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Abstract—Recent advancements in technology have allowed
for great development in the field of Speech Synthesis. As
such, present-day speech synthesis applications are expected to
function for multiple voices, and ensure a fast generation of
natural–sounding synthetic speech for enhanced feasibility. This
study suggests a multi-speaker text-to-speech (TTS) system for
European Portuguese that enables the addition of new speakers
without requiring extensive training and data. The proposed
model framework comprises two systems: a sequence-to-sequence
(Seq2Seq) regressive stage for acoustic feature prediction, fol-
lowed by a neural vocoder for waveform generation. The model
employs a universal vocoder which does not require fine-tuning
for new voices.

The Seq2Seq regressive model predicts acoustic features in
the form of Mel-spectrograms by decoding the combination of
linguistic embeddings — extracted from the text input —, and
speaker embeddings conveying the target speaker identity. The
model operates in a multi-speaker setting and can be fine-tuned
simultaneously to multiple unseen speakers.

Subjective tests have shown that the proposed model registered
comparable performance to another state-of-the-art TTS system,
while employing less than half of training data. Furthermore,
the proposed model was capable of producing meaningful results
when trained with reduced data — under three minutes of speech.
At last, the universal vocoder performed, on average, 11 times
faster than the speaker–dependent neural vocoder of the state-
of-the-art TTS approach used for comparison.

Index Terms—Speech Synthesis, Multi-Speaker TTS, Voice
Conversion, Voice Cloning

I. INTRODUCTION

Speech is the most natural and immediate form of com-
munication. Nowadays, Speech Synthesis is broadly used in
many applications, ranging from voice assistants to speaking
aid systems for vocally handicapped people. The demand for
speech synthesis in a wide variety of applications propels the
development of new approaches that revolutionize the way we
use and perceive technology.

The dynamic nature of human speech due to characteristics
like language, intonation, vocabulary or accent, poses a de-
manding challenge for Speech Synthesis systems. Retaining
all this information and transforming it such that it can be
interpreted by a machine, motivated the conception of many
methods that seek to address this subject. The new ability to
gather a vast amount of data enabled great progress in speech
synthesis applications.

The latest research on Speech Synthesis has developed sys-
tems that can generate high-quality natural–sounding speech,
and address several voice conversion tasks. However, for

the sake of synthetic speech quality, these systems are of-
ten trained for very particular configurations, posing several
limitations. Most of these applications only operate for a
restricted variety of voices and speaking styles. Moreover,
these systems are usually configured for data that must attend
to very specific requirements in terms of recording conditions
and audio quality. Naturally, the more restrictions are raised,
the harder is to find data meeting such conditions. For the
Portuguese language this problem is even more accentuated
as the diversity of speech corpora is considerably smaller than
for the English language.

Present synthesis systems are set apart from its predecessors
for two essential reasons: 1) they generate synthetic speech of
distinctively superior quality; 2) they comprise a great amount
of parameters, and employ very large datasets for training.
Besides the drawbacks identified in the previous paragraphs,
other downsides arise from the complexity of these models:
training can be an intricate and exhaustive process, involving
the tuning of multiple parameters; synthesis speed at inference
time can be slow, often requiring high computational power.

Speech Synthesis is a broad scientific field in constant
evolution. Thus, it would not be reasonable to address all
the challenges regarding this subject, namely the problems
identified in the previous two paragraphs. Within Speech
Synthesis, this study focuses on solving the limitations that are
pivotal to the performance of text-to-speech (TTS) techniques
— that is, systems that generate a synthetic utterance from a
given text — in a real-world context: the limited variety of
voices for synthesis, and the often slow inference speed of
present-day systems.

A. Objectives

The fundamental objective of this study consists in devel-
oping a TTS system for European Portuguese (EP), based on
existing state-of-the-art implementations of Speech Synthesis
systems. To attain this goal, it is first necessary to address the
characteristics inherent to EP, in order to ensure correct pro-
nunciation, specially in exceptional cases such as homographs.
Moreover, one must identify the main components within the
TTS framework and arrange them so the system can adapt to
new voices, and ensure reasonable inference speed.

More specifically, this study aims to:

• Adapt a TTS framework to EP, particularly regarding the
pronunciation in exceptional cases, namely homographs;



• Incorporate new speaker identities without requiring ex-
tensive training;

• Ensure faster synthesis of speech than previously pro-
posed models for EP.

II. BACKGROUND

A. Neural networks

Neural networks are systems capable of performing clas-
sification and regression tasks when given input data. This
concept, inspired by the structure and function of the brain,
is composed of neurons, connections, weights, and activation
functions. Neurons are nodes that generate an output from a
combination of received inputs. Each neuron has an activation
function. The output of a neuron corresponds to the value of its
activation function f(s), where s denotes the combination of
its inputs. Connections are weighted links between the output
of one neuron and the input of another neuron. Neurons may
have multiple input and output connections. The activation
function computes the output of a neuron from its inputs,
which are combined as a weighted sum of each input. The
weight assigned to each input is the weight of the correspond-
ing connection. A bias term can be added to the sum. As such,
for n inputs, the combination of inputs s of a neuron is given
by equation (1),

s =

n∑
i=1

(xiwi) + b (1)

where xi, wi and b denote input i, weight of connection i and
the bias term, respectively. Neural networks group neurons
in three types of layers: the input layer, which receives the
input data of the neural network, hidden layers, which perform
intermediate processing, and the output layer, that produces the
output of the neural network according to the desired format. A
network should be adapted to the characteristics of input data
and the type of problem to be solved. This implies adjusting
parameters such as learning rate, and connection weights. The
latter can be adjusted through back-propagation [1].

Over the years, the increase of computational power mo-
tivated the emergence of deep neural networks (DNNs) and
other architectures, namely recurrent neural networks (RNNs)
and convolutional neural networks (CNNs), that can detect
more meaningful dependencies in the input data than the
traditional multilayer perceptron.

B. Speech Synthesis

Speech synthesis aims to generate synthetic speech ac-
ceptable to human listeners. It can take in either textual or
conceptual input to reproduce the characteristics of the typical
human speaking process [2]. Synthesis from text, also known
as text-to-speech (TTS), converts written text to a speech
signal. TTS essentially consists of three stages, illustrated in
figure 1: 1) text analysis; 2) regression; and 3) waveform
generation [3]. Text analysis, also known as “frontend”, is
responsible for processing text inputs, and extracting the
corresponding linguistic representations. The regression stage
performs linguistic to acoustic feature mapping. Finally, the

waveform generation stage produces a speech signal from the
acoustic features previously generated. This stage defines the
synthesis technique employed by the system (TTS techniques
are described in the following paragraphs). From all the
types of acoustic features that exist, Mel-spectrograms are the
preferred one for present TTS systems.

Fig. 1. The stages in a TTS pipeline. Adapted from [3].

The main TTS synthesis techniques developed in the past
are the following: articulatory synthesis, formant synthesis,
concatenative synthesis, and statistical parametric synthesis
(SPSS). More recently, Deep Learning (DL) has also made a
profound impact on speech synthesis, being the current state-
of-the-art approach.

Contrarily to previous approaches, DL synthesis techniques
process large amounts of data, allowing to extract more
intricate features from raw inputs. This is particularly useful to
tackle the limitations of the previous models [4], such as the
lack of naturalness in speech produced by conventional SPSS
systems. DL synthesis is mostly based on DNNs, CNNs, and
sequence-to-sequence (Seq2Seq) neural networks.

In the scope of TTS, Seq2Seq neural networks (also known
as encoder-decoder neural networks) are currently one the
most effective approaches for linguistic to acoustic feature
sequence mapping. Based on recurrent mechanisms, these
networks suit well the sequential nature of speech signals,
by converting variable-length inputs into fixed-length outputs,
while retaining the meaningful temporal dependencies [5].
Besides TTS, Seq2Seq networks have been used for other
tasks involving sequential data, such as machine translation
and speech recognition [4]. In DL synthesis, the TTS pipeline
stages comprise two essential blocks: 1) a Seq2Seq system,
which implements the text analysis1 and regression stages;
and 2) a neural vocoder for waveform generation.

C. Evaluation metrics

1) AB/ABX preference test: Preference tests are frequently
used to assess speech synthesis systems. In an AB preference
test, as the name states, listeners are presented with two speech
samples and are asked to select their preferred one according to
a specific property, such as naturalness or similarity. A “no-
preference” answer slot may be included. ABX tests differ
from the traditional AB test with the inclusion of an “X”
speech sample to be used as reference. In this case, samples
“A” and “B” are evaluated using “X” as reference.

2) MUSHRA: In the scope of Speech Synthesis, the MUlti
Stimuli with Hidden Reference and Anchor (MUSHRA) en-
ables the subjective assessment of synthesized utterances and
is mentioned in several studies, such as [6] and [7]. According

1Text preprocessing is excluded from this stage, as it is performed before-
hand. Only the extraction of linguistic features from raw text is considered.



to this method, listeners rate audio samples, together with a
low-quality anchor, and a hidden reference sample, in compari-
son to a high-quality reference sample. The low-quality anchor
corresponds to a low-pass filtered sample, and its purpose is to
ensure minor artifacts are not improperly penalized. Samples
are rated regarding similarity or perceived quality on a scale
of 0 to 100, where 0 and 100 are the worst and best scores,
respectively [8].

D. Universal vocoding

Universal vocoders aim to improve the generalization ca-
pabilities of neural vocoders. The dependency on extensive
datasets and computational power motivated the search for new
solutions that could incorporate new speaker-styles, without
further training [9].

Lorenzo-Trueba and colleagues (2019) proposed a Speaker
Independent universal vocoder based on WaveRNN [10], ca-
pable of generalizing to unseen speakers. Authors considered
four different training settings for the universal vocoder:
a single-speaker configuration, two multi-speaker configura-
tions, consisting of three and seven speakers respectively, and
a universal vocoding configuration, comprising 74 speakers
and 17 languages. The multi-speaker configurations aimed to
assess how reducing the dataset size (number of utterances)
and increasing the number of speakers would influence the
output quality.

Evaluation and experiments included several scenarios: 1)
in-domain speakers and speaking style; 2) out-of-domain
speakers but similar speaking style; 3) out-of-domain speakers
and speaking style. Additionally, various unseen scenarios
were tested. MUSHRA tests were used to evaluate each case
[9].

No significant difference was registered for scenario 1) since
all training settings produced similar results at inference time.
The universal vocoder setting registered a 98.5% relative2

MUSHRA score. For scenario 2), results have shown that
the more speakers are included during training, the better is
the output quality. Although the 3-speaker setting comprised
more data than the 7-speaker setting, the output quality was
better for the latter, which indicates that speaker variability is
more important than quantity of data regarding the universal
vocoding task [9]. For scenario 3), the universal vocoder
setting still provided a stable output, reaching a 98% rela-
tive MUSHRA score. Single-speaker and 7-speaker settings
revealed poor results, unlike the remaining (3-speaker and
universal vocoder). This contrast was mainly due to speaker
dissimilarity among train and test speakers. The authors used
Kullback-Leibler divergence (KLD) to measure speaker sim-
ilarity. KLD was measured between the Gaussian Mixture
Models of the training data of each vocoding approach and the
speaker. The KLD between the test speaker and each one of the
settings was 2.64 for the universal vocoder, 5.42 for 3-speaker,
14.45 for 7-speaker, and 14.62 for single-speaker, proving that

2The relative MUSHRA score is the ratio between mean MUSHRA scores
of a system, and of natural speech.

dissimilarity between train and test speakers severely degraded
the output quality for unseen speaking style scenarios.

Regarding robustness to voice quality, the universal vocoder
still generalized well, achieving 91.6% and 89.5% relative
MUSHRA scores for breathy and pressed voices, respectively.
In terms of signal quality, the model’s performance further
worsened, achieving 79.4% and 76.4% relative MUSHRA
scores for noisy, and reverberating signals, respectively. The
most significant drop occurs for simultaneously noisy and
reverberating signals, for which the relative MUSHRA score
drops to 57.8%.

E. Multi-speaker Seq2Seq regressive model

Zhang and co-authors (2019) proposed a non-parallel
Seq2Seq voice conversion model, that operates in one of
two configurations depending on the type of input: voice
conversion (VC), or TTS. For the VC configuration, the
acoustic feature sequence (in the form of a Mel-spectrogram)
is extracted from a source utterance and is fed to the Seq2Seq
regressive model. The VC configuration follows the traditional
framework, which takes a source utterance as input. This
setting preserves the input’s linguistic content and embeds the
target speaker’s identity into the output. For the TTS configura-
tion, text inputs are converted to phonetic transcriptions before
being fed to the model. The TTS process unfolds similarly
to the VC procedure since the output is also a combination
of linguistic content and speaker identity. The most notable
difference is the textual input, as opposed to a source utterance.
Since TTS is the main focus of this study, we will focus
on the system’s TTS configuration. The model incorporates
5 components: a text encoder Et, a speaker encoder Es,
a Seq2Seq decoder Da, a recognition encoder Er, and an
auxiliary classifier Cs. The text encoder extracts linguistic
embeddings Ht from phoneme transcriptions T of input text
sequences. The speaker encoder takes spectrograms as input
and generates speaker embeddings hs, capable of identifying
a speaker. The decoder generates an acoustic feature sequence
Â by combining previously extracted linguistic and speaker
embeddings. Its structure is analogous to Tacotron [11], [12].
Authors used a WaveNet vocoder [13] to recover speech wave-
forms from acoustic features [14]. The recognition encoder Er

and the auxiliary classifier Cs are only employed during the
training process, thus are not used by the TTS configuration
at inference time. The recognition encoder extracts linguistic
representations from audio signals. For that, it takes acoustic
feature sequences A as input, and and outputs a linguistic
embedding Hr. Since Ht and Hr are expected to be similar,
a contrastive loss is introduced to increase similarity between
both linguistic representations. The auxiliary classifier predicts
the speaker identity from a linguistic Hr. It is used for
adversarial training to remove the remaining speaker-related
content within the linguistic embedding [14].

Training the model consists of two stages: pre-training, and
fine-tuning. In the pre-training phase, the system is trained
with a large multi-speaker dataset, comprising utterances, text
transcriptions, and the corresponding speaker identity tag.



Fine-tuning was performed in a 2-speaker setting, nevertheless,
it is possible to fine-tune the model to more than two speakers.
The fine-tuning stage introduces unseen speakers during pre-
training and converges faster than the first stage. The authors
evaluated the effect of training data reduction on the model’s
performance at the fine-tuning stage. For this, the number
of training utterances per speaker was gradually reduced
from 500 to 100. Results have shown that the model has
similar performance regardless of the amount of training data,
suggesting that this implementation is suitable for scenarios
where the amount of data is scarce [14].

III. PROPOSED MODEL

A. Model overview

The present section describes the proposed multi-speaker
TTS system. This approach (depicted in figure 2) follows
the prevailing state-of-the-art premise, combining a Seq2Seq
system for acoustic feature prediction, with a neural vocoder
for speech waveform recovery. The models detailed in previous

Fig. 2. Inference-time pipeline of the proposed model.

sections II-E and II-D were employed for acoustic feature
prediction, and waveform recovery, respectively.

The WaveRNN-based universal vocoding architecture al-
lowed for faster synthesis (as opposed to WaveNet), and
more importantly, for better generalization to new speaker
identities. This aspect was crucial to prevent training the neural
vocoder at the speaker adaptation stage, thereby simplifying
that process. The Seq2Seq system was adapted from the non-
parallel Seq2Seq VC implementation [14], given its similar-
ities with multi-speaker TTS. The Seq2Seq VC model was
originally designed for the English language (EN), therefore,
several adjustments were introduced to adapt this system to
European Portuguese (EP). These adaptations consisted in text
and audio preprocessing stages (described in sections III-C and
III-D, respectively). The text encoder of this model relies on
phonetic transcriptions, which require changing the grapheme-
to-phoneme (GtoP) conversion stage from EN to EP.

B. Spoken language corpora

Selecting suitable voice banks to train the two main blocks
of the proposed model (Seq2Seq model + neural vocoder) was
an important step during implementation because it greatly
influenced synthetic speech quality. Table I indicates the
specifications of the EP corpora employed for pre-train and
fine-tune stages.

*Corresponds to the number of speakers used for fine-tuning. Originally,
the corpus contains more speakers.

TABLE I
LIST OF EP VOICE CORPORA USED FOR PRE-TRAIN AND FINE-TUNE

STAGES.

Specification Pre-train Fine-tune
BD-PUBLICO BDFALA

Sampling frequency [kHz] 16 16
Number of speakers 100 2*

Utterances per speaker 79-83 300
Total duration [hh:mm:ss] 21:48:39 00:51:36

Utterance duration [s] Mean 9.7 5.2
Median 9.5 5.1

The neural vocoder, which did not require fine-tuning, was
only trained with the BD-PUBLICO corpus.

C. Text preprocessing

Regarding text preprocessing, three different GtoP ap-
proaches were employed: 1) the Phonemizer [15] using the
eSpeak backend; 2) a Sequence-to-Sequence GtoP toolkit,
developed by CMUSphinx; and 3) a Festival-based approach,
which is employed in DIXI+ [16]. Besides assessing the
ability to generate correct phonetic transcriptions, other factors
were considered in order to choose which approach is best,
in particular, text normalization, and the ability to correctly
transcribe homographs and acronyms. Text normalization is
an important step in GtoP methods because it allows to obtain
correct phonetic transcriptions for non-standard text, such as
abbreviations or digits.

1) Punctuation: Although punctuation marks are not pho-
netic symbols, the main reason for including punctuation
in phonetic transcriptions is for the model to learn pauses
correctly, which are most frequently represented by commas
or full-stops. From all punctuation marks, only commas, full
stops, and question marks were included in phonetic tran-
scriptions. Including all possible punctuation would contribute
to unnecessarily large phoneme lists, that is, an excessively
large number of different phonemes in the dataset. A phoneme
list with many instances would not only hinder the training
task, but could potentially cause out-of-memory (OOM) errors,
since the number of instances in the phoneme list corresponds
to the output size of one of the layers employed in the
decoding process. In total, BD-PUBLICO comprises 13 002
commas, 273 colons and 38 semicolons. Given that commas
are substantially more frequent, colons and semicolons were
replaced with commas. Likewise, ellipses were replaced with
full stops. Given that the sentences of BD-PUBLICO were all
gathered from newspaper text, the number of exclamatory and
interrogative sentences is very scarce. As such, exclamatory
sentences were assumed as declarative ones, meaning that
exclamation marks were replaced with full stops at the end
of sentences.

2) Phonemizer with eSpeak backend: The open-source
repository used for the Seq2seq regressive model already
employs a GtoP toolkit, the Phonemizer [15], which supports
different languages and frameworks, namely Festival and
eSpeak. The rule-based eSpeak backend was used since it was



the only one available for EP in this toolkit. Unlike the Festival
backend, eSpeak employs the International Phonetic Alphabet
(IPA) to represent phonemes. In comparison to other phonetic
notations, such as SAMPA, IPA is more complex, comprising
over 100 different symbols representing vowels and conso-
nants only. Hence, using the eSpeak backend generated very
large phoneme lists. For EP, this backend generated a list
comprising 73 symbols, excluding punctuation. To overcome
the problem of extensive phoneme lists, 22 symbols were
merged, and one symbol was excluded.

3) Seq2Seq GtoP toolkit: This GtoP approach relies on
the Transformer architecture [17], thus only using attention
mechanisms to establish the mapping between text inputs
and phonetic sequence outputs. The training process of the
model relies on a dictionary of words and their phonetic
transcriptions. The model for EP was trained with a dictionary
comprising 60 700 entries . Phonetic transcriptions followed
the SAMPA notation, including primary stress. With this GtoP
approach, the phoneme list comprised 50 different symbols,
excluding punctuation. Despite being easily trainable and
efficient with individual words, this toolkit had several limi-
tations. Words were processed separately, therefore, sentences
were incorrectly converted at word boundaries. To mitigate
this issue, the most common sandhi rules were manually
implemented on top of the output phonetic sequences. Also,
the model did not distinguish homographs, neither included
any text normalization stage.

4) Festival-based GtoP: This technique follows the Festival
framework, relying on a set of classification trees for GtoP
conversion [16]. Phonetic transcriptions followed the SAMPA
notation, and additional symbols were employed to represent
foreign phones — the symbol “H”, for example, was used
to represent the sound of letter H in foreign words like
“Hollywood”, “Manhattan” or “Hezbollah”). In total, the
phoneme list obtained with this approach was composed of 44
symbols excluding punctuation. This approach did not discern
between different punctuation signs, hence converting every
sign to the symbol “#” in phonetic transcriptions. To include
punctuation in the phonetic transcriptions of each sentence,
the signs and their order of appearance were saved to a list.
Then, each sign in the list replaced each occurrence of the
symbol “#” in the phonetic transcription in the same order.

From the three GtoP approaches that were experimented, the
Festival-based is which deals best with non-standard words.
The existence of an addenda allowed to specify the pronunci-
ation of such words and override the output the system would
normally produce [16]. Regarding homographs, upon phonetic
symbol prediction, PoS tagging is employed both in the eSpeak
backend as well as in the Festival-based approach. The usage
of PoS tagging allows to correctly predict most of homograph
cases. The only type of homographs the GtoP modules fail to
transcribe are homographs with the same PoS category (e.g.
Tenho sede. Hoje estive na sede.). When the PoS categories
differ (e.g. verb/noun as in Eu almoço depois. Está na hora
do almoço.), both modules produce the correct transcription.

D. Audio preprocessing

Before Mel-spectrogram extraction, audio signals were nor-
malized and underwent a pre-emphasis filter. Mel-spectrogram
extraction unfolded in two steps: 1) computing the magnitude
of the short-time Fourier transform (STFT) of the audio signal,
which corresponds to a linear spectrogram; 2) converting the
linear spectrogram to a Mel-spectrogram. The following STFT
parameters were employed: a 50 ms window length, 12.5
ms window shift, and 2048-point Fourier transform, as in
the Tacotron original implementation [11]. Mel-spectrograms
comprised 80 Mel-bands, a minimum frequency of 50 Hz, and
a default maximum frequency of 8 kHz, that is, half of the
sampling frequency.

1) Leading and trailing silence removal: To ease conver-
gence during the training process, leading and trailing silence
was removed from audio signals. This procedure was carried
out with a toolkit for speech diarisation [18]. Voice activity
detection (VAD) was employed solely to capture the audio
samples at which speech started and ended, and audio files
were trimmed accordingly.

E. Model training

1) Seq2Seq regressive model — pre-train: The Adam op-
timizer [19] was employed during training. L2 regularization
with weight 10-6 was used. The model was trained for 8250
iterations (approximately 58 epochs), at a constant learning
rate (10-3), with a batch size of 32. The training process was
assessed based on encoder-decoder alignments plots and Mel-
spectrogram visualization.

2) Neural vocoder: The model was trained for 100 000
iterations, starting at a learning rate of 4×10-4 that decayed by
50% every 20 000 iterations. As the training process unfolded,
synthesis quality was perceptually evaluated from generated
audio samples.

IV. EXPERIMENTS

A. Experimental setup

The main reason for employing a universal vocoder is
to reduce the amount of training stages during the speaker
adaptation stage. As such, speaker adaptation only involves
fine-tuning the Seq2Seq regressive model, instead of the whole
system. The model was fine-tuned for three distinct settings:
1) two adult speakers; 2) two adolescent speakers; and 3) two
child speakers. For each setting, the pair of speakers comprised
one male and one female voice. All configurations employed
non-parallel data.

The adult–speaker fine-tune setting is the standard imple-
mentation of the proposed model, since the characteristics
of data (namely the prosody, and type of sentences) and
the speakers’ traits (namely pitch values) are in line with
the speech corpus employed during the pre-train stage. Fine-
tuning employed 300 utterances, of which 33 for validation,
for each each speaker sp 01 and sp 02 of the BDFALA
corpus. Synthetic speech was assessed in terms of naturalness,
voice similarity, and intelligibility for both speakers. Addi-
tionally, the same setting with reduced data — 20 utterances



per speaker, of which four for validation — was tested for
naturalness and similarity.

The fine-tune configurations for child and adolescent voices
were addressed separately and did not take part in subjective
assessments, given that synthetic speech was perceptually
worse than for the adult–speaker setting. Characteristics of
both the data and the speakers were substantially different
from those used in pre-training, hence, these configurations
were analyzed as out-of-domain (OOD) scenarios (see Section
IV-B). In each of these settings, the amount of fine-tuning
data was considerably lower than in the standard adult–speaker
setting.

TABLE II
AMOUNT OF FINE-TUNING DATA PER CONFIGURATION.

Configuration Speaker # Utterances/files Total Duration
[hh:mm:ss]

Adults-standard sp 01 300 00:51:36sp 02 300

Adolescents sp 03 34 00:03:10sp 04 33

Children sp 11 19 00:02:44sp 36 21

Adults-reduced sp 01 20 00:03:18sp 02 20

B. Differences in training data: pitch and prosody

The most notable differences among the data of each fine-
tuning configuration in comparison to pre-training data are the
mean pitch values of the speakers and the prosodic contours
of the utterances they recorded. The differences in pitch were,
unsurprisingly, most prominent in the voices of children, since
these had the highest pitch. Prosodic contours were analyzed
according to two factors: 1) the standard deviation (SD) of
pitch for each speaker; and 2) the type of sentences —
declarative, interrogative, or exclamatory — employed in each
training setting. Table III specifies the pitch values of pre-train
speakers and each fine-tune speaker.

TABLE III
PITCH VALUES FOR EP SPEAKERS IN DIFFERENT AGE GROUPS.

Speech corpus Speaker Age Pitch [Hz]
Mean SD

BD-PUBLICO o000-o049 (M) 19-28 99-197 6-39
o050-o099 (F) 161-264 15-38

BDFALA sp 02 (M) 35 114 15
sp 01 (F) 41 200 33

BDFALA02 sp 03 (M) 14 165 38
sp 04 (F) 13 254 49

EUROM.1 sp 11 (M) 10 291 52
sp 36 (F) 9 272 56

Regarding mean pitch values, both children (sp 11 and
sp 36) standout with higher values than the remaining fine-
tune speakers, and more importantly, pre-train speakers. Chil-
dren voices are clearly an OOD scenario in terms of mean
pitch as these yield a mean pitch outside the range of values
of pre-train data.

Histograms displayed in figure 3 complement the data of
table III by illustrating how mean pitch values are distributed
across the pre-train corpus. It is clear that in terms of mean
pitch, adolescent speakers (sp 03 and sp 04) only were similar
to a small minority of voices employed during pre-training.
Likewise, histograms in figure 4 specify the SD values across
the BD-PUBLICO corpus to complement table III. Only two
male and five female speakers from BD-PUBLICO achieved
a pitch SD higher than 31 Hz and 32 Hz, respectively.
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Fig. 3. Histograms of pitch mean values of speakers in the BD-PUBLICO
corpus.
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Fig. 4. Histograms of pitch SD values of all speakers in the BD-PUBLICO
corpus.

Table IV specifies the number of sentences of each type in the
datasets employed in each training configuration. In terms of
sentence type, the adolescent–speaker fine-tune setting differs
the most from the pre-train configuration, since over 80% of
the sentences are either exclamatory or interrogative. Given
these discrepancies, the adolescent–speaker fine-tune setting
was also considered as an OOD scenario. Although child and
adult fine-tune settings employed similar data in terms of
sentence type, the former setting presented more expressive
prosody as it achieved the highest pitch SD values, as seen
in table III. From tables III and IV, one may infer that both
the adolescent and child fine-tune configurations comprised
expressive prosody as opposed to the remaining. Of all fine-
tune configurations, both adult–speaker settings (standard and
reduced) are the most similar to pre-train data both in terms
of pitch and sentence type.

C. Seq2Seq regressive model — fine-tune

Overall, the fine-tuning process was very similar to the
pre-train stage. Fine-tuning contemplated the whole Seq2Seq
regressive model except for the speaker encoder, as stated



TABLE IV
NUMBER OF DECLARATIVE, INTERROGATIVE AND EXCLAMATORY

SENTENCES FOR EACH TRAINING SETTING.

Training setting # Declarative # Interrogative # Exclamatory
Pre-train 8021 (99.16%) 47 (0.58%) 21 (0.26%)
Adults-standard 527 (87.83%) 70 (11.67%) 3 (0.50%)
Adults-reduced 34 (85.00%) 6 (15.00%) —
Adolescents 22 (19.64%) 25 (22.32%) 65 (58.04%)
Children 34 (85.00%) 6 (15.00%) —

in the original paper [14]. For the fine-tune stage, the same
hyperparameters were used as in the original implementation
proposed by the authors. In comparison to the pre-train stage,
only the batch size was changed from 32 to 8, the number of
training epochs at constant LR was changed from 70 to 7, and
weighting factors of speaker encoder and speaker adversarial
losses were changed to 0 and 0.2, respectively.

Prior to fine-tuning the model, all data underwent the same
text and audio preprocessing steps as before pre-training,
except for the silence removal stage, as audio files did not
include long sections of leading or trailing silence. During the
training process, trainable speaker embeddings were employed
for each speaker. Each embedding was initialized with the
average of speaker encoder outputs for all training utterances
of the speaker in question. At inference, contrarily to the
default fine-tune implementation, the proposed model directly
employs the average of speaker encoder outputs. For all fine-
tune configurations, no difference was perceived in synthetic
speech when employing the trained embeddings instead of
the average speaker encoder outputs. As such, for the sake
of simplicity, we chose to solely use the pre-trained speaker
encoder for embedding extraction at fine-tuning. Similarly
to the pre-train stage, fine-tuning was assessed based on
encoder-decoder alignment plots and Mel-spectrograms. For
each voice, the alignments and spectral representations were
generated from test sentences (unseen during training). To
minimize prosodic differences that otherwise could standout in
Mel-spectrograms, we selected declarative sentences without
pauses.

1) Adult–speaker configurations: Standard and reduced
adult–speaker configurations were trained for 1600 iterations
(approximately 23 epochs), and 200 iterations (50 epochs),
respectively. Figure 5 illustrates the encoder-decoder align-
ments obtained for both configurations. For each speaker, the
same test sentences were employed in both configurations.
For these sentences, despite the difference in amount of
fine-tuning data, encoder-decoder alignments remained very
similar. Figure 6 illustrates the predicted and original Mel-
spectrograms obtained from these sentences. Predicted Mel-
spectrograms were similar for both configurations regardless
of the amount of training data, suggesting that the Seq2Seq
regressive model can produce reasonable results in a reduced
data setting.

(a) Standard setting, speaker
sp 01

(b) Standard setting, speaker
sp 02

(c) Reduced setting, speaker
sp 01

(d) Reduced setting, speaker
sp 02

Fig. 5. Encoder-decoder alignments for fine-tuning test sentences — adult
speakers.

(a) Predicted Mel-spectrogram for
sp 01, standard setting

(b) Predicted Mel-spectrogram for
sp 02, standard setting

(c) Predicted Mel-spectrogram for
sp 01, reduced setting

(d) Predicted Mel-spectrogram for
sp 02, reduced setting

(e) Original Mel-spectrogram for
sp 01

(f) Original Mel-spectrogram for
sp 02

Fig. 6. Mel-spectrograms for fine-tuning test sentences — adult speakers.



D. Speaker identity discrimination
To demonstrate that the model can effectively discriminate

among different voices, we extracted speaker embeddings from
different speakers and analyzed these with t-SNE, a technique
that allows to visualize high–dimensional data in a two or
three–dimensional space [20].

When visualizing a wide range of speaker identities, illus-
trated in figures 7(a), (b), and (c), one can notice that the
placement of the embeddings relatively to one another allows
to identify the speakers’ gender. Furthermore, the embeddings
of fine-tune speakers are also represented.

Pitch is known to be one of the most common features
in speaker identification tasks. In fact, the presence of pitch–
related information is noticeable in the speaker embeddings
employed in the proposed model, since it is possible to
correlate the relative location of an embedding in the plot, with
the mean pitch of the speaker associated to that embedding.

1) Adult speakers — sp 01 and sp 02: Besides all the
embeddings of pre-train speakers, figure 7(a) depicts the em-
beddings of adult fine-tune speakers. From a gender viewpoint,
the fine-tune embeddings are placed in accordance with the
pre-train speakers’ embedding distribution. In comparison to
the range of pitch values of pre-train speakers, the male
speaker sp 02 registered a relatively low mean pitch value —
114 Hz — quite far from the lowest mean pitch registered for
pre-train female speakers — 161 Hz. Female speaker sp 01
displayed a mean pitch of 200 Hz which is close to the highest
value recorded for pre-train male speakers — 197 Hz. This
suggests that the embedding of sp 01 is closer to male–speaker
embeddings than the embedding of sp 02 is to female–speaker
embeddings, and can be observed in figure 7(a).

2) Adolescent speakers — sp 03 and sp 04: The embed-
dings of adolescent fine-tune speakers are illustrated in figure
7(b). Regarding gender, fine-tune embeddings are placed in
conformity with the distribution of pre-train speakers. Both
fine-tune speakers registered relatively large values of mean
pitch in comparison to pre-train speakers of the same gender.
Male speaker sp 03 recorded a mean pitch of 165 Hz, among
the highest for male pre-train speakers. Moreover, this value is
close to the lowest pitch value for pre-train female speakers.
This suggests that the embedding of sp 03 is one of the closest
to embeddings of female speakers. On the other hand, given
that female speaker sp 04 recorded a mean pitch of 254 Hz,
which is one of the highest among female pre-train speakers,
it is expected that the corresponding embedding is one of
the farthest from male–speaker embeddings. As seen in the
figure, the embedding of speaker sp 03 is significantly closer
to female speaker embeddings than the embedding of speaker
sp 04 is to male speaker embeddings.

3) Child speakers — sp 11 and sp 36: Embeddings of
child fine-tune speakers are depicted in figure 7(c). Both
child voices registered the highest mean pitch values among
all speakers. The placement of these embeddings relative to
pre-train embeddings suggests that both are female speakers,
even though only speaker sp 36 is. The misplacement of
of the male speaker embedding is due to pitch similarity

between the voices of children. Furthermore, the fact that
both children displayed a very high mean pitch suggests that
their embeddings are among the farthest from male–speaker
embeddings, which in fact occurs.

Seen speakers (M) sp 01 (F)
Seen speakers (F) sp 02 (M)

(a) Pre-train and adult fine-tune
speakers

Seen speakers (M) sp 03 (M)
Seen speakers (F) sp 04 (F)

(b) Pre-train and adolescent fine-tune
speakers

Seen speakers (M) sp 11 (M)
Seen speakers (F) sp 36 (F)

(c) Pre-train and child fine-tune
speakers

Fig. 7. Visualization of speaker embeddings.

V. EVALUATION

This section focuses on assessing the performance of the
proposed model in comparison to other systems. Performance
tests were divided into three groups: 1) naturalness and simi-
larity; 2) intelligibility; and 3) synthesis speed. The proposed
model was tested for the adult–speaker standard configuration.
Each test is described in the subsections that follow.

A. Naturalness and similarity

Naturalness and similarity were rated using AB and ABX
preference tests, respectively. “A” and “B” refer to synthetic
utterances, and X to a sentence uttered by the target speaker,
used as reference. Three unseen sentences were randomly
selected from the test set of each speaker. Ideally, one should
use a larger number of utterances per speaker for testing,
but that would have made the tests very lengthy and time-
consuming. To provide a context of the model’s performance
in the scope of TTS, naturalness and similarity tests were
extended to four different TTS approaches besides the pro-
posed model: 1) EP-Tacotron-23: a DL-based model inspired
by the original Tacotron 2 system; 2) EP-Merlin: an SPSS-
based model; 3) DIXI+: a concatenative synthesis system; and
4) the reduced adult–speaker configuration of the proposed

3We refer to the Tacotron 2 implementation of a previous Master Thesis
as “EP-Tacotron-2”. Not to be confused with the original implementation,
Tacotron 2.



model. Approaches 1) and 2) were developed within the scope
of previous Master Theses [21] and [22], respectively. DIXI+
[16] was not fine-tuned for speakers sp 01 and sp 02. Instead,
a readily available configuration was used, which comprised
different voices from sp 01 and sp 02. Thus, DIXI+ only
took part in naturalness assessments. Results for naturalness
and similarity tests are displayed in figures 8 and 9, respec-
tively. In total, 41 listeners participated in these tests. The
standard configuration of the proposed model is referred to
as “Standard” in the legend of the figures, and “Other” refers
to each of the four alternative approaches that were tested.
Each approach is specified across the horizontal axis of the
bar charts. Regarding the naturalness test, the proposed model
produced distinctively better results for both voices than EP-
Merlin, and DIXI+, as expected. Surprisingly, the standard
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Fig. 8. Naturalness AB preference test results.

configuration of the proposed model was also chosen over
the DL-based EP-Tacotron-2 more times, for both voices. One
must notice, however, that in the latter case the percentage of
no preference (N/P) answers was considerably larger than for
EP-Merlin and DIXI+. Regarding similarity, results showed
that the proposed model clearly performed better than EP-
Merlin for both voices, although not as blatantly as in the
naturalness test. This could be due to the fact that EP-Merlin
produced samples with noticeably better audio quality than the
proposed model. Listeners may have been influenced by voice–
unrelated features during assessments. In comparison with EP-
Tacotron-2, the results for the female voice sp 01 were as
expected. Regarding the male voice sp 02, the proposed model
achieved better results, even though over 20% of listeners did
not prefer one model over the other.

Synthetic samples generated by EP-Tacotron-2 occasion-
ally contained bursts of subtle noise and/or loudness. The
latter phenomenon was particularly noticeable in fricative
consonants — synthetic speech samples suddenly sounded
louder from a specific timestep onward. Some participants
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Fig. 9. Similarity ABX preference test results.

may have been influenced by these factors when assessing the
naturalness and similarity of EP-Tacotron-2 speech samples,
thus preferring the proposed model.

In regard to the reduced configuration of the proposed
model, results show that synthetic speech quality decreased
for the female voice sp 01 upon fine-tune data reduction.
Nevertheless, the high percentage of (N/P) answers, especially
in the similarity test, mitigates this phenomenon. For the male
voice sp 02, both in naturalness and similarity assessments,
no noticeable difference was registered in comparison to
the standard configuration since the majority of participants
expressed no preference. Also, the percentage of listeners that
selected one configuration over the other is very balanced for
both configurations.

B. Intelligibility

Intelligibility was assessed from listeners’ textual transcrip-
tions of semantically unpredictable sentences. Participants
were asked to transcribe 10 sentences for each test speaker
while listening to each sentence only once. The first test
sentence of each speaker served as a dry run and was assessed
separately. The word error rate (WER) was determined from
the transcriptions to measure how accurately the sentences
were perceived by the listeners. The test was destined to native
or fluent Portuguese speakers. In total, 33 participants took
the intelligibility test. Table V displays the WER obtained
from the transcriptions of participants. In some sentences
several participants misheard specific words, which increased
the WER. This was the case for the dry run sentence for
speaker sp 01 — one third of the participants could not
perceive the word colunas —, hence the abnormally large
WER for this sentence. Table VI displays the most frequently
misheard words.



TABLE V
INTELLIGIBILITY TEST RESULTS.

Speaker WER (%)
Dry run Remaining

sp 01 (F) 16.67 3.74
sp 02 (M) 1.01 4.22

TABLE VI
FREQUENTLY MISTAKEN WORDS.

Original word Incorrect transcription(s) Total Occurrences
colunas runas, com umas 11
invocam evocam 4
abstraı́da distraı́da 24
do no 31

C. Synthesis speed

The proposed model’s neural vocoder was compared with
its counterpart in the EP-Tacotron-2 implementation. For each
model, synthetic speech was generated for the female voice
sp 01 from 10 sentences, and synthesis times were compared
for each sentence. On average, the proposed model’s neural
vocoder synthesized speech 11 times faster than its counterpart
in EP-Tacotron-2, with an NVIDIA GeForce GTX TITAN X
GPU.

VI. CONCLUSIONS

This study proposed a multi-speaker TTS system for EP,
based on state-of-the-art Speech Synthesis methodologies.
The addition of the Festival–based text preprocessing module
ensured coherent phonetic transcriptions, including a wide va-
riety of exceptions. Results show that the proposed model was
superior than previous–generation systems in terms on natu-
ralness and similarity. The proposed model achieved results
comparable to a different state-of-the-art TTS approach, while
employing less than half of the data for fine-tuning. For one
of the voices, the reduced and standard settings achieved very
similar performance meaning that it is possible to preserve
output quality while reducing the amount of training data.

The proposed model proved to be significantly faster than
the implementation of EP-Tacotron-2. The WaveRNN–based
vocoder employed in the proposed model was, on average,
11 times faster than the WaveNet employed in EP-Tacotron-2,
thus being more practical.
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