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Abstract

Motivation: Capturing the error perception of a human interacting with a Brain-Computer interface is a
key element in improving the performance of these systems and making the interaction more seamless.
Convolutional Neural Networks (CNN) have been recently applied for this task rendering the classification
model free of feature-selection. Despite the advances in the last years, there is still room for improving
the accuracy so that it can be used in real-life applications.
Objectives: The goals of the present work are to investigate, replicate and validate previous CNN models
used for error perception classification; to propose new CNN models based on the advances in Machine
Learning and lastly, to make all the code and models developed publicly available.
Methods: After a literature review, three recent CNN models for error-related potential (ErrP) classification
are replicated. Then, the author evaluates different new models that result from investigating CNN models
used for classification of ErrP and P300 signals. The Monitoring Error-Related Potential dataset is used
to train and test all the models.
Results: The best model from the literature achieves an accuracy, sensitivity, and specificity of 77.6%,
71.7%, and 83.1%, respectively. For the best proposed model, these metrics are of 80.4%, 75.9%, and
84.7%, respectively, which represents a statistically significant increase on the literature models (p =
0.0004). Furthermore, an EEG input with a shorter temporal size of 600ms is successfully applied instead
of the typical one-second-long input without significant loss of performance (p = 0.647). All models are
made available online for easier future replication and peer review.
Conclusions: The new proposed model outperforms the state-of-the-art. The 600ms input allows faster
processing times in real-time BCI applications without loss of performance.
Keywords: Brain-computer interface; Convolutional Neural Networks; Feedback error

1. Introduction
The development of Brain-Computer Interface
(BCI) systems is a very active field of research and
has grown considerably during the last decades
[1]. Usually, computer input requires the user to
perform a muscular action controlled by the brain
such as when using the mouse, keyboard, voice
commands, or others. BCI systems define a way of
interaction between a human and a computer that
relies solely on brain activity, rendering the use of
an intermediate actuation step by means of periph-
eral nerves and muscles unnecessary [2].

Different brain signals can be used to assess
the subject’s intention so that it is translated into
a computer or machine command. One such sig-
nal is the error-related potential (ErrP) which has
gained popularity among the BCI community but
still presents low accuracy rates when compared
to its counterparts [3]. Error-related potentials pro-
vide insight as to when a user makes or perceives

an error during the execution of a task [4]. If
high accuracy on ErrP classification is obtained,
BCI systems can better predict the real intent of
the user by automatically detecting errors and cor-
rect for them, thus increasing the system’s perfor-
mance.

Many methods can be used to classify the occur-
rence of ErrPs in the brain. However, issues such
as the processing of large amounts of data or lack
of generalization present challenging problems. In
the last few years, Deep Learning (DL) and, in
particular, Convolutional Neural Networks (CNN)
have become emergent technologies in tackling
these problems. Deep Learning brings a lot of ad-
vantages when handling complex and large types
of data and it is referred to as state-of-the-art in
many fields such as image recognition [6], natu-
ral language [7], stock market [8], advertising [9]
or healthcare [10]. It allows the scientific commu-
nity to move away from feature engineered meth-
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Figure 1: Using error-related potentials to improve BCI systems. Top: BCI system mis-classifies the intent of the user and
feedback is provided. Left: Error is perceived by the user and the single-trial detection of the error-related potential is used to
correct the erroneous action. Right: Alternatively, the detected ErrP can be used to improve the system’s classifier. Taken from
[5].

ods and provides end-to-end solutions that learn
meaningful, high-level features on their own [11].

The present work has three main goals:

1. investigate and replicate previous CNN mod-
els used for ErrP classification;

2. develop new models based on advances in
the field of Deep Learning that can provide im-
provements to the classification of ErrP;

3. provide open-source code for all the models
reviewed in this work and the new proposed
ones.

2. Background
This section presents some background to the
problem and the state-of-the-art.

2.1. Brain-computer interface
Conventionally, BCIs are composed of five compo-
nents: acquisition, pre-processing, feature extrac-
tion, classification, and application [12]. During ac-
quisition, the electrical activity of the brain is regis-
tered and converted into digital information. Elec-
troencephalography (EEG) is a very common and
cheap acquisition technique used for this purpose.
The pre-processing stage removes noise from the
signal, thus increasing its signal-to-noise ratio, or
selects the relevant parts of the signal to be pro-
cessed. Feature extraction finds relevant charac-
teristics in the signal which are fed into the clas-
sifier that then associates the features with one of
several possible application commands (classes).
Finally, the application receives the intent of the

user as a command, applies it, and may or may
not display some feedback to the user.

Although this is the conventional scheme, the
distinction between feature extraction and classi-
fication is only applicable for BCI systems that do
not use DL methods to train their models. Deep
Learning algorithms perform those two steps at the
same time: non-engineered features are learned
while the classifier is being trained.

2.2. Event-related potentials
Event-related potentials (ERPs) are electrical brain
signals elicited by a stimulus that may have differ-
ent origins: sensory (visual, auditory, tactile, etc),
cognitive (attention, memory, perception, etc), or
motor. ERPs are composed of one or more wave
components which are characterized by their am-
plitude, latency, and scalp distribution. Each com-
ponent is commonly named in the literature accord-
ing to its polarity (negative or positive) and latency
(in milliseconds): P50, N100, P100, N200, and so
on. A very common ERP component is the P300
which is elicited around the parietal cortex after a
rare and task-related stimulus is presented in the
middle of a random series of stimulus events [13].
It has been extensively studied and applied in the
field of BCI [14].

The present work focuses on Error-related po-
tentials (ErrPs), yet another ERP component that
has been much less studied than P300 but hold
promising advances in the field of BCI. Nowadays,
ErrP has become an umbrella term in the more
engineering-oriented research referring to the var-
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ious sub-components that may be correlated to er-
ror handling in different paradigms.

Various studies have tried to use the occurrence
of such signals to detect the error perception of
the subject when using a BCI [15]. The signal is
elicited when the user, after being presented with a
feedback stimulus, realizes a mistake was commit-
ted by the system when trying to identify the users’
intention. The ErrP presents three main features in
its waveform: a positive peak at around 200ms af-
ter feedback, a large negative deflection between
200 and 250ms and another positive peak at about
320ms [5]. This pattern is generated in the anterior
cingulate cortex (ACC) [5] and has been reported
to be more or less constant even when comparing
trials months apart [16].

An advantageous feature of ErrP is that it is a
physiological signal that occurs naturally during the
interaction with Brain-Computer interfaces, con-
trary to other ERPs that require training or stimula-
tion by the user such as those elicited with a motor
imagery paradigm.

2.3. Convolutional Neural Network
CNN is a family of deep learning models that
makes use of the convolution mathematical oper-
ation to extract meaningful features from the data
and combine them in order to generate the in-
tended output such as the classification of an im-
age or a time series.

Convolutional layers extract useful features by
sliding filter tensors (kernels) through the data. De-
pending on the traversed dimension (considering a
2D matrix whose two dimensions are space and
time), the result of a convolution is a set of spatial
and/or temporal features. To add non-linearity to
the model many different activation functions can
be used. The sigmoid and the hyperbolic tangent
(TanH) are very common ones but suffer from the
vanishing gradient problem [17]. An extensively
used function that avoids this problem is the rec-
tified linear unit (ReLU). This function, however,
suffers from the ’dead’ neuron problem, where the
null derivatives computed during backpropagation
prevent weights and biases from updating during
training [17]. To address this behavior, both the
LeakyReLU and the exponential linear unit (ELU)
can be used. Another advantage of these two func-
tions is that they can produce negative outputs, al-
lowing updates to the weights and the biases in
both directions.

After the convolutions and non-linearities, at the
end of a CNN model there is usually one or more
fully connected (FC) layers working as a regular ar-
tificial neural network combining the extracted fea-
tures.

A common problem that emerges in models

where a huge number of parameters are estimated
is overfitting of the data. The model may predict
very well the cases it was given to train but predicts
poorly new unseen cases (test set). Two ways to
attenuate this effect are using batch normalization
(BN) and dropout layers [3]. Dropout layers zero-
out a certain percentage (dropout rate) of nodes
before feeding the data to the next layer.

2.4. State-of-the-art

Several models have been proposed over the
years to classify different ERPs using both classi-
cal and deep learning approaches. Recently, focus
has been given to the latter due to their high accu-
racy and the fact that the model performs both the
feature extraction and classification tasks, meaning
that no a priori optimal feature search is needed.
In this work, the author focuses on three recent
studies that use CNN models for ErrP classifica-
tion which are later used for comparing with the
new proposed models. Furthermore, CNN mod-
els that classify P300 signals are also considered.
Since these have been more extensively investi-
gated, they provide insights into the model’s archi-
tecture and on how to improve their performance.

In 2018, Luo et al. [18] proposed a model (CNN-
L) which applies temporal convolution in the first
layer and then applies spatial convolution. After
the convolutions, the model applies batch normal-
ization, average-pooling, and a 50% rate dropout
before the fully connected layer that outputs two-
class nodes. This particular ErrP classification
model was used to improve the efficiency of experi-
ments that aimed at obtaining human intuitive pref-
erences. By observing the error perception caused
by a random selection of the computer (contrary to
the user preference) the authors were able to train
the model to reach a 67% accuracy level.

In the same year, Torres et al. [19] proposed
a model that convolves both spatial and tempo-
ral dimension at the same layer. Their model,
called ConvNet, performs a mixed convolution with
a max-pooling layer followed by another mixed con-
volution with max-pooling and a FC layer at the
end with two nodes as output. Additionally, as part
of the pre-processing before feeding the data into
the ConvNet model, the EEG passes through three
stages: artifact removal, ZCA whitening, and crop-
ping. During the last stage, the signal, which has a
size of 64× 563, is cropped to a size of 64× 64 at a
random point, decreasing the temporal dimension
of the input. The authors argue that this process
decreases the likelihood of trapping the model at a
local minimum during training.

In 2019, Bellary and Conrad [3] described a CNN
model called ConvArch that only takes two elec-
trodes as input after visual inspection of the topo-
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graphical maps of the averaged ErrP. The largest
variation was observed at the region of the ACC,
hence the choice of the FCz and Cz electrodes
out of the 64 available channels. Again, the first
convolution layer performs a mixed convolution op-
eration with both the temporal and spatial dimen-
sions. Then, a set of three modules follow, each
being composed of a temporal convolution layer
(with ReLU activation functions) and a max-pooling
layer that halves the size of the matrix data. In the
end, a single FC layer is followed by a softmax ac-
tivation function that outputs two nodes. The au-
thors experimented with two versions of this archi-
tecture: one as just described (ConvArch1) and
another with added BN and dropout layers (Con-
vArch2). Unfortunately, the exact arrangement of
these added layers inside the architecture of Con-
vArch2 and the dropout rates are not mentioned
in the paper and must be defined through an edu-
cated guess.

The comparison of results from the three mod-
els presented is not obvious due to the differ-
ent datasets, pre-processing, and training methods
used. In the next section, these stages are uni-
formized as much as possible, allowing an easier
comparison of the performances.

3. Methodology
This section presents the dataset used and the pro-
posed models to be tested against the literature
models.

3.1. Dataset
The used dataset was created by Chavarriaga et
al. [20] and is publicly available [21] at the BNCI
Horizon 2020 project website under the name Mon-
itoring error-related potentials. The signals are
generated while the user is monitoring an external
device upon which no control is given. Each sub-
ject has to monitor a green square cursor which
can travel along a horizontal line made up of 20
evenly spread positions. On each trial, a target ap-
pears either at the left or at the right of the cursor
and the cursor moves in the direction of the tar-
get. After reaching the target, the cursor stops,
and a new target comes up no further than 3 po-
sitions away from the last target. The subjects are
informed that the goal of the cursor is to reach the
target. To present erroneous behavior to the sub-
ject, the cursor has a 20% probability of moving
away from the target, contrary to its determined
goal. The dataset includes six subjects (mean age
27.83 ± 2.23 years) who performed two sessions
each separated by several days. Each session
contains 10 blocks (3 minutes each) with approx-
imately 50 trials per block. The raw dataset con-
tains 1030 target trials and 4085 non-target trials as
refered on Table 1.

Table 1: Number of target (with ErrP) and non-target (without
ErrP) trials in the dataset.

Trial
type

Per subject Total
1 2 3 4 5 6

Target 181 184 142 165 186 172 1030

Non-target 628 654 706 676 696 725 4085

3.2. Epoch window
An important consideration for future use in real-
time applications is the temporal epoching window
size, which is the temporal range from the EEG sig-
nal that is fed to the model as input. A larger input
may allow the model to search for more features.
However, if we consider the application of an error
perception classifier running in real-time, then the
temporal epoch window should be as short as pos-
sible to decrease the delay between the feedback
presentation and the classification. Hence, a com-
promise must be achieved that both maximizes the
useful information and minimizes the lag-time dur-
ing online settings.

In this work, we hypothesize that 600ms after
feedback presentation is enough to maintain a high
level of accuracy while significantly reducing the
lag-time. This epoch window keeps the waveform
at the center of the interval as the ErrP occurs
mainly at around 300ms, including both its start
and tail. Considering that the majority of the ap-
proaches use an epoch size of around one second
[3, 19, 22] this would reduce the lag-time by about
half, which is a significant improvement.

To confirm this hypothesis, an experiment is per-
formed where a group of different ranges is used
to epoch the input signal. The first range starts
at feedback presentation and lasts 1000ms. This
is the most common range and is thus used as
the control range. Then, five increasingly smaller
ranges follow: from the range [0, 600]ms until the
range [0, 200]ms in steps of 100ms. After epoched,
the data is fed to a CNN model, and the accura-
cies obtained are compared. If no significant differ-
ences in performance are observed between the
control range and the [0, 600]ms range, then the
hypothesis is valid and the shorter window both
preserves signal information and reduces lag time.
The remaining ranges are tested to verify how
much the epoch window can be reduced before
any significant performance reduction is noticed.

3.3. CNN models
The mathematical abstraction of the problem con-
sidered can be broadly divided into three parts as
shown in Figure 2: the input (EEG signal), the
function (CNN model), and the output (classifica-
tion classes). The goal in this section is to focus
on the function and thus propose new CNN mod-
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Figure 2: Processing pipeline when using a CNN model.

els able to classify, with the best accuracy possible,
the EEG signal generated after a feedback is pre-
sented to a patient. This classification depends on
the presence of a specific event-related potential
called ErrP. If the ErrP waveform is present then
the model should classify the given EEG segment
as ”containing an ErrP” or otherwise ”not contain-
ing an ErrP”. From the analysis of the CNN mod-
els used for P300, several characteristics can be
drawn, which constitute improvements over previ-
ous ErrP classifiers.

Concerning input normalization and solely con-
sidering the three models focusing on ErrP, only
ConvNet applies some kind of normalization to
the input by applying ZCA whitening in the pre-
processing stage. On the contrary, all P300
models use some form of input normalization.
While some apply normalization during the pre-
processing stage, one model uses batch normal-
ization [23], which makes the normalization part of
the model’s architecture. Hence, in this work, a
normalization layer is also added as the first layer
to all the proposed models. Besides being used to
normalize the input, BN layers can also be used in
convolution layers, just before the activation func-
tions, to normalize the data that suffers distribution
changes due to the convolution.

Another important aspect is the order in which
the temporal and spatial convolution layers are
placed inside the architecture. One study states
that performing the spatial convolution before the
temporal convolution prevents the CNN models
from learning the temporal features well [11]. Be-
cause of that, they present a mixed convolution,
where the kernel convolves both in the tempo-
ral and spatial dimensions simultaneously. All the
ErrP models seem to already implement this strat-
egy, either by applying a mixed convolution or by
adding the spatial after the temporal as done in the
CNN-L model. In this work, the temporal convolu-
tion is applied first, followed by the spatial convolu-
tion. This is done, instead of the mixed version, to
decouple these two independent operations.

Concerning the activation function used for the
convolution layers, ReLU is the most used func-

tion in the considered P300 models. During the
last years, it has dominated the field of Machine
Learning, being the most used activation function
in state-of-the-art solutions [17]. However, it intro-
duces the dead neuron problem that affects the
training process. Both the LeakyReLU and the
ELU functions address this issue, although the lat-
ter provides better generalization and faster train-
ing [17]. Therefore, and following the ConvNet and
CNN-L models, the ELU function is used in this
work.

To decrease the architectural complexity, the
data size used by the model, and the training time,
the proposed models use a stride size equal to the
kernel size. This prevents input overlap when cal-
culating two consecutive kernel convolutions. Be-
cause this stride choice largely reduces the data
dimensionality, no other methods such as max-
pooling are used for that effect. A study by Sprin-
genberg et al. re-assessed the state-of-the-art
concerning object detection, where the common
pipeline is using a sequence of convolutions with
max-pooling layers followed by FC layers. They
found that the max-pooling layers can be replaced
by a larger convolutional stride without loss of ac-
curacy [24].

When dealing with a binary problem, such as
classifying the presence of a specific ERP in an
EEG signal, the tendency is to use 2 output nodes
which are identified as each of the classes. This
is in fact what is observed from the collected stud-
ies, where almost all studies used 2 output nodes.
The BN3 model is the only to use one single out-
put node which defines the probability of a cer-
tain class being the correct one. Given a thresh-
old value, the most probable class is then selected.
Having a single output node for a binary case not
only avoids redundancy, but it decreases by half
the number of weights in the last FC layer. There-
fore, in this work, only one output node is used.

The dropout layer is an important element in
studies with relatively small datasets, preventing
the model from overfitting during training. If too
many nodes are ignored, then the model might
learn slowly or not learn at all. On the contrary,
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if the rate is too low, then overfitting might happen
and the purpose of the layer is lost. In the paper
where dropout layers were proposed, the authors
used dropout rates of 50% [25]. A more recent
study suggests that using lower dropout rates such
as 20% is better [26]. In fact, the P300 models that
implemented this technique, chose a relatively low
dropout rate (20% and 25%). To verify the effective-
ness of this layer, three different dropout rates are
tested: 0%, 20%, and 50%.

The number of FC layers used after the convolu-
tion layers can also be optimized. As the number
of FC layers increases, the model has the ability to
develop more complex relations between the fea-
tures to infer the correct classification. However,
most of the ErrP models use only one FC layer,
while the P300 models tend to use up to three lay-
ers. To verify the effectiveness of extra layers in
the architecture, three different models are tested:
with 1, 2, and 3 FC layers.

The kernel size used in the convolution layer is a
parameter with a wide range of values in the litera-
ture. Considering that the minimum and maximum
values are 40ms and 125ms, the author decides to
experiment with three different kernel sizes within
this range: 20, 40, and 60 samples which corre-
spond to temporal sizes of approximately 40ms,
80ms and 120ms, respectively.

The removal of the BN and ELU activation layers
after the first convolution is also tested to verify if it
produces higher accuracy.

All models are developed using the PyTorch li-
brary and trained with GPU acceleration. The liter-
ature models are trained with the parameters de-
fined in the original papers and the proposed mod-
els use an SGD optimizer with a learning rate of
10−3, a weight decay of 10−5, momentum of 0.9
and batch normalization of 128.

The variations introduced here originate various
models which can be seen in Table 4. The values
inside square brackets present the best values for
the specific features which are, at this point, still
unknown and can only be asserted after running
comparison tests in the next section.

4. Results
In this section, the results concerning the epoch
window, the models from the literature, and the pro-
posed models are presented and discussed.

4.1. Epoch window
Table 2 summarizes the results for the epoch win-
dow size. To compare each shorter epoch with
the control epoch, t-tests are used with the accu-
racy as the comparison metric. Both the two first
shorter ranges, [0, 600]ms and [0, 500]ms, do not
show accuracies statistically different from the con-
trol range, with p-values of 0.647, and 0.277, re-

Table 2: Accuracy of one model when training with different
temporal windows (averaged over 5 independent training runs).

Epoch time
range (ms) Average Sensitivity Specificity

[0,1000] 79.1%
±0.5%

75.2%
±1.0%

82.9%
±1.0%

[0,600] 79.4%
±0.7%

76.4%
±2%

82.2%
±1.7%

[0,500] 78.5%
±1.0%

73.5%
±2.4%

83.1%
±3.1%

[0,400] 77.9%
±0.6%

74.2%
±2.6%

81.3%
±1.5%

[0,300] 73.3%
±1.5%

62.7%
±3.5%

83.4%
±1.8%

[0,200] 59.6%
±0.6%

47.4%
±1.6%

71.1%
±1.1%

spectively. This means that the range can be de-
creased from the common [0, 1000]ms range, to
[0, 600]ms or [0, 500]ms without compromising the
performance of the model. The remaining ranges,
[0, 400]ms, [0, 300]ms, and [0, 200]ms, present a
significant difference in accuracy from the range
[0, 1000]ms, with p-values of 0.012, 0.001, and
2.92× 10−11, respectively.

The [0, 600]ms epoch window provides the ad-
vantage of shortening the lag time when acquiring
the input signal in real-time applications by about
half. Despite the [0, 500]ms range being shorter,
the temporal difference of 100ms is not substantial
and the decrease in sensitivity, although not statis-
tically significant (p = 0.109), suggests that using
the [0, 600]ms range is a better approach. Hence,
the hypothesis is experimentally verified and due to
the advantages presented, the [0, 600]ms epoching
window is used for all the proposed models.

4.2. Literature models
Table 3 presents the performance results of the
original and replicated models, where the accu-
racy, sensitivity, and specificity metrics are de-
tailed.

After replicating the ConvArch model, it can be
seen that its accuracy is 15% lower than that of the
original paper. This difference is probably due to
the dataset split which defines the test set used to
evaluate the performance of the model. As a bal-
ancing technique, Bellary and Conrad replicated
samples from the smaller class, as also done in
the present work. If this process is not done ran-
domly, then over-representation of a particular sub-
ject may emerge in the dataset. The results from
Bellary and Conrad suggest that subject number 1
is over-represented in the test set. The problem
with over-representing subject 1, in particular, is
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Table 3: Performance of the original and replicated models from
the ErrP literature. All the replicated results are averaged over 5
training runs with test sets randomly sampled from the second
session of the dataset.

Author(s)
[Year]
Model

Results from Acc. Sens. Spec.

Bellary et al. [2019]
ConvArch

Original paper 86.1% - -

Replicated 71.2%
± 1.7%

56.1%
± 6.7%

85.4%
± 3.2%

Torres et al. [2018]
ConvNet

Original paper - 77.5% 79.5%

Replicated 51.7%
±0.8%

63.1%
±32.3%

40.9%
± 30.5%

Replicated
(no crop)

76.0%
±0.8%

67.1%
±3.8%

84.5%
±3.1%

Luo et al. [2018]
CNN-L

Original paper 67.5% - -

Replicated 77.6%
±0.7%

71.7%
±2.8%

83.1%
±1.5%

that it is the subject that always produces the best
individual accuracy and thus, it introduces a bias
by over-estimating the performance of the model.
In the present work, however, the dataset split en-
sures the homogeneity of all the subjects for an un-
biased performance evaluation.

The reproduced ConvNet model obtains an al-
most random accuracy of 51.7%. Both the obtained
sensitivity (63.1%) and specificity (40.9%) present
a standard deviation of around 30% and thus, it
is clear that the model, when training, settles at a
point where it more or less randomly classifies the
majority of the samples as one of the two classes.
The cropping of the input at the start of the ar-
chitecture seems to be the problem and to test
this hypothesis, another version of the same model
was replicated, this time with no cropping of the
input. This second model performs much better,
with an accuracy of 76.0% and significant sensi-
tivity and specificity (standard deviation of around
3%). When Torres et al. suggest the cropping step,
they argue that papers such as that of Schirrmeis-
ter et al. [27] used it to reduce the probability of
identifying a false training local minimum. How-
ever, the cropped percentage used by Schirrmeis-
ter et al. is of 50% (500 samples out of 1000), while
the cropped percentage used by Torres et al. is of
11% (64 samples out of 563). Such a small crop
makes the model blind to the overall temporal pro-
cess, making it hard to correlate and extract fea-
tures from different temporal crops, thus preventing
the model from learning and performing well.

While the studies for the two previous models
use the same dataset as the present work, the
CNN-L model uses its own original dataset which
contains 12 subjects. Therefore, the performance
of the original and replicated models is not ex-
pected to be necessarily the same. In fact, an in-
crease of 10% is achieved for the accuracy with the

replicated model (77.6%) when compared with the
original paper (67.5%). CNN-L presents the highest
replicated accuracy of the three models. One fac-
tor that is singular to this model that may explain its
accuracy is the sequential order of its convolutional
operations. The majority of the models start with a
spatial convolution followed by a temporal convolu-
tion or use a mixed convolution, where a 2D kernel
convolves both spatial and temporal dimensions si-
multaneously. CNN-L, on the other hand, places
the temporal convolution before the spatial con-
volution which makes the model adequately learn
temporal features [11].

4.3. Proposed models

In this final sub-section, the performance of the
proposed models is analyzed and discussed. Ta-
ble 4 summarizes the results and provides the ac-
tual parameters used by each model (inside square
brackets). Each group of models used to evaluate
the best parameter for a specific architectural com-
ponent (kernel size, number of FC layers, presence
of BN and ELU layers, and dropout rate) is com-
pared with ANOVA and t-tests.

The first set of three models (1, 2, and 3 from
Table 4) tests the kernel size for the possible val-
ues of 20, 40, and 60 samples. A one-way ANOVA
reveals that there is no significant difference be-
tween their accuracies (p = 0.808). To avoid over-
complicating the model, when no statistical signif-
icance is found between a group of models, the
simplest architecture is chosen. In the case of the
kernel size, choosing a smaller kernel yields fewer
parameters, which simplifies the model. Therefore,
model 1 is chosen as champion, and models 4 to 9
implement a kernel size of 20 samples.

To analyze the appropriate number of FC layers,
three models are used: model 1, 4, and 5 which all
contain the same kernel size but a different number
of FC layers (1, 2, and 3, respectively). Once more,
a one-way ANOVA test does not find any statistical
difference between these three models (p = 0.568).
Therefore, the simplest model must be chosen. In
this case, similarly to the previous one, fewer FC
layers also generate less trainable parameters and
since extra layers do not increase the performance
of the model, they are not necessary. Following the
same reasoning as before, model 1 remains the
current champion, and models 6 to 9 implement a
single FC layer in their architecture.

Concerning the presence of the BN layer and
ELU activation function in the first convolution
layer, models 1 and 6 are compared, since they
only differ in that regard. A t-test shows that there
is no statistical difference between the two mod-
els (p = 0.117). The simplest model, in this case,
is model 6 which performs fewer calculations not
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Table 4: Performance results for the proposed models.

Model
number

Model architecture Performance metrics

Kernel
size

FC
layers

BN &
ELU

Dropout
rate

Use
BN Acc. Sens. Spec.

1 20 1 Yes 0% Yes 78.4%
±1.4%

72.6%
±1.8%

83.9%
±1.8%

2 40 1 Yes 0% Yes 78%
±0.7%

71.7%
±1.3%

84.0%
±1.3%

3 60 1 Yes 0% Yes 78.0%
±1.0%

71.2%
±1.9%

84.5%
±1.0%

4 [20] 2 Yes 0% Yes 78.7%
±1.1%

73%
±3.6%

84.2%
±1.9%

5 [20] 3 Yes 0% Yes 77.7%
±1.4%

71.9%
±1.8%

83.4%
±1.5%

6 [20] [1] No 0% Yes 79.9%
±0.8%

75.3%
±1.5%

84.1%
±2.4%

7 [20] [1] [No] 20% Yes 80.4%
±0.7%

75.9%
±1.5%

84.7%
±1.5%

8 [20] [1] [No] 50% Yes 79.9%
±0.3%

77.4%
±0.5%

82.1%
±0.9%

9 [20] [1] [No] [20%] No 76.3%
±0.7%

68.9%
±1.7%

83.3%
±2.3%

Figure 3: Loss plot for the validation set comparing the effect
of models with and without batch normalization. The red group
represents the models without batch normalization. Each line is
an independent trained model.

considering the statistical metrics to normalize the
batch or non-linear functions. This also simpli-
fies the backpropagation calculations during train-
ing since fewer functions make part of the deriva-
tion chain. The non-linearity of the model is guar-
anteed with the activation function of the second
convolution.

Next, the dropout rates are tested with models 6,
7, and 8, corresponding to rates of 0%, 20%, and
50%, respectively. The ANOVA test for these three
models shows that there is no significant difference
between their accuracies (p = 0.427). Since a

dropout layer does not present any trainable pa-
rameters or performs calculations, there is no par-
ticular way to choose the most simple of the three
models. In this case, the choice is based on two
factors. Firstly, the advantage of having this layer
for controlling the overfitting phenomenon excludes
model 6 as it does not make use of it. Secondly, fol-
lowing the considerations of previous studies [26]
and the practices of other CNN models, the smaller
dropout rate of 20% is chosen. Therefore, model 7
is the new current champion.

Finally, model 9 is trained to verify the effective-
ness of the BN layers in reducing the overfitting
phenomenon. The comparison is performed be-
tween models 7 and 9. A t-test shows that the
accuracies are statistically different (p = 0.00005).
This shows that adding BN layers to the architec-
ture, either at the output or before non-linearities,
has an effective impact on the performance of the
model. Furthermore, it does also have a positive
influence in reducing the overfitting of a model dur-
ing training. Figure 3 depicts the training evolu-
tion of the validation loss for several instances of
model 7 (blue) and model 9 (red). From the graph,
it is clear that, after the initial reduction of the error,
both models display very different behaviors: the
loss of model 7 remains more or less stable after
the initial decrease, while the loss of model 9 starts
to increase again which means that the model is
overfitting. Thus, adding the BN layers effectively
prevents overfitting.
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5. Conclusions and future work
In this work, all three main goals proposed in
the beginning are achieved. Three previous mod-
els from the literature were reviewed and repli-
cated: ConvArch, ConvNet and CNN-L. Their re-
sults showed some incongruities concerning the
results reported in the original papers, either due
to the use of different datasets or to the insufficient
architectural and training details.

To improve on the state-of-the-art, other CNN
models were investigated, namely P300 classifiers.
Since this type of signal is also an event-related
potential, its nature is similar to that of an ErrP, and
hence, the same type of Deep Learning architec-
ture might produce good results. In fact, using mul-
tiple features from these models helped improve
the accuracy of the new proposed models up to
80%, beating the state-of-the-art.

As future work, the author suggests using trans-
fer learning to achieve a better generalization.
First, a CNN model is pre-trained on a dataset
with all subjects and later fine-tuned by freezing
the early feature extraction layers and training with
only one subject. This is expected to allow for both
a good low-level feature extraction generalization
and a good specificity for individual subjects. Addi-
tionally, more comprehensive datasets can be de-
veloped and publicly shared, with a higher number
of subjects to study the effects of inter-subject dif-
ferences in the generalization of models.
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