𝑠2, 𝑠3, 𝑠4) = (

3

10
,

4

10
,

2

10
,

1

10
) = (0.3,0.4,0.2,0.1) 

𝑠𝑒2
= (𝑠1, 𝑠2, 𝑠3, 𝑠4) = (

1

10
,

6

10
,

2

10
,

1

10
) = (0.1,0.6,0.2,0.1) 

The Kullback-Leibler (K-L) divergence (computed with equation (2.18)) for both experts is then obtained 

as: 

𝐼𝑒1
(𝑠, 𝑝) = 0.3 𝑙𝑛 (

0.3

0.05
) + 0.4 𝑙𝑛 (

0.4

0.45
) + 0.2 𝑙𝑛 (

0.2

0.45
) + 0.1 𝑙𝑛 (

0.1

0.05
) = 0.3975  

𝐼𝑒2
(𝑠, 𝑝) = 0.1 𝑙𝑛 (

0.1

0.05
) + 0.6 𝑙𝑛 (

0.6

0.45
) + 0.2 𝑙𝑛 (

0.2

0.45
) + 0.1 𝑙𝑛 (

0.1

0.05
) = 0.1491  

With the K-L divergence, it is possible to calculate the calibration score for each expert. The calibration 

score is then obtained with equation (2.20): 

𝐶(𝑒1) = 1 − 𝐹𝜒(3)
2 (2 × 10 × 0.3975) = 1 − 𝐹𝜒(3)

2 (7.95) = 0.047  

𝐶(𝑒2) = 1 − 𝐹𝜒(3)
2 (2 × 10 × 0.1491) = 1 − 𝐹𝜒(3)

2 (2.98) = 0.394  

Therefore, the calibration score of expert 2 is higher than the calibration score of expert 1, i.e. the 

assessment of expert 2 was statistically more accurate than the assessment of expert 1. In other words, 

the higher the calibration score, the more accurate the expert is. 

For the same two experts and the respective assessments, let us consider that for one specific 

calibration question (e.g. the question on the number of failures of the wheels due to cavities), the 

realization is 16 failures and the experts' assessments were the following: 
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Table 2.2 – Experts assessment for one seed variable as an illustrative example 

Expert 5% 50% 95% 

Expert 1 7 10 15 

Expert 2 6 7 10 

 

Table 2.2 provides an example of the expert’s assessment for one seed variable. Note that the 90% 

confidence interval for expert 1 lies between 7 failures and 15 failures, whereas for expert 2 the 90% 

confidence interval lies between 6 failures and 10. The accuracy of both assessments is poor since the 

realization of the seed question was 16 failures. Nevertheless, if one would compute the associated 

calibration score, expert 1 would get a higher score, due to its closeness to the realization.  

To calculate the information score of each expert for this calibration question, one first needs to 

determine the intrinsic range. For this specific case, the intrinsic range is given by: 

[𝐿𝑖 , 𝑈𝑖] = [𝑚𝑖𝑛{𝑚𝑖𝑛𝑒(𝑞5%𝑒
), 𝑞5%} , 𝑚𝑎𝑥{𝑚𝑎𝑥(𝑞95%𝑒

), 𝑞95%}] = [6,16] 

By extending the interval with a 10% overshoot, the intrinsic range for the following seed variable is: 

[𝐿𝑖
∗, 𝑈𝑖

∗] = [6 − 0.1(16 − 6), 16 + 0.1(16 − 6)] = [5,17] 

Consequently, for each expert the information score is the following: 

𝐼(𝑒1) =  0.05 × 𝑙𝑛
0.05

7−5
+ 0.45 × 𝑙𝑛

0.45

10−5
+ 0.45 × 𝑙𝑛

0.45

15−10
+ 0.05 × 𝑙𝑛

0.05

17−15
+ ln(17 − 5) = 0.179  

𝐼(𝑒2) =  0.05 × 𝑙𝑛
0.05

6−5
+ 0.45 × 𝑙𝑛

0.45

7−6
+ 0.45 × 𝑙𝑛

0.45

10−7
+ 0.05 × 𝑙𝑛

0.05

17−10
+ 𝑙𝑛(17 − 5) = 0.875  

As we can verify intuitively, the distribution of expert 2 is more concentrated than the distribution of 

expert 1. Hence, expert 2 is more informative than expert 1 and, therefore, expert 2 has a higher 

information score. For all the calibration questions, one information score is obtained for each expert, 

whereas the final information score is obtained through an average of all information scores of each 

expert in each question, using equation (2.23). 

Finally, the unnormalized weights of each expert are obtained with equation (2.24) and divided 

by the sum of each expert's unnormalized weight to obtain each final weight of each expert using 

equation (2.25). Considering the calibration score for both experts, along with the information score for 

one seed variable, the unnormalized weights, as well as the normalized for this illustrative example, can 

be visualized in Table 2.3: 

Table 2.3 – Experts weights for the illustrative example 

Expert Unnormalized Weight Normalized Weight 

Expert 1 0.008414 0.0238 

Expert 2 0.34475 0.9762 
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2.5. Reliability Assessment Method  

This section explores a methodology to quantify failure rates of long service-life components using 

expert judgment techniques. The model assumes that if experts are able to assess quantities and 

specific standard measures of related components and subsystems, which are commonly published and 

shared in the industry by annual reports or standards from regional or national authorities, through seed 

questions, then they are able to assess failure estimates of the component of interest.  

The framework for this method is inspired by Berg et al. [14] guideline, whereas some changes 

are presented in the structure and the type of target questions to adjust to a reliability assessment, and 

new items are added to conduct the assessment. The steps are the following: 

1. Seed and Target Questions 

2. Selection of experts 

3. Experts weighting process 

4. Fitting Reliability Curves 

These steps are presented in the following subsections. 

2.5.1. Seed and Target Variables 

The design of seed questions is usually based on failure quantities, standards, and annual reports that 

have been published by authorities in the interested industry. The seed questions need to be addressed 

to critical known information of the component of interest or a subsystem associated with it, in order to 

assess the know-how of the expert in the topic under analysis. The life cycle of the asset of interest, 

which is usually provided by the manufacturer and based on quality control studies, and the respective 

failure modes and causes should be included in the information around the questions.  

 

Target questions, where the reliability assessment is performed, are based on the histogram 

technique, which was first introduced to expert judgment by Van Noortwijk et. al [15]. The histogram 

technique is a simple technique, where experts specify their subjective probability of failure for the 

component in equidistant intervals. From a practical point of view, the experts use a discretised version 

of a continuous probability density function (PDF), in such a way that the concept of the probability 

density, which is used in the seed variables, is replaced by the concept of probability of failure in a fixed 

interval. Each target question should be based on the inspection or maintenance intervals of the 

component of interest and on the content the analyst is looking for. The last interval is defined as an 

open interval since an open interval is motivated by the fact that maintenance engineers have 

experienced only with the first part of a component life cycle considering that most components are 

replaced before failing. The assessment asks the expert to imagine that there are n components of the 

same type installed at interval i and requests the expert to estimate the expected number of components 

which would fail within interval i (𝑛𝑖,𝑒). It is then possible to calculate experts 𝑒’s (subjective) probability 

of failure within interval i as: 𝑝𝑖,𝑒 =
𝑛𝑖,𝑒

𝑛
 , 𝑖 = 1, . . , 𝑚, where 𝑚 is the number of intervals proposed. To 

have a more precise probability, n is assumed to be a large number (e.g. 1000), and the sum of all 

failures is equal to n, i.e. ∑ 𝑛𝑖,𝑒
𝑚
𝑖=1 = 𝑛.  
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In order to guarantee a more robust analysis, more than one component should be targeted, 

especially an asset where failure data is abundant, to compare the analysis and consequently, reduce 

the uncertainty associated with the component of interest. Moreover, the questionnaire should start with 

a brief clarification about the methods used and the types of questions presented in the study, followed 

by the seed and target questions. Testing the questionnaire with experts not belonging to the expert 

pool before the actual pool happens, can bring improvements to the questions used and is therefore 

recommended. Formulating extra seeding variables, in order to pick the preferred ones, is also 

recommended, since the complexity of some questions might confuse the expert, causing potential 

biases. 

2.5.2. Selection of experts 

The creation of a list of experts should be based on individuals that have a verifiable knowledge on the 

topic. Since the target questions are directed to operation, maintenance, and quality data, reliability 

engineers are recommended as potential experts, not only due to their experience on different real case 

scenarios of the operation of the component but also due to their understanding of the variables. A 

practical way to determine such a list of experts is to search in regulatory agencies (in the industry of 

interest) and to look for individuals who are members of special interest groups or have participated in 

committees relevant to the topic.  

2.5.3. Experts weighting process 

The weighting process is conducted as explained in section 2.4. In fact, various software applications 

have been developed to calculate the performance measures and combine the expert opinion to a virtual 

DM. Two of these software are EXCALIBUR, which was developed by Cooke and his students, and 

ANDURIL, which was developed at the technical university of Delft by Leontaris and Morales-Nápoles 

in 2018 [51]. Combining expert opinion results in an improved assessment of the target variables.  

2.5.4. Fitting Reliability Curves 

After obtaining the weights of each expert, two approaches for the analysis of the target variables should 

be considered: 

i) the first approach consists of considering each expert's assessment as a whole and fit each expert 

opinion (each assessment on the histogram) on a distribution function. Then, a performance-based 

opinion is obtained by multiplying each expert's weight by the cumulative distribution function of 

each expert. A performance-based reliability curve is then calculated as: 

Where 𝑅𝑃𝑊 is the performance-based reliability curve, 𝑤𝑒 each expert weight, 𝐸 the total number of 

experts and 𝐹𝑒 the best fitted cumulative distribution function from each expert 𝑒. 

ii) the second approach consists of determining first a performance-based opinion (on the histogram) 

with each expert weight:  

𝑅𝑃𝑊 =  1 −  ∑ 𝑤𝑒𝐹𝑒
𝐸
𝑒=1   (2.26) 
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𝑓𝑃𝑊𝑖
= ∑ 𝑤𝑒

𝐸
𝑒=1 𝑓𝑒,𝑖  (2.27) 

Where 𝑓𝑃𝑊𝑖
 is the performance-based opinion on each period 𝑖 of the histogram, 𝑤𝑒 each expert 

weight and 𝑓𝑒,𝑖 each expert’s assessment on each period 𝑖 of the histogram. After defining a 

performance-based opinion on the Histogram, a distribution function is fitted to the aggregated 

opinion. 

For both approaches, fitting reliability curves using parametric distributions to the subjective probabilities 

from the target variables is needed. Such fitting is performed with the maximum likelihood estimator 

method [50], where the likelihood function depends on the distribution parameters 𝜃, and assumes the 

existence of censored data, as defined in [52]: 

𝐿(𝜃) =  ∏ 𝑓(𝑥𝑖|𝜃)
𝑁𝑛𝑜𝑛𝐶
𝑖=1  ×  ∏ 𝐹(𝑥𝑗

𝑢𝑝𝑝𝑒𝑟
|𝜃)

𝑁𝑙𝑒𝑓𝑡𝐶

𝑗=1
 ×  ∏ [1 − 𝐹(𝑥𝑘

𝑙𝑜𝑤𝑒𝑟|𝜃)]
𝑁𝑟𝑖𝑔ℎ𝑡𝐶

𝑘=1  ×

∏ [𝐹(𝑥𝑚
𝑢𝑝𝑝𝑒𝑟

|𝜃) − 𝐹(𝑥𝑚
𝑙𝑜𝑤𝑒𝑟|𝜃)]

𝑁𝑖𝑛𝑡𝐶
𝑚=1      

(2.28) 

Where 𝑥𝑖 are the non-censored observations (𝑁𝑛𝑜𝑛𝐶), 𝑥𝑗
𝑢𝑝𝑝𝑒𝑟

 are the upper values defining the left-

censored observations (𝑁𝑙𝑒𝑓𝑡𝐶), 𝑥𝑘
𝑙𝑜𝑤𝑒𝑟 are the lower values defining the right-censored observations 

(𝑁𝑟𝑖𝑔ℎ𝑡𝐶), [𝑥𝑚
𝑢𝑝𝑝𝑒𝑟

, 𝑥𝑚
𝑙𝑜𝑤𝑒𝑟] are the intervals defining the interval-censored observations (𝑁𝑖𝑛𝑡𝐶), and 𝑓 and 

𝐹 are the density and cumulative distributions functions, respectively, from a parametric distribution 

[33,34]. Since the histogram technique is an interval-based assessment, the latter products of equation 

(2.28) are used. For the parametric distribution, typical choices are the following distributions: the 

Weibull distribution, the Normal distribution, the Lognormal distribution, the Gamma distribution, and the 

Exponential distribution, which are mentioned in section 2.1 and mathematically explained in chapter 3. 

From a practical point of view, the Fitdistcens function from the Fitdistrplus package [52] in R software 

is used to fit the reliability curves.  

Moreover, a goodness-of-fit test is performed to select the statistical distribution that best fits 

the failure assessments. Delignette-Muller and Dutang [52] state that computations of goodness-of-fit 

statistics have not yet been developed for fits using censored data, though the comparison between 

different parametric distributions can be made by using the Akaike Information Criteria (AIC). The AIC 

provides a criterion to compare different models, in which the preferred model is the one with the lowest 

AIC value. After selecting the best model, an estimate for the failure rate can be obtained by computing 

the expected mean from the fitted distribution.  

Finally, both approaches should be compared, and the most conservative reliability curve should 

be considered. The reader who is interested to know more about the fitting modelling and the 

computation behind the functions of interest is directed to Delignette-Muller and Dutang study [52]. Note 

that the outcome of the described steps will consist of reliability curves for the assets of interest, which 

are derived by combining different expert judgments. 
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3. Discrete Event Simulation 

Modelling the reliability and availability of complex systems can be often hard and unrealistic with 

analytical methods, which represent the system by a mathematical model, evaluating it with 

mathematical solutions. Therefore, the model used in such analysis is often simplified, where the output 

is limited to expected values. When considering simple systems, where only the failure characteristics 

are considered, analytical approaches are typically used [55]. Nevertheless, when considering modern 

engineering systems with complex environments, repairable systems and multiple events, analytical 

models are impossible to solve analytically, bringing the need for simulation models, which can 

incorporate any system characteristic that is recognized as crucial in the system’s behaviour. 

In this chapter, Discrete-event Simulation (DES) is explained, as well as the algorithm behind 

the simulation approach. Further on, the Reliability Block Diagram (RBD) is clarified, and the 

mathematical background of the Monte Carlo Simulation (MCS) method is exposed. Distribution 

functions of interest for the DES, which are relevant in a reliability analysis, are analytically exposed as 

well as stochastic modelling of repairs and correlated failures.  

3.1. General principles of discrete simulation and modelling 

Simulation modelling has become a very important mechanism for sophisticated system analysis and 

decision-making [56]. Simulation, which is defined as an approximate reproduction of the operation of a 

process or a system, is a family of computational-based methods to study the operational behaviour of 

a system in its real time condition. It has been applied in many contexts, such as computer experiments, 

scientific modelling or safety engineering. In the latter, some argue that the simulation of maintenance 

functions is the best technique, than most of the traditional analytical modelling, mostly due to the 

complexities of the maintenance operations and the uncertainties that are intrinsic in the parameters 

that define the operation [57].  

In system theory, a system can be described as a group of interacting entities that depend on 

each other in order to fulfil a task or function. Defining a dynamic system in terms of a state variable can 

take three forms: continuous, discrete and quantum. Systems, in which state changes are mostly 

progressive and smooth, are called continuous systems. Systems, in which changes are mostly 

discontinuous, are called discrete systems. Systems, in which state changes occur due to interactions 

among components in the subatomic or cosmological level, are quantum systems [58]. Nevertheless, 

when considering middle level system (between the subatomic and cosmological level), such as 

manufacturing systems (e.g. factories), transportation systems (e.g. traffic networks), service systems 

(e.g. hospitals) and/or communications systems (e.g. wireless networks), the most typical system type 

to model its state change is the discrete-event system (DES) [59]. Indeed, according to Jahangirian et. 

al. [60], a DES is the most suitable technique to model any type of manufacturing system and its 

maintenance operations.  

Within the discrete systems, there are models that can be further distinguished from traditional 

dynamic system models. These are defined by how the models treat the passage of time, on this case 
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time-driven or event-based, and how they treat interdependencies of component elements, on this case 

synchronous or asynchronous [61]. A Discrete time-driven simulation model refers to a model which 

considers equal periods of time during its simulation, thus changing its state according to each time 

step. Alternatively, a discrete-event simulation model can be defined as one in which the state variable 

only changes when events in specific discrete points of time occur. In both approaches, a clock recording 

the simulation time is used. While in time-driven systems, the state changes of the system are 

synchronized by the system clock, in event-based systems the event occurs asynchronously, meaning 

that several events can occur simultaneously. The advantage of using an event-based approach, is that 

periods of inactivity are excluded, resulting in a simulation time improvement. Moreover, time-driven 

approaches need to use smaller simulation time steps to obtain more accurate results [22]. 

3.1.1. Modelling a DES 

To produce a reliable operational behaviour, a DES model is typically defined with a progressive 

procedure, in which the problem is defined, the mathematical model that best relates to the problem is 

chosen and the required input information is gathered. In discrete-event simulations, the analysis of the 

simulation is performed by numerical methods rather than analytical methods, where models are 

simulated instead of being solved. Typically, discrete-event systems have stochastic elements 

incorporated in the activity of the system, since the exact outcome of an activity at any point of time is 

unknown. To model a successful simulation analysis, a close match between the input data and the 

fundamental probabilistic mechanism of the system is required. Therefore, the definition of a discrete-

event simulation model is a complex task, which typically includes the following activity blocks [61]: 

- Clock: simulation time, which skips to the next event as the simulation proceeds; 

- Events List: The events are created as a series of events giving the starting time and 

ending time of the discrete events 𝑇, which can be interpreted as a queue; 

- Random Number Generator: generates random numbers, linked to a stochastic event, 

to perform an event; 

- Statistics: quantifies the aspects of interest; 

- Ending Condition: the condition to end the simulation, which is typically the simulation 

time 𝑇;  

To perform a good simulation, a simulation algorithm is needed to correctly implement the operation of 

the case study of interest. A typical DES algorithm is described in Figure 3.1 flowchart. 
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Figure 3.1 – Flowchart of the DES algorithm (adapted from [61]) 

The algorithm starts by defining the number of simulations 𝑁 and simulation time 𝑇. The number of 

simulations 𝑁 desired should be associated with the confidence interval the user aims, in order to have 

a more rigorous analysis of the behaviour of the system (to see convergence or not, mathematically 

described in the next section). The simulation starts by allocating each information of the system in its 

desired workflow and generates stochastic events, which go according to the input data that entered the 

system. The generated events create state changes to the system, which increment the simulation clock 

with a time step ∆𝑡. After the simulation time has reached its limit, the operational behaviour data of the 

system is stored to quantify the aspects of interest and the simulation is finished.  

3.2. Reliability Block Diagram (RBD) 

With the guidance of the progressive procedure definition, explained in the previous section, one needs 

to define first the problem in which the DES will be built, e.g. the components of interest, their 

interconnections and functions, as well as the maintenance tasks associated with these. Therefore, 

many reliability, availability, maintainability and safety (RAMS) methods have been established to model 

the interdependencies of complex systems, thus guaranteeing the reliability, availability, maintainability 

and safety (RAMS) of such systems. The methods created can be divided into two groups: inductive 

methods and deductive methods. An inductive method performs an analysis from a specific case to a 

general outcome. It is generally recognized as a bottom-up approach, where a specific fault is 
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considered and the possible outcome and effect on the system is deducted. The best known inductive 

analysis methods are FMEA and FMECA (explained in section 2.3), Event Tree Analysis and Dynamic 

Event Trees [22]. Alternatively, a deductive method performs an analysis from a general case to a more 

specific. It is therefore considered a top-down approach, where a system failure is assumed and the 

causes to the failure are analysed, looking to subsystems, components, and failure modes, and how 

they interact and perform in the system. The most used methods are Fault Tree Analysis (FTA) and 

Reliability Block Diagrams (RBD). Both approaches are good representations of complex systems. 

However, the RBD approach has several limitations when considering combinations of failure, repair 

and priority of events. Nonetheless, for systems which only have “AND” and “OR” gates, which define 

the logical behaviour of the system, the RBD is a simpler and intuitively representation of a system 

[4,55]. 

A Reliability Block Diagram (RBD) is a success-oriented graphical representation of a system, 

which uses blocks with logical connections to model the function of components. Each function is 

individually described by one block, where each block gathers information of a particular function of the 

system. Therefore, it represents the relationship and hierarchy between functions and their components. 

In order to build a reliable RBD, it is necessary to reflect the logical behaviour of the system so that each 

block is statistically independent. The logical behaviour represents therefore the connection of the blocks 

to form a diagram of a success path. The structure of an RBD can take three forms: 

3.2.1. Series Configuration 

A system structure is referred as a series structure (‘AND’ gate for FTA) when it only operates if each 

and every component and their associated functions are operational, i.e. the failure of one single function 

brings the system to failure. The RBD configuration of a series system with 𝑛 components can be 

visualized in Figure 3.2. 

 

Figure 3.2 – RBD of a series configuration with 𝑛 components 

Assuming independent events, i.e. the failure and repair processes are independent, the reliability and 

the instantaneous availability of a system of independent components in series can be mathematically 

expressed by the following equations [62]: 

𝑅𝑆(𝑡) =  ∏ 𝑅𝑖(𝑡)

𝑛

𝑖

 (3.1) 

𝐴𝑆(𝑡) =  ∏ 𝐴𝑖(𝑡)

𝑛

𝑖

 (3.2) 

Where 𝑅𝑆(𝑡) is the reliability of the system in series with 𝑛 components, 𝑅𝑖(𝑡) is the reliability of a single 

component or failure mode/function 𝑖, 𝐴𝑆(𝑡) is the instantaneous availability of the system in series with 

𝑛 components and 𝐴𝑖(𝑡) is the instantaneous availability of a single component or failure mode/function 
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𝑖. Since 𝑅𝑖(𝑡) < 1, the reliability of a system in series 𝑅𝑆(𝑡) is always inferior to the reliability of its least 

reliable element.  

3.2.2. Parallel Configuration 

A system structure is referred as a parallel structure (‘OR’ Gate in FTA) when it operates if at least one 

of its components is operational, i.e. when a component or function fails it does not cause the system 

to fail. This is typically referred as a system with redundancy, where only one component operating is 

sufficient to guarantee the system performance. The RBD configuration of a parallel system with 𝑛 

components can be visualized in Figure 3.3. 

 

Figure 3.3 – RBD of a parallel configuration with 𝑛 components 

Again, assuming independent events, the reliability, and the instantaneous availability of a system of 

independent components in parallel is given by the following equations: 

𝑅𝑃(𝑡) =  1 − ∏[1 − 𝑅𝑖(𝑡)]

𝑛

𝑖

 (3.3) 

𝐴𝑃(𝑡) = 1 − ∏[1 − 𝐴𝑖(𝑡)]

𝑛

𝑖

 (3.4) 

Where 𝑅𝑃(𝑡) is the reliability of the system in parallel with 𝑛 components, 𝑅𝑖(𝑡) is the reliability of a single 

component or failure mode/function 𝑖, 𝐴𝑃(𝑡) is the instantaneous availability of the system in parallel 

with 𝑛 components and 𝐴𝑖(𝑡) is the instantaneous availability of a single component or failure 

mode/function 𝑖. It is simple to identify, that the reliability and availability projections for a parallel system 

are greater than the reliability and availability of a single component, conducting to greater reliabilities 

and availabilities than a system in series.  

3.2.3. 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 configuration 

A system that cannot be described by either a series configuration or a parallel configuration is typically 

portrayed by a combination of both, which is known as a 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 system. Such a system 

requires that 𝑘 (< 𝑛) or more components out of 𝑛 operate correctly, in order to guarantee the 

performance of the total system. If 𝑘 = 1, the configuration can be transformed into a parallel system. If 
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𝑘 = 𝑛, the configuration can be transformed into a series system. In fact, such a configuration is a better 

representation of complex systems, where functionalities are difficult to describe and model. Figure 3.4 

exhibits the RBD representation of a 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 system. 

 

Figure 3.4 – RBD representation of a 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 system with 𝑛 components 

Mathematically, the reliability and the instantaneous availability of a system of 𝑛 statistically identical 

and functionally independent components with a 𝑘 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 configuration is given by: 

𝑅𝑘/𝑛(𝑡) = ∑ (
𝑛

𝑖
) 𝑅𝑖(1 − 𝑅)𝑛−𝑖

𝑛

𝑖=𝑘

 (3.5) 

𝐴𝑘/𝑛(𝑡) = ∑ (
𝑛

𝑖
) 𝐴𝑖(1 − 𝐴)𝑛−𝑖

𝑛

𝑖=𝑘

 (3.6) 

Where the binomial coefficient (𝑛
𝑖
) =

𝑛!

𝑖!(𝑛−𝑖)!
  expresses the number of possible combinations to choose 

𝑖 components from a set of 𝑛 components. 

3.3. Monte Carlo Simulation 

Monte Carlo Simulation (MCS) technique is a very relevant method for the analysis of real engineering 

problems in many areas, such as in the automotive industry, health care, military, aviation or service 

systems. The method consists of obtaining estimates, by generating random numbers for the system 

inputs, of analytical problems [22]. A MCS is applied by running a model a considerable amount of times 

in order to produce a large number of simulations and get a precise result. A DES algorithm conducts 

the progress of the stochastic model in each simulation of the MCS. In each simulation, a random failure 

or repair time for each component is generated, where a system component is characterized by a 

probability density function of failure and/or repair. These failures or repairs are then linked in 

accordance with the relationship and hierarchy between functions and components of the system, which 

is defined by the RBD. Therefore, this simulation approach samples for each component the next state 

change event (failure and/or repair) with the use of random numbers and the inverse of the cumulative 

density function (CDF). Each simulation reproduces the evolution of the system until the simulation time 

𝑇 is over. The complete results after each simulation are then analysed to determine the behaviour of 
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the system. The overall procedure to build a MCS algorithm within a DES goes in accordance with 

Figure 3.5. 

 

Figure 3.5 – MCS algorithm 

The first step is to obtain the required data to model adequately the system of interest. This includes the 

distribution functions and the associated parameters that model the stochastic behaviour of the failure 

and/or repair from the components that characterize the system.  

The second step consists of generating uniformly pseudo random numbers 𝑈𝑖 ∈ [0,1] for each 

failure and/or repair distribution function. A uniform random number is a variable that can take, with 

equal probabilities, any value between 0 and 1. When the algorithm that generates the uniform random 

number is processed computationally, the value generated is referred to as a pseudo random number. 

The most typical computational algorithm used to generate pseudo random numbers is the Lehmer’s 

Algorithm, which is a type of Linear Congruential Generator (LCG), a simple generator which uses seed 

variables to generate uniform random numbers [63]. The computational implementation of the Lehmer’s 

algorithm can go according to [64]. 

After generating 𝑈𝑖 ∈ [0,1], the conversion from a pseudo random number to a random variable 

𝑋𝑖 is conducted by using appropriate mathematical transformations. There are many approaches for 

converting random numbers into random variables, nevertheless, if one wants to guarantee uncorrelated 

random variables from a distribution of interest, the inverse cumulative distribution function (CDF) 𝐹𝑋
−1(𝑥) 
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should be used [63]. The inverse CDF depends on the distribution function type and its associated 

parameters, therefore the determination of the inverse CDF is obtained differently according to each 

distribution function type. The inverse CDF determination of each distribution function is explained 

further in the next subsection. One of the major advantages of the MCS method in comparison, for 

example, with a Markov-based method, is that the simulation approach can handle any type of 

distribution functions, whereas in the latter only exponential distribution functions can be considered 

[22]. 

Finally, the random variables 𝑋𝑖 are introduced in the CDFs of interest, to study the behaviour 

of the system. To finish the MCS, a number of iterations 𝑁 is defined before the simulation, which 

coincides with the number of iterations chosen for the DES. In order to produce reliable representations 

of the systems behaviour, it is recommended to choose a large sample size and iteratively observe if 

the results converge to determined values. Nonetheless, a good technique to determine the order of 

magnitude of the number of simulations 𝑁 is based on the confidence interval that is desired. The 

confidence interval for the mean values of the sample �̅� is obtained by the normal distribution function 

as follows [65]: 

(�̅� − 𝑧
1−

𝛼
2

𝜎

√𝑁
, �̅� + 𝑧

1−
𝛼
2

𝜎

√𝑁
)       (3.7) 

Where 𝛼 is the significance level considered for the test, 𝑧𝑖 the 𝑖-th quantile of the 𝒩(0,1) distribution,  

𝜎 the standard deviation of the sample and 𝑁 the number of simulations or iterations. 

3.4. Distribution Functions of interest 

The stochastic failure and/or repair behaviour of components is typically represented by different 

probability distribution functions which are characterized by parameters. As mentioned in section 2.1 

and section 2.5, the most typical distributions to describe the reliability and availability of complex 

systems are: the Exponential distribution, the Normal distribution, the Weibull distribution, the Lognormal 

distribution and the Gamma distribution. In this section, the noticed distribution functions are explained, 

emphasizing the equations which are commonly implemented in studying the reliability and availability 

of systems. The latter distribution was not considered, mainly due to the mathematical complexity of 

modelling it. The definitions of each distribution function go according to  [4,55,65,66]. 

3.4.1. Exponential distribution 

The exponential distribution is the most used distribution to model the reliability, availability, 

maintainability, and safety (RAMS) of complex systems, mainly due to its mathematical simplicity. It is 

characterized for having a constant hazard rate, which indicates the accuracy to model realistic life 

distributions for an element in its useful life period. With a constant hazard rate ℎ(𝑡), the probability 

density function (PDF) of an exponential distribution is defined as follows (for 𝑡 ≥ 0):  

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡   (3.8) 

ℎ(𝑡) = 𝜆 (3.9) 
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Where 𝜆 is the exponential distribution parameter, which is constant. The exponential cumulative 

distribution function (CDF) 𝐹(𝑡) and the reliability function 𝑅(𝑡) are both derived from the exponential 

PDF, as explained in section 2.1, and are defined as follows:   

𝐹(𝑡) = 1 − 𝑒−𝜆𝑡 (3.10) 

𝑅(𝑡) = 𝑒−𝜆𝑡 (3.11) 

By having a constant hazard rate ℎ(𝑡), the exponential distribution has a memoryless property, which 

means that the probability of a failure in a particular time interval is the same regardless of the original 

starting point of the time period. Considering the definition of the 𝑀𝑇𝑇𝐹, discussed in section 2.1, the 

𝑀𝑇𝑇𝐹 is defined as follows: 

𝐸(𝑇) = 𝑀𝑇𝑇𝐹 =  ∫ 𝑅(𝑡)𝑑𝑡
+∞

0

=  ∫ 𝑒−𝜆𝑡𝑑𝑡
+∞

0

=
1

𝜆
 (3.12) 

With the failure function 𝐹(𝑡) it is possible to generate random times to failure (𝑇𝑇𝐹) by applying the 

inverse transformation, also known as the quantile of one probability distribution function. For an 

exponential distribution, the resulting transformation is given by: 

𝑇𝑇𝐹 = −
1

𝜆
ln(1 − 𝑝) , 𝑝 ∈ (0,1)       (3.13) 

Where 𝑝 = 𝑈𝑖 ∈ [0,1] is generated randomly. It is important to emphasize that the 𝑇𝑇𝐹 is a 

pseudorandom variable, since it is obtained via a computational random generator algorithm, whereas 

the 𝑀𝑇𝑇𝐹 is the expected value of the distributions.  

3.4.2. Normal Distribution 

The normal distribution is the most used distribution in the field of statistics and probability, which is also 

referred as a Gaussian distribution. A random variable 𝑇 is normally distributed with mean 𝜇 and 

variance 𝜎2, 𝑇 ~𝒩(𝜇, 𝜎2) when the probability density function of 𝑇 is defined as: 

𝑓(𝑡) =  
1

√2𝜋 × 𝜎
𝑒−(𝑡−𝜇)2/2𝜎2

,    − ∞ ≤ 𝑡 ≤  ∞ (3.14) 

When a Normal distribution is characterized with a mean 𝜇 = 0 and variance 𝜎2 = 1, it is referred to as 

a Standard Normal distribution. In fact, in terms of application, the Standard Normal distribution is the 

most widely used, since that if a behaviour can be modelled with the Standard Normal distribution in 

terms of quantiles and distribution function, then it can be modelled with a generic normal variable [67] 

For a specific random variable 𝑡 from a Normal distributed random variable 𝑇 ~𝒩(𝜇, 𝜎2), the equivalent 

random number 𝑧 of a standardized Normal random variable 𝑍~𝒩(0,1) is given by the following 

transformation: 

𝑧 =  
𝑡 − 𝜇

𝜎
  (3.15) 

The cumulative distribution function of 𝑧, the transformed CDF of 𝑡 and the reliability function 

are the following: 
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Φ𝑍(𝑧) = ∫
1

√2𝜋

𝑧

−∞

𝑒−
𝑧2

2 𝑑𝑧 = 𝐹𝑍(𝑧) (3.16) 

𝐹𝑇(𝑡) = 𝐹𝑍 (
𝑡 − 𝜇

𝜎
) = Φ𝑍 (

𝑡 − 𝜇

𝜎
) (3.17) 

𝑅(𝑡) = 1 − 𝐹𝑇(𝑡) = 1 − Φ𝑍 (
𝑡 − 𝜇

𝜎
) (3.18) 

The hazard rate ℎ(𝑡) of a Normal distribution can be expressed as: 

ℎ(𝑡) =  
𝑓(𝑡)

𝑅(𝑡)
=

𝑓(𝑡)

1 − Φ𝑍 (
𝑡 − 𝜇

𝜎
)
 

(3.19) 

The mean of the Normal distribution is: 

𝐸(𝑡) = 𝑀𝑇𝑇𝐹 = 𝜇 (3.20) 

The quantile of a Normal distribution function can also be obtained with the inverse 

transformation algorithm, by applying 𝐹−1(𝑡). The quantile function of the standardized Normal 

distribution with random number 𝑧 and the quantile function of the Normal distribution function with mean 

𝜇 and variance  𝜎2 can be expressed in terms of the error function as follows: 

𝑧𝑝 = Φ−1
𝑍

(𝑝) = √2 erf −1(2𝑝 − 1), 𝑝 ∈ (0,1) (3.21) 

𝑇𝑇𝐹 = 𝜇 + 𝜎 × √2 erf −1(2𝑝 − 1), 𝑝 ∈ (0,1) (3.22) 

Where erf(𝑧) =
2

√𝜋
∫ 𝑒−𝑡2𝑧

0
 and  𝑝 = 𝑈𝑖 ∈ [0,1] is generated randomly.  

3.4.3. Weibull Distribution 

The Weibull distribution is one of the most used distributions in reliability analysis since the aging 

modelling of components is accurately represented by the distribution. In reliability analysis, it has many 

application ranges due to its flexibility in modelling distribution shapes. The Weibull distribution was first 

introduced by the Swedish mathematician Waloddi Weibull (1887-1979), who established this 

distribution when studying material sciences. The two-parameter Weibull distribution is defined for 𝑡 ≥ 0 

and is described by the following probability density function (PDF) 𝑓(𝑡), failure function 𝐹(𝑡), reliability 

function 𝑅(𝑡) and hazard rate function ℎ(𝑡): 

𝑓(𝑡) =
𝛽

𝜂
× (

𝑡

𝜂
)𝛽−1𝑒

−(
𝑡
𝜂

)𝛽

 (3.23) 

𝐹(𝑡) = 1 − 𝑒
−(

𝑡
𝜂

)𝛽

 (3.24) 

𝑅(𝑡) = 𝑒
−(

𝑡
𝜂

)𝛽

 (3.25) 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝛽

𝜂
× (

𝑡

𝜂
)𝛽−1 (3.26) 

Where 𝜂 > 0 is the scale parameter, which establishes the position of the PDF on the time axis, and 

𝛽 > 0 the shape parameter, which determines the shape of the PDF. Increasing the value of the scale 

parameter 𝜂 while holding the value of 𝛽 as a constant stretches the PDF curve in the abscissa axis. In 
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fact, when 𝛽 = 1, the failure rate is constant (useful life period) becoming an exponential distribution, 

when 0 < 𝛽 < 1 the failure rate is decreasing (burn-in period) and when 𝛽 > 1 the failure rate is 

increasing (wear-out period). Indeed, this shape flexibility is the reason why the Weibull distribution is 

overly applied in the interpretation and analysis of components failure phenomena.  

The mean of the Weibull distribution can be derived as follows: 

𝐸(𝑇) = 𝑀𝑇𝑇𝐹 = ∫ 𝑡 × 𝑓(𝑡) 𝑑𝑡
∞

0

= 𝜂. Γ (1 +
1

𝛽
) (3.27) 

Where Γ(∙) is the gamma function. 

The quantile (inverse cumulative distribution function) of the Weibull distribution is for 0 ≤ 𝑝 < 1 

the following: 

𝑇𝑇𝐹 = 𝜂(− ln(1 − 𝑝))
1
𝛽 (3.28) 

Where  𝑝 = 𝑈𝑖 ∈ [0,1]is generated randomly. 

3.4.4. Lognormal Distribution 

The Lognormal distribution is a distribution where its continuous positive random variable 𝑇 is 

characterized by a mean 𝜇 and variance 𝜎2 such that 𝑇 ~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), if 𝑌 = 𝑙𝑛(𝑇) is normally 

distributed with mean 𝜇 and variance 𝜎2 such that 𝑌 ~𝒩(𝜇, 𝜎2). The lognormal distribution is commonly 

used to model the wear out of materials, specially metals, and repair times of components. Its probability 

density function is given by: 

𝑓(𝑡) =
1

𝜎𝑡√2𝜋
𝑒

−
1
2

(
ln 𝑡−𝜇

𝜎
)

2

 (3.29) 

The shape of the distribution is largely dependent with 𝜎. The parameters 𝜇 and 𝜎 refer to the mean and 

variance of ln 𝑇. 

The lognormal failure function 𝐹(𝑡) and reliability function 𝑅(𝑡) are defined as follows: 

𝐹(𝑡) = Φ [
ln 𝑡 − 𝜇

𝜎
] (3.30) 

𝑅(𝑡) = 1 − Φ [
ln 𝑡 − 𝜇

𝜎
] (3.31) 

Where Φ is the CDF of the standard normal distribution.  

The hazard rate function ℎ(𝑡) for the lognormal distribution is given as: 

ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝑓(𝑡)

1 − Φ [
ln 𝑡 − 𝜇

𝜎
]
 

(3.32) 

The hazard rate has no simple mathematical expression, nevertheless, for 𝑡 = 0 the hazard rate is 

ℎ(𝑡) = 0 and for 𝑡 → ∞ the hazard rate ℎ(𝑡) → 0 with a single maximum. 

The mean 𝐸(𝑇) of the lognormal distribution is: 

𝐸(𝑇) = 𝑀𝑇𝑇𝐹 = 𝑒𝜇+
𝜎2

2  (3.33) 
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The quantile of the lognormal distribution function is obtained with the inverse CDF algorithm 

and is defined as follows: 

𝑇𝑇𝐹 = 𝑒(𝜇+√2𝜎2erf−1(2𝑝−1)) (3.34) 

Where erf (∙) is the error function and 𝑝 = 𝑈𝑖 ∈ [0,1]is generated randomly 

3.5. Uncertain Maintenance Durations 

Maintenance durations, usually referred as repair times, can assume a deterministic behaviour, where 

the duration of the repair is constant and known in advance, or can assume a stochastic behaviour, 

where the repair is modelled as a random variable by assigning a probability distribution function to 

consider uncertainty embedded in the repair duration. A maintenance duration with a stochastic 

behaviour is commonly modelled when studying the reliability and availability of complex systems.  

To model the uncertainty in the repair durations, the PERT distribution is considered, which is 

based on [68] implementation of uncertain maintenance durations. Although in Maintainability (M), the 

most used distribution functions to model the stochastic behaviour of the repair times are the exponential 

and the lognormal distribution, these are only applicable if enough data is gathered [27]. Motivated by 

the Project Evaluation Research Technique (PERT), the PERT distribution is a continuous distribution 

function, which is a transformation of the four-parameter Beta distribution with an expected value 𝜇 

assumed as [69]: 

Where 𝑎 is the minimum value, 𝑏 is the most likely value (mode) and 𝑐 is the maximum value. The three 

parameters are referred to as the PERT parameters and serve as input to the function. To generate a 

random time to repair (TTR), it is essential to derive the quantile of the CDF of a PERT distribution. The 

CDF of a PERT distribution is based on the regularized incomplete Beta function 𝐵(𝑥|𝛼, 𝛽) and the 

complete Beta function 𝐵(𝑎, 𝛽) which are defined as: 

Where 𝐵(∙) is the Beta function and Γ the gamma function. In order to obtain the CDF, some 

transformations have to be obtained, namely: 

𝜇 =
𝑎 + 4𝑏 + 𝑐

6
 (3.35) 

𝐵(𝑥|𝛼, 𝛽) = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡
𝑥

0

 (3.36) 

𝐵(𝛼, 𝛽) = ∫ 𝑡𝛼−1(1 − 𝑡)𝛽−1𝑑𝑡
1

0

=
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
 (3.37) 

𝐹𝑧(𝛼, 𝛽) = Ι𝑧 (𝛼, 𝛽) =
𝐵(𝑧|𝛼, 𝛽)

𝐵(𝛼, 𝛽)
 (3.38) 

𝛼 = 1 + 4
𝑏 − 𝑎

𝑐 − 𝑎
 (3.39) 

𝛽 = 1 + 4
𝑐 − 𝑏

𝑐 − 𝑎
 (3.40) 
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The quantile (TTR) of the PERT distribution is obtained with 𝑇𝑇𝑅 = 𝑥 = 𝑧(𝑐 − 𝑎) + 𝑎, where 𝑧 =

𝐹−1(𝑝|𝛼, 𝛽) and with 𝑝 = 𝑈𝑖[0,1] randomly generated. 

3.6. Correlated Failure Modes - Multivariate Normal Random Numbers 

When modelling complex systems, with strong interdependencies, the failure of some components can 

either bring an abrupt wear-out to other components or bring no effect to function-related components. 

Therefore, to better model a system, one can consider correlation of the interdependencies of each 

subsystem, component or the associated failure modes. This can be modelled with the use of a 

multivariate Gaussian process (MGP) model, which applies multivariate normal random numbers to 

generate correlated failures [70].  

The multivariate normal distribution is an extension of the univariate normal distribution (or 

Gaussian) by assuming two or more variables. It is based on two parameters, the mean vector 𝜇 and 

the covariance matrix ∑, which are related to the mean and the variance of the univariate normal 

distribution. The covariance matrix ∑ measures the dependency of each specific proportion and is 

defined as [71]: 

∑ = E[(X − 𝜇)(𝑋 − 𝜇)𝑇] = (

𝜎1,1

𝜎2,1

…
𝜎𝑑,1

𝜎1,2

𝜎2,2

…
𝜎𝑑,2

…
…
…
…

𝜎1,𝑑

𝜎2,𝑑

…
𝜎𝑑,𝑑

)  (3.42) 

Where 𝑑 is the dimension of the proportions being analysed. The covariance 𝜎𝑖,𝑗 of proportions 𝑖 and 𝑗 

is defined as: 

𝜎𝑖,𝑗 = E[(𝑥𝑖 − 𝜇𝑖⃗⃗⃗⃗ )(𝑥𝑗 − 𝜇𝑗⃗⃗ ⃗⃗ )
𝑇

] (3.43) 

Considering that 𝜎𝑖,𝑗 = 𝜎𝑗,𝑖 , 𝜎𝑖,𝑗 ≥ 0 for ∀𝑖, 𝑗 and that 𝜎𝑖,𝑗 = 𝜎2 for 𝑖 = 𝑗 the covariance matrix ∑ is positive 

semi-definitive.  

The probability density function of a multivariate normal distribution with  𝑑-dimensions is defined as 

follows: 

𝑓(𝑥, 𝜇, ∑) =
1

√|∑|(2𝜋)𝑑
𝑒(−

1
2

(𝑥−𝜇)∑−1(𝑥−𝜇)′)
 (3.44) 

Where 𝜇 and 𝑥 are 1-by-𝑑 vectors. The generation of multivariate normal random numbers is defined in 

[72], which is mathematically based on the Central Limit Theorem. After generating normally distributed 

random numbers 𝑋, the multivariate normal probabilities are obtained by applying 𝑋 to the Standard 

Normal Distribution CDF Φ𝑍(𝑧) defined with equation (3.16). Then, the normal correlated random 

probability is introduced to a quantile of interest. For each correlation scenario, a mean vector 𝜇 and a 

covariance matrix ∑ is needed. 

  

𝑧 =
(𝑥 − 𝑎)

(𝑐 − 𝑎)
 (3.41) 
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4. Case Study - FGC Freight Locomotive 

After discussing the principles of a RAMS analysis, where emphasis is put on the FMEA/FMECA risk 

assessment technique, and after proposing a reliability assessment method (in chapter 2), the simulation 

model background, on which the RAMS analysis of this work is based, was explained (in chapter 3). In 

this fourth chapter, the case study is explained and described, as well as FGC, the train operating 

company on which the resulting models of this work are implemented. The functional breakdown of the 

bogie of interest is explored and the methodologies presented in chapter 2 are applied to it. 

4.1. Project Context 

The LOCATE project, which stands for Locomotive bOgie Condition mAinTEnance, is a 24-month 

Shift2Rail joint undertaking project that started in November 2019, which aims to create a set of tools to 

assess the condition of freight locomotive bogies in order to implement a condition-based maintenance 

program. Consequently, the project will contribute to the development of standard predictive 

maintenance programs, with the ambition of replacing current preventive and scheduled maintenance 

programs of freight locomotives in the European Union. The consortium of the project is made by 6 

entities, namely: Ferrocarrils de la Generalitat de Catalunya (FGC), EVOLEO Technologies, Vibratec, 

Instituto Superior Técnico (IST), University of Huddersfield and Union Internationale des Chemins de 

Fer (UIC), with a total budget of 1.5 Million €, financed by the Horizon 2020 research and innovation 

fund. The project is divided into seven work packages (WP), where each entity performs and aids the 

execution of each task inside a WP. WP1 is the leading WP of the project and is responsible for the 

project management activities, aiming that the effectiveness of the project plan is fulfilled. WP2 is 

focused on the requirements and specifications of the end user needs, in order to ensure that the 

research and development of the project is directed to the end user. WP3 aims on the project 

development of the observed measured behaviour, selecting and implementing the right sensor 

technology and processing the obtained data from the critical components. WP4 is focused on modelling 

digital twins, which will be used for comparison with the actual measured behaviour (strong related to 

the result obtained in WP3). This will enable to predict the degradation of the system and the need for 

maintenance. WP5 is responsible for defining the maintenance schedule procedures for the future 

generations of condition-based maintenance programs, where focus is put on the safety of the 

framework. The framework developed will be applied to FGC locomotive bogie. Consequently, an 

additional WP6 serves as a leading WP by establishing a demonstrator on which the project’s results 

are validated. This will include a validation process on which the developed algorithms as well as the 

information is analysed. Lastly, the dissemination, communication and exploitation of the project is 

gathered and exposed in WP7. To have a better perception of the entire project, Figure 4.1 presents the 

flowchart of the project, where the main work packages of the project are demonstrated.  
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Figure 4.1 – Flowchart of the project 

The purpose of the present case study is to contribute to WP2 and WP5 by performing a FMEA and 

FMECA analysis, in order to support the selection of “use cases” of the project as a diagnosis and by 

studying and testing the real time reliability and availability of the bogie of interest with different 

simulations models, respectively, to support the maintenance planning and scheduling as a prognosis 

model. 

4.2. General Characteristics of the Freight Locomotive 

As mentioned in the previous section, the LOCATE Project framework is applied and studied with FGC, 

a Spanish train operating company. FGC is a state-owned train operating company from Catalunya, 

Spain, that operates both freight and passengers’ trains, transports approximately 90 million people a 

year, employees a workforce of 2000 people and manages 300km of railway tracks. 

In the freight transport, FGC is responsible for managing the transport of minerals, such as salt 

and potash, as well as containers of goods and cars (Seat). It has a freight fleet of approximately 81 

wagons and 7 locomotives. The freight locomotive involved in the project, the 254 class locomotive, is 

used for the transportation of the cars and potash and is shown in Figure 4.2. 

 

Figure 4.2 – FGC Series 254 Class Locomotive 

In total, FGC operates 3 units of the Series 254 Class locomotives. Each of these is equipped 

with a supercharged two-stroke diesel engine, which provides the power that generates the direct 
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current needed in the traction system. The traction engine, which supplies motion to the wheelsets, is 

assembled in the bogie structure. The global locomotive structure is made up by the locomotive box and 

the running gear, which in the case of interest is the bogie vehicle. There are 2 bogies per locomotive, 

3 wheelsets per bogie and 1 electric traction engine per wheelset. Each traction engine is directly 

employed to an axle. The summarized technical details comprised by each Series 254 Class locomotive 

are presented in Table 4.1. 

Table 4.1 – Series 254 Class Locomotives [73] 

TECHNICAL DETAILS 

Locomotive type Co’ Co’ 

Max Speed 90 km/h 

MWater for cooling 568 l 

Fuel capacity 3.000 l 

Sand capacity  400 l 

Total weight 81000 kg 

Electric Traction Engine 

Traction Power 
1500 HP 

118,568 kW 

Nº of engines 6 

Model D29CCT 

Current Type DC 

Intensity in DC 450 A 

Weight  2002 kg 

Wheelset 

Distance between Wheels  924 mm 

Wheels diameter initial 914 mm 

Wheels diameter final 854 mm 

Brake shoes Free of asbetos 

Axle Box TIMKEN 6x11” 

Weight 1991kg 

4.3. The Series 254 Class Bogie – Functional Breakdown 

Each locomotive of the Series 254 Class is supported by two Flexicoil GLC type bogies. The bogie is 

designed to support the rail vehicle body and to distribute its weight through the locomotive wheels. Not 

only does it provide stability to the locomotive, by absorbing vibration and minimizing the impact of 

centrifugal forces when the locomotive runs, but it also houses several subsystems which are critical to 

the execution of the locomotives function, such as the electric traction engine.  

In order to study the bogie system, a functional analysis was completed to identify the functions 

performed by the system, its subsystems and the components associated with these. In Figure 4.3, the 

bogie subsystems are identified and, according to the Handbook of railway dynamics [74], the definition 

of each subsystems function is as follows: 

- Bogie bolster: responsible for the vehicle body weight transfer to the bogie frame; 

- Wheelset: provides the necessary distance between the vehicle and the track, provides 

the vertical support, provides the guiding role to negotiate curves on the track, transmits 

traction and braking forces to the rails; 
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- Axlebox: allows the wheelset to rotate, providing the bearing housing and the mountings 

for the primary suspension to attach the wheelset to the bogie frame; 

- Wheel flange lubricator: lubricator system to reduce friction between the wheel flanges 

and the inner sides of the rail;  

- Primary suspension: connects the wheelsets to the bogie frame, guides the wheelsets 

and aims at absorbing the high-frequency wheel-rail contact loads; 

- Secondary suspension: connects the bogie frame to the vehicle body, deals with the low-

frequency loads; 

- Traction engine suspension: connects the traction engine to the bogie frame; 

- Electric traction engine: provides motion to the axle and therefore to the wheels; 

- Brake rigging: distributes the braking forces from the brake cylinder to the various brake 

shoes interacting with the wheels of the vehicle; 

- Brake cylinder: responsible for creating the breaking force when air is introduced; 

- Parking brake: blocks the wheel motion when the train unit is parked; 

- Sander: projects sand on the wheel-rail interface to improve adhesion in both traction and 

braking; 

- Pneumatic equipment: responsible for activating the braking and sander system; 

- Earth current return unit (in the axlebox): directs the path of the current away from the 

bearings through the wheels or axles; 

 

Figure 4.3 – Subsystem identification and Bogie drawings a) Top View and b) Side View [73] 

a)

b)
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It is worth mentioning that the identification of the subsystems presented above was also based on the 

maintenance plan of FGC, which was provided in the project and discussed in the project Deliverable 

[73].  

4.4. FMEA Analysis  

4.4.1. Selection of components and identification of their failure modes 

Following the identification of the bogie configuration and the respective functionalities, FMEA requires 

the identification of potential component and interface failure modes and their effects to the system and 

ultimately to the bogie (the system-of-interest). Therefore, in order to proceed to the analysis, a 

comprised configuration of the bogie was established, which not only embraces the use case of interest 

mentioned in the previous section, but it also relates to other general freight locomotive bogies. 

Consequently, the subsystems selected to the case study are the following: 

1) Wheelset; 

2) Axlebox; 

3) Bogie frame; 

4) Brake system; 

5) Suspension system/ elements; 

6) Electric traction engine. 

According to the MIL-STD-1629A standard [75], a failure mode should describe the manner a 

component fails to fulfil its defined function. The key requirements for defining a failure mode can be 

summarised as follows:  

- relates to how the failure is observed: 

- describes the manner the failure occurs; 

- describes the impact/effect of the failure on the component; 

- relates to performance measurement of the component. 

However, due to limited information on the case studies being analysed, the FMEA analysis was 

conducted by referring to the findings from the previous EU Project INNOWAG [76], a project focused 

on lightweight cargo wagons bogies which shares a number of commonalities with the case study. For 

example, in the bogie of interest and the lightweight cargo bogie, many similarities can be found on the 

functional breakdown of both systems, as well as typical failure modes and their effects on the system. 

It is worth mentioning that the findings from the INNOWAG project are summarized, not including any 

inspection or maintenance sheets where the failure causes, failure effects and failure mechanism are 

mentioned. 

The INNOWAG project comprised its study with three different sets of data, all based in three 

different subsystems of the bogie, namely: the wheelset, the braking system, and the suspension 

system. Although the different datasets belong to three different operating wagon companies, which 

have different maintenance policies, a combined FMEA analysis spreadsheet was created to list the 
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most critical components and their failure modes since all the wagons operate in accordance with the 

General Contract of use for Wagons [77]. 

Using the methodology described in section 2.3, an evaluation of the 𝑅𝑃𝑁 number was 

performed for all failure modes identified. In accordance with the UIC Guidelines [38], a threshold limit 

value of 𝑅𝑃𝑁𝑖 = 250 was set and all the failure modes with a higher value than this acceptable threshold 

were identified as critical. In addition to this threshold limit value, and to guarantee that all critical failure 

modes were identified, all failure modes whose Severity (S) number is 𝑆 = 10 are also considered as 

critical. 

The results of the FMEA analysis of the three systems are shown in Table 4.2. 

Table 4.2 – FMEA Analysis based on the findings of the INNOWAG Project [76]  

Subsystem Component Failure Mode 
Failure 

Rate 1/h 
Severity, S Occurrence, O Detectability, D RPN 

Wheelset  

Axle Axle crack 1.31E-06 
unsafe, 
without 
warning 

10 
low, relative few 

failures 
3 moderate 5 150 

Wheel  

Wheel out of round 6.04E-06 very high 8 
moderate, often some 

failures 
6 very low 7 336 

Wheel cracks and 
notches 

4.80E-05 very high 8 
high, repeating failures  

in short cycle 
8 very low 7 448 

Wheel flat 9.60E-05 very high 8 
high, repeating failures  

in short cycle 
8 very low 7 448 

Wheel  
thermomechanical 

crack 
3.50E-07 very high 8 

low, relative few 
failures 

3 very low 7 168 

Wheel build-up 
material 

6.00E-05 very high 8 
high, repeating failures  

in short cycle 
8 very low 7 448 

Wheel profile under 
 threshold limit 

8.40E-04 
unsafe, 
without 
warning 

10 
very high, many 

failures 
 in short cycles 

9 low 6 540 

Axlebox  

Absence of the 
 cover box screw 

6.00E-05 very high 8 
high, repeating failures  

in short cycle 
8 moderate 5 320 

Housing not watertight 1.20E-04 very high 8 
high, repeating failures  

in short cycle 
8 moderate 5 320 

Bearing Failure 2.12E-06 
unsafe, 
without 
warning 

10 
moderate, sometimes 

some failure 
5 very very low 8 400 

Braking 
System  

Brake  

Parts of brake rigging 
hanging 

2.01E-05 very high 8 
high, repeating failures  

in short cycle 
8 moderate 5 320 

Brake isolating cock 2.01E-05 very high 8 
high, repeating failures  

in short cycle 
8 uncertain 9 576 

Cast iron Brake Block 1.08E-04 moderate 6 
high, repeating failures  

in short cycle 
8 very low 7 336 

Composite Brake 
Block 

3.12E-05 moderate 6 
high, repeating failures  

in short cycle 
8 very low 7 336 

Brake coupling 
missing 

1.20E-04 moderate 6 
high, repeating failures  

in short cycle 
8 very high 2 96 

Pneumatic 
System  

Front air valve 
damaged 

6.00E-05 
unsafe, 
without 
warning 

10 
high, repeating failures  

in short cycle 
8 moderate 5 400 

Brake cylinder 
damaged 

6.00E-05 moderate 6 
high, repeating failures  

in short cycle 
8 very very low 8 384 

Air distributor 
damaged 

3.00E-04 moderate 6 
high, repeating failures  

in short cycle 
8 uncertain 9 432 

Slack adjuster 
damaged 

2.40E-04 very high 8 
high, repeating failures  

in short cycle 
8 low 6 384 

Suspension 
System  

Spring Buckle Spring Buckle Fracture 6.00E-05 
unsafe, 
without 
warning 

10 
high, repeating failures  

in short cycle 
8 very very low 8 640 

Helical Spring Helical Spring broken 6.00E-05 
unsafe, 
without 
warning 

10 
high, repeating failures  

in short cycle 
8 moderate 5 400 

other 
suspension 
elements 

Bottoming between 
Axlebox housing and 

bogie frame 
1.44E-06 

unsafe, 
without 
warning 

10 
low, relative few 

failures 
3 moderate 5 150 
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In order to highlight the most critical failure modes that resulted from the FMEA analysis, the cells 

corresponding to an 𝑅𝑃𝑁 higher than the threshold limit (250) and/or with a severity (S) indicator equal 

to 10, were highlighted and presented in bold.  

From the FMEA analysis results, the critical components of three main subsystems of the bogie 

were identified. Nevertheless, and considering that FGC has also major problems regarding 

maintenance, number of failures or warnings and times to repair, with other types of subsystems, such 

as the bogie frame and the electric traction engine, there is a need to address additional statistical 

references, to model the failure behaviour of other critical systems and prioritize the ones identified as 

most critical, taking in mind the lack of useful data provided by FGC. This was possible with two 

reference articles, namely [78] and [79], where:  

- In [78], a reliability and availability analysis of a Polish diesel locomotive is conducted to 

identify the components which present greater impact on the downtime of the operation; 

- In [79], a reliability analysis of a Chinese high-speed train bogie is performed, where 

different distribution functions are tested and modelled to represent each critical component 

embedded in the functional behaviour of the bogie; 

Although both articles comprise a different case study than FGC, some bogie components perform 

identical purposes, resulting in similar statistical behaviours. Therefore, a proposal was created that is 

aligned with the interests and research opportunities of the present case study, which is based on the 

FMEA analysis results and these additional references. Following the definition of the subsystems, the 

critical components and their failure modes were defined again, with the guidance of the FMEA analysis 

results and with the additional references [78,79]. 
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Table 4.3 – Components and Failure Modes identified as critical 

Subsystem 
ID 

Subsystem Component ID Component Failure Mode Source 

1 Wheelset 

1.1 Axle Axle Crack FMEA 

1.2 Wheels Wheel out of round FMEA 

1.2 Wheels 
Wheel Cracks and 

notches 
FMEA 

1.2 Wheels Wheel Build-up Material FMEA 

1.2 Wheels wheel flat FMEA 

1.2 Wheels 
Profile under the 

threshold limit 
FMEA 

2 Axle Box 

2.1 Axle Box 
Absence of the cover box 

screw 
FMEA 

2.1 Axle Box Housing not watertight FMEA 

2.1 Axle Box Bearing Failure Literature [78]  

3 Bogie Frame 3.1 Frame - Literature [78] 

4 
Brake 

System 

4.1 Brake 
parts of brake rigging 

hanging 
FMEA 

4.1 Brake Brake isolating cock FMEA 

4.1 Brake Cast Iron Brake Block FMEA 

4.1 Brake Composite Brake Block FMEA 

4.2 Pneumatic Braking system Front air valve damaged FMEA 

4.2 Pneumatic Braking system Brake cylinder damaged FMEA 

4.2 Pneumatic Braking system Air distributor damaged FMEA 

4.2 Pneumatic Braking system Slack adjuster damaged FMEA 

4.2 Master/Auxiliary Compressor - Literature [78] 

4.3 Master/Auxiliary Compressor Driving Motor - Literature [78] 

4.5 Servo-motor in the braking system - Literature [78] 

4.6 
Other Elements of the pneumatic braking 

system 
- Literature  [78] 

4.7 
Other Elements of the braking system (pins, 

sleeves,…,) 
- Literature [78] 

5 
Suspension 
Elements 

5.1 Spring Buckle Spring Buckle Fracture FMEA 

5.2 Helical Spring Helical Spring broken FMEA 

5.4 Other Suspension elements 
Bottoming between 

Axlebox 
 housing and bogie frame 

FMEA 

6 
Electric 
Traction 
Module 

6.1 Power transmission system - Literature [79] 

6.2 Shaft Coupling - Literature [79] 

6.3 Traction Motor - Literature [79] 

 

As it can be verified from Table 4.3, the failure modes that comprise the braking system and bogie frame 

were obtained from [78], whereas the failure modes from the electric traction engine were obtained from 

[79]. Some components, especially the ones which were adopted from the literature review, are not 

disaggregated in its failure modes, mostly due to lack of information, which is implicit in both reference 

analysis. 
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4.5. Assessing Uncertainty – Application of the Reliability Assessment Method 

There are some challenges when applying an adaptation of a classic method to the real-world scenarios. 

In the case study, one of the main challenges is the uncertainty embedded in the decision-making 

process, due to the availability of reliable information from FGC of the real-life behaviour of some 

subsystems and components. To mitigate the impact of the uncertainty and to gain more confidence in 

our analysis in order to accomplish a more realistic assessment aligned with the real case study of FGC 

freight locomotives, a survey was conducted to experts and expert judgment techniques were used to 

quantify survival curves and failure curves of the most critical subsystem of the bogie: the wheelset 

subsystem.  

Therefore, in order to build the reliability assessment method proposed in section 2.5, one needs 

to disaggregate the wheelset subsystem in its components, to try to understand which of these might 

be the most desirable for the project and select those for further analysis. As a result, and based on 

what FGC considered critical for the analysis, the following wheelset components were identified as 

target variables: 

i. Axles 

ii. Wheels 

In order to obtain a robust result, one had to construct the target questions, calibration questions, 

and a list of experts that would benefit the project. The following subsections 4.5.1-4.5.4 apply each step 

of the Reliability Assessment Method previously described in subsections 2.5.1-2.5.4. 

4.5.1. Seed Questions 

The seed questions were formulated with the guidance of two European Railway Agency (ERA) annual 

reports from the past 3 years, namely the ERA report on Railway Safety and Interoperability in the EU 

from 2018 [80] and 2019 [81], and also from the European Standards available for the wheelset 

components. Therefore, a total of 13 questions were formulated, whereas 4 questions out of 13 were 

used for the survey (see Appendix A1). All questions were specific to the components topic and all 

questions were based on the reliable data published, and thus all questions had their actual realizations.   

The target questions were formulated with the histogram technique (as explained in subsection 

2.5.1). Typical mean distances between inspections for both components were used, to have a better 

reference of the real case scenario. The defined intervals were the following: 

i. Axles: seven equally spaced intervals with a range of 300,000 km each. Starting at 

zero, the first interval was [0; 300,000 km], the second [300,000 km; 600,000 km], 

and so on until the seventh interval, which was defined from [1,800,000 km; +∞]; 

ii. Wheels: seven equally distant intervals with a range of 15,000 km each. Starting at 

zero, the first interval was [0; 15,000 km], the second [15,000 km; 30,000 km], and 

so on until the seventh interval, which was defined from [90,000 km; +∞].  

The sum of all failures in all intervals is the amount of the batch, which was set equal to 1,000 

components. For the axle, the chosen failure mode was the “axle crack” since it is the most known failure 

mode of this component. It is worth mentioning, that commonly there is plentiful of data for the wheel’s 
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component, regarding the typical failure modes linked to the failure of the component. This enables us 

to analyse the adequacy of the reliability assessment methodology since the reliability curves can be 

easily compared with the operation data of each user-case. Therefore, each expert assessed a typical 

mean distance between failure (MDBF) for the wheel component after each assessment.  

4.5.2. List of Experts  

In order to obtain reasonable results, which would reflect the real case scenario as much as possible, a 

list of experts in wheelset components was established. This list was built with the support of Union 

Internationale des Chemins de Fer (UIC) Experts list, namely the List of recognized UIC experts to 

elaborate expertise on braking components 2019 [82] and the List of experts recognized by UIC and 

relative expertise of wheels 2012 [83]. In addition to the UIC lists, the list of experts had also the support 

of the network of researchers involved in the Shift2Rail Joint undertaking. It should be noted that the list 

of experts was composed of wheelset experts, not only of freight locomotives but also of passenger 

locomotives. 

The survey was designed using the public platform Google Forms. It contained a brief 

introduction to the research project, a brief illustrative example to explain the reader on the format of the 

elicitation, the seed questions and finally the target questions. The survey was held anonymously and 

from the entire list of experts, 6 experts completed the survey. 

4.5.3. Experts Weighting Process 

This subsection comprises the results of the expert judgment performed to assess the uncertainty 

associated with failure rates of the wheels and axle component. A total of 6 experts completed the 

survey, namely the calibration and target questions (which are available in the Appendix A1). The results 

are also presented below. Table 4.4 summarizes the expert’s performance in the four calibration 

questions (CQ1-CQ4). 

Table 4.4 – Experts assessment on the four Calibration Questions (CQ1- CQ4) 

Expert 
CQ1 CQ2 CQ3 CQ4 

5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95% 

Expert 1 40 50 80 10 50 90 50 60 80 40 50 60 

Expert 2 1800 2074 2400 5 20 35 200 500 800 50 100 150 

Expert 3 1500 2000 2500 20 30 40 300 600 900 50 100 150 

Expert 4 270 346 422 15 30 45 10 25 40 800 1700 2600 

Expert 5 1700 1900 2100 2 8 10 50 75 100 100 200 300 

Expert 6 1500 1750 2000 60 70 80 40 90 200 30 50 200 

Realization 1789 58 104 18 

 

After assessing the results of the expert’s calibration questions, the expert weights were obtained, with 

the support of the free software EXCALIBUR. By introducing the expert’s assessments, as well as the 

realizations for each calibration question, a summarized table with all the relevant scores is obtained. 
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Each expert’s calibration score, information score, unnormalized and final weights can be observed in 

Table 4.5. 

Table 4.5 – Experts calibration score, information score, unnormalized and normalized weight 

Expert Calibration Score Information Score Unnormalized weight Normalized weight 

Expert 1 0.01043 2.76600 0.02885 0.28400 

Expert 2 0.00022 1.28500 0.00028 0.00277 

Expert 3 0.01043 1.26300 0.01318 0.12970 

Expert 4 0.00022 1.61300 0.00035 0.00348 

Expert 5 0.01043 2.09000 0.02180 0.21460 

Expert 6 0.02197 1.69100 0.03714 0.36550 

 

As shown in Table 4.5 , Expert 6 has the largest weight, due to his/her good performance in accurately 

replying to the calibration questions. Concerning the other experts, Expert 6 was statistically more 

accurate. Despite not being the most informative, since its information is not the narrowest one (check 

experts’ assessments in Table 4.4), his/her accuracy stands out in comparison with the remaining 

experts. On the other hand, Expert 2 is the least accurate, as well as one of the least informative experts 

in the poll. Therefore, his/her opinion on the target variable will have a relatively poor impact on the 

result of the analysis.  Having computed the weights for each expert, after analysing their performance 

on the calibration questions, it is now time to assess their responses to the target variables. In this case, 

the target questions are related to the failure rates of each component being analysed. For each target 

variable, the weight of the expert is taken into account, and the following list is a ranking of the most 

impactful expert in each assessment on the target variables: Expert 6, Expert 1, Expert 5, Expert 3, 

Expert 4 and Expert 2. Both assessments are summarized in Table 4.6, where each expert evaluated 

the number of failures in each interval. For the wheels, the experts additionally assessed the mean 

distances between failures (MDBF), in order to compare with the final MDBF of the analysis. 

Table 4.6 – Experts assessments on the axle and on the wheels (with MDBF) for each interval 

Axle 

 [0; 300] 
103 km 

[300; 600] 
103 km 

[600; 900] 
103 km 

[900; 1200] 
103 km 

[1200; 1500] 
103 km 

[1500; 1800] 
103 km 

[1800; +∞] 
103 km 

Sum MDBF 

Expert 1 0 0 5 5 5 10 975 1000 - 

Expert 2 0 2 4 6 8 10 970 1000 - 

Expert 3 0 2 5 10 15 20 948 1000 - 

Expert 4 20 80 150 250 300 150 50 1000 - 

Expert 5 10 50 150 250 400 100 40 1000 - 

Expert 6 2 18 40 100 120 150 570 1000 - 

Wheels 

 
[0; 15] 
103 km 

[15; 30] 
103 km 

[30; 45] 
103 km 

[45; 60] 
103 km 

[60; 75] 
103 km 

[75; 90] 
103 km 

[90; +∞] 
103 km 

Sum MDBF 

Expert 1 10 70 125 150 150 200 295 1000 75000 

Expert 2 10 40 50 100 100 100 600 1000 100000 

Expert 3 10 50 100 150 150 200 340 1000 80000 

Expert 4 2 8 20 40 70 90 770 1000 150000 

Expert 5 10 30 70 100 300 400 90 1000 70000 

Expert 6 10 20 70 100 150 200 450 1000 90000 
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The next subsection estimates the reliability curves following the two basic approaches (see subsection 

2.5.4). 

4.5.4. Fitting Reliability Curves 

4.5.4.1. Approach 1: “Fit first, combine later” 

For this first approach, a survival analysis on the opinion of each expert is performed. For each  

expert, five probability distributions were considered, namely: Weibull, Normal, Lognormal, Gamma, and 

Exponential. The AIC values for each fitting for both components can be verified in Table A.1 and Table 

A.2 (see Appendix A2), where the parameters from each fitted distribution, which presented the lowest 

AIC values, can be visualized in Table 4.7. 

 Table 4.7 – Distribution parameters for each expert opinion fit – Axle and Wheels 

Axle 

Expert Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 

Distribution Lognormal Lognormal Lognormal Normal Normal Weibull 

Estimates 
for the 

parameters 

Meanlog SDlog Meanlog SDlog Meanlog SDlog Mean SD Mean SD Shape Scale 

0.16467 0.95948 0.2939 1.06807 0.35963 0.83351 0.11669 0.040669 0.11669 0.04067 3.02929 0.21748 

Wheels 

Expert Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 

Distribution Weibull Weibull Weibull Weibull Weibull Normal 

Estimates 
for the 

parameters 

Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale Shape Scale 

2.49365 0.83719 2.14123 1.22972 2.64162 0.8788 2.49365 0.83719 2.14123 1.22972 2.64162 0.21748 

 

All the scale variables are in 107 km for the axles and in 105 km for the wheels. For the Normal and 

Lognormal distribution in Table 4.7, the parameters are the mean and the standard deviation (SD). 

Considering the axle assessments, for experts 1, 2, and 3, the Lognormal distribution is the 

distribution that best fits each expert’s opinion, according to the AIC criterion. For experts 4 and 5, the 

Normal distribution is the most suitable. Finally, for expert 6 the best distribution is the Weibull 

distribution. For the wheel assessment, for experts 1 to 5, the distribution that best fits the data is the 

Weibull distribution, due to the low AIC values. For expert 6, the best distribution is the Normal 

distribution. Having fitted firstly a distribution to each expert opinion, a final curve is needed that could 

represent the know-how of each expert combined. Therefore, in order to create a final curve, each 

weight of each expert is multiplied by the corresponding distribution function. The final fitted expert 

opinions as well as the weighted expert opinion for both components are demonstrated in Figure 4.4  
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Figure 4.4 – Each experts opinion fitted and the weighted curve after fitting expert opinion for 
a) the axle and b) the wheels component 

For the axle, since the expert’s opinions diverge a lot, the final weighted curve is formed by a 

combination of expert 6, expert 1, and expert 5 slopes. Here, we can confirm the impact of a high 

weighted expert. For the wheels, one can identify that the experts with the highest weights have the 

most impact in the final curve, like experts 5 and 6, where the values and slopes of the final curve are 

very similar to these experts’ opinions. 

4.5.4.2. Approach 2: “Combine first, fit later” 

For the second approach, a combined weighted opinion was first obtained, following a survival analysis 

of the combined opinion. The combined weighted opinion is obtained by multiplying each expert's weight 

to each opinion in every interval. The combined expert opinion can be verified in Table 4.8, for the axle 

and the wheels, respectively.  

Table 4.8 – Combined weighted expert opinion: axle and wheels 

Axle 

 

[0, 300] 
103 km 

[300, 600] 
103 km 

[600, 900] 
103 km 

[900, 1200] 
103 km 

[1200, 1500] 
103 km 

[1500, 1800] 
103 km 

[1800, +∞] 
103 km 

Sum 

Combined 
Expert 

3 18 49 94 134 82 620 1000 

Wheels 

 
[0 , 15] 
103 km 

[15 , 30] 
103 km 

[30 , 45] 
103 km 

[45 , 60] 
103 km 

[60 , 75] 
103 km 

[75 , 90] 
103 km 

[90 , +∞] 
103 km 

Sum 

Combined 
Expert 

10 40 89 121 182 242 316 1000 

 

After combining the judgments of each expert, the reliability curves are fitted/estimated for both the axle 

and the wheels, and the five statistical distributions are compared based on the AIC value. In Table A.3  

(see Appendix A2), the AIC values for the goodness-of-fit can be verified, while the parameters of the 

resulting distribution (lowest AIC value) are demonstrated in Table 4.9. 

a) b)
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Table 4.9 – distribution parameters for the combined weighted expert opinion: axle and wheels  

Axle Wheels 

Parameters of the Distribution Parameters of the Distribution 

Lognormal Normal 

Meanlog SDlog Mean SD 

-1.5219 0.63316 0.774 0.277 

4.5.4.3. Fitting Comparison - Decision 

Finally, a comparison is made between the two approaches, concerning the distribution that best 

describes the component failure in real case scenarios. Both reliability curves for each component are 

represented in Figure 4.5, to identify and compare the similarities or divergences. Having assessed both 

statistical distributions for both approaches, a comparison is made to determine which of the distributions 

is more conservative. 

 

Figure 4.5 – Comparison between approach 1 (black) and approach 2 (blue) results for a) the 
axle and b) the wheels component 

For the axle, the blue curve (approach 2) shows lower survival probabilities for high values of travelled 

distances. This means that the probability of the component not to fail for a high value of kilometres is 

lower than the probability given by the black curve. As a result, the blue curve is considered more 

conservative and is selected to be the most appropriate to represent the real-life degradation of the 

component, since it is safer in terms of maintenance to think a component is going to fail earlier. 

For the wheels, though the curves are very similar, once again the blue curve (Approach 2) is 

more conservative, i.e. for higher values of kilometres, the wheels have lower survival probabilities than 

the black curve. Consequently, the blue curve is assumed to be the final distribution function chosen to 

best describe the case study under analysis, as it is more conservative. 

a) b)
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Finally, one can estimate the associated failure rates for the components of interest. For the 

case study, failure rates of the axle and the wheels were obtained with the use of the mean estimate of 

each cumulative distribution function, using the following formulas: 

1. Lognormal Distribution (Axle): 

𝑚𝑒𝑎𝑛 = exp (𝜇 +
𝜎2

2
) 

Where 𝜇 is the meanlog and 𝜎 the sdlog from Table 4.9. The mean value is: 

𝑚𝑒𝑎𝑛 = exp (−1.5219 +
0.633162

2
) = 0.266748 𝑥107 𝑘𝑚 = 𝑀𝐷𝑇𝐹𝐴,𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙  

Finally, the failure rate is obtained with the 𝑀𝐷𝑇𝐹: 

𝜆1 =
1

𝑀𝐷𝑇𝐹𝐴,𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙

= 3.749 𝑥 10−7 𝑘𝑚−1     

2. Normal Distribution (Wheels): 

 
�̂� = 0.77375𝑥105 𝑘𝑚 = 𝑀𝐷𝑇𝐹𝑊,𝑁𝑜𝑟𝑚𝑎𝑙  

 

With the 𝑀𝐷𝑇𝐹, which is obtained with the mean �̂� from Table 4.9, the failure rate is 

calculated with: 

𝜆2 =
1

𝑀𝐷𝑇𝐹𝑊,𝑁𝑜𝑟𝑚𝑎𝑙

= 1.2924 𝑥 10−5 𝑘𝑚−1 

As mentioned in section 2.5, in order to guarantee a robust methodology, the failure rate of the wheels 

was compared to typical failure rates in operation, with the help of the experts, where after the expert 

elicitation, the 𝑀𝐷𝑇𝐹 of the operation was requested. With the use of the expert weights, a performance-

based 𝑀𝐷𝑇𝐹 for the wheels was calculated and a comparison between both failure rates was performed: 

𝑀𝐷𝑇𝐹𝑊,𝐺𝑙𝑜𝑏𝑎𝑙 =  ∑ 𝑤𝑒 × 𝑀𝐷𝑇𝐹𝑤ℎ𝑒𝑒𝑙𝑠,𝑒

𝐸

𝑒=1

= 80394.25 𝑘𝑚 

𝜆𝑤ℎ𝑒𝑒𝑙𝑠,𝑔𝑙𝑜𝑏𝑎𝑙 =
1

𝑀𝐷𝑇𝐹𝑊,𝐺𝑙𝑜𝑏𝑎𝑙

= 1.244 𝑥 10−5𝑘𝑚−1 

% = |
𝜆2 − 𝜆𝑤ℎ𝑒𝑒𝑙𝑠,𝑔𝑙𝑜𝑏𝑎𝑙

𝜆𝑤ℎ𝑒𝑒𝑙𝑠,𝑔𝑙𝑜𝑏𝑎𝑙

| = 3.902% 

Indeed, the failure rate 𝜆2 did not diverge with the failure rate of the component in operation 𝜆𝑤ℎ𝑒𝑒𝑙𝑠,𝑔𝑙𝑜𝑏𝑎𝑙, 

thus giving more confidence and accuracy to the estimated failure rate and survival curve of the long 

service-life component, the axle. 
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4.6. FMECA Analysis (consolidating FMEA with Expert Judgment) 

After performing a FMEA analysis, in order to identify and prioritise the most relevant subsystems and 

components of the bogie system, and after conducting an expert judgment to obtain failure rates of two 

components, this subsection combines these two analyses to have a better assessment of a real case 

scenario and perform a criticality analysis, to rank the most critical components and subsystems. 

Nevertheless, to combine these two analyses, one must first modify the failure rate units that 

resulted from the expert judgment. The average cargo locomotive speed was assumed to be equal to 

40km/h. Therefore, with a given 𝑀𝐷𝑇𝐹 the units conversion to Mean Time to Failure (𝑀𝑇𝑇𝐹) is obtained 

with the following formula: 

i. MTTF1  =
MDTF1

40 km

h

= 66687ℎ → 𝜆1 =
1

MTTF1
= 1.5𝑥10−5 1

ℎ
 

ii. MTTF2  =
MDTF2

40 km

h

= 1933.93ℎ → 𝜆2 =
1

MTTF2
= 5.171𝑥10−4 1

ℎ
 

Considering the occurrence of the FMEA analysis in Table 4.2, one can verify that for component 2 

(wheels), the impact would be ranked with number 8, meaning the occurrence is high with repeating 

failures in a short cycle. Therefore, and having in mind that every wheel failure mode is ranked with an 

8 or higher in terms of severity and detectability, one can assume that the component is critical. For the 

axle (component 1), the occurrence with the new failure rate would be ranked with a 7, also high. Bearing 

in mind that the axle has a severity of 10, this component should always be considered critical, since a 

failure could bring possible fatalities. In order to perform a criticality analysis, one has to calculate first 

the modal criticality and then the items criticality. In the latter, the items considered are the assumed 

critical subsystems analysed. For this purpose, the formulas (2.13) and (2.14) were utilized. Considering 

that in this case study the failure rate of the effect was not assumed due to lack of information on the 

failure modes effects and that the operating hours are the same for each component and therefore for 

each failure mode, 𝛽 and 𝑡 of equation (2.13) are assumed to be 1. Following this and considering the 

critical subsystems, with its critical components and the associated failure modes that resulted from the 

FMEA analysis (see subsection 4.4), one can adapt Table 4.3 and insert the new failure rates estimated 

using the expert judgment techniques, the severity numbers and the occurrences (Table 4.2). It is 

important to emphasize that the severity numbers linked to the components and failure modes not 

mentioned in the FMEA analysis, were obtained from the reference articles [78] and [79] and from expert 

judgment. The additional occurrences are linked to the failure rate and were established with the UIC 

Guidelines [38] (see Figure 2.7). Table A.4 in Appendix A3 summarizes the new critical components, 

where emphasises is put on the updated wheelset subsystem. As can be verified, all failure modes from 

the wheels were aggregated to a general failure mode. This general failure mode has a higher combined 

failure rate than the failure modes themselves. Therefore, a more conservative and realistic scenario 

was analysed, which leads to a better criticality assessment of the bogie.  

After performing the criticality calculations, Table 4.10 was obtained. 
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Table 4.10 – Criticality Analysis 

Subsystem 
ID 

Subsystem 
Component 

ID 
Component Failure Mode 𝑪𝒎 𝑪𝒊 Ranking 

1 Wheelset 

1.1 Axle Axle Crack 4.50E-04 

3.77E-02 2 
1.2 Wheels 

(Wheel out of round, Wheel 
cracks and notches, wheel build 

up material, wheel flat, profile 
under threshold) 

3.72E-02 

2 Axle Box  

2.1 Axle Box Absence of the cover box screw 3.84E-03 

1.16E-02 4 2.1 Axle Box Housing not watertight 7.68E-03 

2.1 Axle Box Bearing Failure 1.06E-04 

3 Bogie Frame 3.1 Frame - 7.43E-04 7.43E-04 6 

4 
Brake 

System  

4.1 Brake parts of brake rigging hanging 1.29E-03 

7.99E-02 1 

4.1 Brake Brake isolating cock 1.29E-03 

4.1 Brake Cast Iron Brake Block 5.18E-03 

4.1 Brake Composite Brake Block 1.50E-03 

4.2 Pneumatic Braking system Front air valve damaged 4.80E-03 

4.2 Pneumatic Braking system Brake cylinder damaged 2.88E-03 

4.2 Pneumatic Braking system Air distributor damaged 1.44E-02 

4.2 Pneumatic Braking system Slack adjuster damaged 1.54E-02 

4.2 Master/Auxiliary Compressor - 7.85E-03 

4.3 
Master/Auxiliary Compressor 

Driving Motor 
- 1.87E-03 

4.5 Servo-motor in braking system - 4.73E-04 

4.6 
Other Elements of the pneumatic 

braking system 
- 1.38E-02 

4.7 
Other Elements of the braking 

system (pins, sleeves,…,) 
- 9.22E-03 

5 
Suspension 
Elements  

5.1 Spring Buckle Spring Buckle Fracture 4.80E-03 

9.64E-03 5 5.2 Helical Spring Helical Spring broken 4.80E-03 

5.4 Other Suspension elements 
Bottoming between Axle-box 

 housing and bogie frame 
4.32E-05 

6 
Electric 
Traction 
Module  

6.1 Power transmission system - 2.87E-02 

3.35E-02 3 6.2 Shaft Coupling - 4.40E-03 

6.3 Traction Motor - 4.22E-04 

 

Based on the criticality analysis, a consolidated ranking of the most critical subsystems is obtained by 

ordering the subsystem with the highest combined 𝑪𝒊 score. The following list ranks the most critical 

subsystems:  

1. Brake System 

2. Wheelset components 

3. Electric Traction Module 

4. Axle Box 

5. Suspension System 

6. Bogie Frame 

Intuitively, it can be verified that one of the main reasons the braking system is considered to be the 

most critical subsystem is due to excessive failure modes linked to its components and the information 

obtained for this subsystem.  
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4.7. Discussion – Risk Mitigation Actions 

By identifying the most critical subsystems, it is possible to implement risk mitigation strategies, to 

optimize the operation and the cost associated with the maintenance of the bogie. The common risk 

mitigation strategies to decrease severity and occurrence, and increase detectability are the following: 

1. Implement redundancy to reduce the risk of losing the function (decrease Occurrence); 

2. Apply specific test in simulated operating conditions to check the reliability of a component 

(decrease Occurrence and increase detectability); 

i. Creation of a functional simulation model that simulates the real-time condition of 

the components and subsystems combined, according to the operation of FGC; 

3. Increase the frequency of inspections (decrease Occurrence and increase detectability); 

4. Change the maintenance type to predictive maintenance, monitoring the condition of the 

components (decrease Occurrence and increase detectability) – by implementing sensors: 

i. Monitoring of bogie stability through the implementation of sensors (e.g. 

accelerometers) that are able to monitor the movement of each bogie and identify 

situations/conditions which might increase the risk of derailment; 

ii. Axlebox monitoring using vibration and temperature sensors to detect any unusual 

behaviour; 

iii. Vibrations and temperature sensors for monitoring any unusual behaviour of the 

electric traction engines; 

5. Apply specific test to ensure maintainability of components that require a long time to repair 

(decrease Severity); 

i. Control with sensors the real-time of failure of the most critical components; 

6. Prepare specific training and procedures to allow falling back to a safe degraded mode in 

an emergency (decrease Severity) 

i. providing intermediate system repair to the most critical subsystems; 

7. Keep spares on-site so that time to repair is shortened (decrease Severity). 

A summary of all the previous strategies and their impact on the three indexes mentioned in section 2.3 

are presented in  

Table 4.11. 

Table 4.11 – Risk Mitigation Strategies and their impact on the Severity, Occurrence, and 
Detectability 

 
Decrease 
Severity 

Decrease 
Occurrence 

Increase 
Detectability 

Strategy 1  X  

Strategy 2  X X 

Strategy 3  X X 

Strategy 4  X X 

Strategy 5 X   

Strategy 6 X   

Strategy 7 X   
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After extensive analysis to decide which strategy one needs to implement in the case study, regarding 

the structure and the objectives of the project, a combination of some of these was obtained in order to 

follow the path of the project of providing a continuous monitoring system. 

By starting at strategy 1, one can assume that this strategy is not appropriate in an already 

operating cargo locomotive since this strategy is usually implemented in a design phase of a product. 

Strategy 2, which mentions the implementation of specific tests in order to monitor the reliability of the 

system in real-time, provides a good continuous monitoring system. Therefore, this strategy is aligned 

with the case study and taken into consideration. Strategies 3 and 6, which focus on an increasing 

frequency of inspections and intermediate repairs, are exactly one of the key tasks to eradicate in the 

case study, since FGC wants to reduce the number of (potentially unnecessary) inspections and 

intermediate system repairs for each cargo locomotive. In fact, such strategies are considered to be an 

output of a continuous monitoring system. By implementing a predictive maintenance type, as it is 

specified in strategy 4 and taken into consideration for the case study, the inspection frequency is 

increased by introducing sensors, which will trigger unusual behaviours on real-time conditions of the 

most critical components. Concisely, a continuous monitoring system provides a remote real-time 

inspection frequency and therefore one can predict when is suitable to provide a system repair regarding 

the condition of the component or subsystem. In addition to strategy 4, strategy 5 ensures the 

maintainability of the components with high severity numbers by employing sensors. Once again, this 

strategy is aligned with the goal of having a continuous monitoring system. Finally, strategy 7 is 

associated with strategies 3 and 6 since this strategy is an output of a continuous monitoring system. 

With a continuous monitoring system, it is possible to predict the failure of a component and therefore 

plan beforehand the number of spare parts to have on-site.  

Finally, a continuous monitoring system, which is the goal to be implemented in the case study, 

is obtained with a combination of strategies 2 to 5. This enables to reduce the occurrence of several 

failure modes, since these are being monitored and one can predict the most advantageous time to 

replace or repair the component, increase the detectability of critical failure modes, by increasing the 

probability of detecting the failure mode before it turns critical with abnormal behaviours, and to decrease 

the severity, by providing condition-based repairs to the most critical components.  

 

  



60 

 

5. Simulation Model of FGC 

This chapter illustrates the simulation model that was developed to study the availability and the 

reliability of the different components of the system, regarding the stochastic behaviour of the 

occurrence of failure and repair, and its impact on the system. The reliability block diagram of the bogie 

system is described, and the analytical model and its results are demonstrated. Following this, the 

algorithm of the proposed DES model is explained, and several potential simulation scenarios for the 

reliability and availability are considered and described. Finally, the results of these models are 

discussed and compared. 

 

5.1. Reliability Block Diagram (RBD) 

Following the functional breakdown and the FMECA analysis of the bogie discussed in section 4 and 

where each subsystems function was described and the critical subsystems, components and the 

associated failure modes were identified (Table 4.10), the RBD for the present case study was built with 

the guidance of Table 5.1 reliability and maintenance data and Figure 5.1 configuration of the bogie. For 

the analysis, the failure data and part of the repair data were obtained from the previous studies [78,79], 

while the additional repair data was obtained from previous maintenance experiences using expert 

judgment techniques. The reliability-wise relationships, which link each block, were also based in the 

FTA analysis performed in [78] (article analysis described in section 4.4). Moreover, the number of 

elements were not only based on FGC’s technical drawings (in fact, some technical drawing of the bogie 

were provided to the case study, nevertheless, the scarce information embedded in these drawings was 

impractical to process), but also on KTH Railway Book [84], a reference handbook of railway systems 

and vehicles composition and configuration. 
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Table 5.1 – Components reliability and maintainability input data for the RBD 

Subsystem Component 
# of 

components 
Failure Mode 

Failure 
Distribution 

Failure 
rate 

(1/h)) 

MTBF 
(h) 

Distribution 
Parameters 

MTTR (h) 

Wheelset 

Axle 3 Axle Crack Lognormal 1.5E-05 66666.7 
𝜎𝑙𝑜𝑔 𝜇𝑙𝑜𝑔 

10 
0.633 10.91 

Wheels 6 

(Wheel out of 
round, Wheel 
cracks and 

notches, wheel 
build up 

material, wheel 
flat, profile 

under 
threshold) 

Normal 
5.171E-

04 
1933.9 

𝜎 𝜇 

2 
693.52 1933.86 

Axlebox 

Axlebox 

6 
Absence of the 

cover box screw 
Exponential 6.00E-05 16666.7 

𝜆 
10 

6.00E-05 

6 
Housing not 
watertight 

Exponential 1.20E-04 8333.3 
𝜆 

10 
1.20E-04 

Bearings 12 Bearing failure Weibull 2.12E-06 5711.3 
𝛽 𝜂 

12 
1.5193 6336.1 

Bogie Frame Frame 1 - Weibull 1.18E-05 85083.3 
𝛽 𝜂 

8 
0.8422 77751.2 

 
Brake System 

Brake 

4 
Brake Rigging - 
parts of brake 

rigging hanging 
Exponential 2.01E-05 49751.2 

𝜆 
12 

2.01E-05 

4 
Brake Rigging - 
Brake isolating 

cock 
Exponential 2.01E-05 49751.2 

𝜆 
12 

2.01E-05 

6 
Cast Iron Brake 

Block 
Exponential 1.08E-04 9259.3 

𝜆 
12 

1.08E-04 

6 
Composite 

Brake Block 
Exponential 3.12E-05 32051.3 

𝜆 
12 

3.12E-05 

Pneumatic 
Braking system 

6 
Front air valve 

damaged 
Exponential 6.00E-05 16666.7 

𝜆 
4 

6.00E-05 

2 
Brake cylinder 

damaged 
Exponential 6.00E-05 16666.7 

𝜆 
12 

6.00E-05 

6 
Air distributor 

damaged 
Exponential 3.00E-04 3333.3 

𝜆 
4 

3.00E-04 

6 
Slack adjuster 

damaged 
Exponential 2.40E-04 4166.7 

𝜆 
4 

2.40E-04 

Master/Auxiliary 
Compressor 

3 - Weibull 1.09E-04 9204.0 
𝛽 𝜂 

12 
1.1252 9607.99 

Master/Auxiliary 
Compressor 
Driving Motor 

3 - Weibull 2.60E-05 38484.1 
𝛽 𝜂 

8 
1.2142 41034.1 

Servo-motor in 
braking system 

3 - Weibull 8.76E-06 114211.6 
𝛽 𝜂 

6 
1.0221 115243 

Other Elements 
of the 

pneumatic 
braking system 

2 - Weibull 1.92E-04 5221.5 

𝛽 𝜂 

2.5 
1.7743 5867.3 

Other Elements 
of the braking 
system (pins, 
sleeves,…,) 

2 - Weibull 1.28E-04 7809.6 

𝛽 𝜂 

12 
2.4482 8806.18 

Suspension 
Elements 

Helical Spring 12 
Spring Buckle 

Fracture 
Exponential 6.00E-05 16666.7 

𝜆 
10 

6.00E-05 

Helical Spring 12 
Helical Spring 

broken 
Exponential 6.00E-05 16666.7 

𝜆 
10 

6.00E-05 

Other 
Suspension 

elements 
2 

Bottoming 
between Axle-

box 
 housing and 
bogie frame 

Exponential 1.44E-06 694444.4 

𝜆 

10 
1.44E-06 

Electric Traction 
Module 

Power 
transmission 

system 
3 - Weibull 3.99E-04 2507.9 

𝛽 𝜂 
10 

1.7098 2811.91 

Shaft Coupling 3 - Weibull 6.98E-05 14320.9 
𝛽 𝜂 

10 
326.203 14346.2 

Traction Motor 3 - Weibull 7.82E-06 127904.8 
𝛽 𝜂 

10 
0.87826 119878 

Number of elements 122      

 

 



62 

 

 

Figure 5.1 – RBD configuration of the 254 Class Locomotive Bogie 

As one can verify from Figure 5.1, the RBD of the bogie is considered to be in series, which indicates 

that an item’s or associated FM failure, will bring the system down i.e. the system will fail, which will 

consequently lead to the systems repair. Note that each block is characterized by: i) the item or FM ID, 

ii) the failure distribution function, iii) its failure rate, iv) its 𝑀𝑇𝐵𝐹 v) each distribution function parameters 

and vi) its 𝑀𝑇𝑇𝑅. Since the maintainability of the system is considered (by considering a repair time), 

the 𝑀𝑇𝐵𝐹 is used and not the 𝑀𝑇𝑇𝐹. The number of elements is exposed after each block and following 

the RBDs logical path.  

5.2. Analytical Approach 

To first comprehend the possible results of a reliability and availability simulation analysis of FGC’s 

bogie, to identify key subsystems, components or the associated FMs and to validate any simulation 

model, an analytical approach was developed. Considering Figure 5.1 RBD configuration of the bogie 

and each block’s reliability and maintainability parameters (failure and repair data, respectively), the 

analytical reliability and availability is obtained with the use of equations (3.1) and (3.2), since the bogie’s 

functional breakdown and relationship-wise interdependencies is considered to be in series. Table 5.2 

summarizes both analytical reliability and availability calculations performed to obtain the analytical 

reliability and availability of the total system. For each block, the failure and repair events are considered 

independent and the failure rate is considered to be constant (useful life period). Each failure event goes 

in accordance with each block’s failure function distribution, while each repair assumes a deterministic 

value. 

1.1 Axle
FM – Axle Crack
Lognormal

1.2 Wheels
FM – (…)
Normal

2.1 Bearings
-
Weibull

Wheelset Subsystem

2.2.1 Axlebox
FM – Abs. of cov. Box
Exponential

Axlebox Subsystem

2.2.2 Axlebox
FM – Hous. n. wt.
Exponential

3.1 Frame
-
Weibull

Bogie Frame Subsystem

4.1.1 Brake
FM – p. of bra. Rig. h. 
Exponential

Brake Subsystem

4.1.2 Brake
FM – Bra. Iso. cock
Exponential

4.1.3 Brake
FM – Cast Iron Br. Bl.
Exponential

4.1.4 Brake
FM – Compos. Br. Bl.
Exponential

4.2.1 P. Brak. system
FM – F. Air Valve dam.
Exponential

4.2.2 P. Brak. system
FM – Br. Cyl. dam. 
Exponential

4.2.3 P. Brak. system
FM – Air distr. dam. 
Exponential

4.2.4 P. Brak. system
FM – Slack adj. dam. 
Exponential

4.3 M./Aux. Comp. 
-
Weibull

4.4 M./A. C. D. M. 
-
Weibull

4.5 S. M. in B. Syst. 
-
Weibull

4.6 Other El. P. B. Sys.
-
Weibull

4.7 Other El. B. Sys.
-
Weibull

5.1 Helical Spring
FM – Spring Buckle Fr.
Exponential

5.1 Helical Spring
FM – Helic. Spring br.
Exponential

5.2 Other susp. El.
-
Exponential

Suspension Subsystem

6.1 Power Trans. Sys.
–
Weibull

6.2 Shaft Coupling 
–
Weibull

6.3 Traction Motor
–
Weibull

Electric Traction Engine Subsystem
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Table 5.2 – Analytical reliability and availability calculations considering the bogie’s RBD 

 Reliability Availability 

1.  Wheelset System: 𝑹𝟏 = ∏ 𝑹𝟏,𝒏
𝑵
𝒏=𝟏 , 𝑵 = 𝟐  𝑨𝟏 = ∏ 𝑨𝟏,𝒏

𝑵
𝒏=𝟏 , 𝑵 = 𝟐  

i.  Axle: 𝑅1,1 = ∏ 𝑅1,1,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴1,1 = ∏ 𝐴1,1,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

ii.  Wheels: 𝑅1,2 = ∏ 𝑅1,2,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴1,2 = ∏ 𝐴1,2,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

2.  Axlebox System: 𝑹𝟐 = ∏ 𝑹𝟐,𝒏
𝑵
𝒏=𝟏 , 𝑵 = 𝟑  𝑨𝟐 = ∏ 𝑨𝟐,𝒏

𝑵
𝒏=𝟏 , 𝑵 = 𝟑  

i.  Bearings: 𝑅2,1 = ∏ 𝑅2,1,𝑛
𝑁
𝑛=1 , 𝑁 = 12  𝐴2,1 = ∏ 𝐴2,1,𝑛

𝑁
𝑛=1 , 𝑁 = 12  

ii.  Axlebox FM1 𝑅2,2 = ∏ 𝑅2,2,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴2,2 = ∏ 𝐴2,2,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

iii.  Axlebox FM2 𝑅2,3 = ∏ 𝑅2,3,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴2,3 = ∏ 𝐴2,3,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

3.  Bogie Frame System: 𝑹𝟑 = ∏ 𝑹𝟑,𝒏
𝑵
𝒏=𝟏 , 𝑵 = 𝟏  𝑨𝟑 = ∏ 𝑨𝟑,𝒏

𝑵
𝒏=𝟏 , 𝑵 = 𝟏  

4.  Brake System: 𝑹𝟒 = ∏ 𝑹𝟒,𝒏
𝑵
𝒏=𝟏 , 𝑵 = 𝟏𝟑  𝑨𝟒 = ∏ 𝑨𝟒,𝒏

𝑵
𝒏=𝟏 , 𝑵 = 𝟏𝟑  

i.  Brake FM1: 𝑅4,1 = ∏ 𝑅4,1,𝑛
𝑁
𝑛=1 , 𝑁 = 4  𝐴4,1 = ∏ 𝐴4,1,𝑛

𝑁
𝑛=1 , 𝑁 = 4  

ii.  Brake FM2: 𝑅4,2 = ∏ 𝑅4,2,𝑛
𝑁
𝑛=1 , 𝑁 = 4  𝐴4,2 = ∏ 𝐴4,2,𝑛

𝑁
𝑛=1 , 𝑁 = 4  

iii.  Brake FM3: 𝑅4,3 = ∏ 𝑅4,3,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴4,3 = ∏ 𝐴4,3,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

iv.  Brake FM4: 𝑅4,4 = ∏ 𝑅4,4,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴4,4 = ∏ 𝐴4,4,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

v.  Pneumatic Braking System FM1: 𝑅4,5 = ∏ 𝑅4,5,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴4,5 = ∏ 𝐴4,5,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

vi.  Pneumatic Braking System FM2: 𝑅4,6 = ∏ 𝑅4,6,𝑛
𝑁
𝑛=1 , 𝑁 = 2  𝐴4,6 = ∏ 𝐴4,6,𝑛

𝑁
𝑛=1 , 𝑁 = 2  

vii.  Pneumatic Braking System FM3: 𝑅4,7 = ∏ 𝑅4,7,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴4,7 = ∏ 𝐴4,7,𝑛

𝑁
𝑛=1 , 𝑁 = 6  

viii.  Pneumatic Braking System FM4: 𝑅4,8 = ∏ 𝑅4,8,𝑛
𝑁
𝑛=1 , 𝑁 = 6  𝐴4,8 = ∏ 𝐴4,8,𝑛

𝑁
1 , 𝑁 = 6  

ix.  Master/aux. compressor: 𝑅4,9 = ∏ 𝑅4,9,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴4,9 = ∏ 𝐴4,9,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

x.  Master/au. Comp. driv. motor: 𝑅4,10 = ∏ 𝑅4,10,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴4,10 = ∏ 𝐴4,10,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

xi.  Servo motor braking system: 𝑅4,11 = ∏ 𝑅4,11,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴4,11 = ∏ 𝐴4,11,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

xii.  Other elements of pn. brak. sys.: 𝑅4,12 = ∏ 𝑅4,12,𝑛
𝑁
𝑛=1 , 𝑁 = 2  𝐴4,12 = ∏ 𝐴4,12,𝑛

𝑁
𝑛=1 , 𝑁 = 2  

xiii.  Other elements of bra. Sys.: 𝑅4,13 = ∏ 𝑅4,13,𝑛
𝑁
𝑛=1 , 𝑁 = 2  𝐴4,13 = ∏ 𝐴4,13,𝑛

𝑁
𝑛=1 , 𝑁 = 2  

5.  Suspension System: 𝑹𝟓 = ∏ 𝑹𝟓,𝑵
𝑵
𝒏=𝟏 , 𝑵 = 𝟑  𝑨𝟓 = ∏ 𝑨𝟓,𝒏

𝑵
𝒏=𝟏 , 𝑵 = 𝟑  

i.  Helical Spring FM1: 𝑅5,1 = ∏ 𝑅5,1,𝑛
𝑁
𝑛=1 , 𝑁 = 12  𝐴5,1 = ∏ 𝐴5,1,𝑛

𝑁
𝑛=1 , 𝑁 = 12  

ii.  Helical Spring FM2: 𝑅5,2 = ∏ 𝑅5,2,𝑛
𝑁
𝑛=1 , 𝑁 = 12  𝐴5,2 = ∏ 𝐴5,2,𝑛

𝑁
𝑛=1 , 𝑁 = 12  

iii.  Other Suspension elements: 𝑅5,3 = ∏ 𝑅5,3,𝑛
𝑁
𝑛=1 , 𝑁 = 2  𝐴5,3 = ∏ 𝐴5,3,𝑛

𝑁
𝑛=1 , 𝑁 = 2  

6.  Electric Traction Engine System: 𝑹𝟔 = ∏ 𝑹𝟔,𝒏
𝑵
𝒏=𝟏 , 𝑵 = 𝟑  𝑨𝟔 = ∏ 𝑨𝟔,𝒏

𝑵
𝒏=𝟏 , 𝑵 = 𝟑  

i.  Power transmission system: 𝑅6,1 = ∏ 𝑅6,1,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴6,1 = ∏ 𝐴6,1,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

ii.  Shaft Coupling: 𝑅6,2 = ∏ 𝑅6,2,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴6,2 = ∏ 𝐴6,2,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

iii.  Traction Motor: 𝑅6,3 = ∏ 𝑅6,3,𝑛
𝑁
𝑛=1 , 𝑁 = 3  𝐴6,3 = ∏ 𝐴6,3,𝑛

𝑁
𝑛=1 , 𝑁 = 3  

Total System 𝑹𝒔 = ∏ 𝑹𝒏

𝑵

𝒏=𝟏

, 𝑵 = 𝟔 𝑨𝒔 = ∏ 𝑨𝒏

𝑵

𝒏=𝟏

, 𝑵 = 𝟔 

5.3. Discrete Event Simulation Model 

A Discrete Event Simulation (DES) model is organized in a time interval, where the sequence of events 

is observed and analysed. In a RAMS analysis, tasks are modelled as discrete and the simulation is run 

with chronologically ordered steps. Consequently, simulations assess the importance of the time-

dependent tasks, such as the failure or the repair of some component, over the operation of the system. 

By characterizing each task with its failure and/or repair time distribution function, the overall sequence 

of events is obtained, and the reliability and availability of the total system is gathered. From a practical 

perspective, a DES model starts by considering the total system operational until a failure of a 

component occurs. The event of failure switches the total system functionality to a down-state, until the 

repair event of the components failure is achieved, where the total system functionality reverts its state 
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to an up-state. This sequence of events is chronologically ordered until a certain simulation time. All the 

performance measures, such as the downtime of the system or the time the system failed, are collected 

to produce the reliability and availability of the system. To guarantee a robust analysis, with relevant 

conclusions and statistically independent results, since the model makes use of random variables to 

describe the failure and/or the repair times, the number of simulations 𝑁, which are considered 

independent experiments, and the simulation time 𝑇 must be previously defined. The implementation 

was done using an already under development program created by [85] and modelled in the commercial 

software package Simulink of MATLAB, for the reliability and availability analysis of an experimental 

tokamak nuclear fusion reactor that is being built in order to produce energy from thermonuclear fusion 

(ITER Project). Two distinctive models were created, a reliability model and an availability model, where 

in each model several scenarios were considered. Both are based on DES, where some activity blocks 

are identical.  

5.3.1. Reliability Model 

Considering that the reliability is defined as the probability that the system has not failed by time 𝑡, the 

reliability DES model is built with the ambition of producing failure events that contribute to the definition 

of the bogie system reliability. Therefore, a single simulation objective is to compute the first system’s 

failure, which with an adequate number of simulations 𝑁, will lead to a histogram and, consequently, to 

a reliability curve. If no failure is observed in the system, then the simulation time is used as a right 

censored object/data. Figure 5.2 presents the flowchart algorithm of the reliability DES model for 

𝑁 simulations.  
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Figure 5.2 – Flowchart describing the algorithm of the reliability DES model  

The reliability DES model starts by defining the number of simulations 𝑁 and by creating a simulation 

variable 𝑛, which defines the simulation run on which the model is operating. In each simulation run, the 

model starts by creating a Global Final Signal (𝐺𝐹𝑆) and a signal for component 𝑖 (𝑆𝑖)). At the same 

time, a random time of failure (𝑇𝑜𝐹), which goes according to the distribution function of each block 

(component or FM), is generated, and allocated to each block. The random generation of 𝑇𝑜𝐹 goes as 

explained in sections 3.3 and 3.4, which demonstrates the generation of a random quantile following a 

distribution function of interest and a Monte Carlo simulation approach. As part of a DES model, the first 

event happens (the lowest 𝑇𝑜𝐹, when in series) whenever the clock reaches its event time. Therefore, 

after reaching the first failure, the 𝐺𝐹𝑆 is switched to 0, as well as the 𝑆𝑖 for the component 𝑖 responsible 

for the failure event. Note that only the 𝑆𝑖 of the failed component or associated FM is switched to 0, in 

order to posteriorly collect the information on the impact of each component on the reliability of the total 

system. If no event happens, i.e. all random 𝑇𝑜𝐹 are higher than the actual simulation time, the 

simulation ends, and the simulation time data is gathered as a right censored data. After all simulation 

runs are conducted, i.e. 𝑛 is equal to 𝑁, the failure data is collected and a histogram of the number of 

failures is obtained. By using the non-parametric Kaplan-Meier estimator (𝐾𝑀), which is used to estimate 
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survival curves from lifetime data, reliability curves are obtained from the failure data gathered from the 

simulation results. From a practical point of view, the functions Surv and Survfit from the Survival 

package [86] in R software are used to estimate the reliability curves of the total system and each 

subsystem. It is worth mentioning that the reliability DES model does not contemplate repairable 

systems, i.e. after a component fails, it is not repaired. Therefore, the maintainability parameter 𝑀𝑇𝑇𝑅 

is not taken into consideration. 

To model the operational behaviour of the cargo locomotive bogie of FGC, there was the need 

to consider several assumptions. The assumptions for each block and for the simulation model go 

according to [85] and are the following: 

- Each component starts the simulation in a state “As Good as New” (AGAN); 

- Each component has its own activity-block that produces a Boolean signal (𝑆𝑖): 

o 1 = the component is up and operating; 

o 0 = the component is down; 

- Each component has its own unique reliability characteristics: 

o 𝑀𝑇𝐵𝐹𝑖 and Failure rate 𝜆𝑖; 

- Each component has its own uniform 𝑇𝑜𝐹 generator, which is based on the failure 

distribution function associated with each individual component; 

- Failures correspond to state changes and occur instantaneously; 

- The simulation ends at a predetermined time 𝑇. 

Following the configuration and assumptions of the model and to test the robustness of the results of 

the model in the presence of uncertainty, five scenarios were created to study the reliability of the bogie 

system and each subsystem. Table 5.3 summarizes each individual scenario, where emphasis is put 

on the generation of the 𝑇𝑜𝐹, being this the only difference between each individual scenario. 

Table 5.3 – Summary of the different scenarios considered for the reliability DES model of the 
cargo locomotive bogie 

Scenarios Description 

Scenario 1 - each individual block has an independent 𝑈𝑅𝑁𝐺 

Scenario 2 - all blocks (122) failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 3 - all blocks (122) failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

Scenario 4 - within each subsystem (6), all failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 5 - within each subsystem (6), all failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

 

As one can verify, scenario 1 is the already above described reliability DES model, were the 𝑇𝑜𝐹 of each 

block (component or FM) is obtained with an independent uniform random number generator (𝑈𝑅𝑁𝐺), 

which generates the probability 𝑝 = 𝑈𝑖 ∈ [0,1] and produces a quantile of a distribution function of 

interest. Scenarios 2 and 3 control the correlation of failures in the bogies system level, meaning that all 

randomly generated probabilities 𝑝𝑖 ∈ [0,1], 𝑖 ∈ [1,122] are correlated with a correlation factor 𝜌𝑖,𝑗 of 0.2 
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and 0.5 in scenarios 2 and 3, respectively. Note that 𝜌𝑖,𝑗 = 𝜎𝑖,𝑗 when the standard normal distribution is 

considered. In each case, the covariance matrix is the following: 

∑2 = (

1
0.2
⋯

0.2

0.2
1
⋯

0.2

⋯
⋯
…
…

0.2
0.2
⋯
1

)

[122𝑥122]

 ∑3 = (

1
0.5
⋯

0.5

0.5
1
⋯

0.5

⋯
⋯
…
…

0.5
0.5
⋯
1

)

[122𝑥122]

 

Scenarios 4 and 5 focus on the correlation of failures in the bogie’s subsystem level, meaning that each 

component or FM failure is correlated at the subsystem level and therefore both scenarios assume 

independence of each subsystem failure. For scenario 4, the correlation factor 𝜌𝑖,𝑗  is assumed to be 0.2, 

corresponding to a low correlation between failures within each subsystem, while in scenario 5 the 

correlation factor 𝜌𝑖,𝑗 is assumed to be 0.5, where the correlation between failures is stronger. In each 

case, the covariance matrix is similar to ∑2 and ∑3, just differing in the matrix dimensions. For both 

cases, each subsystem covariance matrix (total of six subsystems, therefore six covariance matrixes) 

has a dimension equal to the number of components or FMs comprising that same subsystem. Note 

that in an independent 𝑈𝑅𝑁𝐺, there is no correlation between failures, resulting in a correlation factor 

𝜌𝑖,𝑗 between failures of 0. In practical terms, the correlation of failures in scenarios 2 to 5 is obtained with 

the use of the mvnrnd and normcdf functions of the Matlab software, where the process for obtaining 

the multivariate normal probabilities is equal to the process explained in section 3.6. Moreover, to obtain 

the multivariate normal probabilities a mean vector 𝜇 is needed. For the present case study, the standard 

normal distribution was considered, therefore the mean vector is equal to 𝜇 = [0 0 … 0𝑛][1𝑥𝑛] where 𝑛 is 

the number of components or FMs considered. 

5.3.2. Availability Model 

For the simulation of the availability of a complex system, a DES model can take many forms, 

nevertheless, two models and assumptions are typically considered. One is the synchronous model, 

which assumes that every component behaves independently, i.e. whenever a failure occurs to a 

component and the system goes down for its repair, the other components’ clock keeps running, 

resulting in an abrupt wear of the system, with lower availability projections. Alternatively, the 

asynchronous model considers independence of components, meaning that when the system goes 

down due to a component failure, the operational working time of each component is not affected by 

modelling each component with an additional individual clock (internal clock) that delays its 𝑇𝑜𝐹 

according to the time needed for repair. In practice, Figure 5.3 demonstrates the difference between 

both simulation approaches, where a schematic of the state change in the signal of the component and 

of the system in both models is demonstrated. As one can verify from Figure 5.3, in an asynchronous 

model each component’s clock is delayed by the 𝑇𝑇𝑅𝑖 (Time To Repair of component 𝑖), meaning its 

𝑇𝑜𝐹 is expanded. It is worth mention that the difference between both modelling approaches can be 

overlooked when the order of magnitude of the 𝑀𝑇𝑇𝑅 is small enough compared to the 𝑀𝑇𝐵𝐹, which is 

the case being analysed. Nevertheless, in order to guarantee a robust analysis, the latter approach is 

considered for the case study. 
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Figure 5.3 – Graphic Illustration of the global signal and the components signal with a) a 
synchronous Model and b) an asynchronous Model 

Considering that in a given simulation, the availability is defined as the mean availability due to 

all downing events, i.e. the system is not operating, the availability DES model is constructed with the 

objective of defining all downtime events which contribute to the definition of the availability of the bogie 

system. Consequently, a single simulation objective is to compute all system’s failures and its associated 

repairs, in order to gather the total downtime considering the simulation time 𝑇. Figure 5.4 presents the 

flowchart of the availability DES model for 𝑁 simulations. The availability DES model starts by defining 

the number of simulations 𝑁 and by creating a simulation variable 𝑛, which defines the simulation run 

on which the model is operating. In each simulation run, the model starts by creating a 𝐺𝐹𝑆, 𝑆𝑖, the 

global clock (𝐺𝐶𝑙𝑜𝑐𝑘), each components clock (𝐶𝑙𝑜𝑐𝑘𝑖) and the total component time of each component 

𝑖 (𝑇𝐶𝑇𝑖). The 𝑇𝐶𝑇𝑖 is defined as the cumulative time a component 𝑖 has been operating until failure and 

has been down due to repair, and is described by the following equation: 

𝑇𝐶𝑇𝑖 = 𝑇𝑜𝐹1,𝑖 + 𝑇𝑇𝑅1,𝑖 + 𝑇𝑜𝐹2,𝑖 + 𝑇𝑇𝑅2,𝑖 + ⋯ + 𝑇𝑜𝐹𝑓,𝑖 + 𝑇𝑇𝑅𝑓,𝑖 − 𝑑𝑒𝑙𝑎𝑦 = [∑(

𝑁𝑓

𝑓=1

𝑇𝑜𝐹𝑓,𝑖 + 𝑇𝑇𝑅𝑓,𝑖)] − 𝑑𝑒𝑙𝑎𝑦 

where 𝑁𝑓 is the total number of failures and of repairs in one simulation 𝑁 and 𝑑𝑒𝑙𝑎𝑦 when the system 

is down to repair due to other components, which is comprised on each component 𝐶𝑙𝑜𝑐𝑘𝑖. At the same 

time, a random 𝑇𝑜𝐹, which goes according to the distribution function of each block (component or FM), 

is generated, and allocated to each block. In a simulation run, the 𝐺𝐹𝑆 is the signal that rules the 

simulation. Consequently, within a time step there are three possible events that can either bring no 

change to the signal or trigger the signal. These are: i) there is no failure at all (A); ii) there is a failure 

but does not come from component 𝑖 (B) and iii) there is a failure and it is due component 𝑖 (C).  

Starting with the first case (A), if there is no failure at all, the system is available which implicates that 

𝐺𝐹𝑆 is equal to 1. 𝐶𝑙𝑜𝑐𝑘𝑖 is compared with the sum of 𝑇𝑜𝐹𝑖 and 𝑇𝐶𝑇𝑖. If 𝐶𝑙𝑜𝑐𝑘𝑖 is lower than the sum, 

meaning no failure is occurring, 𝐶𝑙𝑜𝑐𝑘𝑖 is incremented by one time-step and 𝐺𝐹𝑆 is tested again. 

Otherwise 𝐶𝑙𝑜𝑐𝑘𝑖 is equal to the sum, which indicates that component 𝑖 has failed, 𝑆𝑖 is switched to 0, 

and, in case it is critical (which for the case study of interest is true, since all components are in series), 

𝐺𝐹𝑆 is changed to 0. Since component 𝑖 has failed, its 𝑇𝑇𝑅𝑖 is loaded and the repair process is started. 

The repair process only finishes if 𝐶𝑙𝑜𝑐𝑘𝑖 is equal to the sum of 𝑇𝑜𝐹𝑖, 𝑇𝐶𝑇𝑖 and 𝑇𝑇𝑅𝑖. During this process, 
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where the repair is ongoing, 𝐶𝑙𝑜𝑐𝑘𝑖 is incremented with one time-step. After the repair process is 

finished, 𝑇𝐶𝑇𝑖 is equalized to the components clock, 𝑆𝑖 and 𝐺𝐹𝑆 are changed to 1, a new 𝑇𝑜𝐹𝑖 is 

generated and the initial step, where 𝐺𝐹𝑆 is evaluated, starts again. Considering both cases, where 

there has been a failure and 𝐺𝐹𝑆 is equal to 0, a comparison between 𝑆𝑖 and 𝐺𝐹𝑆 is made. If 𝑆𝑖 is not 

equal to 𝐺𝐹𝑆, i.e. component 𝑖 has not failed and therefore the failure comes from another component 

(B), 𝐶𝑙𝑜𝑐𝑘𝑖 does not change. This enables to consider the 𝑑𝑒𝑙𝑎𝑦 in 𝑇𝑜𝐹𝑖 whenever another component 

fails and starts its repair. Otherwise, 𝑆𝑖 and 𝐺𝐹𝑆 are equal, meaning component 𝑖 has failed (C). Here, 

𝐶𝑙𝑜𝑐𝑘𝑖 is incremented since the repair process is ongoing. Both cases (B) and (C) are only achievable 

if there is a feedback in each time step of 𝑆𝑖. Each simulation run 𝑛 only ends, if the 𝐺𝐶𝑙𝑜𝑐𝑘 equals the 

simulation time 𝑇 Like the reliability model, after all simulation runs are conducted, i.e. 𝑛 is equal to 𝑁, 

the data is collected. 

  

Figure 5.4 – Flowchart describing the algorithm of the availability DES model for one 
component 

In addition to the reliability DES model assumptions for each block, the following assumptions were also 

considered for the availability DES model [85]: 

=

=
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- Each component is connected to two clocks: an individual clock and the system’s clock 

(interdependency of each component with the system): 

o A failure of a component of the system, which brings the system down, 

generates a delay in the operational clock of other components clock (internal 

clock); 

- Each component behaves with an operation – failure – maintenance and delay cycle; 

- Each component has its unique maintainability characteristics (in addition to the 

reliability characteristics): 𝑀𝑇𝑇𝑅𝑖; 

- Each component has its own Time to Repair generator, which is a constant in some 

scenarios or a randomly generated number, based on a distribution function, in others; 

- Whenever a failure occurs, maintenance starts immediately, and its duration is 𝑇𝑇𝑅𝑖; 

- The model assumes idealized repairs, which restore a component to as good as new 

condition; 

- Failures of other components, delay the internal clocks of other non-failing components 

by the same amount of time the system is not operational, which is the 𝑇𝑇𝑅𝑖 of the failed 

component 𝑖; 

Note that downtimes caused by preventive maintenance and inspections are not included in the model, 

only corrective repairs which restore the components reliability to an 𝐴𝐺𝐴𝑁 state. Moreover, since the 

bogie system is considered to be in series, each component is critical, meaning its failure causes the 

system to fail. Following the configuration and assumptions of the model, ten scenarios were created to 

study the availability of the bogie system and each subsystem, and to perform a sensitivity analysis. 

Table 5.4 summarizes each individual scenario, where similarities can be verified which go according 

to the scenarios modelled for the reliability DES model.  

Table 5.4 – Summary of the different scenarios considered for the availability DES model of 
the cargo locomotive bogie 

Scenarios Description 

Scenario 1 - each individual block has an independent 𝑈𝑅𝑁𝐺 and the repair duration is deterministic 

Scenario 2 - each individual block has an independent 𝑈𝑅𝑁𝐺 and the repair duration follows a PERT Dist. 

Scenario 3 - Sc.1 where all blocks (122) failures are correlated with a correlation factor 𝜌𝑖,𝑗of 𝟎. 𝟐 

Scenario 4 - Sc.1 where all blocks (122) failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

Scenario 5 - Sc.1 within each subsystem (6), all failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 6 - Sc.1 within each subsystem (6), all failures are correlated with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟓 

Scenario 7 - Sc.2 where all blocks (122) failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟐 

Scenario 8 - Sc.2 where all blocks (122) failures are correlated with a correlation factor 𝜌𝑖,𝑗 of 𝟎. 𝟓 

Scenario 9 - Sc.2 within each subsystem (6), all failures are correlated with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟐 

Scenario 10 - Sc.2 within each subsystem (6), all failures are correlated with a correlation factor 𝜌𝑖,𝑗  of 𝟎. 𝟓 

 

As Table 5.4 shows, scenario 1 is equal to the first scenario of the reliability DES model, with the addition 

of having the maintainability included, i.e. including the repair process, where repair durations are 
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assumed to be deterministic. The repair durations are the 𝑀𝑇𝑇𝑅𝑖 values of Table 5.1. Contrarily to 

scenario 1, scenario 2 assumes the repair durations as random variables, where the stochastic process 

is represented by a PERT distribution. The PERT parameters are the following: 

𝑎 = 0.8 × 𝑀𝑇𝑇𝑅𝑖 𝑏 = 𝑀𝑇𝑇𝑅𝑖 𝑐 = [1.5: 2] × 𝑀𝑇𝑇𝑅𝑖 

Where 𝑎 is the minimum value the repair duration can take, 𝑏 is the most likely value (mode) and 𝑐 is 

the maximum value. For the maximum value 𝑐, a pseudorandom number between [1.5: 2] is generated 

to each block (122), in order to admit different repair durations. In scenarios 3 to 6, scenario 1 is used 

as basis, but applying the same 𝑇𝑜𝐹 generators as in the reliability DES model. In scenarios 7 to 10, the 

same principles used in scenarios 3 to 6, are applied, respectively, nevertheless, these scenarios 

consider scenario 2 as a basis. The different random 𝑇𝑜𝐹 generators are mentioned and explained in 

section 5.3.1 and go according to a MCS. 

5.4. Results and concluding remarks 

This section comprises all results from both the reliability and availability analytical models and the 

simulations models. The analytical results are compared with the simulations results, and further on, 

emphasis is put on the different simulation scenarios and its results. These are compared and 

discussed. 

5.4.1. Analytical Results – Reliability and Availability 

The analytical reliability results were calculated by considering an operation time of 𝑡 = 3000ℎ and each 

distribution function characterizing the stochastic failure of each component or FM 𝑖 with its parameters. 

The analytical reliability is graphically represented in Figure 5.5. 

 

Figure 5.5 – Analytical reliability of the bogie system 
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Table B.1 (in Appendix B1) presents some analytical reliability values for key time units. From both 

Figure 5.5 and Table B.1, one can verify that the most impactful subsystems in the reliability of the total 

system are, indeed, the braking system, the suspension system and the axlebox system, respectively. 

This can be explained by the combination of the number of elements and each element low 𝑀𝑇𝐵𝐹𝑖 

comprising each subsystem of the bogie’s configuration. Note that the lowest 𝑀𝑇𝐵𝐹𝑖 comes from the 

wheelset (see Table 5.1). Nevertheless, since the number of elements comprising the wheelset system 

is much lower than other systems, e.g. braking system or the suspension system, the impact caused by 

the number of elements is greater than the 𝑀𝑇𝐵𝐹𝑖 for each components/FM. 

For the analytical availability, Table 5.5 presents the analytical availability of each subsystem 

and of the total bogie system. By combining the availability of every component accordingly to the 

reliability-wise relationships (in series), the analytical availability of each subsystem and of the total bogie 

system is obtained. Like in the analytical reliability results, the subsystem with the most considerable 

influence is the braking system (𝐴4 = 96.416%), followed by the axlebox system  

(𝐴2 = 96.466%) and the suspension system (𝐴5 = 98.568%). The total system availability is projected 

to be 𝐴𝑠 = 89.771%. One should note that the analytical availability is just a possible projection of the 

availability of the bogie system, bearing in mind its reliability-wise relationship. Since the 𝑀𝑇𝑇𝑅𝑖 are very 

small compared to the 𝑀𝑇𝐵𝐹𝑖, the probability of having failures in other components when the system 

is down due to repair (i.e. when one component 𝑖 fails and starts its repair), is low and therefore can be 

neglected. Nevertheless, when considering a high number of elements, such as the bogie of interest, 

this event can happen, resulting in lower availability projections and therefore showing the need to 

compare such results to simulation models.  

Table 5.5 – Analytical Availability results 

 Availability 

1.  Wheelset System: 𝐴1 = 99.337% 

2.  Axlebox System: 𝐴2 = 96.466% 

3.  Bogie Frame System: 𝐴3 = 99.991% 

4.  Brake System: 𝐴4 = 96.416% 

5.  Suspension System: 𝐴5 = 98.568% 

6.  Electric Traction Engine System: 𝐴6 = 98.583% 

Total System 𝐴𝑠 = 89.771% 

5.4.2. Reliability Simulation results 

Considering the reliability DES model algorithm, in each scenario a histogram of each subsystem and 

system failure is obtained, where a survival analysis is posteriorly performed to get each reliability curve. 

For scenario 1, a simulation time of 𝑇 = 50000ℎ and 𝑁 = 1100 simulations are considered, based on 

FGC’s maintenance and average operating times. For the remaining scenarios (2 to 5), the same 

simulation time 𝑇 is considered, but only 𝑁 = 250, due to high computational efforts. 

For scenario 1, Figure 5.6 shows the total system histogram (a), and each single subsystem 

histogram (b) which provokes the bogie to fail. As a matter of fact, in the initial time steps, the system 
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which causes the bogie to fail most times is the wheelset system (above 10 failures). Nonetheless, in 

the long run, the braking system is clearly what persistently fails the most, followed by the axlebox 

system, the suspension system, electric traction engine system, wheelset system and, finally, the bogie 

frame system. Note that what defines the time range (x-axis) is the total system failures, which for the 

following scenario is lower than 700ℎ for all failures of the bogie (from all 𝑁 = 1100 simulations). 

Consequently, some system failures, like the failures from the bogie frame are not included in the total 

system since its failure occurs very rarely. 

 

Figure 5.6 – Scenario 1 a) bogie total system histogram and b) each subsystems histogram 

From these histograms, a survival analysis is performed in order to obtain the reliability curves of each 

subsystem and from the total bogie system. Figure 5.7 demonstrates the survival analysis performed to 

each subsystem and to the total system. In each graph, the KM-estimator and an empirical reliability is 

represented, which characterize the reliability of each individual subsystem and total system.  

a)

b)
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Figure 5.7 – Scenario 1 survival analysis of the Bogie’s subsystems and total system  

A summary of all reliability curves from scenario 1 is demonstrated in Figure 5.8. If compared with the 

analytical results obtained in Figure 5.5, one can verify that all reliability curves behave similarly. When 

comparing exact values from scenario 1 results with the analytical, for a reliability of 𝑅𝑠 = 0.8 and 𝑅𝑠 =

0.5, the system needs to operate 𝑇𝑠 ≅ 26 and 𝑇𝑠 ≅ 82ℎ, respectively, as in the analytical model (see 

Table B.1) . As a result, this comparison verifies the reliability DES model and its algorithm. It should be 

noted that a comparison between the total bogie system reliability is sufficient since the reliability-wise 

relationship of the bogie is considered to be in series. 
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Figure 5.8 – Summary of all reliability curves of scenario 1 

For the remaining scenarios, the same process and results were obtained and can be visualized for 

every scenario in Appendix B2. A summary of all scenarios is graphically exposed in Figure 5.9 where 

all the bogie total system reliability scenarios are represented.  

 

Figure 5.9 – Summary of the total bogie system reliability for scenarios S1 to S5 

As expected, the bogie’s reliability is higher in scenarios 2 to 5 than in the initial scenario 1 since a 

positive correlation of the failures is modelled in these scenarios. In addition, if one compares scenario 

2 and scenario 3 with the bogie’s reliability of scenario 4 and scenario 5, respectively, one can identify 

that by modelling a correlation of all failures within a system versus modelling the correlation of failures 

only in subsystems, results in higher reliabilities, with a histogram of failures more dispersed and with 

lower failures in each time bin (see scenario 2 to 5 histograms in Appendix B2). Moreover, the higher 

the correlation factor 𝜌𝑖,𝑗 between failures, the higher the bogie’s reliability (S2 vs. S3 and S4 vs. S5). 
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5.4.3. Availability Simulation results 

For the simulation of the availability DES model for all availability DES model scenarios, a simulation 

time of 𝑇 = 50000ℎ and 𝑁 = 50 simulations were considered, based on FGC’s maintenance, on the 

locomotive’s lifecycle and on the confidence interval desired. Note that due to excessive computational 

efforts, the number of simulations 𝑁 had to be retained low. 

For scenario 1, Figure 5.10 shows the mean availability results for each simulation (a), the mean 

availability in function of the simulation time for one simulation, where the mean availability in one 

simulation is identical to the average availability obtained from all simulations (in this particular case 𝑛 =

22)  (b) and the mean availability results for all simulations of all subsystems represented in a Boxplot 

(c). The Boxplot is a measure of how distributed a data is from a data set. The Boxplot function 

represents (from bottom to top) the minimum, the first quartile, the median (2nd quartile), the third quartile 

and the maximum in the data set. 

 

Figure 5.10 – Scenario 1 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 22) and (c) the mean availability results 

for all simulations of all subsystems  
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For scenario 1, the average availability of all simulations is 𝐴𝑆,1 = 90.53%. If compared with the analytical 

availability (𝐴𝑆,𝐴 = 89.77%), all availabilities, i.e. the bogie system and its subsystems, are higher, since 

in the analytical availability calculations, the failures of other components do not “delay” other 

components failures, resulting in lower availability projections. In addition, the most impactful systems 

as the braking system or the axlebox system, although they have a higher variability of mean 

availabilities for all the simulations, their lowest mean availability is higher than the analytical projections, 

resulting in a higher total system availability. For the remaining scenarios (2 to 10), the same graphical 

results were obtained and are illustrated in Appendix B3. A summary of the bogie’s system mean 

availability results for each scenario is presented in Figure 5.11. 

 

Figure 5.11 – Summary of the bogie’s mean availability for each scenario 

Observe that an additional scenario (𝑆1_𝑚𝑜𝑑𝑒𝑙2) was created, in order to model the acquisition of a new 

turning machine by FGC maintenance. The new turning machine reduces all wheelset repair durations 

to 𝑀𝑇𝑇𝑅𝑖 = 0.5ℎ, resulting in a model equal to 𝑆1 but with the slight difference of having a new 𝑀𝑇𝑇𝑅𝑖 

for the wheelset (6 blocks). From Figure 5.11 it is possible to retrieve that the main difference between 

all scenarios is the variability of its results. Starting with 𝑆1 and 𝑆1_𝑚𝑜𝑑𝑒𝑙2 (𝐴𝑆,1𝑚𝑜𝑑𝑒𝑙2
= 90.93%), it is 

clear that the new turning machine improves the availability projections (in this case by 0.44%), 

provoking less impact from the wheelset system to the total system availability. A major difference can 

be verified in 𝑆2 from the remaining scenarios (since 𝑆2 mean availability results differ very much from 

the remaining scenarios, an additional validation of 𝑆2 model is performed and is demonstrated in 

Appendix B3). What causes such low availability projections is the fact that the PERT distribution is 

considered to be a penalizing representation by assuming higher values of a random variable (in this 

case for the 𝑇𝑇𝑅𝑖), since its distribution function has a heavy tail, meaning the higher values are more 

widely distributed from the mode value than the minimum values. Indeed, the PERT parameters used 

for 𝑆2 penalize extremely the repair durations since the PERT parameter 𝑐 is considered to be more far 

apart from 𝑏 than 𝑎. By comparing the remaining scenarios (𝑆3 − 𝑆10) with the initial scenario 𝑆1, one 
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can confirm that assuming a correlation of failures does not have such an impact on the availability 

projections as one could expect. Especially, if one compares the scenarios availability projections with 

the results obtained from the reliability simulations projections. Nevertheless, the main difference to be 

identified in scenarios 𝑆3 to 𝑆10 is the variability of the results. First, the scenarios with correlation of 

failures in the component level (i.e. all blocks have correlated failures, 𝑆3 − 𝑆4 and 𝑆7 − 𝑆8) have a 

higher variability than the scenarios with correlation of failures in the subsystem level (i.e. only correlated 

failures within a subsystem, 𝑆5 − 𝑆6 and 𝑆9 − 𝑆10). Second, the scenarios with a low failure correlation, 

i.e. the correlation factor between failures is 𝜌𝑖,𝑗 = 0.2 (𝑆3, 𝑆5, 𝑆7, 𝑆9), have a higher median availability 

than the scenarios with a higher correlation between failures, i.e. the correlation factor between failures 

is 𝜌𝑖,𝑗 = 0.5 (𝑆4, 𝑆6, 𝑆8, 𝑆10). Nevertheless, the greater the correlation of failures, the greater the variability 

of the availability is. Third, the scenarios which consider deterministic repair durations (𝑆3 − 𝑆6) have, 

as expected, higher availability projections and at the same time a lower variability of results than the 

scenarios which consider a stochastic repair duration (𝑆7 − 𝑆10), respectively, due to having a 

stochastic behaviour in more than one variable (𝑇𝑜𝐹𝑖 and 𝑇𝑇𝑅𝑖) and due to the penalizing factor of the 

PERT distribution. Nonetheless, the scenarios with correlated failures and stochastic repair durations 

are not so penalized in terms of availability projections by the PERT distribution as 𝑆2.   

5.4.4. Concluding remarks 

In this chapter a reliability and availability DES model is built and implemented. With the aim of 

representing the real-case scenario of FGC, several scenarios are implemented and analysed. With the 

results obtained from the reliability and availability DES model, as well as with the development of the 

actual models and scenarios, a robust prognosis model is developed that can support decision-making 

in railway maintenance. For both models, the introduction of the variability of one or more parameters 

increases the reality of the operation in the model, therefore, allowing a greater flexibility in the 

estimation of possible scenarios that can represent a wider range of different circumstances in operation. 

As a result, these scenarios allow to identify the reliability and availability variations to that same 

variation of parameters. Special emphasis should be put on the availability results, since the variability 

of the results recognize where focus can be put on the uncertainty embedded in correlation of possible 

failures and/or in maintenance durations.  

Finally, to mitigate risks of access to maintenance data, where detailed specifications can be 

scarce, the inclusion of several scenarios to project the reliability and availability of a bogie system is 

essential in order to model the sources of uncertainty which influence the most every estimate of the 

reliability and availability of a bogie system.  
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6. Conclusions and further research 

6.1. Conclusions 

This dissertation presents a reliability and availability assessment framework of a freight locomotive 

bogie, which follows a RAMS approach, with the objective of contributing to the maintenance decision-

making in the railway industry as a diagnosis and prognosis model.  

As part of the initial procedure of a RAMS analysis, the proposed framework starts by performing 

a Failure Mode and Effect Analysis (FMEA) in order to identify and prioritize the most critical components 

of the bogie system of interest. Due to limited information on the failure behaviour of some components 

and due to uncertainties associated with the long-term degradation process of key components, a 

reliability assessment method is also conducted. The proposed method combines the Cooke’s Classical 

model (also known as Structured expert judgment) and the histogram technique with the aim of 

assessing performance-based lifetime distributions of long-service life components. To support the 

decision-making of the FMEA analysis, the proposed method is applied to the FGC’s case study on the 

wheelset system of freight locomotive bogies to estimate the reliability/survival curves, and associated 

failure rates were obtained, resulting in the verification of the method. With the reference failure rates, a 

consolidated criticality analysis is performed and the most critical components in the bogie system are 

identified. Risk mitigation strategies are discussed, and focus is put on the strategies which follow the 

implementation of a predictive maintenance monitoring system.  

After identifying the critical components and functional breakdown of the bogie, a Reliability 

Block diagram (RBD) of the bogie is obtained to identify the reliability-wise relationships of the bogie 

system. Based on the RBD, analytical and simulation models of both reliability and availability of the 

bogie of interest are modelled where emphasis is put on the variability of the stochastic parameters, 

which are modelled in alternative scenarios. The modelling approaches for each simulation model follow 

a Discrete Event Simulation (DES) approach. The verification of the simulation model is obtained by 

comparing the analytical results with the simulations results. The reliability simulation results show that 

a correlation of all failures in a component level compared to the correlation of failures in a sub-system 

level, as well as a higher correlation factor 𝜌𝑖,𝑗 between failures, brings greater reliability projections. 

Most notably, and in opposition to the clear results obtained in the reliability model, the availability results 

show that the correlation of failure modes do not have significant impacts on the mean availability of the 

bogie system itself, but on its variability. Additionally, the results of the simulations show the penalizing 

impact of the PERT distribution, embedded in the repair durations, in the availability projections. The 

proposed simulation models confirm to be a useful solution to predict the reliability and the availability 

of a cargo locomotive bogie system. The simulation models might be extrapolated for more complex 

systems.
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6.2. Limitations and Future Developments 

Multiple limitations have characterized affected this work, nevertheless the main constraint is the lack 

of information provided by the case study operating train company FGC. A good starting point towards 

a good reliability and availability study is, obviously, reference maintenance sheets to identify and 

prioritize the uses cases being modelled (FMEA/FMECA). This was not possible, resulting in a 

generalized study based on results of several European studies results and not on the reference 

locomotive cargo bogie of FGC. 

Extension of the present work can be done through several improvements and developments, 

such as: 

1. Reliability Assessment Method: 

- the efficiency of the proposed method should be compared with real operation and 

maintenance data of the use-case of interest, or data obtained from computational 

models that can mimic the degradation behaviour or failure occurrences; 

2. Reliability and Availability DES model: 

- Explore the application of repairs in the reliability DES model for a certain reliability value 

threshold to study the overall reliability curve of the bogie of interest;  

- Explore the application of downtimes caused by preventive maintenance and inspection 

tasks in the availability DES model to model a more real-case scenario, which replicates 

a train operating company day-to-day operation; 

- Implementation of imperfect maintenance tasks in the availability DES model i.e. 

maintenance tasks which do not restore the components reliability to an 𝐴𝐺𝐴𝑁 state; 

- Study of the variability and of the variance of the availability results with an ANOVA test, 

Levene's test or Kruskal-Wallis test; 

- Study of negative correlation factors in the failure generation of components, i.e. 

negative correlation factors 𝜌𝑖,𝑗 between failures and compare with the results obtained 

from the present work;  

- In case of sufficient data, explore the application of nonlinear-dependence measures to 

quantify component interdependencies [70] and therefore construct a real-case 

covariance matrix ∑𝑖,𝑗; 

 

Emphasis should be put on the application of the obtained results. These should support models 

that estimate real wear and failure occurrences and provide optimal maintenance and inspection 

intervals to reduce the lifecycle cost in the long-term of bogie components. Such results should also be 

integrated with maintenance planning and maintenance scheduling models, in order to improve the 

assets reliability, availability and the associated operational costs. 
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Appendix A 

A1 – Questionnaire: Seed and Target Questions  

For the expert’s assessment, in order to obtain the failure rates of the axle and the wheels, the following 

calibration questions and target questions were formulated: 

Seed Questions: 

 

1. Knowing that the average number per year of Railway Significant Accidents (i.e. 

accidents which include resulting fatalities and serious injuries) in Europe between 

2010-2015 was 2074, how many significant accidents in Europe were there in 2016? 

 

 5%               50%                     95%   

2. From the significant accidents in 2016, what was the percentage of fatalities and 

weighted serious injuries (FWSI) per significant accident? [%] 

 

 5%               50%                     95%   

3. In 2017, there were 1908 significant accidents in Europe. How many of these accidents 

were caused by derailments of trains? 

 

 5%               50%                     95%   

4. In 2017, there were in the 28 EU Countries 10026 total precursors. From these total 

precursors, how many belonged to the “Broken Wheels and Broken Axles” type? 

 

 5%               50%                     95%   

Target Questions: 

Axle: 

Based on your experience and knowledge, from a sample of n=1000 locomotive axles, how many would 

fail in each interval?      

 

1) 0 – 300,000 kms    __________ 

2) 300,000kms – 600,000kms  __________ 

3) 600,000kms – 900,000kms  __________  

4) 900,000kms – 1200,000kms __________ 

5) 1200,000kms – 1500,000km __________ 

6) 1500,000kms – 180,.000km __________ 

7) 1800,000kms – infinite  __________ 
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Wheels: 

Based on your experience and knowledge, from a sample of n=1000 locomotive wheels, how many 

would fail in each interval? 

 

1) 0 – 15,000 kms   __________ 

2) 15,000kms – 30,000kms __________ 

3) 30,000kms – 45,000kms __________  

4) 45,000kms – 60,000kms __________ 

5) 60.000kms – 75,000km __________ 

6) 75,000kms – 90,000km __________ 

7) 90,000kms – infinite __________ 

For this batch, please present what could be a possible MDBF (in kms)? _________ 

 

A2 – Reliability Assessment Method: Fitting each expert’s opinion 

Table A.1 – AIC values for each probability distribution fit to each expert judgment on the axle 
failure 

Distribution 
AIC 

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 

Weibull 309.44 363.81 558.39 3446.38 3176.37 2614.10 

Normal 312.25 367.32 561.88 3440.57 3173.73 2624.91 

Gamma 309.21 363.66 558.13 3553.26 3285.85 2616.32 

Lognormal 308.69 363.34 558.01 3664.55 3385.31 2627.89 

Exponential 325.68 379.35 598.35 4558.43 4618.45 3015.78 

Table A.2 – AIC values for each probability distribution fit to each expert judgment on the 
wheel’s failure 

Distribution 
AIC 

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 

Weibull 3509.07 2654.18 3380.18 1729.42 3192.99 3030.61 

Normal 3540.25 2687.15 3397.87 1732.75 3222.07 3027.80 

Gamma 3522.01 2654.79 3398.06 1732.65 3448.87 3058.07 

Lognormal 3554.52 2665.38 3434.54 1740.66 3602.68 3099.68 

Exponential 4022.73 2844.47 3903.71 1933.19 4793.71 3537.13 

Table A.3 – AIC values for the combined weighted expert opinion: axle and wheels 

AIC - Axle AIC - Wheels 

Distribution Combined Expert Distribution Combined Expert 

Weibull 2492.948 Weibull 3350.312 

Normal 2520.536 Normal 3348.156 

Gamma 2484.045 Gamma 3397.623 

Lognormal 2483.366 Lognormal 3456.506 

Exponential 2758.03 Exponential 4018.783 
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A3 – FMECA partial results  

Table A.4 – Critical components based on the consolidated FMEA with Expert Judgment 

Subsystem 
ID 

Subsystem 
Component 

ID 
Component Failure Mode Severity Occurrence 

Failure 
rate (1/h)) 

Source 

1 Wheelset 

1.1 Axle Axle Crack 10 3 1.5E-05 
Expert 

Judgment 

1.2 Wheels 

(Wheel out of round, 
Wheel cracks and notches, 

wheel build up material, 
wheel flat, profile under 

threshold) 

8 9 5.171E-04 
Expert 

Judgment 

2 Axlebox 2.1 Axlebox 

Absence of the cover box 
screw 

8 8 6.00E-05 FMEA 

Housing not watertight 8 8 1.20E-04 FMEA 

Bearing Failure 10 5 2.12E-06 
Literature 

[78]  

3 
Bogie 
Frame 

3.1 Frame - 9 7 1.18E-05 
Literature 

[78] 

4 
 

Brake 
System 

4.1 Brake 

parts of brake rigging 
hanging 

8 8 2.01E-05 FMEA 

Brake isolating cock 8 8 2.01E-05 FMEA 

Cast Iron Brake Block 6 8 1.08E-04 FMEA 

Composite Brake Block 6 8 3.12E-05 FMEA 

4.2 
Pneumatic 

Braking system 

Front air valve damaged 10 8 6.00E-05 FMEA 

Brake cylinder damaged 6 8 6.00E-05 FMEA 

Air distributor damaged 6 8 3.00E-04 FMEA 

Slack adjuster damaged 8 8 2.40E-04 FMEA 

4.3 
Master/Auxiliary 

Compressor 
- 9 8 1.09E-04 

Literature 
[78] 

4.4 
Master/Auxiliary 

Compressor 
Driving Motor 

- 9 8 2.60E-05 
Literature 

[78] 

4.5 
Servo-motor in 
braking system 

- 9 6 8.76E-06 
Literature 

[78] 

4.6 

Other Elements 
of the 

pneumatic 
braking system 

- 9 8 1.92E-04 
Literature  

[78] 

4.7 

Other Elements 
of the braking 
system (pins, 
sleeves,…,) 

- 9 8 1.28E-04 
Literature 

[78] 

5 
Suspension 
Elements 

5.1 Spring Buckle Spring Buckle Fracture 10 8 6.00E-05 FMEA 

5.2 Helical Spring Helical Spring broken 10 8 6.00E-05 FMEA 

5.4 
Other 

Suspension 
elements 

Bottoming between Axle-
box 

 housing and bogie frame 
10 3 1.44E-06 FMEA 

6 
Electric 
Traction 
Module 

6.1 
Power 

transmission 
system 

- 9 8 3.99E-04 
Literature 

[79] 

6.2 Shaft Coupling - 9 7 6.98E-05 
Literature 

[79] 

6.3 Traction Motor - 9 6 7.82E-06 
Literature 

[79] 
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Appendix B 

Analytical and Simulation Results        

Part of the analytical results and simulation results of the simulation analysis for both the reliability and 

availability, regarding every scenario mentioned in section 5.3, are presented in this section.   

       

B1 – Analytical Results 

Table B.1 – Analytical reliability results for several time units 

Time 

[h] 

Total 

System 
Wheelset Axlebox 

Bogie 

Frame 
Brake Suspension 

Electric Traction 

Engine 

0 1 1 1 1 1 1 1 

25 0.8189 0.9825 0.9732 0.9989 0.8884 0.9674 0.9976 

50 0.6678 0.9805 0.9427 0.9980 0.7804 0.9331 0.9941 

75 0.5429 0.9783 0.9117 0.9972 0.6852 0.9000 0.9897 

100 0.4402 0.9759 0.8806 0.9964 0.6014 0.8681 0.9846 

200 0.1861 0.9636 0.7589 0.9935 0.3558 0.7515 0.9580 

500 0.0117 0.8902 0.4540 0.9859 0.0722 0.4875 0.8354 

1000 0.0001 0.5731 0.1650 0.9748 0.0048 0.2369 0.5740 

2000 0.0000 0.0099 0.0145 0.9552 0.0000 0.0560 0.1729 

3000 0.0000 0.0000 0.0008 0.9376 0.0000 0.0132 0.0313 

 

B2 – Reliability Simulation Results 

The reliability simulation results for scenarios 2 to 5 are presented here. Note that for each scenario, the 

following results are presented: i) a histogram of the total system failure, where the number of failures 

for all simulations are demonstrated, ii) a decomposed histogram mentioning the number of failures in 

each subsystem and iii) the survival analysis behind the reliability curves of the total system and each 

subsystem. 

 

 

Note: in the histogram of the total system, each bin is the sum of each subsystem failure. 
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Figure B.1 – Scenario 2 a) total histogram covering the number of failures of the system 
regarding each subsystem failure (note: each bin is the sum of each subsystem failure) and b) each 

subsystem histogram decomposed 

 

 

 

a)

b)
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Figure B.2 – Scenario 2 survival Analysis of each subsystem and of the total system 
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Figure B.3 – Scenario 3 a) total histogram covering the number of failures of the system 
regarding each subsystem failure and b) each subsystem histogram decomposed 

 

 

 

a)

b)
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Figure B.4 – Scenario 3 survival Analysis of each subsystem and of the total system 
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Figure B.5 – Scenario 4 a) total histogram covering the number of failures of the system 
regarding each subsystem failure and b) each subsystem histogram decomposed 

 

 

  

a)

b)
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Figure B.6 – Scenario 4 survival Analysis of each subsystem and of the total system 
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Figure B.7 – Scenario 5 a) total histogram covering the number of failures of the system 
regarding each subsystem failure and b) each subsystem histogram decomposed 

  

 

 

a)

b)
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Figure B.8 – Scenario 5 survival Analysis of each subsystem and of the total system 
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B3 – Availability Simulation Results 

Considering the results obtained for scenario 2, an additional scenario (𝑆2_𝑛𝑒𝑤) with different PERT 

parameters was developed in order to validate the model implemented for all PERT scenarios. The 

parameters considered were the following: 

𝑎 = 0.9 × 𝑀𝑇𝑇𝑅𝑖 𝑏 = 𝑀𝑇𝑇𝑅𝑖 𝑐 = [1.2: 1.4] × 𝑀𝑇𝑇𝑅𝑖 

The construction of the model is the same as in scenario 2, as well the assumptions for the model. 

Figure B.9 illustrates the results obtained in scenario 1, scenario 2_𝑛𝑒𝑤 and scenario 2. As one can 

verify, the validation of the model is achieved by relaxing the PERT distribution parameters, since 

𝑆2_𝑛𝑒𝑤 mean availability results are between scenario 1 and scenario 2 mean availability results. 

 

Figure B.9 – Comparison and validation of the mean availability results of scenario 2 

 

The availability simulation results for scenarios 2 to 10 are presented here. Note that for each scenario, 

the following results are presented: i) the mean availability results of the bogie system for each 

simulation, ii) the mean availability in function of the simulation time for one simulation (which presents 

a mean availability identical to the average availability obtained from all simulations) and iii) the mean 

availability results for all simulations of all subsystems. 
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Figure B.10 – Scenario 1, model 2 (a) mean availability results of the bogie system for each 
simulation, (b) mean availability in function of time for one simulation (𝑛 = 16) and (c) the mean 

availability results for all simulations of all subsystems 

 

Figure B.11 – Scenario 2 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 14) and (c) the mean availability results 

for all simulations of all subsystems 
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Figure B.12 – Scenario 3 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 35) and (c) the mean availability results 

for all simulations of all subsystems 

 

Figure B.13 – Scenario 4 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 30) and (c) the mean availability results 

for all simulations of all subsystems 
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Figure B.14 – Scenario 5 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 26) and (c) the mean availability results 

for all simulations of all subsystems 

 

Figure B.15 – Scenario 6 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 22) and (c) the mean availability results 

for all simulations of all subsystems 
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Figure B.16 – Scenario 7 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 7) and (c) the mean availability results 

for all simulations of all subsystems 

 

Figure B.17 – Scenario 8 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 2) and (c) the mean availability results 

for all simulations of all subsystems 
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Figure B.18 – Scenario 9 (a) mean availability results of the bogie system for each simulation, 
(b) mean availability in function of time for one simulation (𝑛 = 27) and (c) the mean availability results 

for all simulations of all subsystems 

 

Figure B.19 – Scenario 10 (a) mean availability results of the bogie system for each 
simulation, (b) mean availability in function of time for one simulation (𝑛 = 19) and (c) the mean 

availability results for all simulations of all subsystems 
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