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Resumo

A recente evolução tecnológica contribuiu para um desenvolvimento considerável da área de Sı́ntese

da Fala. Os sistemas de sı́ntese atuais produzem fala em tempo cada vez mais reduzido e para diversas

vozes. O presente estudo desenvolveu um sistema de texto para fala (em inglês, TTS) para português

europeu, que permite incorporar novas vozes sem necessitar de um conjunto de dados extenso e um

processo de treino exaustivo. A estrutura do modelo proposto contempla dois sistemas: um sistema

regressivo sequence-to-sequence (Seq2Seq) que produz representações acústicas a partir de texto,

seguido de um vocoder neuronal, destinado à geração de áudio a partir de representações acústicas.

O modelo proposto emprega um vocoder universal que não carece de fine-tuning perante a adição de

novas vozes.

O modelo regressivo Seq2Seq gera representações acústicas na forma de Mel-espetrogramas. Este

processo decorre da descodificação da combinação de representações linguı́sticas (linguistic embed-

dings), extraı́das a partir de texto, e representações da identidade de voz (speaker embeddings). O

modelo regressivo opera para várias vozes e permite fine-tuning para múltiplas vozes novas simultane-

amente.

Os testes subjetivos demonstraram que o modelo proposto registou um desempenho comparável

ao de outro sistema TTS estado-da-arte, empregando menos de metade dos dados para treino. Além

disso, o sistema proposto gerou resultados relevantes quando treinado com um conjunto de dados

reduzido — menos de 3 minutos de fala. Por último, o vocoder universal teve um desempenho, em

média, 11 vezes mais rápido que o vocoder neuronal empregue no sistema TTS estado-da-arte utilizado

para comparação.

Palavras-chave: Sı́ntese de Fala, Multi-Speaker TTS, Conversão de Voz, Clonagem de Voz.
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Abstract

Recent advancements in technology have allowed for great development in the field of Speech Syn-

thesis. As such, present-day speech synthesis applications are expected to function for multiple voices,

and ensure a fast generation of natural–sounding synthetic speech for enhanced feasibility. This study

suggests a multi-speaker text-to-speech (TTS) system for European Portuguese that enables the ad-

dition of new speakers without requiring extensive training and data. The proposed model framework

comprises two systems: a sequence-to-sequence (Seq2Seq) regressive stage for acoustic feature pre-

diction, followed by a neural vocoder for waveform generation. The model employs a universal vocoder

which does not require fine-tuning for new voices.

The Seq2Seq regressive model predicts acoustic features in the form of Mel-spectrograms by de-

coding the combination of linguistic embeddings — extracted from the text input —, and speaker em-

beddings conveying the target speaker identity. The model operates in a multi-speaker setting and can

be fine-tuned simultaneously to multiple unseen speakers.

Subjective tests have shown that the proposed model registered comparable performance to another

state-of-the-art TTS system, while employing less than half of training data. Furthermore, the proposed

model was capable of producing meaningful results when trained with reduced data — under three

minutes of speech. At last, the universal vocoder performed, on average, 11 times faster than the

speaker–dependent neural vocoder of the state-of-the-art TTS approach used for comparison.

Keywords: Speech Synthesis, Multi-Speaker TTS, Voice Conversion, Voice Cloning.
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Chapter 1

Introduction

Speech is the most natural and immediate form of communication. Nowadays, Speech Synthesis

is broadly used in many applications, ranging from voice assistants to speaking aid systems for vocally

handicapped people. The demand for speech synthesis in a wide variety of applications propels the

development of new approaches that revolutionize the way we use and perceive technology.

The dynamic nature of human speech due to characteristics like language, intonation, vocabulary or

accent, poses a demanding challenge for Speech Synthesis systems. Retaining all this information and

transforming it such that it can be interpreted by a machine, motivated the conception of many methods

that seek to address this subject. The new ability to gather a vast amount of data enabled great progress

in speech synthesis applications.

The latest research on Speech Synthesis has developed systems that can generate high-quality

natural–sounding speech, and address several voice conversion tasks. However, for the sake of syn-

thetic speech quality, these systems are often trained for very particular configurations, posing several

limitations. Most of these applications only operate for a restricted variety of voices and speaking styles.

Moreover, these systems are usually configured for data that must attend to very specific requirements

in terms of recording conditions and audio quality. Naturally, the more restrictions are raised, the harder

is to find data meeting such conditions. For the Portuguese language this problem is even more accen-

tuated as the diversity of speech corpora is considerably smaller than for the English language.

Present synthesis systems are set apart from its predecessors for two essential reasons: 1) they

generate synthetic speech of distinctively superior quality; 2) they comprise a great amount of param-

eters, and employ very large datasets for training. Besides the drawbacks identified in the previous

paragraphs, other downsides arise from the complexity of these models: training can be an intricate and

exhaustive process, involving the tuning of multiple parameters; synthesis speed at inference time can

be slow, often requiring high computational power.

Speech Synthesis is a broad scientific field in constant evolution. Thus, it would not be reasonable

to address all the challenges regarding this subject, namely the problems identified in the previous two

paragraphs. Within Speech Synthesis, this study focuses on solving the limitations that are pivotal to the

performance of text-to-speech (TTS) techniques — that is, systems that generate a synthetic utterance

1



from a given text — in a real-world context: the limited variety of voices for synthesis, and the often slow

inference speed of present-day systems.

1.1 Objectives

The fundamental objective of this study consists in developing a TTS system for European Por-

tuguese (EP), based on existing state-of-the-art implementations of Speech Synthesis systems. To

attain this goal, it is first necessary to address the characteristics inherent to EP, in order to ensure cor-

rect pronunciation, specially in exceptional cases such as homographs. Moreover, one must identify the

main components within the TTS framework and arrange them so the system can adapt to new voices,

and ensure reasonable inference speed.

More specifically, this study aims to:

• Adapt a TTS framework to EP, particularly regarding the pronunciation in exceptional cases, namely

homographs;

• Incorporate new speaker identities without requiring extensive training;

• Ensure faster synthesis of speech than previously proposed models for EP.

1.2 Dissertation Outline

The thesis comprises five chapters. The first chapter introduces the topic of this study. It starts by

pointing out the pertinence of Speech Synthesis and its domains of applicability. Then, it identifies the

limitations of present synthesis systems, in particular of TTS. Based on these, it presents the objectives

proposed to achieve with the conclusion of this thesis.

The second chapter presents the fundamental concepts for the realization of this study, as well as

the state-of-the-art methodologies that take part in the traditional TTS pipeline. It first defines neural

networks — the underlying structures of current methods, and characterizes the present-day Speech

Synthesis systems in context of previous generation techniques. It also presents specific state-of-the-

art implementations that are applied within TTS systems, including those employed for the proposed

model. Additionally, this chapter provides an overview of existing TTS systems for EP.

The third chapter describes the proposed model. It starts by defining the structure of the system and

its components. Then, it focuses on important aspects regarding the training procedure of the system,

namely the nature of data that is used, and the necessary data–conditioning stages upon training. The

last section in this chapter details the key aspects of the training procedures for each component in the

system, as well the assessment methods to evaluate the training processes’ convergence.

The fourth chapter specifies the experiments that were performed regarding the addition of new

speakers to the model, as well as the evaluation procedures that were carried out to assess the perfor-

mance of the system in terms of naturalness, voice similarity, intelligibility and synthesis speed.
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The fifth and final chapter of this dissertation presents the conclusions of this study in context of the

proposed objectives, as well as suggestions for future work within the topic.
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Chapter 2

Background

The main goal of this chapter is to review the state-of-the-art of Speech Synthesis. It is structured as

follows: Section 2.1 revises the basic concepts of neural networks; Section 2.2 provides an overview of

Speech Synthesis and introduces other related topics, namely voice conversion, voice cloning and the

evaluation metrics for synthetic speech (see subsections 2.2.1, 2.2.2 and 2.2.3, respectively). Sections

2.3 and 2.4 present the essential elements of a state-of-the-art TTS framework: a neural vocoder and

a sequence-to-sequence model for acoustic feature prediction. Furthermore, these sections exemplify

some of the prominent and more recent implementations of these systems, describing their rationale and

structure. Finally, Section 2.5 introduces some of the approaches used in the past for TTS in European

Portuguese.

2.1 Neural networks

Neural networks are systems capable of performing classification and regression tasks when given

input data. This concept, inspired by the structure and function of the brain, is composed of neurons,

connections, weights, and activation functions.

Neurons are nodes that generate an output from a combination of received inputs. Each neuron has

an activation function. The output of a neuron corresponds to the value of its activation function f(s),

where s denotes the combination of its inputs. Connections are weighted links between the output of

one neuron and the input of another neuron. Neurons may have multiple input and output connections.

The activation function computes the output of a neuron from its inputs, which are combined as a

weighted sum of each input. The weight assigned to each input is the weight of the corresponding

connection. A bias term can be added to the sum. As such, for n inputs, the combination of inputs s of

a neuron is given by equation (2.1),

s =
n∑

i=1

(xiwi) + b (2.1)

where xi, wi and b denote input i, weight of connection i and the bias term, respectively. Depending

on the nature of the problem to be solved, adequate activation functions must be chosen. For nonlinear
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problems, nonlinear activation functions are appropriate. The sigmoid function, hyperbolic tangent and

rectifier linear unit are some examples of popular activation functions.

Neural networks group neurons in three types of layers: the input layer, hidden layers, and the output

layer. The input layer, as the name states, receives the input data of the neural network. Hidden layers

perform intermediate processing. The output layer produces the output of the neural network according

to the desired format.

A network should be adapted to the characteristics of input data and the type of problem to be solved.

This implies adjusting parameters such as connection weights and learning rate. Connection weights

can be adjusted through back-propagation [1], which intends to minimize the loss function by using

gradient descent to adjust the weights of the network.

Over the years, the increase of computational power motivated the emergence of deep neural net-

works (DNNs) and other architectures, namely recurrent neural networks (RNNs) and convolutional

neural networks (CNNs), that are able to detect more meaningful dependencies in the input data than

the traditional multilayer perceptron. When referring to DNNs, the concept of depth is related to the

number of hidden layers in the network, so the more layers are added, the deeper the network is.

2.2 Speech Synthesis

Speech synthesis aims to generate synthetic speech acceptable to human listeners. It can take in

either textual or conceptual input to reproduce the characteristics of the typical human speaking pro-

cess [2]. Synthesis from text, also known as text-to-speech (TTS), converts written text to a speech

signal. TTS essentially consists of three stages, illustrated in figure 2.1: 1) text analysis; 2) regression;

and 3) waveform generation [3]. Text analysis, also known as “frontend”, is responsible for processing

text inputs, and extracting the corresponding linguistic representations. The regression stage performs

linguistic to acoustic feature mapping. Finally, the waveform generation stage produces a speech sig-

nal from the acoustic features previously generated. This stage defines the synthesis technique em-

ployed by the system (TTS techniques are described in the following paragraphs). From all the types

of acoustic features that exist, Mel-spectrograms are the most popular choice for current TTS systems.

A Mel-frequency spectrogram is related to the linear-frequency spectrogram, i.e., the short-time Fourier

transform (STFT) magnitude. It is obtained by applying a nonlinear transform to the frequency axis

of the STFT, inspired by measured responses from the human auditory system, and summarizes the

frequency content with fewer dimensions.

Figure 2.1: The stages in a TTS pipeline. Adapted from [3].
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The main TTS synthesis techniques developed in the past are the following: articulatory synthesis,

formant synthesis, concatenative synthesis, and statistical parametric synthesis. More recently, Deep

Learning (DL) has also made a profound impact on speech synthesis, being the current state-of-the-art

approach.

Articulatory synthesis is based on the physical characteristics of the human speech production sys-

tem, and its purpose is to simulate the acoustic functions and dynamic motion of the vocal tract. The

model of the vocal and nasal tracts is determined by the position of phonatory organs. Based on the

obtained model, the synthesizer simulates the airflow through the vocal tract. This approach, however,

has not led to good quality speech synthesis due to inaccurate vocal tract model representations [4].

Formant synthesis is a rule-based method which focuses on representing the resonant frequencies

of the vocal (and nasal) tract. This strategy aims to generate source signals, and feed these through

a vocal tract model to produce synthetic speech. Similarly to articulatory synthesis, this technique

produces unnatural speech given the limitations of the source and vocal tract models [4]. Concatenative

synthesis consists in synthesizing speech by concatenating short samples (units) of recorded speech.

In most cases, as long as a large dataset of speech units is provided, the synthetic speech preserves

naturalness and intelligibility [5]. Nevertheless, deviations between natural sound transitions of speech

and inaccuracies in the waveform segmenting process may originate audible glitches in synthesized

speech [4].

In a very simplistic approach, statistical parametric synthesis can be described as generating the

average of some sets of similarly sounding speech segments [6]. Typically, a statistical parametric

speech synthesis (SPSS) system comprises the extraction of speech parameters followed by their sta-

tistical parametric model representation. The speech parameters, namely the spectrum, fundamental

frequency (F0), and phoneme duration, are estimated by the maximum likelihood criterion and repre-

sented by statistics, such as means and variances of probability density functions [7]. HMM-based

synthesis, one of the most widely used approaches for SPSS, performs the maximum likelihood estima-

tion of the model parameters by using the Expectation-Maximization (EM) algorithm. Then, a speech

waveform is synthesized from the estimated parameters of speech [5, 6]. Speech produced by an SPSS

system is usually smooth and resilient to voice changes. Nevertheless, it has some drawbacks because

it usually sounds less natural than concatenative synthesized speech, and may sound muffled in case

over-smoothing occurs during the synthesis process.

Contrarily to previous approaches, Deep Learning (DL) synthesis techniques process large amounts

of data, allowing to extract more intricate features from raw inputs. This is particularly useful to tackle the

limitations of the previous models [9], such as the lack of naturalness in speech produced by conventional

SPSS systems. DL synthesis is mostly based on DNNs, CNNs, and sequence-to-sequence (Seq2Seq)

neural networks, as presented in the upcoming sections 2.3 and 2.4.

Figure 2.2 depicts a possible framework for DNN-based speech synthesis. Input features {xtn},

where xtn denotes the n-th input feature at frame t, are extracted after preprocessing of the text to be

synthesized. Output features {ytn} are computed by a trained DNN from the input features. Speech

parameters are obtained from the output features. Finally, the waveform synthesis module generates

7



Figure 2.2: A speech synthesis framework based on a DNN. Extracted from [8].

the intended speech waveform [8].

In the scope of TTS, Seq2Seq neural networks (also known as encoder-decoder neural networks)

are currently one the most effective approaches for linguistic to acoustic feature sequence mapping.

Based on recurrent mechanisms, these networks suit well the sequential nature of speech signals, by

converting variable-length inputs into fixed-length outputs, while retaining the meaningful temporal de-

pendencies [10]. Besides TTS, Seq2Seq networks have been used for other tasks involving sequential

data, such as machine translation and speech recognition [9]. In DL synthesis, the TTS pipeline stages

comprise two essential blocks: 1) a Seq2Seq system, which implements the text analysis1 and regres-

sion stages; and 2) a neural vocoder for waveform generation. CNN-based architectures can be an

alternative to models that heavily rely on recurrent-based mechanisms, demanding high computational

power. In these cases, the use of CNN-based networks may enable a faster training process, while

capturing long-term dependencies successfully [9].

2.2.1 Voice Conversion

Voice conversion (VC) consists in the conversion of the perceived speaker identity. It is a technique

for modifying the speech of a source speaker to sound like a target speaker while preserving the source

speaker utterance [11, 12].

1Text preprocessing is excluded from this stage, as it is performed beforehand. Only the extraction of linguistic features from
raw text is considered.
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VC can be divided into two fields: parallel VC and non-parallel VC, depending on the nature of the

training data. Parallel VC techniques are applied when datasets store identical linguistic content across

multiple speakers. Therefore, acoustic features can be directly mapped from the source speaker to the

target speaker through frame alignment [13].

Despite being a more intricate task, non-parallel VC is more useful in real applications than parallel

VC, because it is applicable to a wider variety of data, not parallel datasets exclusively. Non-parallel VC

is usually implemented in one of two ways: 1) converting non-parallel data to parallel data (e.g. synthe-

sizing parallel utterances using TTS) and performing feature mapping by frame alignment; 2) retaining

the source speaker linguistic content and transforming the speaker representation from source to tar-

get speaker. Unlike in parallel VC approaches, linguistic and speaker–related features are processed

separately [13].

A typical voice conversion framework can be divided in two stages: the training stage and the con-

version stage. In the training stage, it is first necessary to extract the target speaker and source speaker

identity features. For this, a common approach is to use a speaker encoder, which generates a high-

dimension representation of the speaker identity, also known as speaker embedding. Following this step,

there are various ways to train the model and obtain a conversion function. A conventional technique

is dynamic frequency warping, which essentially aligns the spectra of different speakers [14]. Neural

methods [13, 15–17] have also been widely used to model spectral conversion.

2.2.1.1 Speaker embeddings

Speaker embeddings are representations that encode speaker–related features, such as identity,

gender and speaking rate [18]. Speaker embeddings should be selected according to the purpose of

the system, since some features may be better encoded in a specific type of embedding. For example, i-

vectors perform much better in speaker identification than d-vectors and s-vectors [18] (i,d and s-vectors

are kinds of speaker embeddings). In recent past, i-vectors were the most popular among speaker

recognition systems.

Figure 2.3 illustrates a speaker encoder architecture proposed by [14]. According to this scheme,

the system obtains the Mel-spectrograms of speaker audio samples and computes the corresponding

speaker embeddings. The prenet performs spectral processing feature transformation from the Mel-

spectrograms. Temporal processing is done by convolutional layers with gated linear unit and residual

connections. After this, average pooling is applied to summarize the whole utterance [14]. The self

attention block is used to assign weights to different audio samples in order to get combined embeddings.

Figure 2.3: Example of a speaker encoder architecture. Extracted from [14].

The quality of synthesized speech depends on the ability to properly encode necessary features to
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generate speech with the intended characteristics. Since one of the main challenges nowadays, both

for VC and other speech synthesis applications, is to extract the best data as possible from speaker

embeddings, the research in these two fields is converging.

2.2.2 Voice Cloning

Voice cloning differs from voice conversion in two factors: 1) it can reproduce new speaker identities

from reduced data — seconds or minutes of speech —, while voice conversion requires larger datasets

— hours of speech — for the same task; and 2) it can generalize to unseen text, while voice conversion

is bound to the linguistic content of the source utterance.

Voice cloning is capable of reproducing an unseen target voice from few samples of data by combin-

ing a model trained on data from many speakers with a small amount of target speaker data. This en-

ables the resultant voice model to synthesize an unseen voice better than a model trained form scratch,

exclusively on target speaker data [19]. The addition of a multi-speaker synthesis setting introduces a

prominent improvement in speech generative systems. By enabling speech synthesis in multiple voices,

these approaches effectively reduce the gap between single-speaker TTS and voice cloning.

According to Arik and colleagues (2018), there are two approaches for voice cloning: speaker adap-

tation and speaker encoding. Speaker adaptation consists in fine-tuning a trained multi-speaker model

to a new speaker, using a small amount of data. This stage can be applied to the model and the target

speaker embedding, or solely to the embedding. Contrary to speaker adaptation, speaker encoding

directly predicts a speaker embedding of an unseen speaker and does not require a fine-tuning stage.

As such, the multi-speaker model is combined with the new embedding, hence generalizing to unseen

voices [14]. Both approaches are illustrated in figure 2.4. On the one hand, speaker encoding consumes

less time and memory than speaker adaptation because it does not require and additional fine-tuning

stage, which is more adequate when resources are limited. On the other hand, for speaker encoding

to generalize to new voices, it is necessary to train the multi-speaker generative model and speaker en-

coder on significantly more speakers than for speaker adaptation. Moreover, speaker adaptation usually

ensures better synthetic speech naturalness due to the fine-tuning stage. As such, speaker adaptation

remains as the more practical voice cloning approach.

10



Figure 2.4: Speaker adaptation and speaker encoding techniques for voice cloning. Extracted from [14].

2.2.3 Evaluation metrics

This section presents the evaluation metrics used in the Voice Conversion Challenge 2018 [20].

Besides these subjective metrics, the frequently used preference test (A/B or ABX), as well as the more

recent MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) are described.

2.2.3.1 Mean Opinion Score

In the field of Speech Synthesis, mean opinion score (MOS) tests are often used as an evaluation

measure to assess the degree of naturalness of synthesized speech. Listeners are asked to rate the

quality of synthesized speech according to a 5-point scale (1: bad, 2: poor, 3: fair, 4: good, 5: excellent).

The final score of a system is given by the arithmetic mean over all the individual scores given by each

listener.

2.2.3.2 Same/Different paradigm

The Same/Different paradigm is a subjective evaluation metric that measures the similarity of VC

samples. From two samples, subjects are asked if the samples could have been produced by the same

speaker, disregarding distortion and focusing only on identifying the voice. Based on their degree of

certainty, subjects may choose one of the following answers: “Same speaker, absolutely sure”, “Same

speaker, not sure”, “Different speaker, not sure” and “Different speaker, absolutely sure”.
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2.2.3.3 AB/ABX preference test

Preference tests are frequently used to assess speech synthesis systems. In an AB preference

test, as the name states, listeners are presented with two speech samples and are asked to select

their preferred one according to a specific property, such as naturalness or similarity. A “no-preference”

answer slot may be included. ABX tests differ from the traditional AB test with the inclusion of an “X”

speech sample to be used as reference. In this case, samples “A” and “B” are evaluated using “X” as

reference.

2.2.3.4 MUSHRA

In the scope of Speech Synthesis, the MUlti Stimuli with Hidden Reference and Anchor (MUSHRA)

enables the subjective assessment of synthesized utterances and is mentioned in several studies, such

as [21] and [22]. According to this method, listeners rate audio samples, together with a low-quality

anchor, and a hidden reference sample, in comparison to a high-quality reference sample. The low-

quality anchor corresponds to a low-pass filtered sample, and its purpose is to ensure minor artifacts

are not improperly penalized. Samples are rated regarding similarity or perceived quality on a scale of

0 to 100, where 0 and 100 are the worst and best scores, respectively [23].

2.3 Neural vocoding

Vocoders perform speech waveform reconstruction from acoustic features. In traditional approaches,

vocoders essentially comprise two blocks: acoustic feature extraction, and waveform generation. These

techniques usually require different types of features (such as fundamental frequency, voiced / unvoiced

binary value, or spectrum and band aperiodicities) which can make acoustic feature extraction an intri-

cate task. Furthermore, conventional vocoders have difficulty in recovering the phase information of the

waveform signal [24, 25].

Presently, state-of-the-art neural vocoders can directly generate speech waveforms from acoustic

features, replacing speech analysis and waveform generation modules by neural networks. Despite

requiring large amounts of data and computational power, neural vocoders preserve speech naturalness

and recover phase information much more accurately than its predecessors [24, 26].

This section describes the reasoning, architecture, evaluation results of the following neural vocoders:

WaveNet, Parallel WaveNet, and WaveRNN. Additionally, a Universal Vocoding architecture based on

WaveRNN is also described.

2.3.1 WaveNet

According to Oord and co-authors (2016), WaveNet is a generative model for raw audio. As such,

it is most frequently used in speech synthesis and can be efficiently trained on a large number (tens of

thousands) of samples of audio data. WaveNet is fully probabilistic and autoregressive [27].
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The joint probability of a waveform x with T timesteps, is given by equation (2.2),

p(x) =

T∏
t=1

p (xt|x1, . . . ,xt−1) (2.2)

which means the predictive distribution for each audio sample is conditioned on all previous samples.

An important element in WaveNet is the causal convolution. Causal convolutions are used to ensure

that the ordering of input data is not changed while it is being manipulated. Using causal convolutions

is usually faster than training data with RNNs, nevertheless, causal convolutions require many layers to

enlarge the receptive field, which results in increased computational costs, and consequently in slower

synthesis time. This is one of the drawbacks of WaveNet that motivated the development of a faster

solution, without sacrificing synthesized speech quality (see Parallel WaveNet, section 2.3.2).

In figure 2.5 a stack of convolutional layers is depicted. Neurons represent predictions at a specific

timestep, where timesteps grow from left to right. Knowing this, we observe that every output of a

neuron only depends on neurons from past and present timesteps, which goes along with equation

(2.2). To reduce the high complexity of the network, which is caused by a large number of convolutional

Figure 2.5: Stack of causal convolutional layers. Extracted from [27].

layers, WaveNet uses dilated causal convolutional layers. For these layers, the filter is applied in such

fashion that inputs of neurons are skipped with a certain step [27]. This step is called dilation factor.

The use of dilated convolutions ensures an increase in the receptive field without needing too many

layers. Dilated convolutional layers and the dilation factor can be observed in figure 2.6. Since audio

Figure 2.6: Stack of dilated causal convolutional layers. Extracted from [27].

is stored as 16-bit integers per timestep, a large number of outputs (65 536) is required to represent all
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values per timestep, which is very costly. To avoid this, input data is compressed according to an 8-bit

µ-law companding transformation. Therefore, data is quantized to 256 values per timestep according to

equation (2.3),

f (xt) = sign (xt)
ln (1 + µ |xt|)
ln(1 + µ)

(2.3)

where −1 < xt < 1 and µ = 255. This kind of quantization proved to be significantly more efficient in

terms of synthesis speed than linear quantization.

2.3.1.1 Architecture

The neurons in WaveNet’s hidden layers are represented by a residual block. Instead of using the

rectified linear activation function, a gated activation unit is applied instead:

z = tanh (Wf ,k ∗ x)� σ (Wg,k ∗ x) (2.4)

where ∗ represents a convolution operator, � designates an element-wise multiplication operator, σ(·) is

a sigmoid function, k is the layer index, f and g denote filter and gate, respectively, and W is a learnable

convolution filter [27]. Figure 2.7 illustrates the architecture of the WaveNet model. The residual units

Figure 2.7: WaveNet model architecture. Extracted from [27]

are used to prevent the increasing training loss due to the network’s significant depth. Together with

these, skip connections enable a faster convergence.

2.3.1.2 Evaluation

In the scope of TTS, WaveNet models were conditioned on linguistic features extracted from input

text. Besides linguistic features, the models were also given log F0 as input. Models were evaluated

according to two metrics: 5-scale MOS and subjective paired comparison. Two other synthesizers were

also tested, to compare WaveNet to other TTS implementations. Table 2.1 shows the results of MOS

tests for North American English.
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Table 2.1: 5-scale MOS evaluation for previous state-of-the-art systems (LSTM-RNN parametric and
HMM-driven concatenative), for WaveNet conditioned on linguistic features and log F0, for 8-bit µ-law
encoded natural speech and for 16-bit linear PCM natural speech. Extracted from [27].

Model MOS

LSTM-RNN parametric 3.67 ± 0.098
HMM-driven concatenative 3.86 ± 0.137
WaveNet (L+F) 4.21 ± 0.081

Natural (8-bit µ-law) 4.46 ± 0.067
Natural (16-bit linear PCM) 4.55 ± 0.075

From table 2.1, it is clear that WaveNet achieved a remarkable score, very close to natural speech.

Also, we notice that not even natural speech reached a perfect score.

2.3.2 Parallel WaveNet

Parallel WaveNet is based on the original WaveNet. It generates high-fidelity speech samples signif-

icantly faster than the original version. Parallel WaveNet relies on a method called Probability Density

Distillation to train a parallel feed-forward network from a trained WaveNet model.

WaveNet ensures a fast training process of the network, as it is possible to achieve high temporal

resolution because input samples are already available — the predictions for all timesteps can be done

in parallel since all timesteps of the ground truth signal are known [27]. Nevertheless, the generation of

samples from the output distribution is sequential, and therefore, a slow process. To tackle this issue,

Parallel WaveNet uses inverse autoregressive flows (IAFs) to ensure a fast, parallel generation. IAFs

[28] are stochastic generative models that allow to generate elements of a high dimensional sample in

a parallel fashion [29].

2.3.2.1 Probability Density Distillation

Probability Density Distillation joins the best features of the aforementioned methods: for training,

a classical trained WaveNet as “teacher”, and for sample generation, a parallel WaveNet as “student”,

which learns from the trained WaveNet [29]. The goal is to match the “student’s” probability distributions

of output samples to the “teacher’s” distributions. In practice, the input can be a noise signal that is

gradually modeled to the desired output speech waveform by matching the output samples’ probability

distributions. It is important to stress that the objective is not to match the output samples directly, as

this would be a very complex task, but rather approximate them by matching their distributions.

2.3.2.2 Evaluation

In comparison with the original implementation of WaveNet [27], two changes were made that allowed

for a higher audio fidelity. 16-bit audio modeling was used instead of 8-bit. Also, sampling rate was

increased from 16 kHz to 24 kHz.
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5-scale MOS tests were carried out to compare the “teacher” WaveNet and the “student” WaveNet

performances. A concatenative model was also tested under the same conditions. Table 2.2 illustrates

the obtained results. It is clear that the “student” WaveNet learns successfully and is able to produce

speech according to the auto-regressive “teacher” WaveNet, since it yields practically the same result.

Table 2.2: Parallel WaveNet – Evaluation of “teacher” model and “student” WaveNet. Audio synthesized
at 24kHz, 16-bit linear PCM. Extracted from [29].

Model MOS

HMM-driven concatenative 4.19 ± 0.097
“Teacher” WaveNet 4.41 ± 0.069
“Student” WaveNet 4.41 ± 0.078

According to the authors, Parallel WaveNet can generate high-fidelity synthetic speech over 20 times

faster than real-time on an NVIDIA P100 GPU, thus covering the low inference speed issues raised by

the original WaveNet.

2.3.3 WaveRNN

In comparison to previous sequential models, such as WaveNet [27], WaveRNN aims to reduce

sampling time, while preserving output quality. Combined with a dual softmax layer, this model can

generate 24 kHz 16-bit audio 4× faster than real-time on a GPU.

The sampling process duration T (u), specified in equation (2.5), corresponds to the product of the

number of samples in the target, |u|, and the necessary time to generate each sample. To obtain the

amount of time to produce a sample, the number of operations N , the computation time c (opi) and the

overhead d (opi) are taken into account. Therefore, sampling time efficiency improves by reducing the

factors N , c (opi), d (opi) and |u|.

T (u) = |u|
N∑
i=1

(c (opi) + d (opi)) (2.5)

Opposed to convolutional models, WaveRNN does not require deep architectures to process each

sample of audio. Its recurrent nature allows for retaining features in the input sequence and establishing

dependency among them. Hence, WaveRNN computes the combination of context with the input at

each training step, significantly reducing the network’s depth and consequently the number of performed

operations [30].

WaveRNN predicts 16-bit audio samples, divided in two 8-bit parts: 8 coarse bits ct, and 8 fine bits ft.

The model, illustrated in figure 2.8, is composed by a single-layer RNN with a dual softmax layer. It takes

as input the previous audio sample ct−1, ft−1, the coarse input ct, and outputs two discrete probability

distributions, P (ct) and P (ft), for the sample at time t [30, 31].
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Figure 2.8: Architecture of WaveRNN: single-layer RNN combined with a dual softmax layer. R and I
are matrices denoting the hidden state weights of the RNN. Extracted from [30].

2.3.3.1 Evaluation

Although WaveRNN does not surpass WaveNet in terms of naturalness, it still obtains a high MOS,

close to WaveNet’s. WaveRNN proves to be more suitable than WaveNet (2016) for real-world applica-

tions because it ensures faster synthesis, up to 96 000 samples per second.

Table 2.3: WaveRNN MOS results in comparison to WaveNet. For this table, a WaveRNN with a state of
896 units was considered. Extracted from [30].

Model MOS

WaveNet 4.51 ± 0.08
WaveRNN 4.37 ± 0.07

2.3.4 Universal vocoding

Universal vocoders aim to improve the generalization capabilities of neural vocoders. The depen-

dency on extensive datasets and computational power motivated the search for new solutions that could

incorporate new speaker-styles, without further training [26].

Lorenzo-Trueba and colleagues (2019) proposed a Speaker Independent WaveRNN-based universal

vocoder, depicted in figure 2.9, capable of generalizing to unseen speakers. The model is based on

WaveRNN’s architecture because it provides more stable outputs than CNN-based approaches. The

RNNs hidden state continuance retains context across the spectrogram and therefore generates a more

stable output [26]. Similarly to WaveRNN, the autoregressive side of the model includes one GRU and

a softmax output layer. Additionally, two affine layers link the GRU to the softmax. The conditioning

network comprises a two-layer bidirectional GRU that processes the input Mel-spectrograms.

2.3.4.1 Experiments and evaluation

The authors considered four different training settings: a single-speaker configuration, two multi-

speaker configurations, consisting of three and seven speakers respectively, and a universal vocoding
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Figure 2.9: Block diagram of the WaveRNN-based Universal Vocoder. Extracted from [26].

configuration, comprising 74 speakers and 17 languages. The multi-speaker configurations aimed to

assess how reducing the dataset size (number of utterances) and increasing the number of speakers

would influence the output quality.

Evaluation and experiments included several scenarios: 1) in-domain speakers and speaking style;

2) out-of-domain speakers but similar speaking style; 3) out-of-domain speakers and speaking style.

Additionally, various unseen scenarios were tested. From these, we will focus on the following: different

voice qualities and non-optimal recording conditions. MUSHRA tests were used to evaluate each case

[26].

No significant difference was registered for scenario 1) since all training settings produced similar

results at inference time. The universal vocoder setting registered a 98.5% relative MUSHRA score2.

For scenario 2), results have shown that the more speakers are included during training, the better is

the output quality. Although the 3-speaker setting comprised more data than the 7-speaker setting,

the output quality was better for the latter, which indicates that speaker variability is more important than

quantity of data regarding the universal vocoding task [26]. For scenario 3), the universal vocoder setting

still provided a stable output, reaching a 98% relative MUSHRA score. Single-speaker and 7-speaker

settings revealed poor results, unlike the remaining (3-speaker and universal vocoder). This contrast

was mainly due to speaker dissimilarity among train and test speakers. The authors used Kullback-

Leibler divergence (KLD) to measure speaker similarity. KLD was measured between the Gaussian

Mixture Models of the training data of each vocoding approach and the speaker. The KLD between the

test speaker and each one of the settings was 2.64 for the universal vocoder, 5.42 for 3-speaker, 14.45

for 7-speaker, and 14.62 for single-speaker, proving that dissimilarity between train and test speakers

2The relative MUSHRA score is the ratio between mean MUSHRA scores of a system, and of natural speech.
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severely degraded the output quality for unseen speaking style scenarios.

Regarding robustness to voice quality degradation, the universal vocoder still generalized well, achiev-

ing 91.6% and 89.5% relative MUSHRA scores for breathy and pressed voices, respectively. In terms of

signal quality, the model’s performance further worsened, achieving 79.4% and 76.4% relative MUSHRA

scores for noisy, and reverberating signals, respectively. The most significant drop occurs for simultane-

ously noisy and reverberating signals, for which the relative MUSHRA score drops to 57.8%.

2.4 Sequence-to-Sequence TTS systems

Over the past few years, TTS systems have been implemented according to two frameworks: pre-

vious generation statistical parametric synthesis systems (SPSS), and the more recent Seq2Seq ap-

proach with better performance, overall. These two TTS approaches mostly differ in three aspects: 1)

In SPSS, linguistic processing is rule-based, and therefore an extensively scripted procedure, whereas,

in Seq2Seq, text analysis is performed by a neural text encoder; 2) While in SPSS text analysis and

speech are processed separately, in Seq2Seq these are processed jointly, using {text, audio} pairs as

input; 3) SPSS predicts adjacent acoustic frames independently, while Seq2Seq performs the same task

autoregressively [32].

Although Seq2Seq TTS performs better, there are still advantages and disadvantages in both ap-

proaches, given their core differences. The traditional SPSS framework does not require large text

datasets, because linguistic representations are obtained by rule – like in the Festival pipeline [33], for

example. Seq2Seq TTS models are usually “data-hungry” instead, and require large amounts of text

data because linguistic representations are learned naturally along with speech representations. On the

one hand, the SPSS approach may ensure more accurate linguistic content than Seq2Seq TTS — for

example, the correct pronunciation of homograph words in the same sentence — for smaller amounts of

data. On the other hand, the seamless learning process of Seq2Seq TTS generates much more natural

synthetic speech as opposed to the rule-based and detached processing pipeline performed in SPSS.

This section presents several Seq2Seq systems, namely Tacotron and Tacotron 2. Ultimately, these

systems constitute a significant step towards fully end-to-end architectures. Tacotron somewhat achieves

this, but only because it uses a Griffin-Lim vocoder, which substantially degrades the quality of synthetic

speech. Tacotron 2 however, produces synthetic speech of much better quality because it uses a sepa-

rate trainable system (WaveNet) as a neural vocoder, hence not being truly end-to-end.

2.4.1 Tacotron

According to Wang and colleagues (2017), Tacotron is an end-to-end TTS model that generates

synthetic speech directly from text. A Tacotron model can be trained from scratch with random initializa-

tion, given {text, audio} pairs. Tacotron is frame-based, which is significantly faster than sample-level

auto-regressive methods and it does not require conditioning on linguistic features [34].

The model operates as follows: it receives characters as input, generates a linear-scale raw spectro-
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gram from the input, and outputs synthetic speech by applying the Griffin-Lim reconstruction algorithm

(GLA) to the spectrogram.

An alternative to Tacotron, regarding audio generative models, is WaveNet. Nevertheless, WaveNet

is slower than Tacotron because of its sample-level auto-regressive nature, and because it requires

conditioning on linguistic features (it is not an end-to-end model).

2.4.1.1 Architecture

Tacotron is composed of three main blocks: an encoder, a decoder and a post-processing net.

Figure 2.10 illustrates the model’s architecture, including all three main blocks. A CBHG module is

included both in the encoder and in the post-processing net. The purpose of the CBHG (1-D convolution

Figure 2.10: Tacotron model architecture. Extracted from [34].

bank + highway network + bidirectional GRU) module is to extract features from sequences. Essentially,

it extracts higher-level features such as phonetic, prosodic, and lexical information [35] from the input

sequence.

The encoder extracts robust sequences of text. It receives a continuous vector of embeddings, where

each embedding corresponds to a character represented by a one-hot vector. The pre-net module cor-

responds to a set of non-linear transformations applied to each embedding. On top of this, a bottleneck

layer with dropout is applied, in order to improve generalization. Finally, a CBHG module is used ob-

tain the final output of the encoder. The presence of this module is advantageous because it reduces

overfitting and mispronunciations [34].

Tacotron uses a content-based hyperbolic tangent attention decoder, where the attention query for

each decoder time step is generated by a recurrent layer. Multiple non-overlapping output frames are

predicted at each decoder time step, which is less time and space consuming.

The post-processing net converts the Seq2Seq output of the decoder to a linear scale spectrogram.

This spectrogram is transformed into a speech waveform by the Griffin-Lim algorithm [34]. The choice
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of this algorithm is justified by its parsimonious nature. Although it does not achieve the best results

in terms of convergence and waveform quality, given its simplicity, it fits the demands of the model

adequately.

2.4.1.2 Evaluation

To evaluate the system, MOS tests were conducted. The tests consisted of 100 unseen phrases,

rated eight times each. Besides Tacotron, concatenative and parametric synthesizers were tested for

comparison purposes. The achieved results are presented in table 2.4.

Table 2.4: 5-scale MOS evaluation - Tacotron. Extracted from [34].

Model MOS

Tacotron 3.82 ± 0.085
Parametric 3.69 ± 0.109
Concatenative 4.09 ± 0.119

Tacotron achieved better results than the parametric model. Synthetic speech generated by Tacotron

comprises artifacts due to the Griffin-Lim algorithm waveform generation step — the Griffin-Lim algo-

rithm does not perform an accurate estimation of the phase of an audio signal, thus generating unnatural

speech. The concatenative model accomplished better results than Tacotron, because Tacotron does

not employ a neural vocoder that would ensure better phase estimation, and consequently, better syn-

thetic speech quality.

2.4.2 Tacotron 2

Tacotron 2 is a Seq2Seq TTS system. It uses a recurrent sequence-to-sequence feature prediction

network, adapted from Tacotron, to convert input text to Mel-scale spectrograms. A modified version of

WaveNet performs waveform synthesis from the Mel-spectrograms. The use of Mel-scale spectrograms

as input to WaveNet instead of linguistic, duration and F0 features proved to reduce greatly the com-

plexity of the original WaveNet architecture. As such, Tacotron 2 gathers the best properties from its

predecessor models, Tacotron and WaveNet [36].

A spectrogram represents the evolution of frequencies of a signal over time. Therefore, in the case

of a speech waveform, a linear spectrogram corresponds to the short-time Fourier transform (STFT)

magnitude of the waveform. A Mel-scale spectrogram is obtained by applying a non-linear transformation

to the linear-scale spectrogram. This transformation is particularly useful when dealing with speech

signals because it focuses on low frequency variations, which are very important for speech intelligibility,

and de-emphasizes high frequency variations, which do not require high-fidelity modeling [36].

2.4.2.1 Architecture

The encoder and decoder blocks in Tacotron 2 are based on Tacotron’s architecture but with some

simplifications. CBHG and GRU-RNNs are replaced by vanilla LSTMs and convolutional layers.

21



To generate a 16-bit audio samples from the Mel-spectrograms, WaveNet uses a 10-component

mixture of logistics distribution.

Because Mel-spectrograms provide more information about the waveform than linguistic features,

WaveNet can be modified to a shallower architecture, with less hidden layers, and still capture long-term

dependencies across frames. Therefore, it is clear that conditioning WaveNet on Mel-spectrograms does

not require as large receptive fields as in the original implementation of WaveNet.

2.4.2.2 Evaluation

To evaluate Tacotron 2, MOS tests were used as evaluation method. Other models were evaluated

as well for comparison purposes. Table 2.5 displays the results of the MOS tests. The results prove that

Tacotron 2 is able to synthesize speech with quality very close to natural speech.

Table 2.5: 5-scale MOS evaluation of Tacotron 2. Extracted from [36].

Model MOS

Parametric 3.492 ± 0.096
Tacotron (Griffin-Lim) 4.001 ± 0.087
Concatenative 4.166 ± 0.091
WaveNet3 4.341 ± 0.051
Ground truth 4.582 ± 0.053

Tacotron 2 4.526 ± 0.066

2.4.3 Multi-speaker generative model

Zhang and co-authors (2019) proposed a non-parallel Seq2Seq voice conversion model, illustrated

in figure 2.11, that operates in one of two configurations depending on the type of input: voice conversion

(VC), or TTS. For the VC configuration, the acoustic feature sequence (in the form of a Mel-spectrogram)

is extracted from a source utterance and is fed to the Seq2Seq regressive model, as depicted in figure

2.11. The VC configuration follows the traditional framework, which takes a source utterance as input.

This setting preserves the input’s linguistic content and embeds the target speaker’s identity into the

output. For the TTS configuration, text inputs are converted to phonetic transcriptions before being

fed to the model. The TTS process unfolds similarly to the VC procedure since the output is also a

combination of linguistic content and speaker identity. The most notable difference is the textual input,

as opposed to a source utterance. Since TTS is the main focus of this dissertation, we will focus on the

system’s TTS configuration.

The model incorporates five components: a text encoder Et, a speaker encoder Es, a Seq2Seq

decoder Da, a recognition encoder Er, and an auxiliary classifier Cs. The text encoder extracts lin-

guistic embeddings Ht from phoneme transcriptions T of input text sequences. It is formed by three

convolutional layers, followed by a single-layer BLSTM and a fully connected layer. The speaker encoder

3WaveNet conditioned on linguistic features
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Figure 2.11: Architecture of a Seq2Seq VC model comprising the voice conversion and TTS configura-
tions. Adapted from [13].

takes spectrograms as input and generates speaker embeddings hs, capable of identifying a speaker.

It consists of a 2-layer BLSTM, followed by average pooling and a fully connected layer. The decoder

generates an acoustic feature sequence Â by combining previously extracted linguistic and speaker

embeddings. Its structure is analogous to Tacotron [34, 36]. Authors used a WaveNet vocoder [37] to

recover speech waveforms from acoustic features [13].

The recognition encoder Er and the auxiliary classifier Cs are only taken into account during the

training process, thus are not used by the TTS configuration at inference time. The recognition encoder

extracts linguistic representations from audio signals. For that, it takes acoustic feature sequences A

as input, and outputs a linguistic embedding Hr. Since Ht and Hr are expected to be similar, a

contrastive loss is introduced to increase similarity between both linguistic representations. The auxiliary

classifier predicts the speaker identity from a linguistic Hr. It is used for adversarial training to remove

the remaining speaker-related content within the linguistic embedding [13].

Training the model consists of two stages: pre-training, and fine-tuning. In the pre-training phase, the

system is trained with a large multi-speaker dataset, comprising utterances, text transcriptions, and the

corresponding speaker identity tag. Fine-tuning was performed in a 2-speaker setting, nevertheless, it

is possible to fine-tune the model to more than two speakers. The fine-tuning stage introduces unseen

speakers during pre-training and converges faster than the first stage.

The authors evaluated the effect of training data reduction on the model’s performance at the fine-

tuning stage. Results have shown that the model has similar performance regardless of the amount of

training data, suggesting that this implementation is suitable for scenarios where the amount of data is

scarce [13].
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2.5 TTS for European Portuguese

This section provides a brief overview of TTS systems for European Portuguese. ResponsiveVoice4,

the Nuance Vocalizer5 and ReadSpeaker6 are systems available online that yield a good performance,

although they lack exclamatory and interrogative intonation, and sometimes introduce artifacts.

INESC ID has a long history in what concerns TTS systems for different varieties of Portuguese. This

history started with the development of DIXI [38], a rule-based synthesizer using a formant model. This

TTS system was followed by DIXI+, the concatenative version based on the Festival framework.

More recently, two Master Theses, [39] and [40], were developed in this field. Gonçalves (2018) [39]

proposed a model based on Merlin, which is a toolkit for neural network-based speech synthesis [41].

Merlin’s framework, based on the Festival synthesis platform, was originally designed to synthesize a

single English voice, and therefore had to be adapted to the Portuguese phonology. The model was

trained with an EP dataset with total duration close to 16 hours.

Quintas (2019) [40] developed a Portuguese speech synthesizer, based on Tacotron 2, targeting

applications to Amyotrophic Lateral Sclerosis (ALS) patients. Two datasets (one of a female speaker and

the other of a male speaker) were used for speaker adaptation as those yielded high quality utterances.

To train the model from scratch, only a female speaker dataset was used, since it was the only sufficiently

large voice bank available. The model’s hyperparameters were adjusted to ensure a proper training

from the voice banks. The system was evaluated in terms of naturalness and intelligibility and more

specifically, interrogative and exclamatory intonation.

The implementation developed by Quintas (2019) [40] yields good results in terms of speech quality,

nevertheless it utilizes the original WaveNet [27] as a vocoder, which poses a drawback in terms of

synthesis time. This characteristic makes the system inoperable for real time applications. Another

downside was the fact that the datasets used for speaker adaptation were small, and did not provide

data diverse enough. The scarcity of interrogative and exclamatory intonations in these datasets limited

the performance of the system. As such, further development in TTS for European Portuguese should

aim to ensure speaker adaptation based on fewer input samples, with faster synthesis time.

2.6 Final remarks

Other methods greatly contributed to the state-of-the-art of Speech Synthesis besides those pre-

sented in this chapter: Deep Voice 3 [42], VoiceLoop [43], and more recently the ESPnet-TTS toolkit

[44] regarding TTS, StarGAN-VC2 [45] in the field of voice conversion, and technologies outside the

scope of this study, namely multilingual TTS [46] and speech-to-speech translation [47], systematized

by Luı́s Bernardo (2019) [48].

The concepts of TTS and voice conversion are originally distinct right from the starting point, as TTS

takes raw text, and VC takes speech waveforms as input. Nevertheless, from a practical standpoint,

4https://responsivevoice.org/
5https://www.nuance.com/omni-channel-customer-engagement/voice-and-ivr/text-to-speech.html
6https://www.readspeaker.com/pt/demonstracoes/
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both fields are conjoining, essentially for two reasons: 1) both ultimately aim to reach the same goal —

to generate synthetic speech as natural as possible, while preserving the given linguistic content; and 2)

both concepts are structurally very similar when using an encoder-decoder framework.

Recalling the system described in item 2.4.3, it becomes clear that most of the underlying structure

of multi-speaker TTS and non-parallel voice conversion is common to both, only diverging in terms of

input encoding. Likewise, the waveform generation module can be identical in both cases, since the

output type is the same. For this reason, choosing a Seq2Seq framework coupled with neural waveform

generation for a multi-speaker TTS system is adequate, as it can be easily adjusted to similar confluent

tasks, like VC. The next chapter describes a model that follows this premise.
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Chapter 3

Proposed model

This chapter aims to minutely describe the structure of a proposed model for multi-speaker TTS.

Other aspects related to the model’s operation are also detailed, namely the speech corpora that were

employed, and the training process involving the main modules of the system.

Section 3.1 identifies these components, and explains how they interconnect. Section 3.2 enumer-

ates the spoken language corpora that were employed to train the model, and details their main charac-

teristics that influence the performance of the model. Sections 3.3 and 3.4 describe, respectively, the text

and audio preprocessing stages that precede the training of the model’s main components. Additionally,

sections 3.5 and 3.6 focus on the hyperparameter selection and training processes of the system’s main

modules.

3.1 Model overview

The present section describes the proposed multi-speaker TTS system. This approach (depicted

in figure 3.1) follows the prevailing state-of-the-art premise, combining a Seq2Seq system for acoustic

feature prediction, with a neural vocoder for speech waveform recovery. Currently, multiple architectures

for neural vocoders are available, given their fundamental purpose within Speech Synthesis. To select a

suitable neural vocoder, we focused on open-source implementations that enabled faster synthesis than

the original WaveNet. Early experiments involved an implementation1 inspired by the original WaveRNN.

However, this model demanded extensive training data (hours of speech), and required fine-tuning to

generate speech for new voices. Fine-tuning for new speakers did not produce reasonable results,

suggesting that the model only performed well in a single-speaker setting. Since this system clearly did

not fit the demands of speaker adaptation, a different neural vocoding approach was selected.

A WaveRNN-based universal vocoding approach was chosen for the waveform generation module.

This approach is an independently developed implementation of the original universal vocoding system

[26]. The WaveRNN-based universal vocoding architecture allows for faster synthesis (as opposed

to WaveNet), and more importantly, for better generalization to new speaker identities. This aspect

1https://github.com/fatchord/WaveRNN
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was crucial to prevent training the neural vocoder at the speaker adaptation stage, thereby simplifying

that process. The Seq2Seq system was adapted from the non-parallel Seq2Seq VC implementation

[13], given its similarities with multi-speaker TTS. Sections 2.3.4 and 2.4.3 of chapter 2 explain the

implementations of the modules selected for the TTS framework in detail.

Figure 3.1: Inference-time pipeline of the proposed model. The system receives a textual input, together
with a speaker embedding in order to select the speaker identity for synthesis. At inference time, the
encoding stage extracts a linguistic embedding from the textual input. The decoding stage combines
linguistic and speaker embeddings to predict a Mel-spectrogram, conveying the adequate linguistic con-
tent and speaker identity. Finally, the neural vocoder produces a synthetic speech waveform from the
predicted Mel-spectrogram.

The Seq2Seq VC model was originally designed for the English language (EN), therefore, several

adjustments were introduced to adapt this system to European Portuguese (EP). These adaptations

consisted in text and audio preprocessing stages (described in sections 3.3 and 3.4, respectively). As

stated in section 2.4.3, the text encoder of this model relies on phonetic transcriptions, which require

changing the grapheme-to-phoneme (GtoP) conversion stage from EN to EP.

When choosing a speech corpus, one must account for several factors, as these might pose a com-

plex challenge for the Seq2Seq model. The speech corpus should include a broad variety of speakers

as well as enough data per speaker for the model to generalize properly in a multi-speaker setting. More-

over, the duration of its utterances should be limited. Very long utterances may be difficult to decode

and therefore prevent the model from converging. At last, recording conditions may also undermine the

performance of the Seq2Seq model (e.g. samples containing silence, background noise or breathing

sounds). Audio preprocessing was used to mitigate these, whenever possible. Audio data underwent the

same digital signal processing (DSP) stages both in the Seq2Seq model and neural vocoder, otherwise,

it would not have been possible to link the models together.

The proposed model was adapted from open-source repositories 1 and 2, depicted in table 3.1. We

will refer to this as default implementations. Repositories 3 and 4 were used at preprocessing stages.

Table 3.1: Open-source repositories used for the proposed model.

# URL Task
1 https://github.com/bshall/UniversalVocoding Neural vocoder
2 https://github.com/jxzhanggg/nonparaSeq2seqVC_code/ Non-parallel Seq2Seq VC
3 https://github.com/cmusphinx/g2p-seq2seq Text preprocessing (GtoP)

4 https://github.com/pyannote/pyannote-audio
Audio preprocessing
(silence removal)
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3.2 Spoken language corpora

Selecting suitable voice banks to train the two main blocks of the proposed model (Seq2Seq model

+ neural vocoder) was an important step during implementation because it greatly influenced synthetic

speech quality. Therefore, EP voice banks with similar specifications to English ones were chosen, as

the latter already produced solid results.

As previously described in section 2.4.3, the Seq2Seq model comprises two training stages: pre-

train, followed by fine-tune. Different corpora were used at each stage, since the purpose of fine-tuning

is for the model to perform speaker adaptation, requiring new speakers. The default implementation was

pre-trained with data of 99 speakers from the VCTK dataset [49], and fine-tuned with the data of two

speakers from the CMU Arctic database [50].

Table 3.2 indicates the specifications for the corpora used as reference for pre-train and fine-tune

stages of the Seq2Seq regressive model. BD-PUBLICO is a corpus of newspaper text, and its subset

used for pre-training comprises a vocabulary of 20 000 words uttered by 100 speakers aged between 19

and 28. The subset of BDFALA used for fine-tuning contains 600 phonetically rich sentences [51] uttered

by two adult speakers. When fine-tuning the model, however, one could have selected an arbitrary

number of speakers. Two speakers were chosen merely to include both a male and a female voice

during this stage. Two additional corpora were employed for speaker adaptation experiments: 1) a

different subset of BDFALA, which will be referred to as BDFALA02; and 2) a subset of the EUROM.1

corpus [51]. These will be further detailed in chapter 4.

In terms of speaker diversity, both EP datasets are adequate, nevertheless, in terms of utterance

duration, and number of utterances per speaker, BD-PUBLICO falls behind VCTK. It is clear that BD-

PUBLICO not only includes less utterances per speaker, but also comprises substantially longer utter-

ances than VCTK. In fact, to ease the convergence task during training, a larger number of shorter utter-

ances per speaker is preferable. To test the impact of utterance length in the convergence of the training

process, an experiment was carried out, in which training data comprised isolated words exclusively.

This training setting comprised two voices, and over 4500 uttered words for each voice. Even though

only two speakers were employed, the model successfully reproduced both voices, generating natural

and intelligible synthetic speech for unseen isolated words significantly better than when trained with the

same two speakers, but longer utterances. In case one wants to train a model capable of decoding very

long utterances, a possible approach is to use curriculum learning [52], in which the utterance length is

gradually increased as the model trains, ensuring smoother convergence. This, however, poses another

drawback because it is hard to find corpora with such specifications. When training speech generative

models using curriculum learning, a frequent but laborious approach is to split utterances into shorter

ones. Although this eases the convergence process of the model, it must be done carefully to preserve

the utterances’ original intonation.

∗Original sampling frequencies are higher, but all waveforms were downsampled to 22.05 kHz in DSP stage.
∗∗Corresponds to the number of speakers used for training the model. Originally, these speech corpora contain more speakers.
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Table 3.2: Voice corpora used as reference for pre-train and fine-tune stages of the regressive Seq2Seq
model.

Specification
Pre-train Fine-tune

VCTK BD-PUBLICO CMU-ARCTIC BDFALA
Language EN EP EN EP
Sampling frequency [kHz] 22.05∗ 16 22.05∗ 16
Number of speakers 99∗∗ 100 2∗∗ 2∗∗

Utterances per speaker 231-503 79-83 539 300
Total duration [hh:mm:ss] 40:25:40 21:48:39 02:02:45 00:51:36

Utterance duration [s]
Mean 3.6 9.7 3.3 5.2
Median 3.3 9.5 3.2 5.1

The neural vocoder’s default implementation (repository 1 in table 3.1) relied on a 102-speaker En-

glish dataset [53] different from VCTK, comprising 9474 utterances and a duration of 20h 20min. For

EP the vocoder was also trained with the BD-PUBLICO corpus, firstly to ensure that speaking style and

recording quality were preserved, and secondly because speaker diversity and total corpus duration are

similar to the EN corpus employed in the original implementation.

3.3 Text preprocessing

Regarding text preprocessing, three different GtoP approaches were employed in the following order:

1) the Phonemizer [54] using the eSpeak backend; 2) a Sequence-to-Sequence GtoP toolkit, developed

by CMUSphinx (repository 3 in table 3.1); and 3) a Festival-based approach, which is employed in DIXI+

[55].

Besides assessing the ability to generate correct phonetic transcriptions, other factors were consid-

ered in order to choose which approach is best, in particular, text normalization, and the ability to cor-

rectly transcribe homographs and acronyms. Text normalization is an important step in GtoP methods

because it allows to obtain correct phonetic transcriptions for non-standard text, such as abbreviations

or digits.

3.3.1 Punctuation

Although punctuation marks are not phonetic symbols, the main reason for including punctuation in

phonetic transcriptions is for the model to learn pauses correctly, which are most frequently represented

by commas or full-stops. Ideally, punctuation would contribute to a large extent to learning how to convey

exclamatory and interrogative sentences in synthetic speech. Nevertheless, this was not possible due

to the scarcity of these sentences in training data, as detailed further in this section.

From all punctuation marks, only commas, full stops, and question marks were included in phonetic

transcriptions. Including all possible punctuation would contribute to unnecessarily large phoneme lists,

that is, an excessively large number of different phonemes in the dataset. A phoneme list with many

instances would not only hinder the training task, but could potentially cause out-of-memory (OOM)
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errors, since the number of instances in the phoneme list corresponds to the output size of one of the

layers employed in the decoding process.

In total, BD-PUBLICO comprises 13 002 commas, 273 colons and 38 semicolons. Given that com-

mas are substantially more frequent, colons and semicolons were replaced with commas. Likewise,

ellipses were replaced with full stops. Although BD-PUBLICO does not include any ellipses, the remain-

ing corpora employ these in some transcriptions, hence the replacement with full stops.

Given that the sentences of BD-PUBLICO were all selected from newspaper text, the number of

exclamatory and interrogative sentences is very scarce in the whole corpus. Moreover, several of these

exclamatory sentences were uttered in declarative fashion (in chapter 4, section 4.1.1, the type of sen-

tences and prosody of each corpus is thoroughly analyzed). As such, exclamatory sentences were

assumed as declarative ones, meaning that exclamation marks were replaced with full stops at the end

of sentences.

3.3.2 Phonemizer with eSpeak backend

The open-source repository used for the Seq2seq model already employs a GtoP toolkit, the Phone-

mizer [54], which supports different languages and frameworks, namely Festival and eSpeak. Given that

this toolkit was readily available, this was the first GtoP procedure to be experimented. The rule-based

eSpeak backend was used since it was the only one available for EP in this toolkit.

Unlike the Festival backend, eSpeak employs the International Phonetic Alphabet (IPA) to represent

phonemes. In comparison to other phonetic notations, such as SAMPA, IPA is more complex, comprising

over 100 different symbols representing vowels and consonants only. Hence, using the eSpeak backend

generated very large phoneme lists. To put it in perspective, the EN Festival backend generated a 41-

symbol phoneme list, while the EP eSpeak backend generated a list comprising 73 symbols, excluding

punctuation. Given that each backend refers to a different language, it is expected that each phoneme

list has a different number of symbols, nevertheless, eSpeak generated an abnormally large number of

phonemes, almost as twice as EN Festival.

Preliminary experiments regarding the training of the Seq2Seq regressive model did not include

punctuation in phoneme lists, as these were already extensive — adding more symbols to the phoneme

list would increase memory usage, and thus cause OOM errors. However, excluding punctuation from

phoneme lists posed a significant drawback in the performance of the regressive model, as it was inca-

pable of conveying pauses in predicted acoustic representations. To overcome the problem of extensive

phoneme lists, 22 symbols were merged, and one symbol was excluded. The details of the phoneme

list reduction procedure are presented in the following section 3.3.2.1.

Besides employing a far intricate phonetic alphabet for the intended task, the present GtoP proce-

dure presented other limitations: 1) it relied on a set of rules, which is outdated and often impractical;

and 2) it incorrectly transcribe certain types of words. Regarding limitation 1), rule-based methods are

impractical because they involve extensive hand-engineered procedures that are laborious to update. A

concrete example of this would be adapting the system to the new EP orthography (following the 1990
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Orthographic Agreement). Regarding limitation 2), this approach incorrectly transcribed some mute con-

sonants (e.g. excepção), and acronyms (e.g. SIC, ONU) as voiced consonants and spelled acronyms

(siglæ), respectively.

3.3.2.1 Phoneme list reduction

Table 3.3 specifies all the symbols that either were removed from the phoneme list, or that replace

preexisting symbols in the list. SAMPA was employed to decide which symbols to replace/remove from

the phoneme list as follows: 1) IPA symbols were grouped based on their SAMPA equivalent; 2) The

most frequent/common symbol from each group served as replacement for the remaining.

Some of the IPA phonemes displayed on table 3.3 only occurred in rare or specific circumstances.

This is the case for: 1) symbols 2, I, 6, D, T, which only occurred in foreign words — the nativized pro-

nunciation was considered for these phonemes when replacing them in foreign words; 2) all phonemes

that include the palatalized diacritic, (j), only found in acronyms and spelled acronyms (siglæ); and 3) all

symbols including the length suprasegmental, (:). The latter case is detailed in table 3.4. Finally, table

3.5 summarizes all substitutions or deletions of phonemes in the list.
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Table 3.3: List of all the phonemes that are involved in the phoneme list reduction.

Phonemes Examples
Type IPA SAMPA Text transcription IPA (eSpeak)

Vowels

a
a

“colocar” kulukaô

A “vital” vitAl

5
6

“escolas” SkOl5S

2 “subholding” s2bh@UldIN

@ – “Portugal” puR@tugAl

i
i

“disposto” diSpoStU

I “Elizabeth” IlIz@b@T

O
O

“nova” nOv5

6 “shopping” SOpIN

u u “uma” um5

U u/w “privado” pôivadU

Palatalized
Diacritic ( j)

fj f “FFS” EfjEfj Es

lj l “KLM” k5p5 Elj Em

mj m “STML” Es te Emj El

nj n “GNR” Ze Enj Er

rj r “IRS” i Errj Es

sj s “TSF” te Esj Ef

Length
Suprasegmental (:)

A:

a
“apartheid” 5pA:TeId

a: “livre à lei” livô1 a: leI

5: “às eleições” 5:z eleIsõjS

i: i “leasing” li:sIN

O: O “thought” TO:t

u: u “view” vju:

t: t “etc.” (etcétera) etsEt:R5

Simple
consonants

R

r
“trajectória” tô5ZEtORj5

ô “privado” pôivadU

r “Sporting” spOrting

D d “the” D@

T s “Commonwealth” k6m@nwElT

Table 3.4: List of cases in which suprasegmentals occur.

Phoneme Particularity
A:, i:, O:, u: Only found in phonetic transcriptions of foreign words

a: Only found in the phonetic transcription of the word à
5: Only found in the phonetic transcription of the word às
t: Only found in the phonetic transcription of the abbreviation etc.

Table 3.5: Phoneme replacement/removal. Phonemes on top (first row) were replaced with the
phonemes on the bottom (second row).

A A: a: 5: 2 I i: 6 O: U u: fj lj mj nj sj ô r rj t: D T @
a 5 i O u f l m n s R t d s removed
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3.3.3 Sequence-to-Sequence GtoP toolkit

This GtoP approach relies on the Transformer architecture [56], thus only using attention mecha-

nisms to establish the mapping between text inputs and phonetic sequence outputs. The training pro-

cess of the model relies on a dictionary of words and their phonetic transcriptions. The main goal of

using this approach was to solve the limitations of the rule-based system detailed in section 3.3.2. Since

this toolkit employs a dictionary of words for training, it does not depend on any specific language or pho-

netic alphabet — it follows the language, orthography, and phonetic notation specified in the dictionary.

Hence, it can be trained for EP, while employing a more practical and concise notation, like SAMPA.

The model for EP was trained with a dictionary comprising 60 700 entries (the word orthography and

the corresponding phonetic transcription per line). Phonetic transcriptions followed the SAMPA notation,

including primary stress. With this GtoP approach, the phoneme list comprised 50 different symbols,

excluding punctuation. The phoneme list included more symbols than the SAMPA alphabet because

each stressed vowel was counted as a different symbol.

Despite being easily trainable and efficient with individual words, this toolkit had several drawbacks:

1) it did not perform any text normalization; 2) it processed words separately, therefore, sentences were

incorrectly converted at word boundaries; and 3) it did not incorporate any mechanism that allowed

to distinguish homographs, such as part-of-speech (PoS) tagging. The lack of a text normalization

stage made the toolkit inoperable for TTS — the system could only process lower case letters, as the

word dictionary only contained these, and could not translate several one-letter words, such as definite

articles o (pronounced /u/), and a (pronounced /6/), which were incorrectly transcribed as /O/, and /a/,

respectively. To generate reasonable phonetic transcriptions additional processing stages were added

to include punctuation signs in phonetic transcriptions, and detect acronyms (composed of upper case

words) in input sentences. Furthermore, the word dictionary had to be adapted: instances of alternative

pronunciations, that were only present in very specific contexts (e.g. the word vi pronounced /vi/, or

alternatively, /s”6jStu/, the roman numeral sexto), were removed from the dictionary to avoid ambiguity.

In what concerns word–boundary errors, the most common sandhi rules were manually implemented

on top of the output phonetic sequences. Although including additional processing stages improved the

quality of phonetic transcriptions, it posed a laborious and yet incomplete task — it did not contemplate

several important cases, namely homographs, abbreviations, digits and symbols. As such, a third GtoP

approach (detailed in section 3.3.4) was brought in to answer the problems raised by the prior two

procedures.

3.3.4 Festival-based GtoP

Unlike the neural-based approach previously described in section 3.3.3, this technique follows the

Festival framework, relying on a set of classification trees for GtoP conversion [55]. Phonetic tran-

scriptions followed the SAMPA notation, and additional symbols were employed to represent foreign

phones – the symbol “H”, for example, was used to represent the sound of letter H in foreign words like

“Hollywood”, “Manhattan” or “Hezbollah”). In total, the phoneme list obtained with this approach was
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composed of 44 symbols excluding punctuation.

Regarding punctuation, this approach did not discern between different signs, hence converting ev-

ery sign to the symbol “#” in phonetic transcriptions. To include punctuation in the phonetic transcriptions

of each sentence, the signs and their order of appearance were saved to a list. Then, each sign in the

list replaced each occurrence of the symbol “#” in the phonetic transcription in the same order.

3.3.5 Non-standard words and homographs

From all three GtoP approaches, the Festival-based is the one which deals best with non-standard

words. The existence of an addenda allows to specify the pronunciation of such words and override the

output the system would normally produce [55]. Therefore, expressions such as D. João I or S. António

are correctly converted to /do∼ Zw6∼w∼ prim6jru/ and /s6∼tw 6∼tOnju/, respectively2. Likewise, this

approach can correctly transcribe digits and date formats.

Although pronunciations of non-standard words could also be added to eSpeak, its current imple-

mentation for EP only converts a limited number of abbreviations and acronyms correctly. It can also

transcribe digits, but it does not ensure a text normalization as extensive as the Festival-based GtoP.

Regarding homographs, upon phonetic symbol prediction, PoS tagging is employed both in the eS-

peak backend as well as in the Festival-based approach. The usage of PoS tagging allows to correctly

predict most of homograph cases.

The only type of homographs the GtoP modules fail to transcribe are homographs with the same PoS

category (e.g. Tenho sede. Hoje estive na sede.). When the PoS categories differ (e.g. verb/noun as in

Eu almoço depois. Está na hora do almoço.), both modules produce the correct transcription.

Given that the Festival-based approach was the most complete from the three methods detailed in

this section, it was the preferred one for the multi-speaker TTS model. Besides being superior in terms

of non-standard words processing, it employed SAMPA, a more concise phonetic alphabet than IPA, and

a more practical notation to incorporate in a TTS system.

3.4 Audio preprocessing

According to section 3.1, the proposed model operates by linking two different systems: the Seq2Seq

model and the neural vocoder. Although these systems operate jointly to perform TTS, they are trained

separately. Given that acoustic features, in the form of Mel-spectrograms, are what bridges these sys-

tems together, it is essential to ensure that both utilize acoustic features of the same type. To do so,

it is necessary that audio data undergoes the same digital signal processing (DSP) stages in the two

systems.

Before Mel-spectrogram extraction, audio signals were normalized and underwent a pre-emphasis

filter, a common technique in the field of speech analysis. Speech signals register predominantly low

2The Festival-based approach did not include stress marks in phonetic transcriptions
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values of frequency, usually below 4 kHz [57]. Pre-emphasis is employed to enhance high-frequency

components of an audio signal and to reduce its high spectral dynamic range [58].

Mel-spectrogram extraction was performed with the python package librosa [59]. For each audio

signal, this process unfolded in two steps: 1) computing the magnitude of the short-time Fourier trans-

form (STFT) of the audio signal, which corresponds to a linear spectrogram; 2) converting the linear

spectrogram to a Mel-spectrogram.

Table 3.6 specifies the DSP parameters employed at the audio preprocessing stage. For computing

the STFT, the parameters n fft, win length, and hop length were used. The STFT works by taking

discrete Fourier transforms (DFT) over several, overlapping windowed sections of the signal. These

sections were obtained by applying a Hanning window of size win length to the audio frame, and then

padding the windowed signal with zeros to match the frame size defined by n fft. A window shift

defined by hop length was utilized. The zero-padding added to the windowed signal does not increase

the information in the input signal, but results in higher frequency resolution. The values selected for

the aforementioned DSP parameters correspond to a 50 ms window length, 12.5 ms window shift, and

2048-point Fourier transform, as in the Tacotron original implementation [34].

Table 3.6: DSP parameters used in audio preprocessing.

Parameter name Value Description
sample rate [Hz] 16000 Sampling rate
n fft, num fft 2048 Number of samples in a frame
win length 800 Window size (in samples)
hop length 200 Window shift (in samples)
n mels, num mels 80 Number of Mel bands
fmin [Hz] 50 Minimum frequency
fmax [Hz] 8000 Maximum frequency
preemph 0.97 Pre-emphasis filter coefficient

Mel-spectrograms comprised 80 Mel-bands, a minimum frequency of 50 Hz, and a default maximum

frequency of 8 kHz, that is, half of the sampling frequency. Energy values were converted to dB as

defined in expression 3.1, where x stands for the energy value to be converted.

xdB = 20 · log10(x) (3.1)

3.4.1 Leading and trailing silence removal

The existence of long sections of leading/trailing silence in audio signals may prevent the model from

generating meaningful encoder-decoder alignments (encoder-decoder alignments are analyzed in detail

in section 3.5.3). In fact, this was witnessed in the first attempts of training of the multi-speaker Seq2Seq

model with the BD-PUBLICO corpus. Several BD-PUBLICO audio recordings had large sections of

leading and trailing silence, in many occasions longer than two seconds. During training, the only type

of silence the model is capable of recognizing are pauses, which are represented by punctuation marks

in the text input and its corresponding phonetic transcriptions. As such, if the model stumbles upon
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large sections of leading silence, which are unidentified in the phonetic transcriptions, it may incorrectly

misinterpret silence for the first phonemes that follow. Likewise, too long sections of trailing silence may

hamper the task of predicting the end of the signal, or even mapping the adequate amount of pause to

punctuation signs.

As mentioned in section 3.1, very long utterances hinder the decoding task. Therefore, removing

leading/trailing silence not only contributes for better linguistic-acoustic mapping, but also allows for

more data to be used, which is convenient. That way, several utterances that were originally too long to

be utilized, can be included for training after leading/trailing silence removal.

Two approaches were used with the aim of removing leading/trailing silence sections from audio

recordings. First, a fixed–threshold approach was employed with librosa [59]. In this approach, a thresh-

old was defined in dB, and values under this threshold were considered as silence. However, this method

was primitive and had several limitations, since the silence threshold was not the same for different ut-

terances. Some examples of why using a fixed threshold is not a good solution could be the following:

1) distance of the speaker to the microphone could vary, therefore, the perceived sound intensity would

vary also; 2) the loudness of speech from one speaker to another could also vary; 3) different sounds

other than voice could potentially register values above the threshold, and thus be incorrectly considered

as speech. As such, when the threshold was too high for a given recording, the resultant audio signal

skipped speech sections, and when the threshold was too low, the leading/trailing silence remained

present.

In order to tackle the limitations of the fixed–threshold approach, a more robust method was used,

which consisted in a toolkit for speech diarisation [60] (repository 4 in table 3.1). One of the modules

of this toolkit is voice activity detection (VAD). This module was employed solely to capture the audio

samples at which speech started and ended. Although the model occasionally cut off small sections

of speech, it removed leading and trailing silence much more accurately, since the reference was not

merely sound intensity, but voice activity instead. To solve the minor issue of cutting off small speech

sections, a margin was added. That way, when the VAD model predicted that speech started/ended

at a given sample, the audio file was cutoff a number of samples before the predicted start-of-speech

sample, and a number of samples after the predicted end-of-speech sample.

3.5 Seq2Seq regressive model — pre-train implementation

This section details the training process of the multi-speaker Seq2Seq model. It starts by explaining

how data was selected and why some of the data had to be excluded. Then, it specifies the most

relevant hyperparameters during training and how their values were selected. At last, it describes how

the training process was assessed, and what factors led to choosing an appropriate training checkpoint.
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3.5.1 Data selection process

In the first attempts of training the model, OOM errors occurred as a consequence of two factors: too

long phoneme lists, as mentioned in section 3.3, and/or too long utterances. A threshold was employed

to establish a safe utterance length that prevented OOM errors from occurring. Naturally, the shorter the

phoneme list is, the larger the utterance length threshold can be.

The utterance-length threshold is established as a number of frames. In this case, a frame is consid-

ered as a column of a Mel-spectrogram. Following the spectrogam extraction process detailed in section

3.4, and the respective DSP parameters, each column/frame of a Mel-spectrogram comprises a num-

ber of samples corresponding to the window shift, that is, 200 samples (12.5 ms). An utterance-length

threshold of 800 frames (10 s) was established, thus, utterances longer than 10 seconds were excluded

from training.

Depending on utterance length, the amount of data used for training, validation, and testing varied

from one speaker to another. Before excluding long utterances, data was split as follows: 5 utterances

for testing (for comparison purposes), 10 utterances for validation, and the remaining for training. After

this stage, utterances longer than 10 seconds were excluded from training and validation sets in order

to preserve the proportion of data in each set, as much as possible. Otherwise, the distribution of data

among training and validation sets could occasionally be unbalanced, since for some speakers a large

number of utterances was excluded. In the case of speaker o041, only 30 utterances were used for

training, while for speaker o015 60 utterances were included in the training set. Using the same number

of utterances for validation in both cases would not be appropriate, as the ratio of training utterances to

validation utterances would substantially differ. Hence, the utterance-length threshold was applied both

to training and validation sets. Since OOM errors did not occur at inference time, even for the longest

test utterances, no utterances were excluded from the test set.

3.5.2 Hyperparameters

Table 3.7 details the most important hyperparameters upon training the Seq2Seq model. Hyperpa-

rameters regarding the model structures follow the original implementation [13].

3.5.2.1 Experiment parameters

Experiment hyperparameter epochs was set to 120 as this number was more than enough for the

model to converge. The number of necessary epochs for the model to converge varied greatly depending

on several factors, namely the data, but more importantly, the text preprocessing stage. Different GtoP

approaches generated different phonetic transcriptions, either because of distinct phonetic alphabets, or

errors in phonetic transcriptions, mostly in non-standard words or at word boundaries. Furthermore, the

inclusion of punctuation in phonetic transcriptions greatly decreased the number of epochs necessary

for the model to converge. Using the same GtoP backend, in this case eSpeak, the model converged in

13 200 iterations (approximately 93 epochs) without punctuation, and in 8250 iterations (approximately

58 epochs) with punctuation.
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Hyperparameter iters per checkpoint was set to 150, so that between each checkpoint the model

was trained for at least one epoch.

Table 3.7: Multi-speaker Seq2Seq pre-train stage hyperparameters.

Type Parameter name Value Description

Experiment
parameters

epochs 120 Number of training epochs
iters per checkpoint 150 Number of iterations per checkpoint

Data
parameters

training list – Path to file listing data for training
validation list – Path to file listing data for validation
test list – Path to file listing data for testing
n mel channels 80 Number of Mel bands

n symbols 47
Number of symbols in the phoneme list,
47 using Festival, 54 using Seq2Seq
toolkit, and 53 using eSpeak

n speakers 100 Number of speakers used for training

predict spectrogram False
Set as false to use Mel spectrograms
instead of linear spectrograms

Training
parameters

learning rate 1e-3 Learning rate
weight decay 1e-6 Weight decay coefficient

grad clip thresh 5.0
Gradient norms above this value
are clipped

batch size 32 Batch size
warmup 70 Number of epochs with constant LR
decay rate 0.5 LR penalizing factor
decay every 7 LR decays every decay every epochs
contrastive loss w 30.0 Contrastive loss weighting factor
speaker encoder loss w 1.0 Speaker encoder loss weighting factor
text classifier loss w 1.0 Text classifier loss weighting factor
speaker adversarial loss w 20.0 Adversarial loss weighting factor
speaker classifier loss w 0.1 Auxiliary classifier loss weighting factor

ce loss False
Set the adversarial loss as the
symmetric of the auxiliary classifier loss

3.5.2.2 Data parameters

Regarding data parameters, three paths had to be specified, each one corresponding to a file listing

training, validation, and testing data, respectively. Each one of this files contained in each line the path

of the specific data file (Mel-spectrogram/phonetic transcription).

Depending on the GtoP backend, the parameter n symbols varied and had to be set accordingly.

For large and phonetically extensive corpora, the number of symbols in the phoneme list most likely

contemplates all phonemes of the language that is used. Pre-training the model with phonetically poor

data may result in overfitting. In this scenario, training data would only comprise a narrow variety of

phonetic sequences, thus the model would perform poorly for new/unseen sequences of phonemes.
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3.5.2.3 Training parameters

The Adam optimizer [61] was employed during training. L2 regularization with weight 10-6 (given

by the parameter weight decay) was used. The learning rate (LR) was fixed at 10-3 during the first

70 epochs, after which it decayed by 50% (decay rate parameter) every seven epochs (decay every

parameter). This LR decay strategy is the same as in the fine-tuning stage of the default implementation.

Freezing the LR for at least 70 epochs proved to be useful in the convergence of the model. Likewise,

decreasing it towards the end of training allowed for slight improvement.

Upon the occurrence of OOM errors, before adopting the procedure of phoneme list reduction (de-

scribed in section 3.3), the first approach was to reduce the batch size from 32 to 16, as an attempt to

decrease the memory usage during training. Although memory usage was effectively reduced, decreas-

ing the batch size prevented the model from generating meaningful encoder-decoder alignments, which

led to poor results. Thus, the original batch size value was kept.

At last, the different loss weighting factors were kept as in the original implementation of the model.

3.5.3 Pre-training process

The version of the model used as reference employed the Festival-based GtoP, as it provided the

best results regarding text preprocessing. Punctuation was included in phonetic transcriptions. The

model was trained for 8250 iterations (approximately 58 epochs), at a constant learning rate (10-3).

The present model aims to solve the regression problem of predicting acoustic representations, which

is a complex task. Although training and validation losses are important factors to be considered when

evaluating the training process of DL models, one should not entirely rely on loss to infer if a given

model is well trained or not. There is no reference loss value to serve as target, because different

data originates distinct optimal loss values. Therefore, it is more meaningful to analyze the evolution of

training and validation losses throughout the training process, rather than just comparing their values

at a given iteration. In the present model, the training loss had an initial value of 9.994 and decreased

steadily for 5000 iterations, after which it stabilized between 0.9217 and 1.969. The validation loss had

an initial value of 11.18, decreased constantly for 2000 iterations, and stabilized between 1.628 and

2.008.

To further assess how well the training process unfolded, encoder-decoder alignment plots were

analyzed. Also, for a given test utterance, the original and synthetic spectral representations were

compared. Given that the training corpus comprises utterances of neutral prosody, it was adequate to

compare spectral representations. Figure 3.2 illustrates the predicted and the original Mel-spectrograms

obtained for the same test sentence. When analyzing both spectral representations, one difference

stands out the most: the duration and placement of pauses. In the depicted spectral representations,

pauses can be identified by predominantly dark-blue colored frames. As referred in section 3.3, pauses

are represented by punctuation marks in phonetic transcriptions. Since pauses do not have fixed lengths,

the same symbol, a comma for example, may represent longer or shorter pauses. Thus, for a given test

sentence, the model may predict slightly longer or shorter pauses than those in the original utterance.
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(a) Predicted Mel-spectrogram for 8250 iterations

(b) Mel-spectrogram extracted from the original utterance

Figure 3.2: Predicted and original Mel-spectrograms for the following test sentence: Em mil novecentos
e oitenta e oito, a obra é adjudicada com a indicação de que a construção da unidade deveria iniciar-se
até mil novecentos e oitenta e nove.

3.5.3.1 Encoder-decoder alignment plot

Encoder-decoder alignment plots illustrate how well Seq2Seq models map an input sequence of one

type, to an output sequence of another type. In this case, the model aims to map a phonetic input

sequence to an acoustic output sequence. Each encoder state corresponds to an element (phoneme)

of the input sequence, and decoder timesteps corresponds to acoustic frames. Each decoding timestep

can be interpreted as an array of weights for each encoder state. These weights add up to one, and

their magnitude is represented by a color (the larger the magnitude, the brighter the color).

A good alignment means that at each decoding timestep most of the weight is focused at a specific

encoder state such that a diagonal line is formed. This diagonal line indicates that the input sequence

order is preserved in the output. Hence, the brighter and less blurry the diagonal line is, the better is the

alignment.

Figure 3.3 illustrates the encoder-decoder alignments obtained for the same test sentence, at dif-

ferent checkpoints. It is clear that at 750 iterations, the model still has not trained enough: although

the diagonal line is noticeable, it is still blurry, meaning that at each decoding timestep several encoder

states have similar weights, and that the model could not distinctively select an encoder state. At check-

point 8250, the alignment plot is brighter and more focused, suggesting that the model unambiguously

selected an encoder state for each decoding timestep, while preserving the input sequence order.
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(a) Obtained alignment for 750 training iterations (b) Obtained alignment for 8250 training iterations

Figure 3.3: Encoder-decoder alignment plots for the same test sentence at different checkpoints.

3.6 Neural vocoder — implementation

The universal vocoding procedure (repository 1 in table 3.1), which serves as the waveform gen-

eration step in the proposed model, has some differences in regard to the original universal vocoding

approach [26] presented by Lorenzo-Trueba and colleagues (2019). The former produces 9-bit mu-law

audio, sampled at 16 kHz, while the latter generates 10-bit mu-law audio, sampled at 24 kHz. Fur-

thermore, the one-hot audio vector — employed in the autoregressive side of the original model — is

replaced with an embedding layer in the default implementation adopted for the proposed model.

Given that the vocoder default implementation was already tuned to predict 16 kHz audio samples

at inference time, training the model was a straightforward procedure. Except for silence trimming, the

same audio preprocessing stages as in the Seq2Seq regressive model were ensured. This enabled

using acoustic outputs predicted by the Seq2Seq model as inputs to the neural vocoder.

3.6.1 Model training

The same hyperparameters were employed as in the base implementation of the model. These are

specified in table 3.8. The model was trained for 100 000 iterations, starting at a learning rate of 4×10-4

that decayed by 50% every 20 000 iterations. As the training process unfolded, synthesis quality was

perceptually evaluated from generated audio samples.
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Table 3.8: Neural Vocoder hyperparameters.

Parameter name Value Description
conditioning channels 128 Conditioning network GRU hidden size
embedding dim 256 Embedding layer dimension
rnn channels 896 Autoregressive network GRU hidden size

fc channels 512
Output dimension of the affine layers (corresponds
to the number of quantization levels)

learning rate 4e-4 Learning rate
step size 20000 Period of learning rate decay
gamma 0.5 Multiplicative factor of learning rate decay
batch size 32 Batch size
checkpoint interval 20000 Number of iterations per checkpoint
num steps 100000 Number of training iterations

sample frames 40
Number of Mel-spectrogram frames that are fed
to the conditioning network

audio slice frames 8
Number of conditioning network output
middle frames that are upsampled and used to
condition the autoregressive network GRU

3.7 Final remarks

The topics presented in this chapter allowed to: 1) identify the basic structure of a proposed multi-

speaker TTS model, and how its main components interconnect; 2) characterize the corpora designated

to train the model and determine which traits inherent to these played an important role in the system’s

performance; 3) detail the text and audio preprocessing steps in context of the subsequent training

stages; and 4) understand how each training stage unfolded and was assessed.

Regarding text preprocessing, the model benefited from the inclusion of punctuation, from a more

concise phonetic notation (SAMPA rather than IPA), and from a more comprehensive GtoP tool (Festival-

based GtoP). The latter, in particular, was critical to ensure the model could synthesize homographs

and non-standard words correctly. Concerning audio preprocessing, the removal of leading and trailing

silence from audio files was fundamental to ensure convergence of the Seq2Seq regressive model.

At this point, the model underwent the pre-train stage, conditioned on prosodically neutral data from

100 adult speakers. The following chapter will address speaker adaptation (fine-tune stage) for data of

the same type — neutral prosody and adult speakers — and of different type — expressive prosody, and

children and adolescent speakers. Performance will be evaluated for the former case.
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Chapter 4

Experiments

The starting point for the speaker adaptation work described in this chapter is a TTS system for

European Portuguese, pre-trained on the BD-PUBLICO dataset, that could synthesize any prosodically

neutral sentence using the voices of 100 young adult speakers. The experiments that were performed

regarding speaker adaptation (see Section 4.1) include: the details of each fine-tune configuration, their

differences regarding training data, and an analysis of their spectral outputs. Additionally, an assessment

on the proposed model’s performance is detailed in Section 4.2.

4.1 Experimental setup

As stated in the previous chapter (see Section 3.1), the main reason for employing a universal

vocoder is to reduce the amount of training stages during the speaker adaptation stage. As such,

speaker adaptation only involves fine-tuning the Seq2Seq regressive model, instead of the whole sys-

tem. The model was fine-tuned for three distinct settings: 1) two adult speakers; 2) two adolescent

speakers; and 3) two child speakers. For each setting, the pair of speakers comprised one male and

one female voice. All configurations employed non-parallel data.

The adult–speaker fine-tune setting is the standard implementation of the proposed model, since the

characteristics of data (namely the prosody, and type of sentences) and the speakers’ traits (namely pitch

values) are in line with the speech corpus employed during the pre-train stage. Fine-tuning employed

300 utterances, of which 33 for validation, for each speaker sp 01 and sp 02 of the BDFALA corpus.

Synthetic speech was assessed in terms of naturalness, voice similarity, and intelligibility (see Section

4.2) for both speakers. Additionally, the same setting with reduced data — 20 utterances per speaker,

of which four for validation — was tested for naturalness and similarity.

The fine-tune configurations for child and adolescent voices were addressed separately and did not

take part in subjective assessments, given that synthetic speech was perceptually worse than for the

adult–speaker setting. Characteristics of both the data and the speakers were substantially different

from those used in pre-training, hence, these configurations were analyzed as out-of-domain (OOD)

scenarios (see Section 4.1.1). In each of these settings, the amount of fine-tuning data was considerably
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Table 4.1: Amount of fine-tuning data per configuration.

Configuration Speaker # Utterances/files Total Duration [hh:mm:ss]

Adults-standard
sp 01 300

00:51:36
sp 02 300

Adolescents
sp 03 34

00:03:10
sp 04 33

Children
sp 11 19

00:02:44
sp 36 21

Adults-reduced
sp 01 20

00:03:18
sp 02 20

lower than in the standard adult–speaker setting. The models for each child voice were fine-tuned with

19 and 21 utterances, of which four for validation, taken from the EUROM.1 corpus, for speakers sp 11

and sp 36, respectively. The voice models of adolescent speakers were fine-tuned with 33 and 34

utterances, of which eight for validation, taken from a subset of BDFALA, for speakers sp 04 and sp 03,

respectively.

4.1.1 Differences in training data: mean pitch and prosody

The most notable differences among the data of each fine-tuning configuration in comparison to pre-

training data are the mean pitch values of the speakers and the prosodic contours of the utterances they

recorded. The differences in pitch were, unsurprisingly, most prominent in the voices of children, since

these had the highest pitch. Prosodic contours were analyzed according to two factors: 1) the standard

deviation (SD) of pitch for each speaker; and 2) the type of sentences — declarative, interrogative, or

exclamatory — employed in each training setting.

Table 4.2 specifies the pitch values of pre-train speakers and each fine-tune speaker. When interpret-

ing the data in table 4.2 referring to BD-PUBLICO, one must bear in mind that BD-PUBLICO comprises

100 speakers, therefore it is not practical to display the pitch data of all its speakers in the table —

instead, it is more sensible to specify the range of values for each column of the table.

Table 4.2: Pitch values for EP speakers in different age groups. Values are rounded to the nearest unit.

Training stage Speech corpus Speaker Age
Pitch [Hz]

Min. Max. Mean SD

Pre-train BD-PUBLICO
o000-o049 (M)

19-28
72-115 141-399 99-197 6-39

o050-o099 (F) 71-99 250-399 161-264 15-38

Fine-tune

BDFALA
sp 02 (M) 35 75 221 114 15
sp 01 (F) 41 90 389 200 33

BDFALA02
sp 03 (M) 14 79 392 165 38
sp 04 (F) 13 92 398 254 49

EUROM.1
sp 11 (M) 10 132 398 291 52
sp 36 (F) 9 132 398 272 56

Regarding mean pitch values, both children (sp 11 and sp 36) standout with higher values than the
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remaining fine-tune speakers, and more importantly, pre-train speakers. Children voices are clearly an

OOD scenario in terms of mean pitch as these yield a mean pitch outside the range of values of pre-train

data.

Histograms displayed in figure 4.1 complement the data of table 4.2 by illustrating how mean pitch

values are distributed across the pre-train corpus. It is clear that the majority of male speakers registered

values under 138 Hz, and only four out of 50 speakers had mean pitch values of 158 Hz or higher.

Similarly, only six female speakers recorded a mean pitch equal or higher than 243 Hz. Hence, in terms

of mean pitch, adolescent speakers (sp 03 and sp 04) only were similar to a small minority of voices

employed during pre-training.
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Figure 4.1: Histograms of pitch mean values of speakers in the BD-PUBLICO corpus.

Histograms in figure 4.2 specify the SD values across the BD-PUBLICO corpus to complement table

4.2. Although SD values for adolescents seem relatively close to those of BD-PUBLICO (for speaker

sp 03, the pitch SD is even within the range of values for BD-PUBLICO voices), only two male and five

female speakers from BD-PUBLICO achieved an SD higher than 31 Hz and 32 Hz, respectively.
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Figure 4.2: Histograms of pitch SD values of all speakers in the BD-PUBLICO corpus.
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Table 4.3 specifies the number of sentences of each type in the datasets employed in each training

configuration.

In terms of sentence type, the adolescent–speaker fine-tune setting differs the most from the pre-train

configuration, since over 80% of the sentences are either exclamatory or interrogative. Also, contrarily to

pre-training data, each utterance and corresponding text transcription files of adolescent–speaker data

often included more than one sentence — this is why the total number of sentences greatly exceeds

the number of utterances employed for fine-tuning. Given these discrepancies, the adolescent–speaker

fine-tune setting was also considered as an OOD scenario.

Although child and adult fine-tune settings employed similar data in terms of sentence type, the

former setting presented more expressive prosody as it achieved the highest pitch SD values, as seen

in table 4.2.

This section addressed the main differences in terms of pitch mean values and prosody among the

data for each training configuration. From tables 4.2 and 4.3, one may infer that both the adolescent

and child fine-tune configurations comprised expressive prosody as opposed to the remaining. From

the four described fine-tune configurations, both adult–speaker settings (standard and reduced) are the

most similar to pre-train data both in terms of pitch and sentence type.

Table 4.3: Type of sentences in the dataset of each training setting. Number of declarative, interrogative
and exclamatory sentences in each dataset.

Training setting # Declarative # Interrogative # Exclamatory TOTAL
Pre-train 8021 (99.16%) 47 (0.58%) 21 (0.26%) 8089 (100%)

Fine-tune

adults-standard 527 (87.83%) 70 (11.67%) 3 (0.50%) 600 (100%)
adults-reduced 34 (85.00%) 6 (15.00%) — 40 (100%)
adolescents 22 (19.64%) 25 (22.32%) 65 (58.04%) 112 (100%)
children 34 (85.00%) 6 (15.00%) — 40 (100%)

4.1.2 Seq2Seq regressive model — fine-tune implementation

Overall, the fine-tuning process was very similar to the pre-train stage. Fine-tuning contemplated the

whole Seq2Seq regressive model except for the speaker encoder, as stated in the original paper [13].

For the fine-tune stage, the same hyperparameters were used as in the original implementation

proposed by the authors. In comparison to the pre-train stage, only the batch size was changed from 32

to 8, the number of training epochs at constant LR was changed from 70 to 7, and weighting factors of

speaker encoder and speaker adversarial losses were changed to 0 and 0.2, respectively. The remaining

fine-tune stage hyperparameters are specified in annex A, table A.1.

Prior to fine-tuning the model, all data underwent the same text and audio preprocessing steps as

before pre-training, except for the silence removal stage, as audio files did not include long sections of

leading or trailing silence.

During the training process, trainable speaker embeddings were employed for each speaker. Each

embedding was initialized with the average of speaker encoder outputs for all training utterances of
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the speaker in question — it is clear that the fine-tuning process of the Seq2Seq regressive model

follows the speaker adaptation framework, described in chapter 2, section 2.2.2. At inference, contrarily

to the default fine-tune implementation, the proposed model directly employs the average of speaker

encoder outputs. For all fine-tune configurations, no difference was perceived in synthetic speech when

employing the trained embeddings instead of the average speaker encoder outputs. As such, for the

sake of simplicity, we chose to solely use the pre-trained speaker encoder for embedding extraction at

fine-tuning. However, upon different pre-train data, trainable embeddings may bring clear improvements

to acoustic feature estimation.

Similarly to the pre-train stage, fine-tuning was assessed based on encoder-decoder alignment plots

and Mel-spectrograms. For each voice, the alignments and spectral representations were generated

from test sentences (unseen during training). To minimize prosodic differences that otherwise could

standout in Mel-spectrograms, we selected declarative sentences without pauses.

4.1.2.1 Adult–speaker configurations

Standard and reduced adult–speaker configurations were trained for 1600 iterations (approximately

23 epochs), and 200 iterations (50 epochs), respectively. Figure 4.3 illustrates the encoder-decoder

alignments obtained for both configurations.

(a) Standard setting, speaker sp 01 (b) Standard setting, speaker sp 02

(c) Reduced setting, speaker sp 01 (d) Reduced setting, speaker sp 02

Figure 4.3: Encoder-decoder alignments for fine-tuning test sentences — adult speakers.
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For each speaker, the same test sentences were employed in both configurations. For these sen-

tences, despite the difference in amount of fine-tuning data, encoder-decoder alignments remained very

similar.

Figure 4.4 illustrates the predicted and original Mel-spectrograms obtained from the same test sen-

tences. Predicted Mel-spectrograms were similar for both configurations regardless of the amount of

training data, suggesting that the Seq2Seq regressive model can produce reasonable results in a re-

duced data setting.

(a) Predicted Mel-spectrogram for sp 01, standard setting (b) Predicted Mel-spectrogram for sp 02, standard setting

(c) Predicted Mel-spectrogram for sp 01, reduced setting (d) Predicted Mel-spectrogram for sp 02, reduced setting

(e) Original Mel-spectrogram for sp 01 (f) Original Mel-spectrogram for sp 02

Figure 4.4: Mel-spectrograms for fine-tuning test sentences — adult speakers.

4.1.2.2 OOD configurations

Fine-tune configurations for adolescents — sp 03 and sp 04 — and children — sp 11 and sp 36 —

were trained for 300 iterations (approximately 47 epochs) and 184 iterations (46 epochs), respectively.

Figures 4.5 and 4.6 depict the encoder-decoder alignments and Mel-spectrograms obtained for test
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sentences of each configuration. Despite the differences in pitch and prosody in comparison to pre-

train data, both OOD configurations were capable of generating reasonable alignments and spectral

representations.

Adolescent–speaker configuration

Regarding the adolescent–speaker configuration, one can notice that the predicted spectrogram for

sp 04 is sharper than sp 03’s in context of original spectral representations — for sp 03, contours can

be clearly distinguished in the original spectrogram, up to higher frequencies at channels 40-60, which

does not yield for the predicted spectrogram. Accordingly, synthetic speech quality was noticeably better

for sp 04 than for sp 03 — sp 03 synthetic speech samples sounded noisier.

(a) Alignment for test sentence of speaker sp 03 (b) Alignment for test sentence of speaker sp 04

Figure 4.5: Encoder-decoder alignments for fine-tuning test sentences — adolescent speakers.

(a) Predicted Mel-spectrogram for sp 03 (b) Predicted Mel-spectrogram for sp 04

(c) Original Mel-spectrogram for sp 03 (d) Original Mel-spectrogram for sp 04

Figure 4.6: Mel-spectrograms for fine-tuning test sentences — adolescent speakers.
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Child–speaker configuration

For the voice models of children, two differences stood out between predicted and original spectral

representations: 1) The difference in the contours’ shape — in original Mel-spectrograms contours have

a more curved shape, covering a wider range of frequencies, while in predicted spectrograms contours

display a distinctively flatter shape; 2) High-frequency contours that are clearly distinguishable in original

Mel-spectrograms are not recognizable in predicted spectral representations.

(a) Alignment for test sentence of speaker sp 11 (b) Alignment for test sentence of speaker sp 36

Figure 4.7: Encoder-decoder alignments for fine-tuning test sentences — child speakers.

(a) Predicted Mel-spectrogram for sp 11 (b) Predicted Mel-spectrogram for sp 36

(c) Original Mel-spectrogram for sp 11 (d) Original Mel-spectrogram for sp 36

Figure 4.8: Mel-spectrograms for fine-tuning test sentences — child speakers.

Since the sentences uttered by children are prosodically expressive, their spectral representations

are expected to present a more curvaceous shape than for the remaining fine-tune configurations. The

contrast in prosody in regard to pre-train data leads the model to predict flatter pitch contours in spectral

52



representations. The model was pre-trained on data with a lower range of mean pitch values, thus

having more difficulty in predicting the high frequency components present in the voices of children.

4.1.3 Speaker identity discrimination

For the model proposed in chapter 3 to operate in a multi-speaker fashion, it is crucial for it to

distinguish speakers successfully. To demonstrate that the model can effectively discriminate among

different voices, we extracted speaker embeddings from different speakers and analyzed these with t-

SNE, a technique that allows to visualize high–dimensional data in a two or three–dimensional space

[62].

Figure 4.9(a) depicts the embeddings generated from 12 different speakers, using 10 utterances per

speaker. It is worth noticing that different samples uttered by the same speaker produce very similar

embeddings, which almost entirely overlap. This proves that the model can successfully distinguish dif-

ferent speaker identities, independently of the linguistic content of each utterance. When visualizing a

wider range of speaker identities, illustrated in figures 4.9(b), (c), and (d), one can notice that the place-

ment of the embeddings relatively to one another allows to identify the speakers’ gender. Furthermore,

the embeddings of fine-tune speakers are also represented.

Pitch is known to be one of the most common features in speaker identification tasks. In fact, the

presence of pitch–related information is noticeable in the speaker embeddings employed in the proposed

model, since it is possible to correlate the relative location of an embedding in the plot, with the mean

pitch of the speaker associated to that embedding. To prove this, sections 4.1.3.1, 4.1.3.2, and 4.1.3.3

detail the analysis of the deviation of fine-tune embeddings relatively to pre-train speaker identities,

taking into account the pitch data studied in section 4.1.1.

4.1.3.1 Adult speakers: sp 01 and sp 02

Besides all the embeddings of pre-train speakers, figure 4.9(b) depicts the embeddings of adult fine-

tune speakers. From a gender viewpoint, it is noticeable that the fine-tune embeddings are placed in

accordance with the pre-train speakers’ embedding distribution.

In comparison to the range of pitch values of pre-train speakers, the male speaker sp 02 registered a

relatively low mean pitch value — 114 Hz — quite far from the lowest mean pitch registered for pre-train

female speakers — 161 Hz. Female speaker sp 01 displayed a mean pitch of 200 Hz which is very close

to the highest mean pitch value recorded for pre-train male speakers — 197 Hz. This scenario suggests

that the embedding of sp 01 is closer to male–speaker embeddings than the embedding of sp 02 is to

female–speaker embeddings, and can be observed in figure 4.9(b).

4.1.3.2 Adolescent speakers: sp 03 and sp 04

The embeddings of adolescent fine-tune speakers are illustrated in figure 4.9(c). Regarding gender,

fine-tune embeddings are placed in conformity with the distribution of pre-train speakers.
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Both fine-tune speakers registered relatively large values of mean pitch in comparison to pre-train

speakers of the same gender. Male speaker sp 03 recorded a mean pitch of 165 Hz, among the highest

for male pre-train speakers. Moreover, this value is close to the lowest pitch value for pre-train female

speakers. This suggests that the embedding of sp 03 is one of the closest to embeddings of female

speakers. On the other hand, given that female speaker sp 04 recorded a mean pitch of 254 Hz, which

is one of the highest among female pre-train speakers, it is expected that the corresponding embedding

is one of the farthest from male–speaker embeddings. As seen in the figure, the embedding of speaker

sp 03 is significantly closer to female speaker embeddings than the embedding of speaker sp 04 is to

male speaker embeddings.

o002 o005 o004 o050 o052 o054
o003 o001 o000 o051 o053 o055

(a) Some embeddings of pre-train speakers (squares and cir-
cles represent male and female speakers, respectively)

Seen speakers (M) sp 01 (F)
Seen speakers (F) sp 02 (M)

(b) Embeddings of all pre-train speakers and adult
fine-tune speakers

Seen speakers (M) sp 03 (M)
Seen speakers (F) sp 04 (F)

(c) Embeddings of all pre-train speakers and ado-
lescent fine-tune speakers

Seen speakers (M) sp 11 (M)
Seen speakers (F) sp 36 (F)

(d) Embeddings of all pre-train speakers and child
fine-tune speakers

Figure 4.9: Visualization of speaker embeddings.
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4.1.3.3 Child speakers: sp 11 and sp 36

Embeddings of child fine-tune speakers are depicted in figure 4.9(d). Both child voices registered

the highest mean pitch values among all speakers.

The placement of these embeddings relative to pre-train embeddings suggests that both are female

speakers, even though only speaker sp 36 is. The misplacement of the male speaker embedding could

be expected due to pitch similarity between the voices of children. Furthermore, the fact that both

children displayed a very high mean pitch suggests that their embeddings are among the farthest from

male–speaker embeddings, which in fact occurs.

4.1.4 Synthetic speech for OOD configurations

The Seq2Seq regressive model is able to generate meaningful encoder-decoder alignments, that

translate into intelligible speech, for both OOD fine-tune configurations. Regarding the voice models of

these configurations, section 4.1.2 identified the patterns present in Mel-spectrograms that negatively

influenced synthetic speech quality. Besides the quality of spectral outputs, one must also consider that

the amount of data was very scarce for each OOD scenario — under five minutes of speech for each

configuration.

The last component in the multi-speaker TTS pipeline — the neural vocoder — is determinant in the

final output quality since it generates the synthetic speech signal. To identify the best possible output

the neural vocoder could generate for each OOD scenario, the vocoder was fed with Mel-spectrograms

of original utterances. Then, the corresponding output was compared to the original speech signal.

While for adolescents the synthetic audio resembled the original signal, for children, it was noticeably

different from the original signal — the synthesized audio was amplified, as depicted in figure 4.10(b),

and sounded noisier. Original audio signals of children recordings registered notably lower amplitudes

than audio signals of the remaining configurations, which could have caused the amplitude difference

visible in figure 4.10(b).
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(a) Original and synthesized speech signals for adolescent speaker sp 03

(b) Original and synthesized speech signals for child speaker sp 36

Figure 4.10: Original speech signals and synthesized signals given the Mel-spectrograms of original
speech.

4.2 Evaluation

This section focuses on assessing the performance of the proposed model in comparison to other

systems.

Performance tests were divided into three groups: 1) naturalness and similarity; 2) intelligibility; and

3) synthesis speed. The proposed model was tested for the adult–speaker standard configuration. Each

test is described in the subsections that follow.

4.2.1 Naturalness and similarity

Naturalness and similarity were rated using AB and ABX preference tests, respectively. “A” and “B”

refer to synthetic utterances, and X to a sentence uttered by the target speaker, used as reference.

Three unseen sentences were randomly selected from the test set of each speaker. Ideally, one

should use a larger number of utterances per speaker for testing, but that would have made the tests

very lengthy and time-consuming.

To provide a context of the model’s performance in the scope of TTS, naturalness and similarity tests

were extended to four different TTS approaches besides the proposed model: 1) EP-Tacotron-2: a DL-

based model inspired by the original Tacotron 2 system, developed in the context of a previous Master

Thesis [40]; 2) EP-Merlin: an SPSS-based model, also developed in the context of a previous Master

Thesis [39]; 3) DIXI+: an in-house concatenative synthesis system; and 4) the reduced adult–speaker

configuration of the proposed model.

Originally, the BDFALA corpus comprised 600 phonetically rich sentences for both speakers sp 01

56



and sp 02. Nevertheless, the reference configuration of the proposed model was trained with only 300

utterances per speaker, as the sentences were the same for both speakers, meaning that the corpus

was made of parallel data. Since the model is fine-tuned to both speakers simultaneously, the dataset

was split in two halves of 300 utterances, one for each speaker, to avoid training with parallel data.

The EP-Tacotron-2 configuration [40] was trained separately for each speaker, thus not raising the

issue of parallel data. The training data for this configuration comprised fully parallel data for both

speakers, including the 600 sentences used in the proposed model configuration, plus another 128,

making up for a total of 728 utterances. The EP-Merlin configuration [39] was trained separately for

each speaker, with the whole the 600–sentence dataset. DIXI+ [55] was not ”fine-tuned” for speakers

sp 01 and sp 02, but for other individual voices, and the burden of building concatenative systems for

new voices was a major handicap of this type of synthesizers. Thus, DIXI+ only took part in naturalness

assessments.

In preference tests, users were asked to listen beyond noise or potential distortion in the speech

samples, and to focus solely on voice traits to choose which sample best resembled human speech, and

the target voice, for naturalness and similarity, respectively.

4.2.1.1 Results

Results for naturalness and similarity tests are displayed in figures 4.11 and 4.12, respectively. In

total, 41 listeners participated in these tests. The standard configuration of the proposed model is

referred to as “Standard” in the caption of the figures, and “Other” refers to each of the four alternative

approaches that were tested. Each approach is specified across the horizontal axis of the bar charts.

From the obtained results one can conclude that the proposed model needed much less data for

fine-tuning than EP-Merlin and EP-Tacotron-2: the standard configuration used, at most, as much as

half of the data for fine-tuning in comparison to these, while achieving meaningful results.

Regarding the naturalness test, the proposed model produced distinctively better results for both

voices than EP-Merlin, and DIXI+, as expected. Surprisingly, the standard configuration of the proposed
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Figure 4.11: Naturalness AB preference test results.
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model was also chosen over the DL-based EP-Tacotron-2 more times, for both voices. One must notice,

however, that in the latter case the percentage of “no preference” answers was considerably larger than

for EP-Merlin and DIXI+.

Regarding similarity, results showed that the proposed model clearly performed better than EP-Merlin

for both voices, although not as blatantly as in the naturalness test. This could be due to the fact that

EP-Merlin produced samples with noticeably better audio quality than the proposed model. Listeners

may have been influenced by voice–unrelated features during assessments. In comparison with EP-

Tacotron-2, the results for the female voice sp 01 were as expected — EP-Tacotron-2 achieved a clear,

but not overwhelming edge over the proposed model. Regarding the male voice sp 02, the proposed

model achieved better results, even though over 20% of listeners did not prefer one model over the

other. The discrepancy in similarity results from one speaker to the other suggests that EP-Tacotron-2

performed better for the female voice sp 01 than for the male voice sp 02.
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Figure 4.12: Similarity ABX preference test results.

Synthetic samples generated by EP-Tacotron-2 occasionally contained bursts of subtle noise and/or

loudness. The latter phenomenon was particularly noticeable in fricative consonants — synthetic speech

samples suddenly sounded louder from a specific timestep onward. Some participants may have been

influenced by these factors when assessing the naturalness and similarity of EP-Tacotron-2 speech

samples, thus preferring the proposed model.

In regard to the reduced configuration of the proposed model, results show that synthetic speech

quality decreased for the female voice sp 01 upon fine-tune data reduction. Nevertheless, the high

percentage of “no preference” answers, especially in the similarity test, mitigates this phenomenon. For

the male voice sp 02, both in naturalness and similarity assessments, no noticeable difference was

registered in comparison to the standard configuration since the majority of participants expressed no

preference. Also, the percentage of listeners that selected one configuration over the other is very

balanced for both configurations.
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4.2.2 Intelligibility

Intelligibility was assessed from listeners’ textual transcriptions of semantically unpredictable sen-

tences. Participants were asked to transcribe 10 sentences for each test speaker while listening to each

sentence only once. The first test sentence of each speaker served as a dry run and therefore was

assessed separately. The word error rate (WER) was determined from the transcriptions to measure

how accurately the sentences were perceived by the listeners. The target test participants were native

or fluent Portuguese speakers.

4.2.2.1 Results

In total, 33 participants took the intelligibility test. Table 4.4 displays the WER obtained from the

transcriptions of participants. In some sentences several participants misheard specific words, which

increased the WER. This was the case for the dry run sentence for speaker sp 01 — one third of the

participants could not perceive the word colunas —, hence the abnormally large WER for this sentence.

Also, this sentence presented very little leading silence, which may have degraded its intelligibility. Table

4.5 displays the most frequently misheard words. Words invocam/evocam are only distinguished by the

presence/absence of nasality, and some participants may have been influenced by the context: evocam

would be in context within the sentence, while invocam is out of context.

Table 4.4: Intelligibility test results.

Speaker
WER (%)

Dry run Remaining
sp 01 (F) 16.67 3.74
sp 02 (M) 1.01 4.22

Table 4.5: Frequently mistaken words.

Original word Incorrect transcription(s) Total Occurrences
colunas runas, com umas 11
invocam evocam 4
abstraı́da distraı́da 24
do no 31

4.2.3 Synthesis speed

Waveform generation is the most time-consuming stage in the DL-based TTS pipeline, hence, TTS

synthesis speed is mainly determined by it. As such, only the performance of the waveform generation

module was considered for the synthesis speed test. The proposed model’s neural vocoder was com-

pared with its counterpart in the EP-Tacotron-2 implementation, developed in a previous Master Thesis

[40].
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For each model, synthetic speech was generated for the female voice sp 01 from 10 sentences, and

synthesis times were compared for each sentence. On average, the proposed model’s neural vocoder

synthesized speech 11 times faster than its counterpart in EP-Tacotron-2, with an NVIDIA GeForce GTX

TITAN X GPU.

4.3 Summary

Speaker adaptation was performed to six different voices, distributed among four distinct fine-tune

configurations: 1) standard adult–speaker; 2) adolescent–speaker; 3) child–speaker; and 4) reduced

adult–speaker. Results show that the proposed model was superior than previous–generation sys-

tems in terms on naturalness and similarity. Furthermore, the proposed model was preferred over EP-

Tacotron-2 for both speakers in terms of naturalness, and for speaker sp 02 in terms of similarity. Still,

the preponderance of the proposed model over Tacotron-2 is mitigated by two factors: 1) for both speak-

ers, the percentage of “no preference” answers was higher than for previous–generation systems in all

tests; and 2) for speaker sp 01 exclusively, the naturalness result indicates that the proposed model

was preferred over EP-Tacotron-2, while the similarity result indicates the opposite, thus not being clear

which system ensures better overall quality.

Fine-tuning with reduced data is a key aspect for efficient speaker adaptation — less data with

specific characteristics is easier to obtain, and the process itself unfolds faster. For voice sp 02, results

show that there was no difference regarding naturalness and similarity between standard and reduced

configurations. Regarding voice sp 01, although results indicate a clear preference for the standard

configuration over the reduced setting, the amount of “no preference” answers was the highest among

all tests for this voice. Still, one can conclude that the reduced and standard settings achieved the same

performance for one of the voices, meaning that it is possible to preserve output quality while reducing

the amount of training data.

Overall, the model generated intelligible speech for EP, and performed, on average, 11 times faster

than EP-Tacotron-2.
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Chapter 5

Conclusions

This study proposed a multi-speaker TTS system capable of generating intelligible speech for EP,

based on state-of-the-art Speech Synthesis methodologies. Three factors proved to have a prominent

impact in EP text-preprocessing: 1) the phonetic transcriptions of homographs; 2) text normalization;

and 3) the phonetic alphabet. From the experimented text-preprocessing procedures, the Festival–

based GtoP offered the best performance for these factors, ensuring coherent phonetic transcriptions

for most homographs and a robust text normalization, while employing a concise phonetic alphabet

(SAMPA). The superior performance of this GtoP module (that is, the better precision of generated pho-

netic transcriptions) ensured better convergence during training stages, and improved the pronunciation

and intelligibility of synthesized speech.

The ultimate goal of TTS is to provide an end-to-end architecture that avoids separate and often

intricate training processes, in which text pre-processing is included. However, the detached nature of

different stages within a TTS system is useful for changing or updating specific modules while maintain-

ing the overall structure of the system. Regarding text pre-processing, this allowed to switch between

different GtoP approaches effectively, and select the most suitable one.

The pre-train stage of the regressive Seq2Seq model produced better acoustic representations when

trained with data comprising a large number of speakers (at least 100), distributed in balanced quantity

across speakers. Likewise, training data comprising shorter utterances allowed to establish a better

mapping between phonetic sequences and acoustic sequences.

Employing a universal neural vocoder for waveform generation instead of a speaker dependent neural

vocoder simplified the speaker adaptation process — within the TTS framework, only the regressive

model required additional training for speaker adaptation.

In what concerns the incorporation of new speakers, the proposed model gained from employing

a framework similar to non-parallel voice conversion, as it allowed to add an arbitrary number of new

speakers simultaneously. Moreover, only considering the pre-train stage, it ensured TTS synthesis

for 100 different voices. This model registered better performance than previous–generation speaker-

dependent TTS systems, and achieved results comparable to a different state-of-the-art speaker depen-

dent system. Furthermore, the proposed model posed a more viable option for speaker adaptation, both
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in data quantity and training procedure, than the aforementioned alternatives.

The proposed model was able to perform speaker adaptation with reduced data for declarative and

prosodically neutral sentences, since pre-train and fine-tuning data was predominantly of this type. Nev-

ertheless, to generate prosodically expressive synthetic speech, the whole model (including the neural

vocoder) should be trained from scratch with expressive data, comprising a wider range pitch values,

and a more balanced distribution in terms of sentence type.

Regarding synthesis speed, the proposed model proved to be significantly faster than EP-Tacotron-2.

The WaveRNN–based vocoder employed in the proposed model was, on average, 11 times faster than

the WaveNet employed in EP-Tacotron-2, and thus more practical.

5.1 Future work

The Festival–based text preprocessing tool as well as text transcriptions of all speech corpora fol-

lowed the old EP orthography, prior to the 1990 Orthographic Agreement. Given that the two orthogra-

phies are frequently employed together in written text, future TTS systems for EP should support both

of them.

The presented model performed multi-speaker TTS, and allowed to incorporate new, unseen voices.

Nevertheless, the generation of synthetic speech was limited to a specific speaking style. Available

training data was mostly made of declarative sentences, uttered with neutral prosody, which prevented

the model from learning exclamatory and interrogative intonations. TTS systems’ architectures should

be extended to retain and model prosodic information from input data. Another nuisance common to

most of TTS systems including the proposed model, is that these require high-quality data (in terms

of audio and recording conditions) to synthesize natural-sounding, intelligible speech. Obtaining high-

quality data is often difficult, which poses a drawback in the feasibility of these systems.

Recent studies presented at the INTERSPEECH 2020 conference have detailed relevant advance-

ments in the scope of TTS synthesis. Regarding prosody modeling and control, we chose two that

provided meaningful contributions: 1) a model that aims to learn prosodic representations from speech

data [63]; and 2) a method that generates prosody from syntactic and semantic information in input text

[64]. The former model operates at syllable level, rather than phoneme level. It extracts prosodic rep-

resentations from reference speech, and concatenates these with encoded text representations. Then,

it decodes the resultant representation into a synthetic Mel-spectrogram. The latter method measures

the linguistic embedding similarity between the input sentence and all train sentences, and selects the

train sentence with highest similarity. The synthetic Mel-spectrogram is predicted based on the acoustic

embedding of the selected train sentence, sharing its prosodic traits. In both methodologies, predicted

Mel-spectrograms are fed to waveform generation modules to synthesize speech.

Regarding speech synthesis for different audio quality and recording conditions, two other tech-

niques attained additional improvements: 1) a WaveRNN-based universal vocoder that extends its per-

formance to unseen recording conditions [65]; and 2) a data efficient voice cloning system from noisy

samples [66]. The universal vocoder leverages from additional information in the form of speaker em-
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beddings and ensures better performance than the baseline WaveRNN. The voice cloning system em-

ploys domain-adversarial training to extricate noise from noisy speech samples, and thereby generate

synthetic speech.
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Appendix A

Fine-tune hyperparameters

Table A.1: Multi-speaker Seq2Seq fine-tune stage hyperparameters.

Type Parameter name Value Description

Experiment
parameters

epochs 70 Number of training epochs
iters per checkpoint 100 Number of iterations per checkpoint

Data
parameters

training list – Path to file listing data for training
validation list – Path to file listing data for validation
test list – Path to file listing data for testing
n mel channels 80 Number of Mel bands

n symbols 47
Number of symbols in the phoneme list,
47 using Festival, 54 using Seq2Seq
toolkit, and 53 using eSpeak

n speakers 2 Number of voices for speaker adaptation

predict spectrogram False
Set as false to use Mel-spectrograms
instead of linear spectrograms

Training
parameters

learning rate 1e-3 Learning rate
weight decay 1e-6 Weight decay coefficient

grad clip thresh 5.0
Gradient norms above this value
are clipped

batch size 8 Batch size
warmup 7 Number of epochs with constant LR
decay rate 0.5 LR penalizing factor
decay every 7 LR decays every decay every epochs
contrastive loss w 30.0 Contrastive loss weighting factor
speaker encoder loss w 0 Speaker encoder loss weighting factor
text classifier loss w 1.0 Text classifier loss weighting factor
speaker adversarial loss w 0.2 Adversarial loss weighting factor
speaker classifier loss w 0.1 Auxiliary classifier loss weighting factor

ce loss False
Set the adversarial loss as the
symmetric of the auxiliary classifier loss
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Appendix B

Semantically unpredictable sentences

Table B.1: Intelligibility test sentences – speaker sp 01

# Sentence
1 Colunas experimentais sobem pela chave.
2 A primavera sacode frustrações aquáticas.
3 O fumo zangado indicava ideias amarelas.
4 Bibliotecas elétricas são exploradas por relógios.
5 Mochilas gasosas falam por cima de tesouras.
6 Caixotes tristes voaram amanhã.
7 Padrões prateados invocam fogueiras.
8 A minha lancheira surrealista está abstraı́da.
9 Montei uma alface delimitada.
10 Os parafusos comem tijolos felizes.

Table B.2: Intelligibility test sentences – speaker sp 02

# Sentence
1 Cı́rculos recortados na parede brincam comigo.
2 Garrafas ecléticas preenchem o meu cérebro.
3 A suspensão escondeu-se do meu estojo.
4 O arvoredo usa facas de lava congeladas.
5 As maçãs do avião ficaram curadas.
6 O palhaço comeu gatos aéreos.
7 Poderes culinários desmantelaram arquitetos azuis.
8 A bipolaridade desenhou uma gaveta social luminosa.
9 O submarino bebia vinho no aeroporto.
10 A porta do saco de vidro é inteligente.
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