
Optimization of Data Cleaning Programs

Tiago Bartolomeu Luiz

Thesis to obtain the Master of Science Degree in

Computer Engineering

Supervisor: Prof. Helena Isabel De Jesus Galhardas

Examination Committee

Chairperson: Prof. Rui Filipe Fernandes Prada
Supervisor: Prof. Helena Isabel De Jesus Galhardas

Member of the Committee: Prof. Paolo Romano

November 2020

ii

Resumo

Derivado de um mundo totalmente conectado à internet, são recolhidas grandes quantidades de dados

a cada segundo. Contudo, grande parte destes dados estão corrompidos, carecendo de tratamento

por parte de uma ferramenta de limpeza de dados. Assim sendo, as ferramentas de limpeza de dados

precisam de ter a capacidade de processar grandes quantidades de dados de forma eficaz e rápida.

No entanto, manter a performance e eficácia é algo não trivial. Estas ferramentas dependem de algorit-

mos complexos para realizar as tarefas que permitem limpar os dados. Por exemplo, a implementação

naı̈ve da deteção de duplicados aproximados tem uma complexidade quadrática - proibitiva quando

há milhões de registos. Nós propomo-nos a implementar um otimizador que irá ser incorporado no

CLEENEX, uma ferramenta de investigação de limpeza de dados. Este otimizador irá escolher o algo-

ritmo que melhor se adequa à execução de uma dada operação de dados. Considera-se um algoritmo

como o mais adequado quando este nos garante o melhor trade-off possı́vel entre performance e qual-

idade dos resultados.

Palavras-chave:Limpeza de Dados, Optimização de Queries, Base
de Dados Relacionais, Deteção de Duplicados Aproximados, Otimização
de Performance

iii

iv

Abstract

As a result of an always-online modern world, large amounts of data are being collected every second.

However, some of that data is dirty and needs to be cleaned by a data cleaning tool. Therefore, data

cleaning tools need to be able to process large amounts of data with a good performance and effective-

ness. Maintaining the performance and effectiveness for large amounts of data is difficult because these

tools rely on complex algorithms to perform data cleaning tasks. For example, the naı̈ve implemen-

tation of the approximate duplicate detection task has a quadratic complexity - unfeasible when there

are millions of records. We propose to implement an optimizer to be incorporated in CLEENEX, a data

cleaning research prototype. The optimizer will choose the best-suited algorithms to perform each data

operation. The algorithm is selected based on the best trade-off between performance and quality of

results.

Keywords: Data Cleaning, Query Optimization, Relational Databases,
Approximate Duplicate Detection, Performance Optimization

v

vi

Contents

Resumo . iii

Abstract . v

List of Figures . xii

List of Tables . xiv

1 Introduction 1

1.1 The CLEENEX Data Cleaning Tool . 2

1.2 Problem . 2

1.3 Objectives . 2

1.4 Main Contributions . 3

1.5 Document Outline . 3

2 Background 4

2.1 Relational Query Optimization . 4

2.1.1 System Catalog . 6

2.1.2 Rule-Based Optimization . 7

2.1.3 Cost-Based Optimization . 7

2.1.4 Join Reordering Algorithm . 8

2.1.5 Heuristics . 9

2.1.6 Cost-Based Optimization with Equivalence Rules 10

2.2 Data Cleaning . 10

2.2.1 Approximate Duplicate Detection . 11

3 Related Work 14

3.1 Scaling Up Approximate Duplicate Detection . 14

3.1.1 Traditional Blocking . 15

3.1.2 Sorted Neighborhood Join . 15

3.1.3 Q-gram based Indexing . 18

3.1.4 Suffix Array Based Indexing . 19

3.1.5 Canopy Clustering . 19

3.1.6 Discussion . 21

3.2 Parallel and Distributed Data Matching . 22

vii

3.2.1 Dedoop . 22

3.2.2 Parallel Set-Similarity Joins . 26

3.2.3 Discussion . 27

3.3 Data Cleaning Research Prototypes . 28

3.3.1 CLEENEX . 28

3.3.2 CleanM . 30

3.3.3 BigDansing . 32

3.3.4 RHEEM . 34

3.3.5 Discussion . 37

4 Proposed Solution 39

4.1 CLEENEX Component Architecture . 39

4.2 Optimizer Architecture . 40

4.2.1 Execution Plan . 41

4.2.2 Plan Converter . 42

4.2.3 Plan Cache . 44

4.2.4 Equivalent Plans Generator . 44

4.3 Cost Model . 47

4.3.1 Output Size Estimation . 48

4.3.2 CPU and I/O Cost . 50

4.3.3 Cost of a Physical Algorithm . 53

4.4 Execution Optimization . 57

4.4.1 Conversion from Runtime to Compile Time Code 57

4.4.2 Matching Algorithms Optimization . 58

5 Experimental Validation 62

5.1 Experimental Setup . 62

5.1.1 Datasets . 62

5.1.2 Data Cleaning Program . 63

5.1.3 Metrics . 65

5.2 Cost Model . 66

5.2.1 Plans Cost . 66

5.2.2 Output Size . 70

5.2.3 Discussion . 77

5.3 Matching Algorithms Optimizations . 78

5.3.1 Sorted Neighborhood Join . 78

5.3.2 Adaptive SNJ . 79

5.3.3 Traditional Blocking . 79

viii

6 Conclusions 81

6.1 Summary . 81

6.2 Future Work . 82

ix

x

List of Figures

2.1 Relational database query processing steps (extracted from [28]) 5

2.2 Translation from SQL to a relational algebra tree . 5

2.3 Example of a semantic query rewrite . 7

2.4 Examples of join trees . 9

2.5 Example of a process of integration of two data sources 11

2.6 Pseudo-code of a matching rule . 12

3.1 Traditional Blocking example . 15

3.2 Sorted Neighborhood Join example . 16

3.3 Q-gram Based Indexing example . 18

3.4 Suffix Array Based example . 19

3.5 Example of Canopy Clustering’s first phase . 20

3.6 Approximate duplicate detection task workflow . 22

3.7 Blocking-based Matching job workflow . 24

3.8 Example of a Block Distribution Matrix . 24

3.9 CLEENEX component architecture . 30

3.10 CleanM example workflow. Adapted from [21]. 31

3.11 BigDansing architecture. Adapted from [22]. 32

3.12 Plans for DC1. Extracted from [22]. 33

3.13 Inflated RHEEM operator (extracted from [1]) . 36

4.1 CLEENEX component architecture . 39

4.2 Optimizer execution workflow . 41

4.3 Example of a translation from a DCG to an execution plan 42

4.4 Architecture of the Plan Nodes . 42

4.5 Execution plan for a DCP with a View and Mapping operator 45

4.6 Example of some equivalent execution plans generated for a DCP with a View and Match-

ing operator . 45

4.7 Time comparison between matching physical algorithms 55

4.8 Performance comparison between matching physical algorithms 56

4.9 Execution plan for a DCP with a mapping, a matching, and a clustering physical operator 57

xi

5.1 Data Cleaning Graph that represents the DCP used in the experiments 64

5.2 Cost model results for the first two mapping physical operators 71

5.3 Cost model results for SimilarAuthors (Matching) with Sorted Neighborhood Join 71

5.4 Cost model results for Similar Authors (Matching) with Inverted Index SNJ 72

5.5 Cost model results for SimilarAuthors (Matching) with Adaptive SNJ 73

5.6 Cost model results for Similar Authors (Matching) with Adaptive SNJ using Normal Distri-

bution . 74

5.7 Cost model results for SimilarAuthors (Matching) with Traditional Blocking 74

5.8 Cost model results for SimilarAuthors (Matching) with Cartesian Product 75

5.9 Cost model results for SimilarAuthors (Matching) with Canopy Clustering 75

5.10 Cost model results for clustering default physical algorithm (logical operator ClusterAuthors) 76

5.11 Cost model results for default merging physical algorithm (logical operator CleanAuthors) 77

5.12 Time comparison between the old and new SNJ physical algorithm 78

5.13 Time comparison between the old and new Adaptive SNJ physical algorithm 79

5.14 Time comparison between the old and new Traditional Blocking physical algorithm 80

xii

List of Tables

3.1 Summary of the algorithms explained throughout Section 3.1 21

3.2 Distribution of records per reducer in Sorted Neighborhood Join 25

3.3 Two-pass blocking with keys being the name (1st pass) and last name (2nd pass) 26

3.4 Summary of the data cleaning prototypes detailed in Section 3.3 37

4.1 CLEENEX output size estimation. NR stands for the number of records of relation R,

whereas NS , is the number of records of S. V (attrR) is the number of distinct values

for attribute attr of relation R, and w is the window size in the Sorted Neighborhood

algorithms. We use NR∪S to refer the size of the union between relations R and S, and

BKVR ∪BKVS is the total number of blocking key values from both input relations R and S 48

4.2 CPU and I/O cost analysis of CLEENEX physical operators. NR refers to the number of

records of a relation R, bR to the number of blocks needed to store all the records from

relation R, and w to the window size in the Sorted Neighborhood algorithms. Finally, M is

the number of pages the memory can store. When there is a second relation, i.e., in the

matching operator, we refer to another relation S. To refer the size of the union between

relations R and S we use NR∪S . 51

4.3 Physical algorithm’s cost formulas with penalization factor 54

4.4 Algorithmic Complexity of List and Map Data Structures 60

5.1 Generated Execution Plans . 66

5.2 Cost model by physical algorithm for plan 1 in Table 5.1 67

5.3 Cost model by physical algorithm for plan 2 in Table 5.1 67

5.4 Cost model by physical algorithm for plan 3 in Table 5.1 68

5.5 Cost model by physical algorithm for plan 4 in Table 5.1 68

5.6 Cost model by physical algorithm for plan 5 in Table 5.1 69

5.7 Cost model by physical algorithm for plan 6 in Table 5.1 69

5.8 Plans from Table 5.1 sorted by ascending plan cost . 70

5.9 Cost model results summary for SimilarAuthors (Matching) with Sorted Neighborhood Join 72

5.10 Cost model results summary for SimilarAuthors (Matching) with Inverted Index SNJ . . . 72

5.11 Cost model results summary for SimilarAuthors (Matching) with Adaptive SNJ 73

5.12 Cost model results summary for SimilarAuthors (Matching) with Traditional Blocking . . . 74

xiii

5.13 Cost model results summary for SimilarAuthors (Matching) with Cartesian Product 75

5.14 Cost model results summary for SimilarAuthors (Matching) with Canopy Clustering 76

5.15 Cost model results summary for clustering default physical algorithm (logical operator

ClusterAuthors) . 76

5.16 Cost model results summary for merging operation CleanAuthors 77

xiv

Chapter 1

Introduction

In the modern always-online world, data about each individual is being collected every second. Com-

panies such as Google and Facebook store in their databases data that gives them access to relevant

information, such as the users’ interests, location at a given time and day, and more information that

meet the companies’ interests. However, the capability of extracting interesting and useful information

is directly correlated to the quality of the data stored in those databases. Data quality can be affected

by errors, missing values, duplicates, and inconsistencies. Moreover, data may not be in a format that is

proper for consumption, thus needing some transformations. Data cleaning is the process that aims at

purifying raw data, and producing data of good quality.

Although there are several software tools that enable to effectively perform data cleaning (e.g., Tri-

facta1, Informatica2 (commercial tools), CLEENEX [15] and BigDansing [22] (research prototypes), most

of them fail at efficiently perform that task when handling large amounts of data. Typically, data cleaning

tools rely on complex algorithms to perform data cleaning tasks such as deduplication (i.e., the process

of detecting and eliminating approximate duplicates).

Data cleaning tools are typically rule-based or transformation-based. In rule-based tools, the user

defines a set of rules that data of good quality must satisfy. Each time an entry on a dataset does not

satisfy a given rule, it is considered a violation, and needs to be repaired. One or more data repairs are

defined by the user for each violation. Data repairs are typically selected from the set of possible data re-

pairs using heuristics. In transformation-based tools, we define a graph of transformations that the input

data must go through. These transformations are performed by data cleaning operators, that transform

dirty data in clean data. Naı̈ve algorithms for deduplication have quadratic complexity, since they per-

form a Cartesian product to compare every pair of records in a given input dataset. Therefore, Cartesian

product should be avoided because it has a significant impact in the deduplication performance. Some

techniques have been proposed to avoid the Cartesian product by limiting the comparisons performed.

However, these techniques may not be able to correctly identify all true duplicates. Therefore, there

is the need to find a good trade-off between performance (efficiency) and the capability of finding the

approximate duplicates (effectiveness).

1https://www.trifacta.com
2https://www.informatica.com

1

1.1 The CLEENEX Data Cleaning Tool

CLEENEX is a transformation-based data cleaning tool. That is, it represents the transformations that

the data goes through in a graph. CLEENEX also allows the user to define a set of rules that the records

must satisfy, known as Quality Constraints (QCs). For example, a quality constraint could be that the

output of a data transformation does not contain null values. Moreover, when a quality constraint is not

satisfied, the user can repair the faulty data by applying one or more Manual Data Repairs (MDRs).

In CLEENEX there is a clear division between the logical operators, declared through an extension of

the SQL language or a Graphical-User Interface (GUI), and the physical operators, that define the algo-

rithms that implement those logical operators. This separation allows us to focus on optimizing physical

operators to enhance their performance. This separation resembles the architecture of a Relational

Database Management System (RDBMS). Moreover, CLEENEX enables user intervention during the

data cleaning process, allowing him, for example, to apply one or more MDRs if a QC is not satisfied, as

well as data debugging to analyze the source of potential problems affecting data quality.

The reason why this thesis focus on CLEENEX is because we have access to its code base. This is

majorly due to the fact that CLEENEX is a research tool under development at Instituto Superior Técnico,

unlike the remaining data cleaning tools we refer to in this thesis.

1.2 Problem

The problem addressed in this thesis consists on optimizing a data cleaning process in CLEENEX. A

data cleaning process is represented by a graph of transformations that the user defines. This graph of

transformations is composed by two kinds of nodes: (i) the data transformation nodes, and (ii) the data

transformation output nodes. We will work in optimizing the first type of nodes.

CLEENEX does not have an automatic optimizer, thus, it is not able to choose the most efficient

graph of transformations to perform a data cleaning process. Moreover, when faced with large amounts

of data, CLEENEX may be unable to execute a data cleaning process, especially if it involves expensive

processes such as deduplication. This problem occurs, in part, because CLEENEX is unable to auto-

matically optimize a data cleaning operation, i.e., choose the best algorithm to execute a data operation.

1.3 Objectives

The main goal of this thesis is to design and implement an optimizer to be integrated in the CLEENEX

[15] data cleaning research prototype. This optimizer is able to find the graph of transformations that

ensures the best trade-off between performance and quality of the results. For example, for the matching

operator, the quality of the results are measured in terms of duplicates detected.

The optimizer needs to be able to optimize the graph as a whole, that is, it cannot act at each data

transformation and optimize it individually and regardless of the remaining data transformations defined

in the graph of transformations. To be able to find the set of transformations that together guarantee the

2

least expensive graph of transformations, the optimizer includes a cost model. This cost model takes

into account both the performance of each algorithm and its output quality.

1.4 Main Contributions

This thesis main goal is the implementation of an optimizer. To achieve that goal the following contribu-

tions were made:

• A cost model able to measure the cost of an algorithm. This cost takes into account the trade-off

between the performance and output quality of each algorithm;

• An infrastructure that facilitates the addition of new algorithms. This also prepares CLEENEX to

more easily implement distribution in its algorithms;

• Replace the generation of code in runtime for the matching operator to compile time;

• Experiments with Java native parallelism mechanisms for the matching operator;

• Experimental evaluation for the presented cost model and optimizations.

1.5 Document Outline

This document is organized as follows. Chapter 2 provides background about relational optimization

and data cleaning concepts. In Chapter 3, we detail techniques to scale-up the deduplication task,

one of the most expensive tasks of data cleaning, we describe research prototypes that distribute the

matching execution, and finally we explain some data cleaning research prototypes concerned with the

performance of a data cleaning process. The proposed solution to the problem addressed is detailed in

Chapter 4. In Chapter 5, we evaluate the proposed solution. Finally, Chapter 6 presents the conclusions

and future work.

3

Chapter 2

Background

Query optimization is a problem common to all Relational Database Management Systems (RDBMS) in

the sense that they all aim at efficiently executing a user’s query.

As mentioned in Section 1.2, the problem pursued in this work consists on optimizing the data clean-

ing process and its tasks over relational data. The optimizer will be integrated in the CLEENEX proto-

type. As said in Section 1.1, in CLEENEX, there is a separation between the logical and physical layers.

RDBMS follow a similar approach, therefore, optimizations proposed for RDBMS can also be applied in

the optimizer that we will create.

In Section 2.1, we make a review of relational query optimization, going through the steps of query

processing, and several optimization techniques and algorithms. Section 2.2 introduces the main data

cleaning concepts, focusing on a critical data cleaning task, the approximate duplicate detection, in

Section 2.2.1.

2.1 Relational Query Optimization

When a user requests a query to be performed by a RDBMS, that query goes through several steps be-

fore returning the desired output, as depicted in Figure 2.1. This process is known as query processing.

First, the user issues a SQL query that is parsed and translated into a relational algebra expression, and

then further mapped into a tree-based structure, by the parser and translator module.

Every plan must identify the algorithm and indices that each tree node (a.k.a., operation) must use.

The process of identifying the algorithm and indices to use in each node is known as annotation. An

annotated node is called an evaluation primitive. An annotated tree (i.e., whose nodes are all annotated),

also known as query-evaluation plan or query-execution plan, is what the execution engine accepts as

input to compute the results of the submitted query.

The optimizer receives as input a relational algebra expression further mapped to a tree-based struc-

ture and creates several equivalent execution plans based on it. Among those plans, one of them is the

most efficient in terms of resource consumption (e.g., CPU, memory, I/O) and this is the one delivered

to the execution engine.

4

In this thesis, we shall focus on a relational optimizer, whose goal is to find a good strategy to run a

query, i.e., as efficient as possible. Considering the relational schema shown in Example 1, Figure 2.2

illustrates the translation of an SQL query over the Employee and Department relations (Figure 2.2a) to

a relational algebra expression represented in a tree-based structure (Figure 2.2b), that is an example

of a valid input to the optimizer.

Figure 2.1: Relational database query processing steps (extracted from [28])

Example 1. Consider the following relational database scheme:

Employee(emp id, name, address, salary, job, dept id)

Department(dept id, dept name, num employees)

Project(proj id, dept id, admin id, budget)

Where, dept id and admin id in Project are foreign keys to Department and Employee, respectively, and

dept id in Employee is a foreign key to Department.

Relational optimizers are typically classified as either rule-based, cost-based, or a mix of these two.

Rule-based optimizers use a set of rules to transform a given execution plan into another possibly more

efficient execution plan. Cost-based optimizers annotate the trees with different algorithms and indices,

and manipulate the join order, to obtain a different query-evaluation plan. The most efficient plan is then

selected.

SELECT name, address, dept name
FROM employee E, department D
WHERE E.dept id = D.dept id

AND E.salary > 50000
AND D.num employees > 20

(a) (b)

Figure 2.2: Translation from SQL to a relational algebra tree

5

The query-evaluation plan performance is measured by its cost1. The cost of a plan is given by the

sum of the cost of each node operation. Using the example of Figure 2.2, we need to perform a join,

a selection, and a projection operation. To perform these operations, the optimizer needs to choose

which algorithms it will use. Each algorithm has different costs and prerequisites (e.g., need to access

a relation through an existing index). Concerning the selection operation, the algorithm choice is mainly

dependent on the existence of an index. If there is not an index, we need to perform a table scan

(i.e., searches the whole table) to find every record that satisfies the selection predicate. If there is

an index, the chosen algorithm depends on the index’s type (clustered, non-clustered, covering, etc),

of the predicate’s type (equality or comparison) and whether the predicate uses a key attribute or not.

Regarding the join operation, it can either be a merge join, an indexed nested loop, a block nested loop,

or another join algorithm. The indexed nested loop join, for example, is useful when there is an index

on the join attribute of the inner relation (in our example, the Department’s dept id), whereas the merge

join is appropriate when the relations are sorted by the join attributes.

Independently of the optimizer’s type (rule-based, cost-based, etc), they all aim at choosing the best

strategy (i.e., query-execution plan) to run a query. These optimizers have in common the fact that they

need an internal data structure known as system catalog (explained in Section 2.1.1) to store statistics

about the database status. In Section 2.1.2, we detail rule-based optimization, in Section 2.1.3, cost-

based optimization. We detail a dynamic programming algorithm, the Join Reordering Algorithm in

Section 2.1.4, and discuss Heuristics in Section 2.1.5. Finally, in Section 2.1.6 we describe an optimizer

that combines the rule- and cost-based optimizer.

2.1.1 System Catalog

Relational database optimization techniques assume the existence of statistics about each database

relation, as for example, its number of tuples, number of distinct values, etc. All relational database

systems contain a structure known as system catalog that is responsible to store all these statistics,

and also to maintain descriptive data about every table, index, and view (e.g., their names, structure,

attributes, etc).

Relevant statistics available in the system catalog, for a given relation r, are: the number of tuples,

the number of blocks/pages containing tuples of r, the size, in bytes, of an r tuple, the number of distinct

values for a given attribute (or set of attributes), etc [28]. Regarding the indices, in the case of a B+-

Tree, the catalog stores its depth and number of leaf pages. Additionally, most databases also store the

distribution of values for each attribute as an histogram, that can be used, for example, to estimate a

query’s selectivity, i.e., how many records are retrieved by the query.

The estimations may not be the most accurate possible since the catalog is updated only in periods

of low load. Hence, there may be some inconsistencies between what is stored in the database and

what the catalog reports.

1Only cost-based optimizers have the notion of a query cost.

6

2.1.2 Rule-Based Optimization

Rule-based optimizers use a set of rules, known as heuristics, to transform a query plan into another,

usually less expensive, and equivalent plan. A heuristic, by definition, is ”an approximation to the prob-

lem’s solution”, hence, sometimes, the application of a heuristic will result in a plan less efficient than

expected, however, in most cases, it holds as true. There are several types of rules that can be used in

an optimizer: constructive rules (as employed by Starburst [19]), and transformation rules (as employed

by Volcano [18], and its successor, Cascades [17] - the basis of the SQL Server optimizer).

Constructive rules make use of existing integrity constraints and rewrite a query into semantically

equivalent ones, a technique known as semantic query rewriting [21], by applying the integrity con-

straints to the conditions of the query WHERE clause. For example, assume that there is an integrity

constraint job = ”Programmer” → salary > 25000. A semantic rewrite would turn the query in Figure

2.3a into the query in Figure 2.3b. If we assume that there is an index created on the salary attribute,

then the execution of the query in Figure 2.3b will be faster. However, if there is not an index, then it is

just a waste of time, hence, the existence of the index must be checked.

SELECT name, dept name
FROM Employee E, Department D
WHERE E.dept id = D.dept id

AND job=”Programmer”

(a)

SELECT name, dept name
FROM Employee E, Department D
WHERE E.dept id = D.dept id

AND job=”Programmer”
AND salary > 25000

(b)

Figure 2.3: Example of a semantic query rewrite

Transformation rules [28], also known as equivalence rules, enable to transform a relational-algebra

expression into an equivalent expression. The idea behind these rules is that these transformations will

lead to a different but equivalent plan, possibly with a smaller cost. A widely-known equivalence rule

expresses that theta-join operations are commutative, i.e., the order by which they are executed may

be switched without any implication on the results. This equivalence rule can be expressed as follows:

A ./θ B = B ./θ A.

2.1.3 Cost-Based Optimization

Cost-based optimization uses the plan’s cost to decide which execution plan is the most efficient. To

estimate the plan’s cost, the optimizer uses the system catalog, which stores the current database

status, while also taking into account the characteristics (i.e., the cost) of the algorithms (e.g., merge

join, indexed nested loop join, etc) and the operators that are included in the plan.

Cost-based optimizers manipulate the joins order [28] to improve the plan’s cost. Without any opti-

mization, for a join with n relations, there are (2(n – 1))!/(n – 1)! possible combinations. Testing all these

combinations is unfeasible for large values of n (e.g., for n = 10 there are 17.6 billion combinations). For

example, (R1 ./ R2 ./ R3) ./ R4 ./ R5 has 1680 possible orders. To reduce the number of combinations

to test, one possible technique is to perform (R1 ./ R2 ./ R3) first, which has 12 combinations, then, we

7

procedure findbestplan(S)
if (bestplan[S].cost is not infinite)
/* bestplan[S] already computed */
return bestplan[S]
/* else bestplan[S] has not been computed
earlier, so compute it now */
if (S contains only 1 relation)
set bestplan[S].plan and bestplan[S].cost based
on the best way of accessing S
else for each non-empty subset S1 of S such that S1 != S
P1 = findbestplan(S1)
P2 = findbestplan(S - S1)
A = X
/* X = best algorithm for joining results of P1 and P2 */
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost
bestplan[S].cost = cost
bestplan[S].plan = "execute P1.plan; execute P2.plan;
join results of P1 and P2 using A"
return bestplan[S]

Listing 2.1: Join Reordering Pseudo-Algorithm

join that result (represented as R1./2./3) with the other two relations (R1./2./3 ./ R4 ./ R5), and again,

we have 12 combinations, thus reducing the total possible orders to 12 + 12, thus 24.

However, a certain join order may be optimal for a given operation, but suboptimal for another. We

say that a particular sort order of tuples is in an interesting sort order if that specific order may be useful

for later operations (e.g., in R1 ./ R2 ./ R3, if you compute first R1 ./ R2 and order R2 by R2 ./ R3 join

attribute(s), then that sort order may minimize the merge join cost). For a set of n relations, there are 2n

interesting sort orders that must be saved.

2.1.4 Join Reordering Algorithm

The Join Reordering algorithm is a dynamic programming algorithm. Dynamic programming algorithms

are widely used by the RDBMSs to find the optimal query-execution plan by performing an exhaustive

search. These algorithms construct all possible alternative query-execution plans. After creating a plan,

its cost is evaluated. The plan with the least cost is saved to be used in the future if the same query is

requested.

The join reordering algorithm may be performed iteratively, as the pseudo-algorithm in Listing 2.1

shows. At each iteration a new plan to perform the join is generated. If the new plan is cheaper than the

currently saved plan, then it replaces it (i.e., it is saved), otherwise, it is discarded. If there is no join, i.e.,

the query only contains a relation, the best plan is defined as the best way of accessing that relation.

After finding the cheapest plan, it is saved and returned every time the same query that triggered the

algorithm is performed.

8

2.1.5 Heuristics

Applying the Join Reordering Algorithm (explained in Section 2.1.4) may not be enough to enhance

performance. Dynamic programming algorithms perform an exhaustive search, generating many ex-

ecution plans. To prune the number of plans that are generated, optimizers use heuristics. Applying

certain heuristics can end up cutting out a good (i.e., efficient) execution plan. However, this is a risk

that optimizers have to take.

A commonly used heuristic states that, in a tree, the join’s right operand must be always a database

relation, this way, all the execution plans that do not satisfy this condition will not be generated. Such

query plans are called left-deep join tree, they are very convenient for pipelined evaluation (i.e., a node/-

operation higher in the tree receives directly the results from its child instead of consuming the data

from a temporary table that stores the results of its child). Figure 2.4 shows the difference between a

left-deep join tree (Figure 2.4a) and a non-left-deep join tree (Figure 2.4b). This heuristic will sometimes

find only a suboptimal plan since it does not test all possible join orders. However, it is more efficient than

searching all possible join orders, especially if we use a dynamic programming algorithm, that allows us

to store that plan for further use.

(a) Left-deep join tree (b) Non-left-deep join tree

Figure 2.4: Examples of join trees

Other commonly applied heuristics are the predicate (selection) and projection pushdown. Here, the

optimizer pushes the selections and projections as deep in the tree as possible, giving preference to

perform first the selection, and just then the projection pushdown, since the first one has more proba-

bility to reduce the number of tuples to be used in the operations that follow in the tree. The selection

pushdown is represented by the equivalence rule, σθ(R1 ./ R2) = R1 ./ (σθ(R2)), with θ being a subset

of attributes of one of the relations (in this case, R2). A similar rule exists for projection pushdown.

Many applications execute the same queries repeatedly, however, with different values for their con-

stants. Yet another heuristic is to save the cheapest plan, found in the first time a query was run (with

some constants values) for further uses, even though an optimal plan for certain constants may be

suboptimal for others. This technique is called plan caching.

9

2.1.6 Cost-Based Optimization with Equivalence Rules

Reducing the number of tuples and columns that are involved in the intermediary operations (i.e., be-

tween the tree nodes) may help reducing the query’s cost. That said, instead of working with the original

query plan and just changing the algorithms and the joins order, it is useful to also change the query-

evaluation plan to some other less expensive but equivalent plan. To accomplish that goal, we must use

the techniques introduced in Section 2.1.2 along with the heuristics referred in Section 2.1.5. Just then,

we can apply a cost-based optimization in order to find the best join algorithms and indices to use.

Searching equivalent query-evaluation plans is performed extensively, i.e., by applying equivalence

rules while it is possible to generate new expressions. Less relevant plans are pruned, thus reducing

the search space. Plans that are being evaluated, and whose cost is higher than the cheapest plan

previously found, are considered irrelevant and are pruned.

2.2 Data Cleaning

Maintaining a database clean over the years is a difficult task. In fact, several people may insert data in

a different fashion, leading to inconsistencies, and possibly, duplicates. For example, a user may enter

misspellings, have different assumptions while inserting data (e.g., inserting ”J. Peralta” instead of ”Jake

Peralta”), or she may ignore some business rules (e.g., sell a ticket to an underage). These data quality

problems occur with a greater probability when there is no underlying schema (e.g., some schemes

have an attribute for the first and last name, others only for the whole name, etc). Data quality problems

(in particular, data redundancy) are even more noticeable when we intend at integrating heterogeneous

data sources. Each data source may have a representation for the same real entity, data representations

may contradict each other (e.g., in a data source the same person is 50 years old whereas in another

20), or have identical representations that refer to different real entities.

Figure 2.5 shows two data sources referring to TV Series characters (Figure 2.5a and Figure 2.5b).

There are two entries that refer to the same ”real” entity (star id 5 and sid 563) but: (i) they have different

primary keys, and (ii) source A uses the character name whereas source B its nickname (”Thomas” and

”Tommy”, respectively). An identical case occurs with the first entry of both data sources (star id 1 and

sid 7). Also, whereas source A contains the character last name as ”Peralta”, source B wrongly contains

the same last name as ”Peratla”. Using these two data sources, we can already conclude that: (i) we

need to compare each pair of entries with a dictionary of synonyms, since ”Thomas Shelby” and ”Tommy

Shelby” refer to the same real entity, and (ii), another dictionary will be necessary to choose which

representation has the correct character name (for the second case). String comparison techniques

may fail at identifying that ”Thomas” and ”Tommy” are, in fact, the same entity, since they are written

very differently. However, they should be able to identify the data quality problem in the second case,

using the help of the dictionary to decide which one is the right name. The result of integrating these

two data sources is exemplified in Figure 2.5c. There, the primary keys of each table were maintained

to enable tracing to the original tables, a common practice when integrating data sources with different

10

star id first name last name
1 Jake Peralta
3 Amy Santiago
5 Thomas Shelby

(a) Favourite TV Stars

sid name
7 J. Peratla
563 Tommy Shelby

(b) TV Stars

id first name last name sid star id
1 Jake Peralta 5 1
2 Tommy Shelby 563 7
3 Amy Santiago 3

(c) TV Stars (integrated and cleaned source)

Figure 2.5: Example of a process of integration of two data sources

schemes.

Data quality problems are usually solved, or at least minimized, by a data cleaning tool (examples of

commercial data cleaning tools are Trifacta2, Informatica3, etc). Data cleaning tools can be divided in

two categories: (i) transformation-based, or (ii) rule-based. In (i), we have a graph of data transforma-

tions that are performed over dirty data. These data transformations are implemented by data cleaning

operators, whose execution cleans data. Examples of transformation-based data cleaning tools are: the

research prototype CleanM [16], , and the commercials Trifacta and Informatica. In (ii), we define a set

of rules (aka, quality rules) that the data must satisfy to be considered of good quality. If those rules are

not satisfied, there is a violation. Violations must be repaired by a suitable data repair, usually, chosen

between a set of heuristics. BigDansing [22] is an example of a rule-based data cleaning tool.

There are several expensive tasks in data cleaning, such as splitting, normalization, and approximate

duplicate detection. However, the latter, also known as record matching (for a single pair of records) or

record-set matching (for a set of pairs of records), is one of the most cumbersome tasks. Several

techniques have been proposed to increase its performance and efficiency. Note that trivial record-

set matching techniques perform the Cartesian product to obtain their results. Cartesian product is

not feasible when dealing with large amounts of data, because the amount of resources that would be

needed to perform that operation would be massive. In Section 2.2.1 we explain what is approximate

duplicate detection, and common approaches to perform it. Later on, in Chapter 3, we discuss some

techniques to (i) improve the approximate duplicate detection task performance in a single machine,

and (ii) to distribute that task, by presenting some distributed join techniques based on a Map-Reduce

approach.

2.2.1 Approximate Duplicate Detection

Approximate Duplicate detection is the problem of detecting that two tuples represent the same real

entity, being one of the most expensive data cleaning tasks, since it demands every tuple to be compared

with all existing tuples in a table (aka, Cartesian product), thus having a quadratic complexity. When we

2https://www.trifacta.com
3https://www.informatica.com

11

if similarity [name](A,B) < 0.8 return false
else if similarity [address](A,B) < 0.9 return false
else return true

Figure 2.6: Pseudo-code of a matching rule

have several millions of tuples, performing a quadratic algorithm is undesirable, and in certain cases,

unfeasible. A naı̈ve approach to record matching uses string matching algorithms. It works as follows:

(i) for each record, create a string that is the result of concatenating all fields of that record, (ii) to test

the similarity between two records, take the string each one generated and compute their similarity

using a string matching algorithm (e.g.: Levenshetein Distance, Jaro-Winkler distance, Soundex, etc).

However, this naı̈ve approach does not achieve good accuracy. Thus, other approaches were proposed

to perform record matching. Most common approaches to record matching are: (i) Rule-based matching,

(ii) Probabilistic matching, (iii) Learning-based matching, and iv Matching by Clustering.

Rule-based matching is the act of declaring that any pair of tuples (x,y) is either a match or not

by applying a set of matching rules. These matching rules are similarity tests applied to one or more

attributes, and can be seen as a set of ”if” and ”else” statements. Figure 2.6 illustrates the pseudo-code

of a matching rule. There, we consider a pair of tuples (x,y) of the Employee relation a match, if the

similarity score of their names is greater than 0.8 and the similarity of their addresses is greater than

0.9. The quality of matching rules is determined by their accuracy and coverage. Ideally, they should

have high accuracy, i.e., classify correctly most of the pairs, and high coverage, i.e., cover a high number

of pairs, however, usually, the greater the accuracy, the lower the coverage (i.e., the more specific the

rule is).

To decide which rules will be applied in the decision-making process, one could follow two possible

approaches: (i) manually generate matching rules, or (ii) generate rules through training data. The first

approach demands that the user has previous knowledge of the data. The creation process is very

cumbersome, demanding a very careful analysis of the data and also several attempts to obtain good

quality matching rules. Therefore, it is an iterative, boring process for the user. The second approach

uses machine learning to learn from data. We feed an algorithm with examples of true and false matches

and it automatically creates several rules from those examples. Each rule that is generated has its

coverage and accuracy measured, and only the one that has the best trade-off between both measures

is selected. Then, that selected rule is expanded by the algorithm with new conditions (i.e., new rules).

In Probabilistic matching, the decisions are based on a set of variables over a probability distribution.

A variable can be, for example, whether two employee names, of two different records, match. Or even

if two records are a match or not. Although probabilistic techniques are known for their easy adaptability

to the domain (e.g., matching employees), their are also known for their inefficiency.

Learning-based Matching and Matching by Clustering use machine learning to classify pairs of

records as matches or non-matches. The Learning-based Matching approach uses supervised learn-

ing, i.e., there is the need to feed the machine learning algorithm with examples of true matches so that

he can learn what are true matches in a give dataset. The Matching by Clustering approach enables a

12

more independent solution since it is non-supervised, i.e., it can start classifying records right away.

13

Chapter 3

Related Work

In this chapter, we describe the most relevant works in what concerns the improvement of the perfor-

mance of a data cleaning process, namely: (i) algorithms to scale up the approximate duplicate detection

task, (ii) tools and algorithms to parallelize and distribute the approximate duplicate detection task, and

(iii) data cleaning research prototypes.

In Section 3.1, we describe algorithms to scale up approximate duplicate detection. In Section 3.2,

we detail an approach that addresses the parallelization and distribution of the deduplication task as a

whole, and detail one algorithm that approaches the parallelization and distribution of the join (used to

perform the Cartesian product). Finally, in Section 3.3, we detail the four most relevant data cleaning

research prototypes that address the efficiency of a data cleaning process.

3.1 Scaling Up Approximate Duplicate Detection

Some techniques to improve approximate duplicate detection performance when faced with large amounts

of data were proposed. Most of these techniques aim at creating clusters/blocks of records, limiting the

pair comparisons only to those records inside the same block. These techniques are known as indexing

techniques or blocking techniques [10]. Each record is associated to a blocking key. Records with the

same (or, for some algorithms, similar) key value go to the same block and are compared. In this case,

the key generation is a crucial step. It is the user’s responsibility to define how the key is generated.

This section describes techniques to improve the efficiency of the approximate duplicate detection

task. Section 3.1.1 describes a naı̈ve optimization approach called Traditional Blocking, that creates

clusters of similar records and performs only intra-cluster comparisons. The Sorted Neighborhood Join

algorithm and some variations are described in Section 3.1.2. Section 3.1.3 explains the Q-gram Based

Indexing, which assigns records with common q-grams to the same cluster, enabling a record to belong

to several clusters. Section 3.1.4 describes the Suffix Array Based Indexing, similar to the Q-gram Based

Indexing approach, but uses suffixes instead of q-grams. The Canopy Clustering technique is explained

in Section 3.1.5. In Section 3.1.6, we summarize all algorithms detailed in this section.

14

3.1.1 Traditional Blocking

Traditional blocking [12] uses a user-defined key to put records that have exactly the same key value

in the same block. The key is based on one or more attributes (e.g., the concatenation of the first two

characters of every field). Once the blocks are created, the algorithm proceeds to the comparison phase.

A Cartesian product is performed to generate all possible pairs of records found in a block. Then, the

algorithm performs record matching to verify if a pair is a true match or not. Example 2 demonstrates

how Traditional Blocking technique can be applied.

Example 2. Figure 3.1a shows five records from the Employee relation, whose schema was defined in

Example 1. For this example, consider the blocking key to be the name attribute.

Since the blocking key values ”Tiago” and ”Tiago” are identical, the corresponding records go to the

same cluster (Figure 3.1b). Analogously, ”Ana” and ”Ana” form another cluster, as shown in Figure 3.1c.

The key value ”Rodrigo” has a cluster of its own since it does not match with any other key value (Figure

3.1d). Only clusters with more than one record need to perform record matching.

emp id name(key)
120 Tiago
237 Rodrigo
543 Ana
765 Tiago
775 Ana

(a) Initial data source

emp id name(key)
120 Tiago
765 Tiago

(b) Cluster 1

emp id name(key)
543 Ana
775 Ana

(c) Cluster 2
emp id name(key)
237 Rodrigo

(d) Cluster 3

Figure 3.1: Traditional Blocking example

The major drawback of the Traditional Blocking algorithm comes from the fact that it is too much

dependent on the way the key is generated. For example, if there is an error on the key’s value, two

records that may be approximate duplicates will never be compared.

3.1.2 Sorted Neighborhood Join

Sorted Neighborhood Join (SNJ) [20] uses a different approach from the technique presented in Section

3.1.1. SNJ does not create blocks of records, instead, all records are sorted by the blocking key values

and maintained in their original table (i.e., a single block). To mimic the underlying idea behind the blocks

(i.e., limit the comparisons to records inside the same block), SNJ iterates through the records within a

sliding window. A sliding window is a window with a fixed size w defined by the user. In the algorithm’s

first iteration, the window starts at the beginning of the table, and covers w records. At each iteration,

record matching among the w records inside the window is performed. To proceed to a new iteration, the

sliding window goes down one record (i.e., at iteration one, starts at record one, at iteration two, starts

at record two, and so on). The algorithm finishes when the sliding window reaches the end of the table,

15

that is, when the wth record of the window is the last record of the table. SNJ does not guarantee that all

true matches are captured, mainly because of the limitation of a fixed size sliding window1. Moreover, if

we pretend to perform the approximate duplicate task with two tables that have the same schema, the

algorithm creates an union of both tables. The SNJ algorithm works in the following three steps:

1. Create key: create a key for each record based on one or more attributes. In Figure 3.2a, analo-

gously to Example 2, we select the employee name as key;

2. Sort data: sort the data source records based on the key defined in the previous step. Figure 3.2b

shows the result of applying this step;

3. Merge: move a window with a fixed sized w (greater than 1 and less than the number of records)

through the sorted records and generate all possible pairs of records inside that window. In Figure

3.2c, we defined a window of size 2. Only the records inside it will be compared. The window

keeps moving until it reaches the end of the table.

With a sliding window of size two and a total of five records, the algorithm makes four iterations in

the Merge phase. In the first iteration, it generates a pair with emp id values 543 and 175, in the second

one, emp id values 175 and 237, in the third phase, emp id values 237 and 123, and in the final one,

emp id values 123 and 120. If, for example, the window size was 3, the first iteration (of two) would

generate the pairs [(543,175); (543,237); (175,237)]2. All pairs generated in the Merge phase are then

compared using matching rules, which decide if a pair of records is a match or not.

emp id name(key)
120 Tiago
237 Rodrigo
543 Ana
123 Thiago
175 Anna

(a) Creation of keys

emp id name(key)
543 Ana
175 Anna
237 Rodrigo
123 Thiago
120 Tiago

(b) Sorting data

emp id name(key)

543 Ana
175 Anna

237 Rodrigo
123 Thiago
120 Tiago

(c) Merging (iteration 1) - the bold
lines represent the limits of the
sliding window

emp id name(key)
543 Ana

175 Anna
237 Rodrigo

123 Thiago
120 Tiago

(d) Merging (iteration 2) - the bold
lines represent the limits of the
sliding window

Figure 3.2: Sorted Neighborhood Join example

1If two true matches are separated by more records than the window size, then they will never be compared, thus they are
never considered as matches.

2Independently of the window size, the comparison is always performed between a pair of records.

16

The key chosen must include relevant information from the data source fields based on previous

knowledge of the data. For example, a key could be created by selecting the first character of each

field. Considering the two records {1, ”J. Peralta”, ”Angels Paradise Street”, 55000, ”Programmer”, 1},

and {540, ”Jake Peralta”, ”Angels Paradise Street”, 70000, ”Senior Programmer”, 1}, the first record has

the key value 1JA5P1, and the second has the key value 5JA7S1. Although they refer to the same real

entity, the way the user defined the key makes it hard (but not impossible, depending on the chosen w

and number of records) for the SNJ algorithm to couple (and therefore compare) these two entries. If we

performed a second passage with another key, the probability of finding similar records could improve.

Moreover, given that real-world data is dirty, using only one way of generating key may prove to be

insufficient to detect all possible matches.

To improve SNJ’s accuracy, a Multi-pass Approach [20] was proposed. In a multi-pass approach,

the SNJ algorithm is executed several times, each one with a different key. Moreover, with a multi-pass

approach it is also possible to use transitive closure to find approximate duplicates. For example, if in

the first pass, a given record r1 is considered a duplicate of r2, and in the second pass r2 is considered

a duplicate of r3 then, by transitive closure, r1 is also considered a duplicate of r3. The final result of

a multi-pass approach is the union of all the pairs discovered throughout the whole process, including

those by transitive closure.

Several alternatives to the SNJ were proposed to improve its effectiveness and efficiency. The Clus-

tering Method approach [20], uses a clustering algorithm to partition the initial records into independent

clusters instead of depending on a user to define a key (SNJ’s step 1). Then, the second and third setps

of SNJ are applied inside those clusters. The clustering method extracts a key from each record based

on one or more attributes, and the partitioning criteria is based on that key.

There may be several records with the same key, which, ideally, should be compared, since they

may be approximate duplicates. In order for those records to be compared, they need to be covered by

the same window. However, in large databases, it may not be possible to guarantee that the window

covers all records with the same key, since the chosen window size w may be too small. The Inverted

Index Based approach [20] deals with this problem by generating an inverted index whose index key is

the unique blocking key values. Then, the index key values are sorted and the sliding window moves

through the index key values rather than the blocking key values. In the sorted index key values list, each

key appears only once. Each index key points to the records that have the same blocking key value.

At each iteration of the algorithm (i.e., at each position of the window), the records that have the same

blocking key as the index key being covered by the window, are verified (i.e., all possible pairs of records

are generated and compared). In summary, in this algorithm, each window covers w index key values at

the same time. Each index key value represents several records, thus, the probability of similar records

being compared increases.

The Adaptive Sorted Neighborhood [32] overcomes one of the major problems of the original SNJ:

having a fixed window size. When we have more records with a similar key than our window size w,

there will be duplicates that are not detected. Since those records are never within the same window,

they are not compared. The adaptive sorted neighborhood solves this problem by dynamically changing

17

emp id name (key) Bigram Sublists Index Key Values

120 Thiago

[th,hi,ia,ag,go], [th,hi,ia,ag],
[th,hi,ag,go], [th,hi,ia,go],
[th,ia,ag,go], [hi,ia,ag,go],
[th,hi,ia], [th,hi,ag], [th,hi,go],
[th,ia,ag], [th,ia,go], [th,ag,go],
[hi,ia,ag], [hi,ia,go], [hi,ag,go],
[ia,ag,go]

thhiiaaggo, thhiiaag, thhiaggo,
thhiiago, thiiaaggo, hiiaaggo,
thhiia, thhiag, thhigo,
thiaag, thiaago, thaggo,
hiiaag, hiiago, hiaggo,
iaaggo

765 Tiago
[ti,ia,ag,go], [ti,ia,ag],
[ti,ia,go], [ti,ag,go],
[ia,ag,go]

tiiaaggo, tiaiaag,
tiiago, tiaggo,
iaaggo

Figure 3.3: Q-gram Based Indexing example

the window size w depending on the key’s values. We start by creating a window at the beginning of the

sorted table, then, the size of the window keeps increasing as long as sequential keys (which represent

their records) are similar, according to a string similarity function. A window covers all records whose

keys have a similarity between each other greater than a predefined threshold. A new window starts

when two adjacent records have keys whose similarity is below that threshold.

3.1.3 Q-gram based Indexing

Q-gram based Indexing [5] tries to overcome the Traditional Blocking (described in Section 3.1.1) limita-

tions by enabling records with similar key values to be put in the same block (in traditional blocking only

those that were strictly equal would be put in the same block). As in the Traditional Blocking technique,

the Q-gram based Indexing detects all possible approximate duplicates. The key must be defined by the

user based on one or more attributes. Then, it is converted into a list of q-grams, that is, a list of sub-

strings of length q. A total of k = c−q+1 q-grams are generated, with c being the key’s length (number of

characters) (e.g., ”Tiago” generates the bigrams [”Ti”,”ia”,”ag”,”go”], where c is equal to 5 and k is equal

to k = 5−2+1 = 4). Then, the algorithm generates all possible combinations with the previously created

q-grams. Each combination must have a minimum length of l, with l = max(1, bk × tc) (i.e., must use l

of the previously created q-grams to create a new list), and t ∈ [0, 1] a user-defined minimum threshold.

Finally, each sublist of q-grams is transformed into an index key value through the concatenation of the

q-grams (e.g., the bigrams [”Ti”,”ia”,”ag”,”go”] generate the index key value tiiaaggo).

In Figure 3.3 we exemplify the application of a 2-gram based indexing (i.e., q = 2) using two records.

As in Example 2, we use the employee’s name as key, and use the emp id value to identify the records.

For the key value ”Tiago”, there are k = 5 − 2 + 1 = 4 bigrams. With those bigrams, and assuming

t = 0.75 and l = max(1, b4 ∗ 0.75c) = 3, we create all possible variations with maximum length 3. They

are listed under the Bigram Sublists column in Figure 3.3. For the same t, for the key ”Thiago”, with

k = 5 and l = 3, we create all variations with a minimum length of 3, by varying the original bigram

list ([”Th”,”hi”,”ia”,”ag”,”go”]). The column Index Key Values in Figure 3.3 lists the concatenations of the

bigrams stored in the Bigram Sublists column.

Each index key value can be seen as the name of a cluster. If two records have an index key in

common, then they are put in the cluster identified by that index key. Intra-cluster comparisons are

18

emp id name (key) Suffixes List

120 Thiago Thiago, hiago,
iago, ago, go

237 Rodrigo
Rodrigo, odrigo,
drigo, rigo,
igo, go

765 Tiago Tiago, iago,
ago, go

(a) Generating the suffixes

Suffix emp id
Rodrigo 237
Thiago 120
Tiago 765
ago 120, 765
drigo 237

��go (((
((((120, 237, 765

hiago 120
iago 120, 765
igo 237
odrigo 237
rigo 237

(b) Inverted Index Table

Figure 3.4: Suffix Array Based example

performed to detect approximate duplicates among records beloging to the same cluster. In Figure 3.3,

it is possible to see that the index key value iaaggo is common to the key values ”Tiago” and ”Thiago”,

therefore, they will be put in the same cluster and thus will be compared. The key value ”Thiago”

generated 15 distinct index key values, meaning that it can belong to up to 15 clusters.

3.1.4 Suffix Array Based Indexing

Suffix Array Based Indexing [2] is very similar to the q-gram approach, but it uses the key’s suffix instead

of the full key value. A total of k = c− l+1 suffixes are generated (aka index keys), with c being the key’s

length (number of characters) and l the suffix minimum length. The index key values are then placed in

an inverted index table, that maps each suffix (i.e., index key value) to the records that contain it.

In Figure 3.4, we assume l = 2, that is, we keep generating suffixes until they have only two charac-

ters, thus k = 5 suffixes will be generated for key ”Thiago”, k = 6 for key ”Rodrigo”, and k = 4 for key

”Tiago”, as illustrated in Figure 3.4a. Figure 3.4b represents the inverted index table that results from

the previously generated suffixes. The lower the value of l, the higher the probability of several records

having the same set of suffixes, thus penalizing the ability to distinguish between them and penalizing

the performance (since more comparisons between records are performed). To maintain the Suffix Array

Based Indexing approach as accurate as possible and with a reasonable performance, we must define

a threshold for the maximum number of records that can have a given suffix. When surpassed, the suffix

is discarded. This threshold is known as the maximum block size, b. In Figure 3.4 we assume b = 2,

being that the reason why the suffix ”go” was removed. Each inverted index table entry acts as a cluster.

As in the Q-gram Based Indexing, there are only intra-cluster comparisons.

3.1.5 Canopy Clustering

The Canopy Clustering technique [7] [26] groups the records into overlapping clusters, also known as

canopies. As in the previous techniques, the comparisons are exclusively intra-canopy. The canopy

clustering method uses two similarity measures, one to map records into the canopies, and another to

19

emp id name (key) Token List

120 Thiago
[(Th,1), (hi,1),
(ia,1), (ag,1),
(go,1)]

765 Tiago [(Ti,1), (ia,1),
(ag,1), (go,1)]

(a) Generating the tokens

Token TF (emp id, DF)
Th 1 (120,1)
hi 1 (120,1)
ia 2 (120,1), (765,1)
ag 2 (120,1), (765,1)
go 2 (120,1), (765,1)
Ti 1 (765,1)

(b) Inverted Index Table

Figure 3.5: Example of Canopy Clustering’s first phase

compare the records inside each canopy.

In a first phase, we create a list with one or more tokens for each key value. A token can be a word,

a character, or a q-gram. Then, for each unique token, we create an entry in an inverted index table,

indicating which records contain that token. For the sake of the example, we shall consider that the

tokens are the key’s bigrams. These bigrams are generated as in the Q-gram Based Indexing approach,

described in Section 3.1.3. Figure 3.5 exemplifies the application of the Canopy Clustering technique,

using bigrams as tokens. The tokens in the token list shown in Figure 3.5a have the format (token,

document frequency). The document frequency is the number of times that a given token occurs in the

key value under evaluation. In Figure 3.5a, we do not repeat any token (just as an example, for the word

”Paralelepı́pedo” the token ”le” would be repeated twice, thus its token list would have an entry ”(le,2)”).

Figure 3.5b shows the inverted index table that results from the two lists of tokens. There, for each token,

we have its Term frequency (TF), i.e., the number of records where that token appeared, and the list of

records that have that token along with their document frequency.

In the second phase, using the inverted index table, we create the canopies and associate their

corresponding records. There are two approaches to perform this second phase: (i) the Threshold

Based Approach, and (ii) the Nearest Neighborhood Based Approach.

Threshold Based Approach

In the Threshold Based Approach, we need to define two thresholds: the loose threshold tl, and the

tight threshold tt. This approach starts by putting into a set S all record identifiers (emp id). Then, it

extracts from S a random record Sx. For each record Si in S, that has, at least, one token in common

with Sx (using the inverted index table to discover them), we apply a similarity function to compare it

against Sx. If the similarity score between Sx and Si is greater than tl, then Si is inserted into the Sx

canopy. Furthermore, if the similarity score between Sx and Si is greater than tt, then Si is removed

from S, preventing Si to be associated to other canopies3. After comparing all eligible records with Sx,

we remove Sx from S, and select another random record. This process finishes when S becomes empty.

3One record can belong to several canopies. However, once a comparison results in a score higher than tt, that record can no
longer belong to new canopies.

20

Algorithm User Input Uses Key Groups Records
Traditional Blocking Key generator Group records Yes

Sorted Neighborhood Join

Base Key generator Sort records NoWindow size

Multi-pass Key generator Sort records NoWindow size
Clustering Method Window size Sort records Yes

Inverted Index Based Key generator Form indexes YesWindow size Sort indexes

Adaptive Key generator Sort records NoThreshold

Q-gram Based Indexing

Key generator

Form indexes YesQ-gram length
Minimum index length
Threshold

Suffix Array Based Indexing
Key generator

Form indexes YesMinimum suffix length
Maximum records with same suffix

Canopy Clustering
Key generator

Form tokens YesToken generator
Thresholds or neighbor parameters

Table 3.1: Summary of the algorithms explained throughout Section 3.1

Nearest Neighborhood Based Approach

In the Nearest Neighborhood Based Approach, we need to define two parameters, the number of records

r that are removed from S at each iteration, and the maximum capacity of a canopy m, with r < m. As

in the Threshold Based Approach, we start by selecting a random record Sx from S, being that record

the centroid of the newly created cluster. For each remaining records Si in S that have, at least, one

common token with Sx (using the inverted index table to discover them), we apply a similarity function

to compare them against Sx. The m nearest records are inserted in the Sx’s cluster, and the r nearest

records are removed from S along with Sx. The algorithm continues until S is empty. When compared

to the Threshold based Approach, this approach allows us to know how many records a canopy has.

However, because there is the need to define a maximum capacity for each canopy (m), some true

matches may not fall under the same canopy when it is full.

3.1.6 Discussion

In Section 3.1, we have detailed several algorithms that enable to improve the approximate duplicate

detection task performance. Each one of the five algorithms presented uses different approaches to

achieve the same goal: more efficiency.

In Table 3.1 we have the algorithms described in Section 3.1. In column User Input we list the

parameters that the user must provide to the algorithm. Column Uses Key tells us how the key is used

in the algorithm. Finally, column Groups Records confirms if the algorithm groups the records in any

way to compare them among each other.

As Table 3.1 shows, all algorithms need some input. With the exception being the Clustering Method

since it automatically generates the key, they all need the user to specify the key generator, i.e., how the

key will be extracted from a record. Mostly, this how this key generator is defined is what will affect the

effectiveness of these algorithms.

21

The performance of the algorithms presented in Section 3.1 has been assessed by surveys [6, 33].

Although these surveys used different datasets, and different test environments (i.e., the number of

records used, the hardware in which the algorithms performed, etc) they claim similar results. Firstly,

it is clear that for large amounts of data the Q-gram Based Indexing is too slow, thus it is not suitable

for this thesis. The better performers are the Sorted Neighborhood Join (all presented variants) and the

Traditional Blocking algorithms. Regarding the quality of the results produced, the Inverted Index Based

Sorted Neighborhood is claimed as the best. The Traditional Blocking achieves good quality results,

being on-pair with the Threshold-Based Canopy Clustering and the Adaptive Sorted Neighborhood. The

algorithms that achieve the best trade-off between performance and quality of the results are: (i) the

Adaptive Sorted Neighborhood, (ii) the Traditional Blocking, and (iii) the Inverted Index Based Sorted

Neighborhood.

3.2 Parallel and Distributed Data Matching

The Achilles tendon of the approximate duplicate detection task is the fact that it demands a Cartesian

product when using a naı̈ve approach. Even with the improvements in efficiency that blocking techniques

achieve (discussed in Section 3.1), there is the need to perform millions of comparisons when there is

large amounts of data. Therefore, a solution to parallelize and distribute the approximate duplicate

detection task, or at least, its most resource demanding sub-task, the Cartesian product, is needed.

Figure 3.6 shows a typical workflow of an approximate duplicate detection program. In the matching

phase we perform the Cartesian product, in the similarity computation we compute the similarity value

for each pair of records, and in the match classification, we decide if we consider a pair a match or not.

Figure 3.6: Approximate duplicate detection task workflow

In Section 3.2.1, we present Dedoop, a platform that focus on distributing and parallelizing the dedu-

plication task, i.e., the whole workflow of Figure 3.6. Then, in Section 3.2.2, we present an approach

which aims at optimizing the most expensive task of the approximate duplicate detection task, the Carte-

sian product, i.e., the Matching module in Figure 3.6. Finally, we conclude this section by summarizing

both approaches in Section 3.2.3.

3.2.1 Dedoop

Dedoop [24] is a tool to perform efficient deduplication with Hadoop. Dedoop extends the blocking

techniques detailed in Section 3.1, in particular the Traditional Blocking (Section 3.1.1) and the Sorted

22

Neighborhood Join (Section 3.1.2). The underlying idea is to increase performance, since Dedoop

implements those techniques in a distributed setting, using the a framework based on the Map-Reduce

(MR) paradigm [9], Hadoop. Hadoop uses a cluster of nodes to perform its map and reduce tasks.

Although blocking techniques provide an increase in performance when compared against the Carte-

sian product, they still demand too many pair-wise comparisons for large datasets. Most of these com-

parisons do not have dependencies among each other, i.e., to compare record r1 with r2, we do not need

to know the result of any other comparison. Therefore, they can be performed in parallel. Performing

record matching in parallel using the Map-Reduce (MR) paradigm has several advantages [10]: (i) we

can quickly generate the results, thus enabling to evaluate the effectiveness of our algorithm and tune it,

and (ii) if we take less time to obtain the results, we have a performance gain (i.e., the execution time of

a data cleaning program is smaller).

A Dedoop workflow is composed by the following three jobs: (i) the Classifier Training job, (ii) the

Data Analysis job, and (iii) the Blocking-based Matching job. The output of the first job is the input of the

second one and analogously for the second and third jobs. Among these three jobs, only the latter is

mandatory.

The Classifier Training job supports a machine learning-based match classification, i.e., instead of

relying on users to define the matching rules, it uses a machine-learning algorithm to create the rules for

a given dataset. Dedoop schedules a MR job to train a classifier based on previously labeled examples.

The label in these examples is the similarity score between each training pair. The resulting classifiers

are then saved in every node using the Hadoop’s distributed cache mechanism.

The Data Analysis job exists to support load balancing strategies that Dedoop provides. The load

balancing strategies are very important since data skew may exist, i.e., some blocking keys repeat much

more than others, causing some blocks to have many more records than others. Due to this problem,

sometimes the execution time is dominated by a single or few reduce tasks.

The Blocking-based Matching job is divided into three main steps: (i) blocking, using the Traditional

Blocking and Sorted Neighborhood Join techniques, (ii) similarity computation, using string matching

algorithms such as Levenshtein Distance and TF/IDF, and (iii) matching, where the matching rules are

applied to make a decision. Figure 3.7 illustrates the Blocking-based Matching job workflow, with two

input data sources, R and S. The blocking phase is a map task that uses a blocking technique (e.g.,

Traditional Blocking) to partition the dataset, delivering the generated blocks to the similarity computation

phase, a reduce task. Each reduce task receives all records of a block (i.e., that have the same blocking

key), and computes the similarity between each pair of records. Finally, after the similarity computation,

each pair is classified as a match or non-match in the match classification phase, which occurs in the

same reducer as the similarity computation phase. The resulting dataset M stores the matches between

the input data sources R and S.

Dedoop is concerned about the efficient use of a cluster of MR nodes. There are two main efficiency

problems when using blocking-based techniques: (i) data skew, which leads to load imbalances, and

(ii) comparisons of the same pair of records in different nodes (i.e., repeated comparisons). When

data skew exists, some of the available nodes may be blocked with huge partitions, delaying the job

23

Figure 3.7: Blocking-based Matching job workflow

emp id name(key) last name
120 Tiago Luiz
237 Rodrigo Leite
543 Ana Rodrigues
765 Tiago Estradas
775 Ana Félix
123 Tiago Moniz
876 Ana Galvão
645 Ana Rodrigues
345 Tiago Luis
132 Tiago Luiz

(a) Initial dataset

Block Map1 Map2 Size Pairs
Ana 2 2 4 6
Tiago 2 3 5 10
Rodrigo 1 0 1 0
Total 16

(b) Block Distribution Matrix

Figure 3.8: Example of a Block Distribution Matrix

conclusion. The second problem arises when we use a blocking technique with a multi-pass approach.

In the remaining of this section, we detail the technique used by Dedoop to perform load balancing, in

order to deal with the data skew problem, and a technique to perform redundant-free comparisons to

deal with the problem of repeated comparisons.

Load Balancing

When using the MR paradigm the load balancing problem appears when we forward work to reducer

tasks. MR is able to perform load balancing by itself among the map tasks, however it is the programmer

or platform responsibility to perform load balancing among the reducer tasks. To enable load balancing,

Dedoop uses the Data Analysis job to create a data structure known as Block Distribution Matrix (BDM)

which will be delivered to every map task of the Blocking-based Matching job. Then, each map task

uses that data structure to perform the load balancing among the reducers.

The BDM shows the distribution of records per each blocking key in each map task of the Blocking-

based Matching job. Moreover, it has also information about the number of records for a given blocking

key (in all map tasks) and the number of pairs it is possible to generate for a given blocking key (i.e.,

number of comparisons that are performed). For example, using the dataset of Figure 3.8a, with two

map tasks in the Matching job, and using the name as blocking key, the resulting BDM would be that of

Figure 3.8b.

To perform load balancing, the map tasks of the Blocking-based Matching job take into account the

information that the BDM has, and also the blocking technique that is being performed. On Traditional

Blocking, Dedoop’s only concern is distributing the blocks evenly among all reduce tasks. For example,

in the BDM shown in Figure 3.8b, it will be performed a total of 16 comparisons. If we have two reduce

24

tasks, each one performs 8 comparisons. However, on Sorted Neighborhood Join, there is the notion of

a sliding window. If we consider each window a block (which is assigned to a reduce task), then there

are records that are in more than one block. Therefore, there is the need to replicate records among

reducers. Table 3.2 shows how the dataset of Figure 3.8a would be distributed among two reducers

(r = 2) using when we perform a Sorted Neighborhood Join in Dedoop with a window size of three

(w = 3). The ith entity goes to reducer bi × r
nc, with n being the number of records. Moreover, the last

w − 1 records of reducer i are replicated in reducer i+ 1.

Number (i) emp id name(key) reducer id
0 775 Ana 0
1 543 Ana 0
2 645 Ana 0
3 876 Ana 0/1
4 237 Rodrigo 0/1
5 123 Tiago 1
6 120 Tiago 1
7 132 Tiago 1
8 765 Tiago 1
9 345 Tiago 1

Table 3.2: Distribution of records per reducer in Sorted Neighborhood Join

Redundant-free Comparisons

As discussed in Section 3.1.2, multi-pass approaches are necessary to deal with the dirty nature of real-

world data. However, these approaches commonly lead to overlapping blocks, i.e., pairs of records with

more than one common blocking key (e.g., in a multi-pass approach, if record A has the key values x, y, z

and B has the key values w, y, z, then they have two overlapping keys, y and z, thus being compared

twice). Therefore, when the block distribution is performed, and a pair of records is repeated across

multiple blocks that go to different reducers, none of the reducers knows that (i) another block has a

similar pair, and (ii) a repeated pair has already been computed in another reducer. Dedoop is able to

limit the comparison of each pair to only and exactly one comparison. To do so, it adds to the traditional

map output (blocking key, record) in the matching job, an annotation containing a set with all record’s

blocking keys that are smaller (lexicographically) than the blocking key value under evaluation (e.g.: if

we have two passes and we are on the second one, and if the blocking key value for a record in pass 2

is Rosalina, then that is the key under evaluation). Moreover, the pass number is added as a prefix to

every blocking key (e.g.: in pass 2, blocking key value Amadeus, is turned into 2Amadeus). A reducer

only compares two records if and only if the two sets are disjoint. Table 3.3 shows the signatures (i.e.,

the set of blocking keys of all passes) that are generated, for a subset of the dataset in Figure 3.8a, when

there are two passes: one whose blocking key is the name and another whose key is the last name.

With Traditional Blocking, for records number 0 and 4 the map task outputs the pairs (1T iago, [0,])

and (1T iago, [4,]), respectively. However, since we have two passes, another set of pairs will also be

generated. For those same records, the map task outputs (2Luiz, [0, 1T iago]) and (2Luiz, [4, 1T iago]),

respectively. Since both records 0 and 4 have common signatures, only the map task that is responsible

25

Number emp id name last name Signatures
0 120 Tiago Luiz {1 Tiago, 2 Luiz}
1 237 Rodrigo Leite {1 Rodrigo, 2 Leite}
2 543 Ana Rodrigues {1 Ana, 2 Rodrigues}
3 775 Ana Félix {1 Ana, 2 Félix}
4 132 Tiago Luiz {1 Tiago, 2 Luiz}

Table 3.3: Two-pass blocking with keys being the name (1st pass) and last name (2nd pass)

to evaluate the smallest blocking key value will perform the comparison.

3.2.2 Parallel Set-Similarity Joins

Some tools focus on the parallelization and distribution of the whole approximate deduplication task

(e.g., Dedoop, described in Section 3.2.1). However, we can also focus in distributing and parallelizing

the most expensive part of the approximate deduplication task, the Cartesian product. A solution to

efficiently perform parallel set-similarity4 joins using Map-Reduce (MR) was proposed by R. Vernica et

al. [29].

The main difficulty when performing set-similarity joins using MR is to decide how data should be

partitioned and replicated across the MR nodes. The way partitioning and replication is performed

impacts the memory consumption and performance of the MR tasks. By default, the MR framework

hash-partitions the data across the nodes based on key values (i.e., records with the same key value go

to the same node). Typically, the key value is the joining attribute (i.e., the whole string, independently

of its length). The proposed solution does not use directly the joining attribute value. Instead, it creates

one or more signatures generated from the joining attribute value. These signatures are known as

partitioning keys. Similar join attribute values should have at least one signature in common. Therefore,

records with signatures in common are compared. An example of a signature is composed of the tokens

of a string (e.g., ”This is my thesis” has 4 word-based signatures, ”This”, ”is”, ”my”, ”thesis”). To decrease

the number of signatures each joining attribute value has, instead of using all signatures generated, the

algorithm sorts all signatures and uses only a limited number of them. The number of signatures used

by each joining attribute value is defined as a parameter of the algorithm.

The authors propose two algorithms, one for the self-join, and another for R-S join (i.e., between two

different tables). The self-join algorithm starts by using the Basic Token Ordering (BTO) [29] algorithm

to extract the signatures from the records and compute their occurrence frequency, in relation to the

whole dataset. The output of this stage is an ordered list of tokens, ordered from the least used to the

most used (e.g., for a dataset with records (1, ABC) and (2, BC), the output is [B,C,A]). This output, in

conjunction with the original dataset is given as input to the second stage, known as Indexed Kernel.

This stage uses an algorithm called PPJoin+ Kernel (PK) [29, 31] to perform the comparison between

records. The comparisons are not performed among all records. Instead, each signature of each record

is assigned to a group represented by a synthetic key (e.g.: for record (2,BC), the algorithm may assign

4Set-similarity join refers to the task of finding all pairs of records from two relations whose pair similarity score is higher than a
given threshold.

26

key value X to signature B and key value Y to signature C). Only records with the same synthetic key

are compared. To avoid data skew, these synthetic keys are assigned in a round-robin fashion (i.e.,

there is a predefined set of synthetic keys that are assigned to signatures). In the third stage, the record

join is performed using the Basic Record Join (BRJ) [29] algorithm. The output of this final stage is the

concatenation of those records whose similarity score (computed in the second stage) is greater than a

threshold.

To enable this algorithm to be used in a R-S join scenario, the authors changed the second and

third stages, since now there are records from two datasets as input, i.e., two input streams. This is a

challenge because the Map-Reduce framework was originally designed to accept a single input stream.

To distinguish between two different input streams, the algorithm adds a tag with the identification of the

corresponding input stream when processing the records (e.g., the first stage would receive a record (R,

1, ABC), i.e., the record (1, ABC) belongs to dataset R).

More recently, this algorithm was included in a new platform developed by some of the authors of this

algorithm, the AsterixDB [3, 23]. AsterixDB is a database management system for Big Data. In addition

to allowing to do everything that a common database allows, such as storing data, queries, it also added

the possibility of performing operations such as deduplication. For that it uses the algorithm described

in this section.

3.2.3 Discussion

In this section we presented two data cleaning tools with different purposes. Dedoop, detailed in Section

3.2.1, optimizes and distributes the deduplication task as a whole. The solution proposed by Vernica

et. al., described in Section 3.2.2, focus in the optimization and distribution of the set-similarity join,

that is, the task of discovering all pairs of two or more datasets whose similarity is greater than a given

threshold.

Dedoop takes advantage of the vastly studied blocking algorithms which is seen as a benefit of this

solution since it applies techniques that are easily understood and known by the community. However,

at this moment, it only enables two blocking algorithms, Traditional Blocking and Sorting Neighborhood

Join. It provides for both algorithms a multi-pass approach which is beneficial to improve the quality of the

results (as discussed in Section 3.1.2. We see the restricted number of blocking algorithms as a limitation

of the solution, mainly because of the three blocking algorithms identified as the best performers in

Section 3.3.5, it only uses the second one, the Traditional Blocking (Section 3.1.1). The best performer,

the Adaptive Sorting Neighborhood Join (ASNJ), detailed in Section 3.1.2, is discarded as well as the

third best performer, the Inverted Index Based Sorted Neighborhood (IBSN), also detailed in Section

3.1.2. Although implementing the ASNJ would greatly increase the communication cost, which may be a

reason to not implement that algorithm in a distributed setting, we do not see a valid reason why Dedoop

does not support IBSN. Supporting more blocking algorithms would increase Dedoop’s usability, since

other data cleaning platforms could use Dedoop just to distribute the blocking algorithms. However, most

data cleaning platforms have a wider range of supported blocking techniques than Dedoop. Regarding

27

the solution proposed by R. Vernica et. al., we consider it a good solution to overcome the cartesian

product costs, however, it is limited to that task. It does not perform the deduplication task as Dedoop.

Moreover, both solutions have a big memory footprint, since they need to maintain state between the

map-reduce jobs. For example, Dedoop needs to maintain a copy of the Block Distribution Matrix (BDM),

which enables load balancing, in each map task. Since the BDM has one entry for each blocking key,

when we have a big dataset that may be a problem. The solution by Vernica also has to maintain a

copy of the ordered list of tokens, computed in the first map-reduce job, in each map task of the second

map-reduce job (where the similarity is computed).

3.3 Data Cleaning Research Prototypes

In this section, we present the data cleaning research prototypes that, as far as the author is aware of,

address the efficiency of a data cleaning process. For each prototype, we detail its architecture, how

it handles large amounts of data, the approaches taken to deal with expensive tasks, and the platform

specificities for solving the efficiency problem of a data cleaning process.

In Section 3.3.1, we present the CLEENEX prototype, a transformation-based data cleaning tool.

Then, in Section 3.3.2, we detail the CleanM prototype, a recently proposed transformation-based data

cleaning tool. Section 3.3.3 details the rule-based data cleaning tool BigDansing. The last prototype,

the cross-platform data processing tool RHEEM, is explained in Section 3.3.4. Finally, in Section 3.3.5,

we provide an overview over the four prototypes explained in this section.

3.3.1 CLEENEX

CLEENEX [15] is an extension of the data cleaning tool AJAX [14]. CLEENEX incorporates user feed-

back into a data cleaning process, introducing the notion of Quality Constraints and Manual Data Re-

pairs. It is a transformation-based data cleaning tool that provides a specification language, that is an

extension of the SQL language, for describing data transformations. Similarly to AJAX, CLEENEX pro-

vides a separation between the logical level, where the developer defines through an SQL-like syntax,

the data cleaning program, i.e., the sequence of data cleaning operators to be applied, and the physical

level, that describes the implementation of a data cleaning program, i.e., which algorithms shall be used

to execute those operators. This separation opens optimization opportunities that can be applied at the

physical level.

CLEENEX introduces the notion of a Data Cleaning Graph (DCG) to represent a data cleaning pro-

gram, i.e., the workflow of data transformations to be applied to a dataset. A DCG is a Directed Acyclic

Graph (DAG) whose nodes represent the transformations that shall be performed, or the relations that

serve as input for those transformations. The edges connect relations to data transformations. Each

transformation can be specified through one of the five logical operators supported by CLEENEX: (i)

mapping which takes a single relation as input and outputs one or more relations, (ii) view, an operator

that represents a simple SQL query augmented with some integrity checking over the output relation,

28

(iii) matching, which applies an approximate join to two input relations to detect approximate duplicate

records, (iv) clustering, that takes a single input relation and groups its records according to a given

clustering algorithm (e.g., transitive closure), and (v) merging, which groups the input records according

to some grouping attributes and collapses each group into a single tuple using a user-defined aggre-

gation function. To complement these operators, CLEENEX supports User Defined Functions (UDFs),

implemented in Java, enabling them to be invoked within operators. These UDFs must be registered in

the CLEENEX functions/algorithms library. All the relations involved in a DCG (input and intermediate

relations generated by the graph) are stored in a RDBMS.

As mentioned earlier, CLEENEX introduces Quality Constraints (QCs) and Manual Data Repairs

(MDRs). These QCs and MDRs are defined over the set of input and output relations that compose

the DCG. Each relation can be associated to a set of QCs that its records must satisfy (e.g., the QC

qc1 : salary > 600 defines that the salary attribute value must be higher than 600C). A QC is a

mechanism to call the user’s attention for tuples that do not satisfy certain conditions. A blamed tuple is

a record that does not satisfy a QC. Every QC has a table for its blamed tuples. A MDR may be defined

over any relation of the DCG consisting in a updatable view and an action. The view defines the set of

tuples that the user sees when an MDR is executed. An action can be an update, insertion or removal.

When a QC is defined over a relation, an MDR can also be defined over the same relation to provide a

way for incorporating a user action to manually correct the blamed tuples.

The CLEENEX architecture is illustrated in Figure 3.9. It is composed by the following nine compo-

nents:

1. Parser: performs the syntactical analysis of the data cleaning program, generates the DCG, and

generates the Java code needed to execute the data cleaning program (including the QCs and

MDRs);

2. Catalog Manager: saves the Java representation of the DCG;

3. Database Manager: communicates with the Relational Database Management System (RDBMS).

Upon Catalog Manager request, during compilation time, it creates the output tables for each data

transformation. On execution time, it receives requests from the Scheduler, the Debugger, or the

Graphical User Interface (GUI) to execute SQL queries;

4. Quality Constraint (QC) Manager: responsible to create the table that will store the blamed tuples

for each QC;

5. Manual Data Repair (MDR) Manager: constructs and applies the MDRs to the relations according

to the user feedback;

6. Scheduler: executes the compiled data transformations according to the order defined in the data

cleaning program;

7. GUI: graphical representation of the data cleaning graph (DCG);

8. Debugger: enables the user to trace the execution flow of a DCG;

29

Figure 3.9: CLEENEX component architecture

9. Optimizer: responsible to choose the best physical execution algorithms for each logical data

transformation in the DCG and to optimize the DCG as a whole.

In the current version of CLEENEX, there are two optimizations defined: (i) push down to the RDBMS

all operations that are possible to perform there (e.g. the View operator), since an RDBMS already

defines several optimizations, thus taking out the burden of the CLEENEX optimizer, and (ii) it allows

the user to provide hints to the optimizer to use a given algorithm to perform the approximate duplicate

detection task.

3.3.2 CleanM

CleanM [16] is a recently proposed data cleaning tool that aims at unifying the most popular data clean-

ing operations into a single tool. CleanM allows the users to express several data cleaning tasks such

as denial constraints, deduplication, data transformations (e.g., merging columns of a dataset), and term

validations. Furthermore, it supports an extension of the SQL language that enables to specify those

cleaning tasks. Data cleaning operations are firstly optimized, and then deployed in a scale-out fashion,

using frameworks such as Spark.

CleanM proposes a three-level optimization for a given data cleaning program as represented in Fig-

ure 3.10. First, the Parser transforms the data cleaning program into an Abstract Syntax Tree (AST),

as in an RDBMS. The AST is further mapped by the Monoid Rewriter into an optimizable and inher-

ently parallelizable calculus, the monoid comprehension calculus [11]. This calculus is able to represent

complex operations between different data collection types (e.g., JSON, relational, etc) in a unified way,

thus enabling to optimize the task as a whole. Moreover, some optimizations, such as filter pushdown

(detailed in Section 2.1.2), are applied to the comprehensions. Then, at the second-level optimization,

the comprehensions generated are translated into an intermediate algebra, the nested relational algebra

[11], by the Monoid Optimizer module. This intermediate algebra has three major benefits: (i) it defines

a set of rules, removing any query nestings, which in data cleaning programs, constitutes a major con-

30

cern, (ii) independently of the data source, or the desired operation(s), all monoids are translated into

the algebra, enabling the detection of intra- and inter-operator optimizations (e.g., work/data sharing

between operators, i.e., if task A performed operation X, and task B also performs operation X but with

different parameters, then the tasks are merged - this is known as coalescing operators), (iii) since the

comprehensions are being translated into an algebraic form, optimization techniques vastly studied in

the context of relational algebra can be used. Finally, the third-level of optimization is the mapping of

the algebraic operators to a physical plan, which is able to deal with common problems such as data

skew. This third-level of optimization is performed by the Plan Rewriter module. Independently of the

complexity of a data cleaning task and the data sources, CleanM treats the whole task as a single query,

optimizing it as a whole. Completing the optimization steps, the physical plan is translated into code

by the Code Generator in order to execute the data cleaning program in a distributed execution engine

(e.g.: Spark).

Figure 3.10: CleanM example workflow. Adapted from [21].

By using the monoid comprehension calculus and the nested relational algebra, CleanM is able to

perform optimizations both at the logical and physical level. At the logical level [11], there are optimiza-

tions such as the aforementioned filter pushdown, performed by the Monoid Optimizer module. At the

physical level, CleanM defines algorithms to deal with costly cases such as similarity joins and self-joins.

Naı̈ve implementations of such tasks use the Cartesian product, i.e., all-to-all comparisons. CleanM

also uses blocking techniques (studied in Section 3.1). The length of the strings (i.e., the blocking key

values) affects the number of blocks created, therefore, depending on that length, CleanM uses one of

two techniques: (i) token filtering for smaller strings, using a similar approach to the already detailed

Q-gram Based Indexing (Section 3.1.3), or (ii) clustering for bigger strings. More precisely, to perform

clustering, CleanM uses a modified machine learning clustering algorithm, k-means. Note that k-means

is an iterative algorithm, however, iterative algorithms and large amounts of data are usually not a good

fit. Therefore, CleanM uses a single iteration k-means [27] to avoid performing multiple iterations, thus

being able to achieve a better performance and execution time.

Unlike most data cleaning tools, CleanM treats all data cleaning operations as first-class citizens,

instead of relying on black-box UDFs (i.e., UDF that are not defined by the language). For example,

CLEENEX (detailed in Section 3.3.1) relies on black-box UDFs to perform and/or assist data cleaning

transformations. By treating data cleaning operations as first-class citizens (i.e., UDFs whose optimizer

knows how they behave), CleanM is able to perform a static analysis, i.e., to compute the cost of per-

forming an operation at compile time, thus being able to perform a better and more realistic analysis of

a data cleaning program cost (as defined in Section 2.1).

31

Figure 3.11: BigDansing architecture. Adapted from [22].

3.3.3 BigDansing

BigDansing [22] is a Big Data Cleansing tool that tackles the problem of efficiency and scalability. Big-

Dansing differs from the previous approaches described so far in Section 3.3 because it is a rule-based

data cleaning tool. A rule-based tool first detects which (pairs of) records violate a set of predefined

rules. Then, either automatically or by asking for user’s assistance, fixes the detected violations5.

The BigDansing system architecture is illustrated in Figure 3.11. It is possible to distinguish two big

modules (the ones in blue). The left-most is the Rule Engine module. It receives as input a dirty dataset

and a BigDansing job, i.e., a rule expressed declaratively or procedurally (i.e., through the definition

of UDF-based operators). Then, it outputs a set of violations and possible repairs. A BigDansing job

defines which operations must be performed, and their order. The Rule Engine module is divided in three

layers: (i) logical layer, (ii) physical layer, and (iii) execution layer. The logical layer is where we define

a rule, independently if it is expressed declaratively or procedurally. At the physical layer, the logical

plan with logical operators, built in the previous layer, is converted to physical operators and the whole

plan is optimized. Finally, at the execution layer, the physical operators are mapped to the operators

of the framework to be used (e.g., Spark, DBMS, Map-Reduce based, etc). The remaining module is

the Repair Algorithm, which repairs the detected violations using the Equivalence Class algorithm [4, 8].

A BigDansing job can be defined using five logical operators: (i) Scope, that reduces the quantity of

data to be treated, i.e., acts as a filter, (ii) Block, which groups records by a given key, (iii) Iterate, that

enumerates all possible combinations of records in each block, i.e., performs the Cartesian product

inside each block, (iv) Detect, which verifies if there is a violation for each pair, and (v) Repair, also

known as GenFix, that retrieves possible solutions for the violation that was found. If it is a procedural

rule, then it is up to the user to define the order by which operators are executed. If it is a declarative rule,

then the Rule Parser module automatically translates it to a BigDansing job using the aforementioned

logical operators.

The logical plan created in the logical layer, that represents the BigDansing job to be executed, is

5Sometimes a violation cannot be fixed, however we consider a dataset as cleaned if it does not have violations, or if it has only
violations that cannot be repaired.

32

Figure 3.12: Plans for DC1. Extracted from [22].

optimized and translated into a physical plan composed of physical operators. There are two types of

physical operators: a wrapper, which performs the operation demanded by a logical operator (PScope,

PDetect, PGenFix, etc), adding physical details such as the input dataset, and an enhancer, that re-

places a wrapper whenever there is an optimization opportunity. The enhancer is an optimized physical

operator.

Possible enhancers are: CoBlock, UCrossProduct, and OCJoin. The CoBlock operator acts as a

GROUP BY clause, that is, it groups all records with the same key (attribute) in the same group. The

UCrossProduct performs an optimized self-join when the order of comparisons does not matter (i.e.,

when the join condition uses the = or 6= operators). If the order of comparisons matters (i.e., when we

use the <, >, ≤ or ≥ operators in the join condition), then we use the OCJoin enhancer, which optimizes

the naı̈ve self-join.

Before a physical plan is generated, at the physical layer, BigDansing performs a static analysis,

known as plan consolidation. Once the plan consolidation is finished, it outputs a consolidated logical

plan. In the plan consolidation phase, the goal is to coalesce operators as much as possible. Coalescing

can be performed when there are two identical logical operators that read the same dataset. Then,

the consolidated logical plan is transformed into a physical plan. In this physical plan, wrappers will

be replaced by enhancers whenever it is possible. Consider the denial constraint DC1 : ∀T1, T2 ∈

D1,¬(t1.name = t2.name ∧ T1.address = T2.address ∧ T1.job 6= T2.job), in which there is a violation

if two employees have the same name and address and different jobs. Consider that the dataset D1

refers to the Employee relation. For DC1, the logical plan in Figure 3.12a is generated. First, for T1,

we read the dataset, select the relevant attributes (emp id, name, address and job) and perform the

block operation. The same operations, with the same exact order are performed for T2, thus instead of

reading the dataset twice, we coalesce these operations into one, as shown in Figure 3.12b, generating

the consolidated logical plan. Finally, we transform each logical operator into a physical operator (a

wrapper or an enhancer), creating the physical plan illustrated in Figure 3.12c.

Both wrappers and enhancers have the same purpose: to implement a logical operator. When

executed, they produce the list of violations to the rules that compose a data cleaning program. Once

the records that do not satisfy the rules are found, they need to be repaired. BigDansing implements

a widely used distributed repairing algorithm, the Equivalence Class algorithm [4, 8], unlike to most

33

data cleaning rule-based tools, that use a centralized approach to avoid inconsistencies when applying

repairs. The Equivalence Class algorithm first groups all records that should be equivalent together,

and then decides how to assign values to each group. An equivalence class consists of pairs of the

form (t, A), where t is a record, and A is one of t’s attributes. In a dataset D, each record t and

each A in t have an associated equivalence class, denoted by eq(t, A). In a repair, a unique target

value is assigned to each equivalence class E, denoted by targ(E). BigDansing extends this algorithm

to a distributed setting by modeling it as a distributed word counting algorithm. Unlike the common

distributed word counting algorithm, BigDansing uses two map-reduce jobs. Consider as an example

that there is a record, identified by an id, that has a violation that may be repaired by applying one

of three fixes. Each one of these fixes will lead that record to a possibly new value (e.g., maintain

the current value or assume a new value). In the first map-reduce job, the map tasks output a key-

value pair of the form ([record id, new value], 1), which fed the reduce tasks. A reduce task receives

all pairs with the same key value, and aggregates them by producing a new key-value pair of the form

([record id, new value], count), where count is the number of pairs with the same key value. Then, the

a second map-reduce job is scheduled, receiving as input the output of the previous reduce tasks. The

map tasks produce a new key-value pair of the form (record id, [new value, count]) and deliver them to

a set of reduce tasks. A record (identified by the record id value) assumes the value that has the highest

frequency (i.e., higher count value).

3.3.4 RHEEM

RHEEM [1] is a cross-platform data processing tool. It has a different purpose from the other research

data cleaning tools presented in this section. In fact, it does not execute a data cleaning program itself.

Instead, it uses external platforms to perform the transformations that compose a data cleaning program,

i.e., it plays the role of a middleware between applications and platforms.

RHEEM represents a data cleaning program as a graph composed by data transformations. For

each data transformation, RHEEM chooses the best platform to perform it, cost-wise (e.g., the platform

that has the best execution time or the less monetary-cost). However, choosing the best platform for

each data transformation may result in a suboptimal data cleaning program, as the cost to perform the

transformations and move data between platforms may be higher than running the transformations in a

single platform. To create the most efficient data cleaning program, RHEEM has a cost-based cross-

platform optimizer that: (i) is able to deal with the intricacies of each data cleaning platform, taking that

burden from the users, (ii) takes data movement into account, and (iii) is able to deal with bad cardinality

estimates, re-optimizing the execution of a data cleaning program while it is already executing.

To create a data cleaning program, the user needs to define a RHEEM plan, using Java, Python, the

data-flow language proposed by the authors called RheemLatin, or the visual integrated development

environment, Rheem Studio. A RHEEM plan is a directed graph whose nodes, commonly known as

operators, represent the data transformations. Operators are connected by edges that represent the

data flows between them. An operator is platform agnostic and abstracts a transformation. Examples of

34

RHEEM operators are the Map and Reduce operators, whose behaviour resembles those of the Map-

Reduce paradigm, and the GroupBy operator, which groups records by a given key value. Each operator

receives as input a data quanta. A data quanta is the smallest processing unit from the input datasets,

independently of their format (e.g., in a RDBMS each record is a data quanta, in a document-store, the

data quanta is a document).

Once a user defines a RHEEM plan, the cost-based optimizer receives it as input and produces an

execution plan. The RHEEM plan defines the operations to be performed and their order, whereas the

execution plan defines where those operations will be performed, i.e., in which platform (e.g., Spark,

JavaStreams, PostgreSQL, etc). The optimizer will find the plan that minimizes the cost of the whole

data cleaning program. Which platforms are selected depends on how the user defined the meaning of

cost (e.g., monetary, execution time, minimize data movements, etc). In the remaining of this section,

we detail the cost-based optimizer, also known as cross-platform optimizer.

The Cross-Platform Optimizer is responsible to select the most efficient platform to execute a single

operator in a RHEEM plan. This optimizer does not perform any logical or physical optimizations, such

as operator reordering, partitioning, etc. It is up to the user using RHEEM to optimize the plan, and to

each platform to optimize an operator. The optimizer is divided into four phases: (i) plan inflation, (ii)

cost estimates annotation, (iii) data movement planning, and (iv) plan enumeration.

Plan inflation is responsible for mapping RHEEM operators to platform-specific operators (e.g., Spark,

JavaStreams). In this phase, RHEEM does not choose the platform where an operator will be executed.

Instead, it maps an operator to every available platform that can execute it (i.e., creates an execution

plan for an operator), and saves all generated mappings. The inflated plan of a RHEEM operator (gray

box in Figure 3.13) is the group composed by that operator and its mappings.

RHEEM uses an UDF-based approach to evaluate the cost of each execution operator (i.e., the cost

of executing an operator on a platform) in order to perform the cost estimate annotation. The user must

define how he intends to measure the cost (execution time, monetary cost, etc) via an UDF dedicated

to that effect, known as cost function. The cost estimates in RHEEM are not a single value, but instead

an interval with the respective confidence that RHEEM has in that interval (pink box in Figure 3.13).

To enable the optimization of an execution plan, RHEEM uses the output cardinalities of each data

operator (i.e., the number of records the data operator outputs), which are produced in the cost estimates

annotation phase. To compute the cardinality of an operator, each operator has a cardinality estimator

that takes into account how the operator works (e.g., number of iterations) and the input cardinality. Note

that the output cardinality of the Reduce operator in Figure 3.13 (second blue box) is the input cardinality

of the Map operator (third blue box). While executing the data cleaning program, if RHEEM detects that

the cardinalities were badly estimated, it pauses the DCP execution and reoptimizes the physical plan

according to the current execution state.

Data movement between platforms must be taken into consideration when creating an execution

plan, since the cost of moving data among platforms may be higher than the operations themselves,

if not performed properly (e.g., always broadcasting all records when we just need a subset). There

are several ways of performing data movement, for example, using a broadcast operator (i.e., all-to-all)

35

Figure 3.13: Inflated RHEEM operator (extracted from [1])

versus 1-to-n (i.e., one to n platforms, which is not necessarily all platforms) or n-to-m communication

(i.e.,where n and m are subsets of the total platforms). Moreover, when communicating between plat-

forms, we may need to apply transformations to the data being moved so that it can be used as input in

the target platform. It is the job of the optimizer to find the best trade-off between data movement and

transformation cost. RHEEM models the data movement paths across platforms as a graph problem,

namely, as a channel conversion graph [25]. By handling the data movement across operators as a

graph problem, RHEEM is able to find the most efficient strategy to perform the data movement (the

algorithm is detailed in [25]). Once the most efficient strategy is found, it is attached to the execution

plan of an operator.

After all the previous steps are completed (i.e., plan inflation, cost and cardinalities estimation, and

data movement planning), the optimizer will identify which is the best execution plan for a given operator

(plan enumeration phase). However, the optimizer does not select the best execution plan for a single

operator. Instead, the optimizer considers the RHEEM plan as a whole, and tries to find the set of exe-

cution plans that minimize the overall cost. Without any optimizations, this would result in an exponential

search space (with n operators and k execution plans for each, there would be kn plans). To reduce the

search space, RHEEM uses a lossless pruning technique [25], which guarantees that the optimizer is

able to always find the optimal execution plan (i.e., the one with the minimum overall cost).

To execute and distribute the work between the platforms, there is the need to schedule that work

in each one. The module responsible for this task is the Executor. Each platform receives a subplan

of the whole execution plan, to that subplan we call it stage. A stage is a set of operators that: (i) are

executed in the same platform, (ii) after finishing the work of that stage the control is returned to the

executor, and (iii) the output of the stage is saved in a data structure instead of being pipeline to the

following data operation (if it exists). The executor works as follows: it first dispatches all stages that do

not have dependencies, and then dispatches the ones that have dependencies between each others (by

only dispatching a stage after its dependencies are finished).

36

CLEENEX CleanM BigDansing RHEEM
Type Transformation Transformation Rule Cross-platform
Optimization
Focus DCP DCP DCP Platforms

Logical
Operators

Mapping, View, Matching,
Clustering, Merging

FD, DEDUP,
CLUSTERBY

Scope, Block, Iterate,
Detect, GenFix Map, Reduce, GroupBy

Physical
Operators Not explicitly defined Not explicitly defined

PScope, PBlock, PIterate,
PDetect, PGenFix, CoBlock,
UCrossProduct, OCJoin

Depends on the platform used

Optimization
Techniques Inexistent Single iteration k-means

Operators coalescence
Operators coalescence
Enhancers On-the-fly plan reoptimization

Table 3.4: Summary of the data cleaning prototypes detailed in Section 3.3

3.3.5 Discussion

In this section, we presented four data cleaning prototypes whose design and implementation focus on

scalability and distribution of a data cleaning program.

Table 3.4 summarizes the data cleaning tools presented (one column for each tool). The row Type

indicates if the data cleaning tool is transformation-based, rule-based or cross-platform. The row Opti-

mization Focus emphasizes the optimization focus of a tool, i.e., if it focus on the data cleaning program.

The Logical Operators row defines which logical operators a tool offers. The row Physical Operators de-

tails the physical operators a tool defines. Finally, the Optimization Techniques row lists which automatic

techniques a tool uses to enhance performance.

Most of the prototypes analyzed are transformation-based. This follows the approach of current

commercial tools, which prefer the transformation-based approach. Apart from RHEEM, all tools try to

optimize a data cleaning program (DCP) with the algorithms they provide. RHEEM is the exception since

is the user’s responsibility to optimize the plan (which represents a data cleaning program) as a whole

and the platforms responsibility to optimize a subpart of a plan (e.g., if RHEEM decides that platform A

should perform a subplan X, then the platform A is responsible to optimize that subplan X).

Regarding the logical operators, the two transformation-based data cleaning tools, CLEENEX and

CleanM, have operations in common (e.g., mapping and DEDUP, clustering and CLUSTERBY). Al-

though CLEENEX defines the Matching and View operators and CleanM does not, CleanM supports

these operations through its declarative language. Regarding BigDansing, it differs from the transformation-

based approaches, since it supports operations related to rule-based data cleaning tools, such as the

detection of pair of tuples that do not satisfy a set of quality rules (Detect), and the repairing of the tuples

that do not satisfy that set of quality rules (GenFix). Regarding RHEEM, it supports operators such

as the Map, Reduce and GroupBy which resemble the mapping, merging and clustering operators of

CLEENEX, respectively.

Apart from BigDansing, none of the platforms described in Section 3.3 explicitly define their physical

operators. Instead, they define a set of algorithms that can execute a logical operator (e.g., in CleanM

we can explicitly declare that we want to perform clustering with k-means). RHEEM physical operators

are those of the platforms it uses.

Concerning the optimization techniques of each platform, CLEENEX currently performs the execution

push down to the RDBMS and enables the user to give optimization hints. Both CleanM and BigDansing

37

optimize their logical plans by performing operator coalescence (BigDansing performs this optimization

in the plan consolidation phase). This optimization reduces the number of reads performed for a given

dataset, which is a costly operation. RHEEM’s most important optimization is the capability to re-adapt to

bad statistics, by pausing execution and redefining the physical plan according to the current execution

state.

38

Chapter 4

Proposed Solution

As stated in Section 1.3, the goal of this thesis is to implement an optimizer to be integrated in the data

cleaning research prototype CLEENEX.

In Section 4.1 we describe the CLEENEX component architecture. Section 4.2 details the archi-

tecture of the optimizer and its components. There we introduce the notion of an execution plan, a

physical operator, and a physical algorithm. In Section 4.3 we describe the cost model that supports the

optimizer, namely how the output size of a physical algorithm is estimated, how the CPU and I/O cost

are computed, and finally, how the cost model uses these measures to compute the cost of a physical

algorithm. Finally, in Section 4.4 details the optimizations that were made in CLEENEX and that are not

related to the optimizer.

4.1 CLEENEX Component Architecture

The CLEENEX component architecture is represented in Figure 4.1. It is composed of nine components,

including the optimizer.

Figure 4.1: CLEENEX component architecture

39

A Data Cleaning Program (DCP) in CLEENEX is defined through a declarative language in the

CLEENEX GUI. The DCP is firstly parsed by the Parser module. The Parser creates all necessary

data structures to support CLEENEX execution. Among these structures are the Data Cleaning Graph

(DCG) and the catalog. The catalog gathers all information about a DCP, being through it that the mod-

ules can access the DCG. The Catalog Manager (CM) acts as an intermediary between all modules,

making available to all of them the catalog instance. The catalog instance is one of the dependencies of

the renovated Optimizer. Note that the optimizer module already existed in CLEENEX. The difference to

the new one is that it was not automatic, as it was dependent on the hints given by the user. Moreover,

whereas the old had no output, the new one outputs an executable graph of transformations. This graph

of transformations is delivered to the Scheduler so that the DCP declared in the CLEENEX GUI may be

executed.

4.2 Optimizer Architecture

The design and implementation of an optimizer in CLEENEX is the main goal of this thesis. The optimizer

is responsible for the following tasks: (i) receiving the DCG and translate it into an execution plan, an

executable graph of transformations that lists which physical operators and physical algorithms should

be used, (ii) generate equivalent execution plans, (iii) select the least costly execution plan, and (iv) save

the cheapest execution plan for a given DCG so that it can be reused.

The DCG represents the logical plan in CLEENEX. In order to represent the physical plan, we de-

signed another data structure, the Execution Plan (EP). Both DCG and EP represent a graph. However,

whereas the DCG graph nodes are logical operators, the EP nodes are physical operators. A physical

operator gathers all necessary information to execute a logical operator but does not execute it. Instead,

it uses a physical algorithm. A physical algorithm is what enables the execution of a logical operator.

Note that a physical operator may have several physical algorithms that are able to execute it. For

example, the Matching physical operator has six physical algorithms.

The execution workflow of the optimizer is represented in Figure 4.2. The CLEENEX Executor rep-

resents the execution flow started by the HTTP request made by the user once he requests the DCP

execution through CLEENEX GUI. Somewhere in the execution, the optimizer is requested to provide

the cheapest execution plan for a given DCG. The optimizer starts by converting the DCG into an empty

execution plan (Plan Converter). We consider an empty execution plan one that does not have any phys-

ical algorithm associated with its physical operators. Then, it checks if there is already an execution plan

with the same characteristics in the Plan Cache module. If there is, then the cached execution plan is

retrieved. Otherwise, the workflow proceeds, and from that empty execution plan, the Equivalent Plans

Generator module creates, if possible, equivalent execution plans. It is expected that this module always

outputs at least one execution plan, the one that uses the default physical algorithms of each physical

operator. When a physical operator defines only one physical algorithm, that algorithm is considered

the default for that physical operator. For the matching physical operator, the default physical algorithm

is the Cartesian Product. Then, the cost of the plans is estimated by the Plan Cost Estimator module

40

using a cost model. Once the cheapest plan is found, it is saved in the cache and is returned, and the

CLEENEX Executor proceeds its execution.

Figure 4.2: Optimizer execution workflow

In the remainder of this section, we describe the several components that compose the optimizer. In

Section 4.2.1 we describe what is the execution plan and how it compares to the data cleaning graph.

In Section 4.2.2 we detail the algorithm that enables the optimizer to convert from a data cleaning graph

to an execution plan. In Section 4.2.3 we explain how the cache module works, namely, how it saves

an execution plan and how it evaluates if a given execution plan is equivalent to one already in cache.

Finally, in Section 4.2.4 we detail how equivalent plans are generated.

4.2.1 Execution Plan

The execution plan has an identical structure to the DCG. It starts and finishes with two dummy nodes

called Plan Head Node and Plan Tail Node, respectively. These nodes are needed for a matter of back-

wards compatibility since the structure that represents the DCG in CLEENEX contains this notion of

head and tail in the graph. After the head node, we have a node for each input table, data transfor-

mation, and intermediary table. The data transformations are represented by a structure called Plan

Node whereas the input tables and intermediary tables are represented by the Plan Table Node. The

difference between these two structures is where they redirect the execution. The Plan Node is executed

internally in CLEENEX. For its turn, the Plan Head Node is executed by an RDBMS. In Figure 4.3 the

rectangular-shaped objects are Plan Table Nodes and the oval-shaped objects Plan Nodes. The number

of nodes and their order is identical between the DCG and the EP. Figure 4.3 shows the translation of

a DCG (Figure 4.3a) into an execution plan (Figure 4.3b), allowing us to see that they only differ in the

information each node makes available, which in the DCG is more limited.

In the DCG, a table node contains information regarding the node name (Name), e.g., Employee or

Mapping Output, and an instance that represents the table (Table). The transformation node contains

also the node name (Name) and an instance that represents the transformation (Transformation). For

its turn, the EP has the same data for both table and transformation node, containing a link to the

descendant (Descendant Nodes) and parent nodes (Parent nodes), the node name (Name), and the

physical operator that will enable the execution of a node (Physical Operator).

The plan nodes architecture is represented in Figure 4.4. The plan node, which represents a trans-

41

(a) Data Cleaning Graph Example (b) Execution Plan Example

Figure 4.3: Example of a translation from a DCG to an execution plan

Figure 4.4: Architecture of the Plan Nodes

formation node, defines the necessary information that every node should have as well as the common

behavior to all plan nodes, i.e., transformation nodes, table nodes, and dummy nudes. In other words,

the Plan Table Node, the Plan Head Node, and the Plan Tail Node inherit the information to be stored

and their behavior from the Plan Node. Note that only the transformation nodes (plan node) do not

define a physical operator. This happens because this node, contrary to the others, does not have a

fixed physical operator. The dummy nodes do not need a physical operator since they do not execute

anything.

Each data transformation, such as matching, clustering, etc, has a physical operator. A Physical

Operator contains the name of the node where it belongs which is inherited from the plan node where

it is inserted, the list of supported physical algorithms, and the physical algorithm that is selected to

execute that physical operator, also referred as the execution algorithm. This execution algorithm must

be one of the physical algorithms listed under the list of the supported physical algorithms.

4.2.2 Plan Converter

The Plan Converter is responsible for translating a DCG into an EP. Listing 4.1 contains the pseudo-

code for the conversion algorithm. It starts by creating a new instance of an Execution Plan, the empty

execution plan (line 2). By default, this EP has two nodes, the Plan Head and Tail nodes. A map is also

created as an auxiliary data structure to the conversion process, storing the translation between a DCG

42

node and a plan node (e.g., the DCG’s Source Node is translated into the EP’s Plan Head Node). The

conversion algorithm iterates through the descendants of a given DCG node (lines 15-25), translating

each one into an EP node (lines 20-22). To support the iteration throughout the DCG nodes, a queue

is used. This queue helps to avoid the more memory consuming recursive approach to perform the

depth-first search in the DCG. Note that before converting a node, it is verified if the conversion didn’t

happen in a different iteration of the algorithm by querying the map for that node (lines 15-16). If the

node is on the map, then it was already evaluated, otherwise, it needs to be converted.

1 ExecutionPlan convertDCGToExecutionPlan(DataCleaningGrapg dataCleaningGraph) {

2 ExecutionPlan executionPlan = new ExecutionPlan();

3 // Keep track of the nodes already mapped

4 Map nodesCreated;

5 nodesCreated.put(dataCleaningGraph.getSource(), executionPlan.getHead());

6 nodesCreated.put(dataCleaningGraph.getSink(), executionPlan.getTail());

7 Queue queue;

8 queue.add(dataCleaningGraph.getSource());

9 // Represents a node in the DCG (logical plan)

10 Node currentLogicalNode;

11 while ((currentLogicalNode = queue.poll()) != null) {

12 PlanNode planNode = nodesCreated.get(currentLogicalNode);

13 if (currentLogicalNode.descendants().hasNext()) {

14 foreach descendantLogicalNode in currentLogicalNode.descendants()) {

15 PlanNode planNodeInMap = nodesCreated.get(descendantLogicalNode);

16 if (planNodeInMap == null) {

17 // Add this node to the queue so that its descendants can be verified

18 queue.add(descendantLogicalNode);

19 // Map Logical to Physical Node

20 planNodeInMap = PlanNodeFactory.build(descendantLogicalNode.getLogicalOperator());

21 // Add to the hashmap of mapped nodes to avoid redundant copies

22 nodesCreated.put(descendantLogicalNode, planNodeInMap);

23 }

24 executionPlan.addDescendantToNode(planNode, planNodeInMap);

25 }

26 }

27 }

28 return executionPlan;

29 }

Listing 4.1: Conversion Algorithm from Data Cleaning Graph to Execution Plan

The conversion from a DCG node to an EP node is delegated to a Plan Node Factory, as seen in

Listing 4.1 at line 20. This factory decides which type of node should be created, if one representing a

data transformation (e.g., matching, mapping, etc.), or a Plan Table Node representing either an input

43

table or an intermediary table, i.e., the output of a data transformation. Moreover, this factory also

extracts some information from the logical operator declaration that is needed in the physical operator.

The View physical operator needs the query declared in the operator so that it can estimate its cost.

The Matching operator also needs information concerning the window size, being that extracted from

the declared hints in the logical operator.

4.2.3 Plan Cache

Caching the cheapest plan is essential to avoid having to repeat unnecessary operations, thus wasting

time.

The optimizer is able to use any caching strategy since the strategy itself is abstracted by a Java

interface called Plan Cache. Currently, there is only one caching strategy, the default one. The default

strategy has limited storage of 100 plans. This limit was imposed to decrease CLEENEX’s memory

footprint. This caching strategy, for a given data cleaning program, stores the corresponding cheapest

execution plan in terms of the overall plan cost.

When the optimizer requests an execution plan from the cache, it needs to send the empty execution

plan generated when translating the data cleaning graph into an execution plan. An empty execution

plan contains information regarding the data operations that will be performed and their order, the name

of the input table, and its input size. The cache uses this information to compare that empty execution

plan with every execution plan in cache, and it considers that there is a match if and only if: (i) the

plans have the same nodes, i.e., have the same node names and same data transformations, (ii) all

nodes are in the same order, and (iii) the input tables are equivalent. An input table is considered

equivalent if: (i) the name of the input is the same, and (ii) the input size difference follows the rule

0.5×plan in cache input size ≤ new input size ≤ 1.5×plan in cache input size. For example, assume

that the cache finds an execution plan that is identical to the empty execution plan under test. If the cache

plan has an input size of 1,000 records, for the plan under testing to be considered equivalent, it needs

to have between 500 and 2000 records, i.e., half or double the cache plan input size, respectively.

4.2.4 Equivalent Plans Generator

The Equivalent Plans Generator (EPG) output is dependent on the physical algorithms that each physi-

cal operator has. The EPG uses the physical algorithms of each physical operator to create exhaustively,

i.e., without any pruning technique, multiple equivalent execution plans. We consider execution plans as

equivalent if: (i) the plans have the same nodes, i.e., have the same node names and the same phys-

ical operators, and (ii) all nodes are in the same order. The EPG generates all possible combinations

of physical algorithms across the physical operators. If the user declares a DCP composed by logical

operators whose corresponding physical operators only have one physical algorithm each (e.g., View,

Clustering, Table, Mapping), the EPG only generates one execution plan. For example, a DCP with

View and Mapping operators will generate only one execution plan, as can be seen in Figure 4.5. That

execution plan uses the default physical algorithms. For a DCP that uses data transformations that have

44

multiple physical algorithms, such as the Matching operator, then more than one execution plan will be

generated. For example, for a DCP View and Matching operators, six equivalent execution plans are

generated. Some of these plans that include are shown in Figure 4.6.

Figure 4.5: Execution plan for a DCP with a View and Mapping operator

(a) Plan with Cartesian Product (b) Plan with Traditional Blocking (c) Plan with Canopy Clustering

Figure 4.6: Example of some equivalent execution plans generated for a DCP with a View and Matching
operator

The Equivalent Plans Generator pseudo-code is shown in Listing 4.2. The entry point is a method

called generateEquivalentExecutionP lans (line 1) that receives the empty execution plan created by

the parser (baseExecutionP lan). This algorithm performs a Dept-First Search (DFS) to find all nodes in

the empty execution plan (lines 6-27). As in the Plan Converter algorithm, explained in Section 4.2.2,

a queue data structure is used to avoid a recursive DFS, which has a bigger memory footprint. The

iteration starts by fetching the physical operator associated with the plan node (line 7) and its supported

physical algorithms (line 8). The empty execution plan physical operators are always set with the physical

operator first supported algorithm (line 11), i.e., the physical operator default physical algorithm. If the

physical operator has more than one supported physical algorithm, then for each physical algorithm a

new equivalent execution plan will be created (lines 23-25). In this case, the created execution plans will

be identical to the baseExecutionP lan, i.e., the empty execution plan, differing only in the algorithm that

the physical operator fetched at line 7 has as its execution algorithm. After that, all descendants of the

node that is under evaluation are added to the queue so that they can be also evaluated.

The algorithm between lines 31 and 46, createEquivalentP lans enables the generation of equiva-

lent execution plans. It receives as input the plan node whose physical operator has multiple physical

algorithms (currentNode), the already generated execution plans (equivalentP lans), and the number

45

of supported algorithms by the physical operator (supportedAlgorithms). For each remaining phys-

ical algorithm, i.e., excluding the first one (at index 0), it copies all already existing plans stored in

equivalentP lans (line 36). Then, iterates in a new loop the copied plans (lines 37-44) and, for each one,

searches the physical operator that triggered the execution of this algorithm in the copied plan (lines

39-40), and sets as the physical operator execution algorithm the one at index i in its list of supported

algorithms (lines 41-43). To better understand the purpose of createEquivalentP lans algorithm, con-

sider the following example: assume that there are two equivalent plans already generated, A and B.

These plans have some nodes, and we want to add another node whose physical operator supported

physical algorithms are X and Y . If there are two plans, the algorithm needs to create two versions of

those two plans. The first version with plan A and B using physical algorithm X and another version

using physical algorithm Y . Thus, from two equivalent plans, we go to four.

1 ExecutionPlan[] generateEquivalentExecutionPlans(ExecutionPlan baseExecutionPlan) {

2 ExecutionPlan [] equivalentPlans;

3 Queue nodesToEvaluate;

4 nodesToEvaluate.put(baseExecutionPlan.getHead().getDescendantNodes());

5 PlanNode currentNode = nodesToEvaluate.poll();

6 while(currentNode != null) {

7 PhysicalOperator physicalOperator = currentNode.getPhysicalOperator();

8 Algorithm[] supportedAlgorithms = physicalOperator.getSupportedAlgorithms();

9 // Affect the baseExecutionPlan (empty plan, index = 0)

10 // with the first supported algorithm

11 physicalOperator.setExecutionAlgorithm(supportedAlgorithms[0]);

12 // Update the other execution plans (if they exist) with the same algorithm

13 foreach ep in <remaining execution plans> {

14 // Get the node that is being manipulated in the other plan

15 PlanNode node = ep.searchPlanNodeInExecutionPlan(currentNode);

16 // Update the algorithm

17 node.getPhysicalOperator()

18 .setExecutionAlgorithm(

19 node.getPhysicalOperator().getSupportedAlgorithms()[0]

20);

21 }

22 // When there is more than one supported algorithm create equivalent plans

23 if (supportedAlgorithms.length() > 1) {

24 createEquivalentPlans(currentNode, equivalentPlans, supportedAlgorithms.length());

25 }

26 nodesToEvaluate.addAll(currentNode.getDescendantNodes());

27 }

28 return equivalentPlansGenerated;

29 }

30

46

31 createEquivalentPlans(PlanNode currentNode, ExecutionPlan[] equivalentPlans,

32 int supportedAlgorithms) {

33 // index = 0 was already used to affect the empty execution plan (baseExecutionPlan)

34 from i = 1 to supportedAlgorithms {

35 // Creates a copy of the plans that are in equivalentPlans.

36 ExecutionPlan [] plansToCreate = copyAllPlans(equivalentPlans);

37 foreach executionPlanCopy in plansToCreate {

38 // Find the corresponding node in the new plan and set the algorithm

39 PlanNode currentNodeInCopyPlan =

40 executionPlanCopy.searchPlanNodeInExecutionPlan(currentNode);

41 PhysicalOperator physicalOperator = currentNodeInCopyPlan.getPhysicalOperator();

42 Algorithm algorithm = physicalOperator.getSupportedAlgorithms()[i]);

43 physicalOperator.setExecutionAlgorithm(algorithm);

44 }

45 i++;

46 }

47 equivalentPlans.addAll(plansToCreate);

48 }

Listing 4.2: Equivalent Execution Plan Generator Pseudo-Algorithm

4.3 Cost Model

The Cost Model enables to measure the cost of an execution plan. First, we need to take into account

that a plan is composed by a set of physical operators. In a given execution plan, each physical operator

has only one execution algorithm. This execution algorithm is selected among the list of supported

physical algorithms for that physical operator. The plan cost is affected by the cost of the physical

algorithms that are executed, i.e., it is not possible to define the cost for a physical operator since it

can be executed by different physical algorithms (e.g., the Matching can be executed by six different

algorithms). Therefore, the cost model needs to be created on an physical algorithm-basis. This cost

model includes three measures that are addressed individually in the remaining of this section: (i) the

estimated output size (ii) the cost of a physical algorithm, which allows us to evaluate how much CPU

effort is needed to execute the algorithm, and (iii) the I/O cost, measured in the number of pages read

from disk, allowing to measure the I/O effort needed to retrieve all data required to perform the algorithm.

In Section 4.3.1 we detail how the output size of an operator is estimated. Section 4.3.2 describes

the cost formulas used to compute both the CPU and I/O cost. Lastly, in Section 4.3.3, we explain how

the final cost of a physical algorithm is computed.

47

4.3.1 Output Size Estimation

To be able to properly estimate the output size of each data operator, we need to perform an in-depth

analysis of each operator semantics to understand how it works. CLEENEX has five logical and physical

operators, view, merging, clustering, matching and mapping, as discussed in Section 3.3.1. Table 4.1

shows, for each physical algorithm, its estimated output size and the expected maximum output size.

In Table 4.1, NR refers to the number of records of a relation R, and NS to the number of records of

a relation S, V (attrR) is the number of distinct values for a given attribute attr of relation R, and w is

the window size in the Sorted Neighborhood physical algorithms. We use NR∪S to refer the size of the

union between relations R and S, and BKVR ∪ BKVS is the total number of blocking key values from

both input relations R and S.

Physical Operator Physical Algorithm Estimated Output Size Expected Maximum
Output Size

View - NR ?
Mapping - NR ≥ NR
Merging Sorting

V (attrR) NRHashing
Clustering Transitive Closure NR 2NR

Matching

Cartesian product NR ×NS NR ×NS
Traditional Blocking NR×NS(∑V (BKVR∪BKVS)

i=1
× 1

i

)2 ×
∑V (BKVR∪BKVS)
i=1 × 1

i2 [6] NR ×NS

Canopy Clustering NR×NS×n2
l

n2
t

[6] NR ×NS
Sorted Neighborhood Join (SNJ) (w2 + 2(NR +NS − w)(w − 1)) [6] NR ×NS
Inverted Index SNJ NR×NS

V (BKVR∪BKVS)2 (w2 + (V (BKVR ∪BKVS)− w)(2w − 1)) [6] NR ×NS
Adaptive SNJ NR×NS(∑V (BKVR∪BKVS)

i=1
× 1

i

)2 ×
∑V (BKVR∪BKVS)
i=1 × 1

i2 NR ×NS

Table 4.1: CLEENEX output size estimation. NR stands for the number of records of relation R, whereas
NS , is the number of records of S. V (attrR) is the number of distinct values for attribute attr of relation
R, and w is the window size in the Sorted Neighborhood algorithms. We use NR∪S to refer the size of
the union between relations R and S, and BKVR ∪ BKVS is the total number of blocking key values
from both input relations R and S

The view operator corresponds to a SQL query whose execution will be pushed into the RDBMS. It

is not possible to estimate which will be its output size since no optimizer can predict which query the

user will insert. However, after knowing the query associated with the view operator, the optimizer can

request the RDBMS to estimate the output size and the record size (i.e., how many bytes each record

has), if the queried table already exists. If this queried table does not exist, i.e., it is an intermediary

table, then the output size is estimated to be the input size, NR.

The mapping operator enables the users to map a given record into zero or more records (e.g., split

a column into multiple columns). It is not possible to state that in all cases we will have the same output

size as input size, i.e., NR. However, the estimated output size of NR is a compromise we assumed to

enable the output estimation of this operator by the optimizer. Regarding the maximum output size, we

expect it to be greater or equal to NR given that the operator may output 0 or more output records for

each input record.

The merging semantics of this operator enables the aggregation of records and latter collapsing them

into once record using an aggregation function. This operator resembles the group by clause in SQL.

After aggregating the records into several groups, it collapses them into a single record. The estimated

output size is dependent on the number of distinct values that the grouping attributes have, i.e., V (attrR).

48

The maximum output size is NR, the number of input records, occurring when all the groups generated

have a size of 1. Regarding the physical algorithms that allow the execution of this operator, we have two

possibilities: (i) merge-sort based algorithm, or (ii) hash-join based algorithm. The physical algorithm

used does not affect either the estimated or maximum output.

The clustering operator enables the user to partition a given relation into several groups of records,

each identified by a unique cluster id. It receives and outputs one relation. Each record of the input

relation must represent a pair of records, i.e., the typical output of the matching operator. The records

contained in the output relation have the schema {cluster id, record id}, where cluster id identifies a

cluster, and record id a record that belongs to that cluster. The output relation may contain multiple

records whose cluster id is the same, meaning that a cluster has several records in it. The physical

algorithm used to implement the clustering operator in CLEENEX is the transitive closure. The operator’s

output is estimated to be N . The reasoning behind this estimation is that there are pairs of records that

repeat a given record multiple times. For that record, only one final record in the clustering output will be

needed. For example, for records A, B, C, andD, and pairs B−B,B−A, B−C, and B−D, the following

records will be output: (i) cid = 1, B, (ii) cid = 1, A, (iii) cid = 1, C, and (iv) cid = 1, D, with cid being

the cluster identifier. That is, for four pairs, four records are output by the cluster operator, thus justifying

an estimated output size of N . For the worst-case scenario, where there are not any identical records,

it will output 2NR records, since two records are created for each pair. Therefore, both the estimated

output size and expected maximum output size are equal to 2NR. This happens since for each pair of

records received as input, it outputs two records, the cluster to where each record is put does not affect

the output size of the operator.

The matching operator enables to detect approximate duplicates. It receives two relations as input

and outputs a single relation whose records have the schema {R record, S record, dRS}, where dRS is

the distance between records R record and S record. The two input relations can be a single relation

that is given as input twice. This operator has more than one alternative physical algorithm in CLEENEX.

Each algorithm has a trade-off between performance and accuracy of the results, as discussed in 3.1.6.

Unlike the estimated output size, the maximum output is independent of the algorithm, occurring when all

records are duplicates, thus generating NR ×NS records. To estimate the output size of each matching

physical algorithm, with the exception of the Cartesian Product, we use the results reported in [6]. Those

results have two variants: (i) with a normal distribution, which assumes an equal probability for any word

to appear in a dataset, and (ii) with a Zipf distribution, that assumes that in a list of words ordered by

their frequencies, the word at position p has a relative frequency of 1/p. We use the normal distribution

in for the estimations of all our physical algorithms except the Traditional Blocking and Adaptive SNJ.

The reasoning behind this difference for the remaining matching physical algorithms was due to the

lack of accuracy of the normal distribution for these two algorithms in specific. The authors estimate

the number of candidate pairs that each matching physical algorithm will produce. 1 The survey used

a uniform distribution for the blocking key values, meaning that every block will have roughly the same

size. A blocking key represents a record based in one or more attribute values of that record. It takes

1This cannot be confused with the matching operator output, which already implies the filtering of non-similar pairs.

49

into account the characteristics of each physical algorithm to estimate its output. In the estimated output

size formulas, V (BKVR/S) represents the number of unique blocking key values in either relation R or

S, whereas V (BKVR ∪BKVS) is the number of distinct key values in the union between both relations,

nl and nt are the canopy’s thresholds that were introduced in 3.1.5, and w refers to the window size of a

Sorted Neighborhood Join (SNJ) physical algorithm. Note that the estimation of the Adaptive SNJ is not

as accurate as the others since it has a varying window size.

For some of these estimations, there is the need to know the number of distinct values for a given

attribute, V (attrR). However, in the most common case, which is when we are estimating the output

size of an intermediary data transformation, i.e., an operator that uses the output of another operator

and not directly the input table of the DCG, in CLEENEX, there is no way to know how many distinct

values there are. Note that the output of the data transformations do not exist when the optimizer is

computing the estimations since they were not yet executed. As a workaround, the number of distinct

values is extracted directly from the node input size, which in the common case is also an estimation.

The number of distinct values is given as a multiplication of the input size by a distinct values factor. In

the current implementation, this factor is 30%. There is no reasoning behind this value. Moreover, in

the future it would be advisable to have another module that is able to perform the estimation of distinct

values for any data transformation at any node in the graph.

4.3.2 CPU and I/O Cost

To measure the cost of a physical algorithm, as mentioned earlier, the cost model needs to evaluate both

the algorithm’s performance, or CPU cost, measured using the complexity (Big O Notation), and the

impact in terms of I/O cost, commonly measured in terms of blocks/pages read from disk into memory.

Table 4.2 shows, for each physical operator, and respective physical algorithm(s), its CPU cost and I/O

cost. In what concerns the I/O Cost, we provide formulas for the expected cost in a RDBMS, that is the

I/O cost of perming the operation in an RDBMS, and the expected cost having in mind how the operators

are implemented in CLEENEX. In Table 4.2, NR refers to the number of records of a relation R, bR to

the number of blocks needed to store all the records from relation R, and w to the window size in the

Sorted Neighborhood algorithms. Finally, M is the number of pages the memory can accommodate.

When there is a second relation, i.e., in the matching operator, we refer to another relation S. To refer

the size of the union between relations R and S we use NR∪S .

The Mapping physical operator reads all records from the input table and, for each one, performs

an action. It is not possible to accurately predict the algorithmic cost since it is dependent on the User

Defined Functions (UDFs) CPU cost, which for CLEENEX, and consequently, its optimizer, is a black

box. Therefore, we used NR as the most probable algorithmic cost for the operator. Regarding the I/O

cost, the mapping default physical algorithm reads all the contents from the input table, thus bR, then

it inserts the results of the mapping in another table. This insertion, due to the nature of the mapping

operator, can either be zero records, one for each input record, or multiple records for each input one.

As a compromise, we assumed we would write, on average, as many records as the input ones. That is,

50

Physical Operator Physical Algorithm CPU Cost (Big O Notation) I/O Cost in RDBMS (Pages) I/O Cost in CLEENEX (Pages)
Mapping - O(NR) 2bR 2bR

Merging Sorting O(NRlog(NR)) bR(2dlogM−1(bR

M)e+ 1) bR(2dlogM−1(bR

M)e+ 1)
Hashing O(NR) 3(bR) + 4NR 3(bR) + 4NR

Clustering Transitive Closure O(NR) bR(2dlogM−1(bR

M)e+ 8) + 4NR bR(2dlogM−1(bR

M)e+ 8) + 4NR

Matching

Cartesian Product O(N2
R∪S) bR ∗ bS + bR bR ∗ bS + bR

Traditional Blocking O(N2
R∪S × log(NR∪S)) bR(2dlogM−1(bR

M)e+ 2 + bS) bR + bS
Canopy Clustering O(N2

R∪S × log(NR∪S)) bR(2dlogM−1(bR

M)e+ 2 + bS) bR + bS
Sorted Neighborhood Join (SNJ) O(NR∪S × log(NR∪S) + w) bR(2dlogM−1(bR

M)e+ 3 + bS) + bS bR + bS
Inverted Index SNJ O(NR∪S + log(NR∪S)× w) (bR + bS)(2dlogM−1(bR

M)e+ 6) bR + bS
Adaptive SNJ O(NR∪S × log(NR∪S) + w) 2(bR(2dlogM−1(bR

M)e+ 1)) + bR × bS + bR bR + bS

Table 4.2: CPU and I/O cost analysis of CLEENEX physical operators. NR refers to the number of
records of a relation R, bR to the number of blocks needed to store all the records from relation R, and
w to the window size in the Sorted Neighborhood algorithms. Finally, M is the number of pages the
memory can store. When there is a second relation, i.e., in the matching operator, we refer to another
relation S. To refer the size of the union between relations R and S we use NR∪S

for N records we would output, on average, N records. Therefore, we will write bR pages. This makes

the mapping I/O cost equal to 2bR.

It is possible to have two merging physical algorithms, sorting and hashing. Each one has a different

CPU and I/O cost. However, CLEENEX only implements one of the algorithms, the hashing. Even

though CLEENEX has not yet implemented the sorting algorithm, we developed its cost model to future-

proof the developed cost model. The sorting algorithm is typically a variant of a Merge-Sort whose

complexity is known to be O(NRlog(NR)). In what concerns the I/O cost, it is also known to need

bR(2dlogM−1(bR

M)e + 1) pages. The hashing algorithm puts each input record into a given bucket, thus

having a complexity of O(NR). The I/O cost of a hashing algorithm is 3(bR) + 4NR, the same as in an

RDBMS.

The transitive closure implemented in CLEENEX performs the following operations: (i) projection

of each input record DatasetR : T record, V record, into two records, one for each sub-record in the

input, i.e., DatasetA : T record;DatasetB : V record, (ii) create a unified dataset with the union of the

previously created datasets, (iii) iterate through that dataset, and for each record, create a new one with

the schema cluster id, record id, wherein a first phase, the cluster id is unique for each record, (iv)

iterate DatasetR again, and apply the transitive closure, updating the cluster identifiers of those records

that should be in the same cluster. Summarizing, the algorithm iterates twice over the input dataset,

thus having a complexity of O(2NR), which simplifies to O(NR), and demanding two page reads (2bR).

Moreover, before the algorithm iterates over the dataset, it needs to perform two projections, whose cost

in total is 2bR. To perform the union, assuming the hashing join is used, it has a page cost of 3bR + 4NR.

Finally, the dataset needs to be sorted, thus summing to the previous I/O costs, the external merge-sort

one, i.e., bR(2dlogM−1(bR

M)e+ 1). All of these costs sum up to bR(2dlogM−1(bR

M)e+ 8) + 4NR.

The Matching physical operator has a total of six physical algorithms.The Cartesian Product is a

nested-loop join, therefore assuming its CPU Cost, O(N2
R), and I/O cost, bR× bS + bR. These algorithms

use the RDBMS only as a provider of the input data. Every physical algorithm performs the same action

before it starts executing: reads all the input data from the RDBMS and saves it in an in-memory data

structure, thus explaining the bR+bS I/O cost, i.e., the cost of reading all pages from both input datasets.

We now address the expected RDBMS cost for each matching physical algorithm. The RDBMS cost

would be the estimated I/O cost if CLEENEX implemented distributed physical algorithms. Distributed

51

algorithms have the same assumption as an RDBMS: it may not be possible to have all input data in

memory at the same time. This is why we analyzed each physical algorithm RDBMS cost.

The Traditional Blocking first performs an aggregation, which can be performed through hashing or

sorting. Since we cannot know which one will be used by an RDBMS we assumed that the sorting was

used, thus having a cost of bR(2dlogM−1(bR

M)e+ 1). After aggregating all records, the Cartesian product

is performed in each group, having a cost of bR× bS + bR. Thus, the Traditional Blocking has a total cost

of bR(2dlogM−1(bR

M)e+ 2 + bS).

Regarding the Sorted Neighborhood Join (SNJ) and Adaptive SNJ, they need to divide their execution

into two phases: (i) sorting, and (ii) comparison. For sorting the external sort-merge is used, thus

assuming its cost, bR(2dlogM−1(bR

M)e+ 1). For the comparison phase, a Cartesian product is performed

inside each group of records, thus having a cost of bR × bS + bR. Moreover, before sorting, there is also

the need to merge both relations into a single one, i.e., a union, so that the sorting can be performed.

Assuming the union is performed by a Merge-Join algorithm, it has a cost of bR + bS . This sums up to a

cost of bR(2dlogM−1(bR

M)e+ 3 + bS) + bS .

The Canopy Clustering and Traditional Blocking physical algorithms are very similar. The difference

resides only in the way the groups are created and how the blocking key is used. Remember that the

blocking key represents a record in the Matching physical operator. It is composed by one or more

attributes of a record. Both physical algorithms read the input data in the same way, thus having the

same I/O cost.

The Inverted Index SNJ will first get all distinct values, which has the same cost as an aggrega-

tion. As in the other operators, we assume that the sorting algorithm is used, thus having a cost of

bR(2dlogM−1(bR

M)e + 1). In a second step, the blocking keys are sorted. Assuming the external sort-

merge is used, it comports a cost of bR(2dlogM−1(bR

M)e+ 1). Finally, the Cartesian product is performed

inside each window. These costs sum up to 2(bR(2dlogM−1(bR

M)e+ 1)) + bR × bS + bR.

All matching physical algorithms have to iterate through the input datasets, thus having a CPU cost

of O(NR∪S). However, since they all have this factor in common, it is not considered in the cost model.

The Cartesian product CPU cost is known to be O(N2
R∪S). In the remainder of this section, we analyze

the CPU cost for the remaining physical algorithms of the Matching physical operator.

The Traditional Blocking physical algorithm creates several groups and performs the Cartesian prod-

uct (O(N2
R∪S)) in each one. It enables spreading the quadratic operation throughout the various groups,

having a final complexity of O(N2
R∪S × log(NR∪S)).

The Canopy Clustering, after reading all records, iterates throughout them all (O(NR∪S)) and gen-

erates a token for each one. Then, it iterates through those tokens and creates an inverted index that

uses to group the records. This inverted index has the mapping between a token and its records.

Inside each group, the Cartesian product is performed. Assuming that these tokens allow a similar di-

vision as in Traditional Blocking, log(NR∪S) groups are created. All of these costs sum up to a total of

O(NR∪S +N2
R∪S × log(NR∪S)), which can be simplified to O(N2

R∪S × log(NR∪S)), since NR∪S is not the

dominant parcel, since there is a O(N2
R∪S parcel.

The Sorted Neighborhood Join algorithms have all a similar cost. The difference between the SNJ

52

and Adaptive SNJ is that in the latter we cannot use the window size as a variable in the cost model

since it is not of a fixed size. Both need to sort their input. They both use Java’s Collection sorting

algorithm 2 that has a complexity of O(NR∪S × log(NR∪S)). The two algorithms then proceed to iterate

throughout the sorted records, O(NR∪S), and create the record pairs. The difference between the SNJ

and Adaptive SNJ is that the first multiplies the known window size by the number of iterated records,

whereas the latter cannot since it is unknown prior to the algorithm’s execution.

The Inverted Index SNJ starts by iterating all records to create an inverted index data structure with

all distinct blocking key values, O(NR∪S). Then, using a fixed window size, it iterates throughout those

distinct blocking key values and creates the candidate record pairs. This iteration is estimated to have a

complexity of O(log(NR∪S×w). Therefore, the Inverted Index SNJ CPU cost is O(NR∪S) + log(NR∪S)×

w).

The view physical algorithm and the table reader algorithm share the same cost model. There is no

CPU cost, i.e., O(0), since the operation is done all in the RDBMS. Regarding the I/O cost, it can be

measured in two possible ways. If the query can be executed when the optimizer is estimating the cost,

which occurs when the table used by the query already exists, i.e., the input of the operator is not the

output of another operator, then the I/O cost is retrieved from the database using a SQL function available

in PostgresSQL, the EXPLAIN function. The EXPLAIN function retrieves among other information, the

query’s estimated output size and the size, in bytes, of each record. The I/O cost is the multiplication

of those two values. However, if the query cannot be executed when estimating the cost, the optimizer

assumes that both the input size and the size of each record is given by the parent node, having as the

operator’s I/O cost the multiplication of those two values.

4.3.3 Cost of a Physical Algorithm

The cost of a physical algorithm is given by the sum of its estimated I/O and CPU cost. The current cost

model allows defining a weight for each parcel, i.e., we can give a different weight to the I/O and CPU

cost in the computation of the algorithm’s final cost. At the moment both costs have an equal weight,

i.e., each one contributes 50%.

The cost of each non-default matching physical algorithm is influenced by the quality of its results

(effectiveness) and its performance when compared against the matching default physical algorithm, the

Cartesian product. For example, the Sorted Neighborhood Join will not detect as many duplicates as

the Cartesian Product, but will also not take as much time to complete. The cost model takes this into

account in what we called the penalization factor. The sum of the CPU and I/O cost is multiplied by this

factor, i.e., (CPU Cost + I/O Cost) × Penalization Factor. The penalization factor is a percentage

that can vary between 50% and 200%. That is, at maximum, it either cuts by half the original physical

algorithm cost or duplicates it. The purpose of limiting these values is to guarantee that no physical

algorithm has such a big bonus or penalization, that is either always chosen or never chosen. We con-

sider a bonus if the penalization factor is below 100%, since it decreases the total cost, thus increasing

2https://docs.oracle.com/javase/8/docs/api/java/util/List.html#sort-java.util.Comparator-

53

the chances of that physical algorithm to be chosen by the optimizer. In contrast, a penalization factor

above 100% is a penalization since it increases the final physical algorithm cost.

The penalization factor and cost formula for each physical algorithm is shown in Table 4.3. The Final

Penalization Factor column shows the physical algorithm penalization factor. The penalization factor of

a physical algorithm is the average between two factors: (i) the output factor, that takes into account the

algorithm effectiveness, and (ii) the performance factor, that evaluates the performance gain achieved

by using a given physical algorithm when compared to the default physical operator algorithm. Finally,

the column Cost Formula shows the final cost formula that takes into account the CPU cost, I/O cost

and the penalization factor.

Physical Operator Physical Algorithm Output Factor Performance Factor Penalization Factor Cost Formula
View Default - - 100% (CPU + I/O)× 100%
Mapping Default - - 100% (CPU + I/O)× 100%
Merging Default - - 100% (CPU + I/O)× 100%
Clustering Default - - 100% (CPU + I/O)× 100%

Matching

Cartesian Product - - 100% (CPU + I/O)× 100%
Sorted Neighborhood Join 199.91% 0.01%→ 50.00% 124.96% (CPU + I/O)× 124.96%
Traditional Blocking 193.82% 0.35%→ 50.00% 121.91% (CPU + I/O)× 121.91%
Adaptive SNJ 193.82% 8.47%→ 50.00% 121.91% (CPU + I/O)× 121.91%
Inverted Index SNJ 185.61% 5,013.83→ 200.00% 192.81% (CPU + I/O)× 192.81%
Canopy Clustering 187.32% 1,619.64%→ 200.00% 193.66% (CPU + I/O)× 193.66%

Table 4.3: Physical algorithm’s cost formulas with penalization factor

To compute the output factor of each physical algorithm, we studied how each one performed against

the default physical operator algorithm. Since only the matching physical operator has more than one

supported physical algorithm, the study focused on that physical operator. The study, shown in Figure

4.7, compares the output of each physical algorithm, i.e., the number of candidate record pairs gener-

ated, with input sizes of 500 and 1,000 input records. Figure 4.7a shows the output of each physical

algorithm for both input sizes.

The Cartesian product generates all possible candidate record pairs. All records are compared

against each other, guaranteeing that all possible duplicates are detected, i.e., an effectiveness of 100%.

However, it also creates a big difference in the output size, i.e., the number of candidate record pairs

generated, when compared against the remaining matching physical algorithms. Figure 4.7b makes a

direct comparison between the non-default matching physical algorithms and the Cartesian product’s

output. The purpose of this comparison is to evaluate the physical algorithms’ effectiveness since it is

correlated with the number of candidate record pairs generated. For example, if a physical algorithm

generates more record pairs than another, then its effectiveness is expected to be better since it will

compare more records, thus having more opportunities to detect duplicates.

The output factor is always a penalization since no physical algorithm outputs more candidate record

pairs than the Cartesian Product. To obtain the output factor we subtract 200%, the maximum penal-

ization factor, to the average percentage of candidate record pairs generated in comparison with the

Cartesian Product, shown in Figure 4.7. For example, the Sorted Neighborhood Join with 500 input

records, generated 0.12% of Cartesian’s output, and with 1,000 input records, only 0.06%. The average

SNJ output, when compared against the Cartesian product, is 0.09%. Therefore, the SNJ’s output factor

is 200% - 0.09%, that is, 199.91%.

54

(a) Matching physical algorithms output sizes- number of candidate record pairs
generated

(b) Efficiency of the non-default matching physical algorithms when compared
against the Cartesian product

Figure 4.7: Time comparison between matching physical algorithms

Regarding the performance factor, we performed the same study as for the output factor but we

measured the performance instead. The performance is measured in terms of execution time. The

performance study is shown in Figure 4.8. In Figure 4.8a, it is possible to see how much time, in mil-

liseconds (ms), each physical algorithm took to generate their candidate record pairs for both 500 and

1,000 input records. Surprisingly, both Canopy Clustering and Inverted Index SNJ are worst performers

than the Cartesian product. For its turn, the Sorted Neighborhood Join is the best performer, which con-

trasts with the results shown in Figure 4.7b, where it is the less efficient physical algorithm. Figure 4.8b

makes a direct comparison between the non-default matching physical algorithms and the Cartesian

product’s performance. This comparison allows us to evaluate how much time we gained by having the

optimizer to choose a non-default matching physical algorithm. For example, if the optimizer uses the

Inverted Index SNJ, then the execution time will be 5,013.83% greater than if it had used the Cartesian

product physical algorithm.

The performance factor is not always a penalization since most algorithms are better performers

than the Cartesian Product. To compute the performance factor we used the average performance

when compared to the Cartesian Product, shown in Figure 4.8. That average performance is used

directly as the performance factor, being only caped by the lower and upper penalization factor limits

of 50% and 200%, respectively. This means that for a physical algorithm such as Traditional Blocking,

55

(a) Matching physical algorithms performance - execution time (ms)

(b) Comparison between non-default matching physical algorithms performance
and Cartesian Product performance

Figure 4.8: Performance comparison between matching physical algorithms

whose execution time, on average, is 0.35% of the Cartesian Product, the final performance factor is

50%. On the opposite side, for algorithms such as Inverted Index SNJ, that executes, on average, in

5,013.85% of the Cartesian Product’s execution time, the performance factor is capped to 200%.

To obtain the estimated cost of an execution plan, we need to sum the cost of each of its physical

algorithms. For example, consider the execution plan represented in Figure 4.9 which has three physi-

cal operators, and consequently, three selected physical algorithms. According to Table 4.3, traditional

blocking has a penalization factor of 121.91%. This means that its cost will be increased by a factor of

121.91%. However, since a matching physical algorithm affects also all physical operators that follow,

this penalization factor is propagated to all physical operators that are after the matching physical op-

erator. Therefore, the cost of the default clustering algorithm will also be increased by the same factor

of 121.91%. If there were more physical algorithms after the clustering, since they all come after the

matching, they would also suffer the same penalization. The cost of the execution plan shown in Figure

4.9 would then be the sum between the default mapping algorithm, the traditional blocking algorithm,

and the default clustering algorithm with traditional blocking’s penalization factor applied.

56

Figure 4.9: Execution plan for a DCP with a mapping, a matching, and a clustering physical operator

4.4 Execution Optimization

Some design choices make working on CLEENEX very hard and some make it difficult to scale. These

design choices are: (i) the generation of code in runtime, and (ii) how the algorithms were implemented.

Generating code in runtime makes debugging very challenging since the code does not exist previ-

ously to the data cleaning program execution. Also, it does not allow us to decouple an algorithm from

the CLEENEX platform, thus not allowing us to test it individually. Moreover, the introduction of new

features is very time-consuming and error-prone.

Another CLEENEX bottleneck is its algorithms. Since this thesis focused more on the Matching oper-

ator, this analysis is mainly about its algorithms. Most of the algorithms, that were recently implemented,

fail to use programming best practices. This makes those algorithms very strict concerning potential

changes. Moreover, some choices regarding the implementation of the algorithms and the structures

used to support them make the execution complexity increase without notice, thus also increasing the

execution time.

In this section, we address the optimizations that were performed to decrease CLEENEX execution

time, more precisely, for the Matching physical algorithms. In Section 4.4.1 we detail the conversion from

runtime code to compile code. In Section 4.4.2 we describe the reimplemented matching algorithms.

4.4.1 Conversion from Runtime to Compile Time Code

Moving from runtime to compile-time is not seen as a performance enhancement feature. Nonetheless,

changing from runtime to compile-time code achieved a speedup of 50%, i.e., the time needed from the

point where the user requests the DCP execution until the time it starts executing, decreased 50% when

using compile-time code. With runtime code, in order to start executing a matching physical algorithm

CLEENEX took 200ms. In this time it is included the interpretation of the declared data cleaning program,

the creation of the runtime code and its compilation. With compile-time code, it takes 100ms, which is

the data cleaning program interpretation time.

57

As said earlier, currently only the matching operator has all of its code available at compile time.

The change was not transversal to all operators for two reasons: (i) most of the code cannot be reused

across operators, and (ii) this change is very time-consuming, so we focused on the operator that we

were working.

To replace the generation of runtime code in the matching physical operator with compiled code,

i.e., code that is present in CLEENEX codebase, we analyzed and divided the generated code into

multiple sections. This division enables us to understand possible differences among matching physical

operators. We present a pseudo-code of a generic matching physical algorithm generated in runtime on

Listing 4.3. There we can identify three sections: (i) reading input data and creating output tables (lines

1-3), (ii) generating the candidate pairs (lines 4-5), and (iii) applying the WHERE clause defined in the

logical operator to each record pair (lines 6-12). This pseudo-code represents all the matching physical

algorithms.

1 // Section 1

2 Record [] input = readInputTables()

3 createOutputTables();

4 // Section 2

5 Pairs recordPairs = generateCandidateRecordPairs(input)

6 foreach pair in recordPairs {

7 //Section 3

8 boolean whereClause = getLogicalOperatorWhereClauseResult()

9 if whereClause is true {

10 insertPairInOutputTable()

11 }

12 }

Listing 4.3: Psuedo-code representing the runtime code of a matching physical algorithm

As said previously, all matching physical algorithms share the same pseudo-code since they all

perform the same actions. Therefore, it is straightforward to create a compile-time version. All physical

algorithms can share the same code differing only on how they generate the candidate record pairs, i.e.,

in the second section in Listing 4.3.

4.4.2 Matching Algorithms Optimization

CLEENEX matching algorithms were the work of another master thesis [13]. That work made available

in CLEENEX five matching operators, Adaptive Sorted Neighborhood Join, Canopy Clustering, Sorted

Neighborhood Join, Inverted Index Sorted Neighborhood Join, and Traditional Blocking. One of the goals

of this thesis was to parallelize and distribute them. However, when studying CLEENEX it was clear that

the matching algorithms were being a major bottleneck in the execution. For example, with a small

input of 500 records, algorithms such as the Traditional Blocking and Adaptive SNJ took 26 minutes,

and 57 minutes, respectively. This is not a good execution time, for two reasons: (i) the Cartesian

58

Product is achieving better times, and (ii) if we remember that our goal was to support datasets with

millions of records, taking so much time with 500 input records is undesirable. Moreover, some of them

were outputting an unexpected number of records, so there were also some concerns regarding the

generation of candidate record pairs.

After some investigation, we concluded that the majority of the performance issues are a conse-

quence of the data structures that are used to support the execution of the algorithms. In what concerns

the generated candidate pairs, we have two problems: (i) the organization of the records at the time the

dataset is sorted affects more than expected the candidate pairs generated for the Sorted Neighborhood

Join algorithms, and (ii) for non-self-matching there was a bug in the definition of the algorithms.

Changes in the Algorithms

The major refactoring on the Sorted Neighborhood Join, henceforth SNJ, and Adaptive SNJ, henceforth

ASNJ, is on the way that the window is created and the data structures used to support their execution.

We can distinguish two different algorithms that enable the generation of candidate record pairs:

(i) the one that iterates through the dataset, and (ii) the one that creates a window and generates the

candidate pairs.

For the second algorithm, there was a need to refactor it completely. The actual Java code that was

available in CLEENEX is shown in Listing 4.4, being similar for both SNJ and ASNJ. The algorithm is

supported by an ArrayList structure that gathers all candidate pairs generated throughout the algorithm’s

execution. The first good practice error is the usage of the ArrayList instead of its supertype, List.

This decision denies a straightforward usage of important Java features such as the Stream API 3.

The Stream API can be used to perform lazy4 data operations in parallel. Among other possible data

structures, the Stream API allows to return a List, but not an ArrayList. Although there is a workaround

so that the ArrayList can be used, it would imply consuming double the memory unnecessarily, which is

undesirable.

1 public ArrayList<Map<String, Record>> getCandidatePairs(ArrayList<Map<String, Record>> pairs) {

2 for(int i = index; i < index + length; i++) {

3 Record t1Record = table.get(i).getRecord();

4 for(int j = i + 1; j < index + length; j++) {

5 Record t2Record = table.get(j).getRecord();

6 if(!t1Record.getTableName().equals(t2Record.getTableName())) {

7 Map<String, Record> pair = new HashMap<>();

8 pair.put(t1Record.getTableName(), t1Record);

9 pair.put(t2Record.getTableName(), t2Record);

10 if(!pairs.contains(pair)) {

11 pairs.add(pair);

12 }

13 }

3https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
4https://en.wikipedia.org/wiki/Lazy evaluation

59

14 }

15 }

16 return pairs;

17 }

Listing 4.4: Java code to generate candidate pairs in Sorted Neighborhood Join and Adaptive SNJ

The second, and most impactful error, is the choice of a List to gather the already generated candi-

date pairs. As can be seen in Table 4.4, the List data structure has an O(N) CPU cost when searching

for data. This compares with Map’s O(1) CPU cost. As we can observe at line 10 of Listing 4.4, for

each pair of records a search in the list structure is performed, having a huge impact on the algorithm’s

performance. By replacing the List with a Map data structure, performing a search is unnoticeable

performance-wise.

Data Structure Read Search Write
List O(N) O(N) O(1)
Map O(1) O(1) O(1)

Table 4.4: Algorithmic Complexity of List and Map Data Structures

To use the Map data structure we need to define a key to represent the pair of records. This key

needs to be generated in a way that guarantees that no pair is compared twice independently of having

a different order, i.e., if there are two records A and B, the pair A − B has the same key as the pair

B−A. The key couldn’t be generated from the blocking key since that is not unique among the records.

Thus, the key is created from the records’ primary key. In the current implementation, the primary key

is given by the user through a hint. The hint has the syntax pk = ”keyA, keyB”, where keyA is the key

for the first declared table, and keyB , the key for the second one. Alternatively, the user can also use

the singular syntax pk = ”key”. In this case, the algorithm assumes that key is used for both the first

and second table declared, being useful as a shortcut when declaring a self-matching. The key that

represents a pair of records in the map structure is generated as follows. First, CLEENEX queries the

database to retrieve the values of the primary key columns declared in the pk hint. Then, those values

are sorted alphabetically. For example, assume that there are two records, A and B. If record A primary

key value is ”235” and record B primary key value is ”666”, then the generated key would be ”235 666”.

Cross Matching Operator Optimizations

The refactored matching physical algorithms, i.e., the Sorted Neighborhood Join, the Adaptive SNJ, and

the Traditional Blocking read the input datasets differently from the remaining physical algorithms. In

case of a self matching, i.e., a matching whose input tables are the same, that input dataset is only

read once. In the previous implementation, even if on a self matching, CLEENEX would request to read

twice the same input table. In the refactored implementation, a physical algorithm can detect that it is

executing a self matching by analyzing the input tables’ names instead of the alias names. An example

of a self matching declaration is shown in Listing 4.5. The tables alias’ are defined in the FROM clause

60

(line 2). In that clause, the user declares that T1 will serve as an alias for table PubAuthorNames, and

that T2 will be an alias for that same table.

1 CREATE MATCHING SimilarAuthors

2 FROM PubAuthorNames T1, PubAuthorNames T2

3 % scale-up = "SNJ" scale-up key = "lastname" window = 3 %

4 LET sim =similarAuthors(T1.firstname, T1.lastname, T2.firstname, T2.lastname)

5 WHERE sim > 0.95 AND T1.authorid <> T2.authorid

6 {

7 SELECT T1.authorid as authorid1,

8 T1.firstname as firstname1,

9 T1.lastname as lastname1,

10 T2.authorid as authorid2,

11 T2.firstname as firstname2,

12 T2.lastname as lastname2

13 }

Listing 4.5: Example of a self-matching declaration

61

Chapter 5

Experimental Validation

In this chapter, we describe the experiments that enable to validate the optimizer proposed and de-

scribed in Chapter 4. The goal is to evaluate the capability of the optimizer to choose the best execution

plan for a given data cleaning program. This experimental validation allows us to see if the optimizer is

creating the expected plans and selecting the cheapest one. Furthermore, we evaluate the performance

gain achieved with the introduction of the optimizer.

In Section 5.1, we describe the setup used throughout the experimental validation, namely, the

datasets, the data cleaning programs, and the metrics used to evaluate the results obtained. Then,

in Section 5.2 we evaluate the results of the cost model, where we compare the estimated values with

the real ones. Finally, in Section 5.3, we analyze the impact of the optimizations made in what regards

the runtime code to compile time code in the matching operator and the matching algorithms optimiza-

tions.

5.1 Experimental Setup

This section describes the datasets used, the data cleaning programs that were executed as well as the

metrics we use to perform the evaluation.

The experiments were performed in a Macbook Pro 2017 having 4 cores with 2.8GHz and 16 GB of

main memory (RAM) of 2,133 MHz LPDDR3. The operating system is macOS Catalina version 10.15.6.

5.1.1 Datasets

For the evaluation of the optimizer’s performance, we used multiple variations of the same dataset, the

CIDS Publication. This dataset is based on the gold standard dataset CORA 1. However, the CIDS

Publication only contains a subset of CORA dataset, i.e., it contains fewer records, thus it does not have

the gold standard.

The CIDS publication dataset originally contains 481 records. To perform the experiments that allow

us to evaluate our solution we needed datasets with more input records, in our case, up to 250,000
1https://hpi.de/naumann/projects/repeatability/datasets/cora-dataset.html

62

entries. There is the need to maintain coherency between the contents of those datasets since we need

to guarantee as much as possible that the results are only influenced by the input size growth and not

by the content. Therefore, we used the CIDS Publication dataset and created several variations of it.

These variations have 500, 1,000, 5,000, 25,000, 100,000, and 250,000 input records. To generate

such records from the original 481, we created a data generator. This data generator saves the content

of each column from all dataset records in memory. Then, to create a new record, it selects randomly

from each in-memory column a value and mounts the record. For example, consider a dataset with

two records, X and Y , and two columns, A and B. An example of a record Z generated by the data

generator is record Z : XA, YB , i.e., the new record Z, assumes the value of column A in record X, and

the value of column B in record Y .

The CIDS Publication dataset is described by the following attributes:

• pid: identifies uniquely an entry in this dataset;

• aid: identifies uniquely a group of authors;

• title: title of the publication;

• authors: authors of the publication;

• year: year of the publication;

• bibtex: represents the bibtex code of the publication;

• linkgoogle: link for the publication in Google Scholar;

• cits: number of citations for the publication;

• citslink: link to access the citations of the publication;

• citsns: number of citations that cite all publication authors at the same time;

• citsnslink: link for citations that cite all publication authors at the same time;

• citsslink: link that gathers all citations that every publication author has;

5.1.2 Data Cleaning Program

Once again, to maintain consistency between different results, there is the need to use a single Data

Cleaning Program (DCP) across all experiments.

The DCP used in our evaluation is the one shown in Figure 5.1. It receives as input one of the

datasets that were generated from the CIDS Publication dataset detailed in Section 5.1.1, as an example,

the DCP in Figure 5.1 receives the dataset variation with 1,000 input records, cidspub1k. The oval-

shaped objects represent logical operators. The rectangular-shaped objects the input table, and the

logical operators’ output. In the remainder of this chapter, we refer to the logical operators by the name

of their output table, e.g., the logical operator Mapping1 is referred to as AuthorsByPublication.

63

Figure 5.1: Data Cleaning Graph that represents the DCP used in the experiments

The mapping AuthorsByPublication logical operator receives an input record, and for each author

in the list of authors of the publication, it creates a new record and associates it to the same pub-

lication. When dividing the authors, it associates a unique identifier to each of them, the uid. This

unique identifier is retrieved by a User Defined Function (UDF). Also, it separates the author name

in first and last name. For example, the publication A, identified by the pid = 1 and aid = 999,

whose authors column value is Rodrigo,AdelinoB,MariaRodrigues generates three records, one for

each author, {A, pid = 1, aid = 999, uid = 1, authorF irstName = Rodrigo, authorLastName = B},

{A, pid = 1, aid = 999, uid = 2, authorF irstName = Adelino, authorLastName = B}, and {A, pid =

1, aid = 999, uid = 3, authorF irstName = Maria, authorLastName = Rodrigues}.

The second mapping, PubAuthorNames, standardizes the author names so that they do not contain

white spaces or special characters. The output size is the same as the input size.

The matching logical operator, SimilarAuthors, defines as blocking key, i.e., the key that represents

a record in the matching, the column authorF irstName generated in AuthorsByPublication. In case

a Sorted Neighborhood Join or Inverted Index SNJ physical algorithm is used, the window size is of

3 records. The matching will be a self-matching, where the input table is the output of mapping that

precedes it, i.e., PubAuthorNames. The output size depends on which physical algorithm is executed

since each one has a different expected output size.

The clustering logical operator, ClusterAuthors, gathers the pairs of records produced by the preced-

ing matching operator and applies the Transitive Closure, which allows to discover similar data that is

64

indirectly related. For example, given three records A, B, and C, if A and B are similar and B and C are

also similar, then A and C are also similar, even though they are not directly related, i.e., there is no pair

with those two records. The output is dependent on the matching output.

The merging operator CleanAuthors is the last logical operator in the DCP. Its goal is to select one

record for each cluster it receives as input. The selection of that record is delegated to a UDF de-

fined in the merging logical operator. In this DCP, the record that is selected from each cluster is

the one whose combination of authorF irstName and authorLastName has the biggest length, i.e.,

the highest count of characters. For example, if a cluster has two records, {A, authorF irstName =

Ana, authorLastName = R, and {B, authorF irstName = Michael, authorLastName = Jackson,

record B will be selected since the length of its columns value is 14 characters which compares with

record’s A length of 4.

5.1.3 Metrics

In this section, we describe the metrics used to evaluate the cost model and the optimizations performed

in CLEENEX. More specifically, these metrics aim at evaluating the difference between the real output

size and the estimated output size. Moreover, the metrics also allow us to evaluate the performance

gain achieved with the optimizations.

Error Rate

We need to evaluate the error rate between the estimated output size and the real output size of a

physical operator. For all physical operators except the matching, the error rate is given by the formula

in Equation 5.1. An error rate less than 1.0 means that the estimated value is higher than the operator

real output, greater than 1.0 the estimated value is smaller than the operator real output, and when the

error rate is 1.0 the estimated value and operator real output are the same.

Error Rate = Physical Operator Real Output

Estimated Output
(5.1)

For the matching physical operator and its physical algorithms, the error rate is computed by using the

formula in Equation 5.2. We can have the same interpretation as in the previous equation, but instead of

comparing against the physical operator real output, we compare against the number of candidate pairs

generated. What differentiates the matching physical algorithms is how they generate the candidate

record pairs and how many they generate. This is why we evaluate the error rate by analyzing the

candidate record pairs.

Error RateMatching = Candidate Pairs Generated

Estimated Pairs Generated
(5.2)

65

Performance Speedup

To measure the performance gain achieved with the optimizations made, we use the performance

speedup formula in Equation 5.3. The Told parameter is the execution time achieved before the opti-

mizations were performed, and Tnew the execution time after introducing the optimizations. A speedup

less than 1.0 means that the old implementation execution time was lower than the new one, speedup

greater than 1.0 the new implementation execution time is lower than the old one, and a speedup of 1.0

means that both execution times are identical.

Speedup = Told
Tnew

(5.3)

5.2 Cost Model

The Cost Model affects the overall execution of a data cleaning program since it is essential to choose

which execution plan should be used. In the cost model, for each operator, we estimate the algorithmic

cost, that is, the CPU cost, the I/O cost, and the estimated output size.

The DCP in Figure 5.1 generated six execution plans. In these plans, all physical operators use their

default physical algorithm but the matching physical operator. The execution plans are enumerated in

Table 5.1, and are used in the remainder of this section to evaluate how the cost model estimations

compare with the real values.

Plan Number SimilarAuthors Physical Algorithm
1 Cartesian Product
2 Sorted Neighborhood Join
3 Adaptive SNJ
4 Canopy Clustering
5 Inverted Index SNJ
6 Traditional Blocking

Table 5.1: Generated Execution Plans

In Section 5.2.1 we analyze the cost of the execution plans listed in Table 5.1, detail the differences

between the plans and explain how the matching physical operator affects the execution plan. Then, in

Section 5.2.2 we compare the real output size against the estimated output size for each algorithm and

verify what is the error rate. Finally, we discuss the results achieved in Section 5.2.3.

5.2.1 Plans Cost

Tables 5.2 to 5.7 show the estimated cost for each plan listed in Table 5.1. In those tables, for each

physical algorithm in the plan, we list its CPU Cost, I/O Cost, the sum of these two costs without the

Penalization Factor (PF), Total Cost (w/o PF), and with PF, Total Cost (w/ PF), and the Estimated Output

according to the formulas presented in Section 4.3.1. Finally, at the bottom of the tables, we present

the Plan Cost. This plan cost is the sum of all physical algorithm costs with the penalization factor, i.e.,

66

the sum of column Total Cost (w/ PF). Recall that the penalization factor, described in Section 4.3.3,

penalizes the matching operator’s final cost and every operator that is after it in the execution plan.

Table 5.2 refers to the plan number one in Table 5.1. This plan uses the default matching algorithm,

Cartesian Product. Since this algorithm is lossless, there is no penalization factor. This means that the

plan cost of 1.93× 107 is the sum of all physical algorithm costs.

Physical Algorithm CPU Cost I/O Cost Total Cost
(w/o PF)

Total Cost
(w/ PF) Estimated Output

Default Mapping
(AuthorsByPublication) 1,000 257 1,257 1,257 1,000

Default Mapping
(PubAuthorNames) 1,000 257 1,257 1,257 1,000

Cartesian Product
(SimilarAuthors) 4,000,000 66,306 4,066,306 4,066,306 1,000,000

Default Clustering
(ClusterAuthors) 1,000,000 8,119,280 9,119,280 9,119,280 1,000,000

Default Merging
(CleanAuthors) 6,000,000 154,473 6,154,473 6,154,473 300,000

Plan Cost 1.93× 107

Table 5.2: Cost model by physical algorithm for plan 1 in Table 5.1

The cost of the second plan in Table 5.1 is shown in Table 5.3. The matching physical algorithm

used in this plan is the Sorted Neighborhood Join. This algorithm has a penalization factor of 124,96%,

meaning that the sum of its CPU and I/O cost, the Total Cost (w/o PF) column value in table 5.1, 7,116,

will be multiplied by that factor, resulting in 8,892,15, as shown in column Total Cost (w/ PF). Moreover,

as said earlier, this penalization factor is propagated to the following physical algorithm’s cost. The plan

cost is 143,072.76.

Physical Algorithm CPU Cost I/O Cost Total Cost
(w/o PF)

Total Cost
(w/ PF) Estimated Output

Default Mapping
(AuthorsByPublication) 1,000 257 1,257 1,257 1,000

Default Mapping
(PubAuthorNames) 1,000 257 1,257 1,257 1,000

Sorted Neighborhood Join
(SimilarAuthors) 6,602 514 7,116 8,892.15 7,997

Default Clustering
(ClusterAuthors) 7,997 64,924 72,921 91,122.08 7,997

Default Merging
(CleanAuthors) CleanAuthors 31,211 1,235 32,446 40,544.52 2,399

Plan Cost 143,072.76

Table 5.3: Cost model by physical algorithm for plan 2 in Table 5.1

The cost of the plan number three in Table 5.1 is shown in Table 5.4. In this plan, the Adaptive SNJ

is used to execute the matching physical operator. This algorithm has a penalization factor of 121.91%.

The plan cost after applying the penalization factor to the matching, clustering, and merging physical

algorithms data operators is 4,218,704.30.

The Canopy Clustering is the matching algorithm used in Table 5.1 plan number three. The cost

67

Physical Algorithm CPU Cost I/O Cost Total Cost
(w/o PF)

Total Cost
(w/ PF) Estimated Output

Default Mapping
(AuthorsByPublication) 1,000 257 1,257 1,257 1,000

Default Mapping
(PubAuthorNames) 1,000 257 1,257 1,257 1,000

Adaptive SNJ
(SimilarAuthors) 6,602 514 7,116 8,675.12 235,650

Default Clustering
(ClusterAuthors) 235,650 1,913,304 2,148,954 2,619,789.82 235,650

Default Merging
(CleanAuthors) 1,265,974 36,401 1,302,375 1,587,725.36 70,695

Plan Cost 4,218,704.30

Table 5.4: Cost model by physical algorithm for plan 3 in Table 5.1

model estimations for this plan are shown in Table 5.5. Curiously, this plan cost is 267% higher than

the one with the default matching algorithm, Cartesian Product, shown in Table 5.2. Two factors may

contribute to such a high cost: (i) the Canopy Clustering CPU cost, N2 × log(N), grows quicker than

that of Cartesian Product N2, and (ii) contrary to the Cartesian Product, the Canopy Clustering has a

penalization factor of 193.66% that almost doubles its real cost, thus affecting the plan cost. This high

penalization factor is mainly because it is a bad performer.

Physical Algorithm CPU Cost I/O Cost Total Cost
(w/o PF)

Total Cost
(w/ PF) Estimated Output

Default Mapping
(AuthorsByPublication) 1,000 257 1,257 1,257 1,000

Default Mapping
(PubAuthorNames) 1,000 257 1,257 1,257 1,000

Canopy Clustering
(SimilarAuthors) 13,204,119 514 1.32× 107 25,572,092.27 878,906

Default Clustering
(ClusterAuthors) 878,906 7,136,080 8,014,986 15,521,821.89 878,906

Default Merging
(CleanAuthors) 5,224,166 135,766 5,359,932 10,380,044.31 263,671

Plan Cost 5.15× 107

Table 5.5: Cost model by physical algorithm for plan 4 in Table 5.1

Table 5.6 shows the cost for the plan number five in Table 5.1. This plan uses the Inverted Index SNJ

as the matching physical algorithm. Due to being underperforming when compared with the remaining

matching physical algorithm, the Inverted Index SNJ has a huge penalization factor of 192.81%. How-

ever, when compared with the Canopy Clustering, its CPU cost, N×log(N) grows slower, its penalization

factor is less 0.85% than the Canopy’s, and finally, the estimated output size is much smaller. Note that

the estimated output size is used in the CPU and I/O cost computations in the following physical algo-

rithm, the default clustering algorithm. A smaller estimated output size means that the cost of reading

and iterating that output will be smaller.

The last plan in Table 5.1 has its costs shown in Table 5.7. Traditional Blocking is used to execute

the matching physical operator. This physical algorithm has a penalization factor of 121.91%. According

68

Physical Algorithm CPU Cost I/O Cost Total Cost
(w/o PF)

Total Cost
(w/ PF) Estimated Output

Default Mapping
(AuthorsByPublication) 1,000 257 1,257 1,257 1,000

Default Mapping
(PubAuthorNames) 1,000 257 1,257 1,257 1,000

Inverted Index SNJ
(SimilarAuthors) 6,602 514 7,116 13,720.36 32,934

Default Clustering
(ClusterAuthors) 32,934 267,400 300,334 579,073.99 32,934

Default Merging
(CleanAuthors) 148,784 5,087 153,871 296,678.68 9,880

Plan Cost 891,987.02

Table 5.6: Cost model by physical algorithm for plan 5 in Table 5.1

to the cost model, this physical algorithm is estimated to generate a considerable amount of candidate

record pairs, as the value of the Estimated Output column of Table 5.7 shows. Moreover, this algorithm is

considered a good performer. These two facts help explain why the penalization factor is low (121.91%).

Nonetheless, this plan also has a higher cost than the one with the default matching physical algorithm,

Cartesian Product. The reasoning behind this high cost is the same as for the Canopy Clustering since

both physical algorithms share the same CPU cost formula.

Physical Algorithm CPU Cost I/O Cost Total Cost
(w/o PF)

Total Cost
(w/ PF) Estimated Output

Default Mapping
(AuthorsByPublication) 1,000 257 1,257 1,257 1,000

Default Mapping
(PubAuthorNames) 1,000 257 1,257 1,257 1,000

Traditional Blocking
(SimilarAuthors) 13,204,119 514 1.32× 107 16,092,120 235,650

Default Clustering
(ClusterAuthors) 235,650 1,913,304 2,148,954 2,619,789.82 235,650

Default Merging
(CleanAuthors) 1,265,974 36,401 1,302,375 1,587,725.36 70,695

Plan Cost 2.03× 107

Table 5.7: Cost model by physical algorithm for plan 6 in Table 5.1

The list of plans ordered by ascending cost is available in Table 5.8. As can be seen in that table, the

cheapest plan uses the Sorted Neighborhood Join matching physical algorithm. Although this physical

algorithm is the least efficient, it is also the best performer. Recall that the efficiency was measured

in terms of the number of generated candidate record pairs when compared with the default matching

physical algorithm, the Cartesian Product. Since the SNJ is the least efficient matching algorithm, it

generates fewer record pairs than any other matching algorithm. This means that physical algorithms

executed in the context of physical operators following the matching operator will have a lower I/O and

CPU cost. Therefore, they need to read and iterate through fewer records, thus having a lower impact

on the plan cost. The main surprise of this list is the positioning of the Inverted Index SNJ. Despite its

high penalization factor, due to its low CPU cost and misleading estimated output size, it was able to

69

achieve second place.

Order Plan Number Matching Algorithm
1 2 Sorted Neighborhood Join
2 5 Inverted Index SNJ
3 3 Adaptive SNJ
4 1 Cartesian Product
5 6 Traditional Blocking
6 4 Canopy Clustering

Table 5.8: Plans from Table 5.1 sorted by ascending plan cost

5.2.2 Output Size

The output size estimation is an essential part of the optimizer. Recall that the estimated output size

of a physical operator is the estimated input size of the physical operator that follows it. Therefore,

the output size estimation affects the following physical operator, not the physical operator where the

estimation is performed. Within this section, we want to understand what is the error rate of the cost

model estimations.

To evaluate the output size estimation, we used the same DCP represented in Figure 5.1, but varied

its input size between 500, 1,000, 5,000, 25,000, 100,000, and 250,000. In this experiment, for the

matching physical operator, we evaluated all of its physical algorithms results. Recall that we use the

name of the logical operator output to represent the logical and physical operator (e.g., Mapping1 is

referred to as AuthorsByPublication). In what regards the physical operators that follow the matching,

ClusterAuthors, and CleanAuthors, we evaluated the results for the cheapest execution plan only, i.e.,

the one that uses Sorted Neighborhood Join as matching physical algorithm, as detailed in Section

5.2.1.

In the remaining of this section, for each logical operator in Figure 5.1 DCP, we evaluate the output

size estimation error rate. We perform this evaluation for each physical algorithm capable of executing

those logical operators.

Mapping Operators

We start by analyzing the first two mapping logical operators, executed by the default matching physical

algorithm. Figure 5.2 illustrates how the estimated output size compares with the real output size.

Moreover, to evaluate how the input size estimation affects the output size estimation, we also present

data regarding the estimated and real input size for both physical algorithms.

Figure 5.2a graphic shows that despite having no differences between real and estimated input,

the real output size is wrongly estimated for the first mapping, AuthorsByPublication. According to

mapping’s cost model, it is expected one output record for each input one, which was not verified, i.e.,

for each input record, more than one record was output. The physical algorithm had an error rate of

3.37, i.e., for each input record, on average, 3.37 records were output. As described in Section 4.3.1,

the mapping semantics allows this operator to have an unpredictable output size, thus being difficult for a

70

fixed cost model, i.e., a cost model that does not change dynamically depending on the DCP declaration,

to estimate that output correctly.

In the second mapping, PubAuthorNames, we can see how the output size estimation of Authors-

ByPublication affects the following physical algorithm estimations. As represented in Figure 5.2b, the

estimated input, i.e., AuthorsByPublication estimated output, and output differ from the real input and

output. This difference is solely explained by the estimation error in the previous mapping operator. This

explains why PubAuthorNames has the same error rate as AuthorsByPublication, i.e., 3.37.

(a) Cost model results for default mapping physical algo-
rithm (logical operator AuthorsByPublication)

(b) Cost model results for default mapping physical al-
gorithm (logical operator PubAuthorNames)

Figure 5.2: Cost model results for the first two mapping physical operators

Matching Operator

After the mapping operations, we have the matching logical operator. The corresponding matching

physical operator can be executed by six different physical algorithms. We analyzed the cost model for

each one. Note that the estimated output refers to the estimated number of candidate pairs, as stated

earlier in Section 4.3.1.

For the Sorted Neighborhood Join, Figure 5.3 shows that the cost model is consistently accurate

across the various input sizes tested. As shown in Table 5.9, the estimated pairs generated is not far

from the effective number of candidate pairs generated, i.e., the number of candidate record pairs output

by the physical algorithm. The cost model achieves an error rate of 0.83, i.e., for every 100 estimated

candidate record pairs, the physical algorithm, in reality, outputs 83.

Figure 5.3: Cost model results for SimilarAuthors (Matching) with Sorted Neighborhood Join

71

500 1,000 5,000 25,000 100,000 250,000
Estimated Pairs Generated 3,997 7,997 39,997 199,997 792,005 2,001,869
Candidate Pairs Generated 3,355 6,775 33,749 170,445 670,639 1,691,459
Matching Real Output 1,493 3,086 15,720 79,826 313,550 791,020
Error Rate 0.84 0.85 0.84 0.85 0.85 0.84

Table 5.9: Cost model results summary for SimilarAuthors (Matching) with Sorted Neighborhood Join

The Inverted Index SNJ physical algorithm has a similar CPU cost to SNJ. However, it can detect

more pairs than that algorithm. In fact, only the Cartesian Product generates more candidate record

pairs. Although producing more candidate record pairs does not mean that more duplicates are de-

tected, it does increase the chances of finding more duplicates, since more records are compared. In

what concerns the cost model, as Figure 5.4 shows, the number of estimated candidate record pairs is

approximately 2,469% smaller than the actual generated candidate record pairs. This corresponds to

an error rate of 24.69, as seen in Table 5.10. Therefore, the formula for the output size estimation, ex-

tracted from [6], is not able to precisely estimate for the Inverted Index SNJ. Alternatively, the authors of

[6] propose a formula using the Zipf distribution, instead of the one that our cost model is using, normal

distribution. However, for the Inverted Index SNJ, to compute the estimations using the Zipf distribution,

we would have an approximate CPU cost of O(2N2 + N3). Such a high CPU cost, even for small input

datasets, is undesirable. To avoid such a high computation cost, we preferred to maintain the normal

distribution high error rate.

Figure 5.4: Cost model results for Similar Authors (Matching) with Inverted Index SNJ

500
Estimated Pairs Generated 16,434
Candidate Pairs Generated 405,751
Matching Real Output 306,094
Error Rate 24.69

Table 5.10: Cost model results summary for SimilarAuthors (Matching) with Inverted Index SNJ

The cost model results for the Adaptive SNJ are illustrated in Figure 5.5. In that figure, it is possible

to draw two conclusions: (i) the estimated output is undesirably far from the candidate pairs, and (ii) the

candidate pairs are surprisingly near the real output, meaning that there is no much filtration happening,

72

which contrasts with the SNJ behavior. As Table 5.11 shows, the real output is, on average, 91% of the

generated pairs, whereas the generated pairs are 284% more than the estimation.

The cost model results for the Adaptive SNJ, represented in Figure 5.5, show that the estimated

candidate record pairs are still far from the real number of generated candidate record pairs. Curiously,

the Adaptive SNJ candidate record pairs are very near to the matching physical algorithm output, i.e.,

after applying the filtering phase defined in the logical operator WHERE clause. A possible justification

for this phenomenon is that to create the dynamic window, the Adaptive SNJ uses a similarity function to

filter every pair of records. The dynamic window keeps increasing while the similarity value between two

adjacent records is above a given threshold. The filtering phase defined in the logical operator through

the WHERE clause in the DCP of Figure 5.1, performs similar filtering to that of the Adaptive SNJ, i.e.,

it uses a similarity function to test every pair of records. According to Table 5.11, the real output is, on

average, 91% of the generated candidate record pairs, whereas the generated pairs are 284% more

than the estimated ones, i.e., the average error rate is 2.84.

Figure 5.5: Cost model results for SimilarAuthors (Matching) with Adaptive SNJ

500 1,000
Estimated Pairs Generated 65,357 235,650
Candidate Pairs Generated 174,675 709,940
Matching Real Output 158,198 644,494
Error Rate 2.67 3.01

Table 5.11: Cost model results summary for SimilarAuthors (Matching) with Adaptive SNJ

As stated earlier in Section 4.3.1, both Adaptive SNJ and Traditional Blocking share their output

estimation formulas. Moreover, these formulas assume that the input dataset uses a Zipf Distribution

[30]. The Zipf distribution assumes that in a list of words ordered by their frequencies, the word at

position p has a relative frequency of 1/p. The results presented in Figure 5.5 and Table 5.11 use the

Zipf distribution. With the normal distribution, the number of generated candidate record pairs for an

input dataset of 500 records would be 833 pairs, which compares with the estimated 65,357 with the

Zipf distribution. The results with the normal distribution for the Adaptive SNJ are shown in Figure 5.6.

On average, the error rate with the normal distribution is 317.91, i.e., almost 112 times bigger than with

the Zipf distribution.

73

Figure 5.6: Cost model results for Similar Authors (Matching) with Adaptive SNJ using Normal Distribu-
tion

The results for the Traditional Blocking’s cost model are identical to the Adaptive SNJ’s, reported in

Table 5.11. The only difference is that for 1,000 input records, Traditional Blocking produced less 2,782

pairs than the Adaptive SNJ, as can be seen in Figure 5.7. However, both estimations and real matching

output, i.e., after the filtering phase, are identical, thus supporting the choice of sharing the cost model

between them. Moreover, both have the same error rate, as reported in Table 5.12.

Figure 5.7: Cost model results for SimilarAuthors (Matching) with Traditional Blocking

500 1,000
Estimated Pairs Generated 65,357 235,650
Candidate Pairs Generated 174,675 707,158
Matching Real Output 158,198 644,494
Error Rate 2.67 3.01

Table 5.12: Cost model results summary for SimilarAuthors (Matching) with Traditional Blocking

The Cartesian Product is the operator with the highest output size estimation. This algorithm com-

pares all records against each other. It does not perform any optimization, i.e., does not filter pairs, as

the remaining matching physical algorithms. For example, the other matching algorithms, for records A

and B, only create the pair that appears first, either A − B or B − A, whereas the Cartesian Product

creates both. Although the Cartesian Product behavior is the most predictable from all the matching

physical algorithms, as shown in Figure 5.8, the estimation of generated candidate record pairs is not

74

100% accurate. As Table 5.13 shows, the average error rate is 11.38. The reason for this lack of ac-

curacy is due to the estimation error made in the previous mapping physical algorithms. Recall that the

mapping physical operator that precedes the matching, PubAuthorNames, for an input dataset of 1,000

records, has an estimated output of 1,000 records. However, the real output size, and therefore, the real

input size of the matching physical operator and its algorithms, is 3,389 records, as illustrated in Figure

5.2b. If there were no errors in the previous estimations, the Cartesian Product, for an input dataset of

1,000 input records would estimate 11,485,321 candidate record pairs, having an error rate of 1.0, i.e.,

the estimations and real values are identical, meaning that the cost model is accurate.

Figure 5.8: Cost model results for SimilarAuthors (Matching) with Cartesian Product

500 1,000
Estimated Pairs Generated 250,000 1,000,000
Candidate Pairs Generated 2,819,041 11,485,321
Matching Real Output 335,548 1,354,016
Error Rate 11.27 11.48

Table 5.13: Cost model results summary for SimilarAuthors (Matching) with Cartesian Product

The results achieved for the Canopy Clustering cost model are satisfactory, since as shown in Figure

5.9, the estimations made are only 1.63 times smaller than the real values, i.e., the error rate, as reported

in Table 5.14, is just 1.63.

Figure 5.9: Cost model results for SimilarAuthors (Matching) with Canopy Clustering

75

500
Estimated Pairs Generated 219,726
Candidate Pairs Generated 357,527
Matching Real Output 316,264
Error Rate 1.63

Table 5.14: Cost model results summary for SimilarAuthors (Matching) with Canopy Clustering

Clustering Operator

The clustering physical operator only has one physical algorithm, the default. The evaluation performed

for this default clustering physical algorithm assumes that the matching physical algorithm performed

previously was the Sorted Neighborhood Join. To evaluate the results for the clustering algorithm, we

considered the datasets whose input size was 500, 1,000, and 5,000 records.

According to the clustering semantics detailed in 4.3.1, it is expected one output record for each input

record, as reflected in the overlapping estimated input and output curves in Figure 5.10. This expectation

proves to be accurate when we analyze the real input and output curves since they also overlap, meaning

that the expected behavior is followed. However, as reported in Table 5.15, the average error rate is not

1.0 but 0.41. As in the Cartesian Product estimations, the results are affected by estimation errors made

in previous physical algorithms.

Figure 5.10: Cost model results for clustering default physical algorithm (logical operator ClusterAuthors)

500 1,000 5,000
Estimated Input 3,997 7,997 39,997
Real Input 1,493 3,086 15,720
Estimated Output 3,997 7,997 39,997
Real Output 1,613 3,281 16,390
Error Rate 0.40 0.41 0.41

Table 5.15: Cost model results summary for clustering default physical algorithm (logical operator Clus-
terAuthors)

Merging Operator

As for the default clustering physical algorithm evaluation, for the default merging algorithm, we also

used the same three datasets with 500, 1,000, and 5,000 input records.

76

500 1,000 5,000
Estimated Input 7,994 15,994 79,994
Real Input 1,613 3,281 16,390
Estimated Output 2,398 4,798 23,998
Real Output 120 195 670
Error Rate 0.05 0.04 0.02

Table 5.16: Cost model results summary for merging operation CleanAuthors

In the DCP used for the experiments made in this chapter, represented in Figure 5.1, the merging

logical operator defines a User Defined Function (UDF) to select which record represents a records’

cluster, as described in Section 5.1.2. UDFs are a black box to CLEENEX, thus being unable to estimate

both its cost or output accurately. Therefore, the cost model created estimates the output size as a fixed

factor over the estimated input size. This factor is 30% of the physical algorithm’s estimated input, as

detailed in Section 4.3.1. As can be seen in Figure 5.11, the estimated and real output are very far, as

corroborated by the average error rate of 0.04 reported in Table 5.16. In summary, the merging physical

operator, independently of the physical algorithm that executes it, suffers from the same problem as the

mapping physical operator: their output is only dependent on the UDF behavior, which is a black box for

CLEENEX and its optimizer.

Figure 5.11: Cost model results for default merging physical algorithm (logical operator CleanAuthors)

5.2.3 Discussion

As can be verified throughout this section, the cost model estimations are not always on par with the

real values, i.e., the average error rate is not 1.0. The average error is 2.37. This means that for a plan

that should cost 1,000, the cost model will, on average, evaluate its cost as if it was 2,370.

The main challenge when trying to decrease the average error rate is the dependency of the physical

algorithms in User Defined Functions (UDFs). These UDFs are a black box to CLEENEX, and conse-

quently, its optimizer. Most results were affected by the bad output estimation of the first two mapping

physical operators, thus explaining why the error rate for some physical algorithms is so far from 1.0.

77

5.3 Matching Algorithms Optimizations

This thesis provided several optimizations, even though it was not one of its goals. Some of them are

not quantifiable, such as the change from runtime code to compile code, and some others are, such as

the matching algorithms optimizations.

In this section, we compare for each refactored matching physical algorithm, i.e., the Sorted Neigh-

borhood Join, Adaptive SNJ, and Traditional Blocking the differences between the old and new imple-

mentation in terms of performance. Section 5.3.1 shows the differences for the Sorted Neighborhood

Join. For the Adaptive SNJ the results are detailed in Section 5.3.2. We conclude with Section 5.3.3,

where we compare the differences between the old and new Traditional Blocking performance.

5.3.1 Sorted Neighborhood Join

The old Sorted Neighborhood Join (SNJ) physical algorithm was a good performer for small datasets,

i.e., datasets whose input size is smaller than 5,000 records. However, for bigger datasets, its perfor-

mance decreased exponentially, as illustrated in Figure 5.12. Moreover, the old algorithm’s maximum

input size was 100,000 input records. This number compares with the 250,000 input records of the new

SNJ physical algorithm. Moreover, the execution times achieved by the new algorithm are very stable.

Although the scale does not allow to perceive, the execution time grows at the same factor as the input

size. For example, for 5,000 input records, the new SNJ algorithm took 83ms whereas for 25,000 input

records, that is, 5 times more records, took 459ms, which is 5.53 times bigger. The average speedup

achieved is 68.57, i.e., on average, for datasets with input sizes between 500 and 100,000 input records,

the new algorithm is 68.57 times faster.

Figure 5.12: Time comparison between the old and new SNJ physical algorithm

78

5.3.2 Adaptive SNJ

The changes introduced to the Adaptive SNJ are, in their majority, the same as the ones introduced

in the algorithm that serves as its base, the Sorted Neighborhood Join. Figure 5.13 shows the time

difference between the old and new algorithm for 500 and 1,000 input records, in Figure 5.13a and

Figure 5.13b, respectively. For 500 input records, the new algorithm achieves a 258.84 speedup, being

this speedup unquantifiable for 1,000 input records since the old algorithm did not support that input

size.

(a) Time comparison between the old and new Adaptive
SNJ physical algorithm with 500 input records

(b) Time comparison between the old and new Adap-
tive SNJ physical algorithm with 1,000 input records

Figure 5.13: Time comparison between the old and new Adaptive SNJ physical algorithm

The more memory efficient Map structure enables the refactored physical algorithm to support up to

1,000 input records. Although this algorithm is based on the Sorted Neighborhood Join, it is not able

to deal with as much input as that physical algorithm. The main reason is the Adaptive SNJ’s dynamic

window. Since this window can grow indefinitely, it will demand more comparison than the SNJ. For

example, in our experiments, we used a window size of 3 for the SNJ. Therefore, the supporting data

structure only needs to store three records, and compare a maximum of six. However, the number of

comparisons in the Adaptive SNJ is undetermined. In the worst-case scenario, where all records are

identical, it will have a window with the same size as the dataset. If this dataset has 1,000 input records,

that would mean performing and storing the result of 1,000,000 comparisons.

5.3.3 Traditional Blocking

The Traditional Blocking physical algorithm refactoring added the possibility to execute this algorithm

with 1,000 input records. Moreover, this refactoring achieved a speedup of 3,967.20 times for an input

dataset of 500 input records, the maximum input size supported by the old version. In Figure 5.14 we

can see the reports of the execution time, in milliseconds, of the old and new traditional blocking physical

algorithm for 500 input records (Figure 5.14a), and 1,000 input records (Figure 5.14b).

79

(a) Time comparison between the old and new Traditional
Blocking physical algorithm with 500 input records

(b) Time comparison between the old and new Tra-
ditional Blocking physical algorithm with 1,000 input
records

Figure 5.14: Time comparison between the old and new Traditional Blocking physical algorithm

80

Chapter 6

Conclusions

In this document, we detailed the design and integration of an automatic optimizer in CLEENEX. This

optimizer is able to automatically decide, for any Data Cleaning Program (DCP) what is the set of physical

algorithms that guarantees the best trade-off between effectiveness, i.e., the quality of the results, and

performance, i.e., the execution time.

In this document, we focused mainly on the optimization of the matching physical operator. We de-

tailed several matching physical algorithms that enable the scaling up of the default matching algorithm,

the Cartesian Product, and discussed the advantages and disadvantages of each one. Some of these

matching algorithms achieve better performance by creating less candidate record pairs. However, by

doing that, these algorithms may not be able to detect as many approximate duplicates as one that gen-

erates more pairs. Moreover, more at an infrastructure level, we described a paradigm change in how a

developer can execute and create a matching physical algorithm.

In Section 6.1, we summarize the work done during the creation of the optimizer. We conclude this

chapter with Section 6.2, where we detail the future work of this thesis.

6.1 Summary

In Chapter 1, we introduced the concept of data cleaning tool, on both its variants, transformation-based

and rule-based. Then, we introduced the CLEENEX data cleaning tool, a transformation-based tool,

and some of its main features, such as supporting the definition of Quality Constraints, i.e., rules that

can be applied to the output records of data transformations, and Manual Data Repairs, i.e., which allow

repairing faulty data that was flagged by a quality constraint that was not satisfied. Moreover, CLEENEX

has an architecture with a clear separation between the logical operators, which define what should be

executed, and the physical operators, which execute a logical operator, resembling the architecture of a

Relational Database Management System (RDBMS). Finally, we referred that the fact that CLEENEX is

a research data cleaning tool under development at Instituto Superior Técnino was the main reason to

work with that specific data cleaning tool.

In Chapter 2, we detailed how a RDBMS optimizer works. We described several types of optimiz-

81

ers that an RDBMS may use, such as rule-based optimizer, cost-based optimizer, and a mix between

these two. Also in that chapter, we introduced the concept of data cleaning and approximate duplicate

detection.

Chapter 3 is divided into three main sections. In the first one, we detail how we could improve the

default approximate duplicate detection algorithm, the Cartesian Product, by using other algorithms that

compromise their effectiveness, i.e., the capacity of detecting duplicate records, to achieve better perfor-

mance. Then, in the second section, we analyzed some research tools that addressed the parallelization

and distribution of the approximate duplicate detection task. Finally, in the third section, we described

several researching data cleaning tools that address the efficiency of a data cleaning process, where it

is included CLEENEX.

In Chapter 4, we detail the implemented optimizer that will be integrated into CLEENEX. In that

chapter, we describe how the optimizer integrates into CLEENEX architecture and briefly recapitulate

how the various CLEENEX components communicate among them. We also detailed the optimizer

architecture and its components. Furthermore, we explained how we perform the paradigm change

from runtime code to compile-time code in CLEENEX and some other optimizations that enabled us to

achieve better performance in some matching physical algorithms.

In Chapter 5,” we perform the experimental validation of our solution. There, we compared how

the cost model estimations compare with the real values of the physical operators. Moreover, we also

analyzed the performance gain achieved with the optimizations introduced in some matching physical

algorithms.

In conclusion, we designed, developed, and integrated an automatic optimizer into CLEENEX that

enables it to choose for any Data Cleaning Program the best algorithms possible. This enables CLEENEX

to improve its performance and, consequently, its usability.

6.2 Future Work

In order to continue the work of this thesis, we propose the following tasks for future work:

• Single-thread matching algorithms have a scalability problem due to the way they read data. All

matching algorithms read the input datasets and store them in memory. This is not scalable.

Therefore, one of the most urgent work in CLEENEX is the reimplementation of the matching

algorithms so that they are more scalable in a single thread fashion. One possibility, when the

algorithms allow, is to read lazily. Another way is to divert to the RDBMS part of the blocking

phase. For example, in Traditional Blocking, use the RDBMS to retrieve all records that have the

same scale-up key value instead of dividing on the fly as is done at the moment;

• After the single-thread algorithms are with a good enough performance, CLEENEX should support

distributed execution. First, we need to assess which data operations can be distributed. Besides

the View operator, it should be possible to distribute the remaining operators. The View operator

is hard or even impossible to distribute since it is a query to a database. It would be necessary

82

to manipulate the query to distribute the execution. There are two possibilities to distribute the

execution: (i) create new algorithms that are the distributed version of the current ones, or (ii) use

tools such as Dedoop and delegate the execution. In what concerns the first option, adding new

algorithms is easily achievable due to the architecture of the current implementation. However,

it demands reconstructing every algorithm to support a distributed setting, which is very cumber-

some. The second option has several limitations. First, we need to find a platform that supports the

same operators of CLEENEX. Then, there is also another big problem, the UDFs that are declared

and known only by CLEENEX;

• The cost model makes the optimizer possible. One of the goals of every thesis that follows should

be the improvement of its accuracy. Namely, one of the first points is the capability to measure the

impact of the UDFs in the execution. This impact should be measured both in terms of performance

and in the output size of each data operator. There are some options to measure the performance

impact, namely: (i) static code analysis in conjunction with machine learning, and (ii) sampling,

i.e., at each execution of a given UDF, save its cost and use it for later estimations. The cost of a

UDF will be the average cost of all saved costs.

83

84

Bibliography

[1] D. Agrawal, S. Chawla, B. Contreras-Rojas, A. K. Elmagarmid, Y. Idris, Z. Kaoudi, S. Kruse, J. Lu-

cas, E. Mansour, M. Ouzzani, P. Papotti, J. Quiané-Ruiz, N. Tang, S. Thirumuruganathan, and

A. Troudi. RHEEM: enabling cross-platform data processing. PVLDB, 11(11):1414–1427, 2018.

doi: 10.14778/3236187.3236195. URL http://www.vldb.org/pvldb/vol11/p1414-agrawal.pdf.

[2] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information in-

tegration. In WIRI, 8-9 April 2005, pages 30–39. doi: 10.1109/WIRI.2005.2. URL https:

//doi.org/10.1109/WIRI.2005.2.

[3] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. R. Borkar, Y. Bu, M. J. Carey, I. Cetindil,

M. Cheelangi, K. Faraaz, E. Gabrielova, R. Grover, Z. Heilbron, Y. Kim, C. Li, G. Li, J. M. Ok,

N. Onose, P. Pirzadeh, V. J. Tsotras, R. Vernica, J. Wen, and T. Westmann. Asterixdb: A scalable,

open source BDMS. PVLDB, 7(14):1905–1916, 2014. doi: 10.14778/2733085.2733096. URL

http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf.

[4] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A cost-based model and effective heuristic for

repairing constraints by value modification. In SIGMOD, June 14-16, 2005, pages 143–154. doi:

10.1145/1066157.1066175. URL https://doi.org/10.1145/1066157.1066175.

[5] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. Fundam. Inform., 56

(1-2):51–70, 2003. URL http://content.iospress.com/articles/fundamenta-informaticae/

fi56-1-2-04.

[6] P. Christen. A survey of indexing techniques for scalable record linkage and deduplication. IEEE,

24(9):1537–1555, 2012. doi: 10.1109/TKDE.2011.127. URL https://doi.org/10.1109/TKDE.

2011.127.

[7] W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional data sets for

data integration. In SIGKDD, July 23-26, 2002, pages 475–480. doi: 10.1145/775047.775116.

URL https://doi.org/10.1145/775047.775116.

[8] M. Dallachiesa, A. Ebaid, A. Eldawy, A. K. Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang.

NADEEF: a commodity data cleaning system. In SIGMOD, June 22-27, 2013, pages 541–552.

doi: 10.1145/2463676.2465327. URL https://doi.org/10.1145/2463676.2465327.

85

http://www.vldb.org/pvldb/vol11/p1414-agrawal.pdf
https://doi.org/10.1109/WIRI.2005.2
https://doi.org/10.1109/WIRI.2005.2
http://www.vldb.org/pvldb/vol7/p1905-alsubaiee.pdf
https://doi.org/10.1145/1066157.1066175
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-04
http://content.iospress.com/articles/fundamenta-informaticae/fi56-1-2-04
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1109/TKDE.2011.127
https://doi.org/10.1145/775047.775116
https://doi.org/10.1145/2463676.2465327

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun.

ACM, 51(1):107–113, 2008. doi: 10.1145/1327452.1327492. URL http://doi.acm.org/10.1145/

1327452.1327492.

[10] A. Doan, A. Halevy, and Z. Ives. Principles of Data Integration. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1st edition, 2012. ISBN 0124160441, 9780124160446.

[11] L. Fegaras and D. Maier. Optimizing object queries using an effective calculus. ACM Trans.

Database Syst., 25(4):457–516, 2000. URL http://portal.acm.org/citation.cfm?id=377674.

377676.

[12] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical

Association, 64:1183–1210, 1969.

[13] T. Fernandes. A software infrastructure for the cleenex optimizer. Master’s thesis, 2015.

[14] H. Galhardas, D. Florescu, D. E. Shasha, E. Simon, and C. Saita. Declarative data cleaning:

Language, model, and algorithms. In VLDB, September 11-14, 2001, pages 371–380, . URL

http://www.vldb.org/conf/2001/P371.pdf.

[15] H. Galhardas, A. Lopes, and E. Santos. Support for user involvement in data cleaning. In DaWaK,

August 29-September 2,2011, pages 136–151, . doi: 10.1007/978-3-642-23544-3\ 11. URL

https://doi.org/10.1007/978-3-642-23544-3_11.

[16] S. Giannakopoulou, M. Karpathiotakis, B. Gaidioz, and A. Ailamaki. Cleanm: An optimizable query

language for unified scale-out data cleaning. PVLDB, 10(11):1466–1477, 2017. doi: 10.14778/

3137628.3137654. URL http://www.vldb.org/pvldb/vol10/p1466-giannakopoulou.pdf.

[17] G. Graefe. The cascades framework for query optimization. Data Engineering Bulletin, 18, 1995.

[18] G. Graefe and W. J. McKenna. The volcano optimizer generator: extensibility and efficient search.

In ICDE, 1993, pages 209–218. doi: 10.1109/ICDE.1993.344061.

[19] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Extensible query processing in starburst.

In SIGMOD, 1989, pages 377–388. ISBN 0-89791-317-5. doi: 10.1145/67544.66962. URL http:

//doi.acm.org/10.1145/67544.66962.

[20] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In SIGMOD, May

22-25, 1995, pages 127–138. doi: 10.1145/223784.223807. URL https://doi.org/10.1145/

223784.223807.

[21] Y. E. Ioannidis. Query optimization. ACM Comput. Surv., 28(1):121–123, Mar. 1996. ISSN 0360-

0300. doi: 10.1145/234313.234367. URL http://doi.acm.org/10.1145/234313.234367.

[22] Z. Khayyat, I. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J. Quiané-Ruiz, N. Tang, and

S. Yin. Bigdansing: A system for big data cleansing. In SIGMOD, May 31 - June 4, 2015, pages

1215–1230. doi: 10.1145/2723372.2747646. URL https://doi.org/10.1145/2723372.2747646.

86

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://portal.acm.org/citation.cfm?id=377674.377676
http://portal.acm.org/citation.cfm?id=377674.377676
http://www.vldb.org/conf/2001/P371.pdf
https://doi.org/10.1007/978-3-642-23544-3_11
http://www.vldb.org/pvldb/vol10/p1466-giannakopoulou.pdf
http://doi.acm.org/10.1145/67544.66962
http://doi.acm.org/10.1145/67544.66962
https://doi.org/10.1145/223784.223807
https://doi.org/10.1145/223784.223807
http://doi.acm.org/10.1145/234313.234367
https://doi.org/10.1145/2723372.2747646

[23] T. Kim, W. Li, A. Behm, I. Cetindil, R. Vernica, V. R. Borkar, M. J. Carey, and C. Li. Supporting

similarity queries in apache asterixdb. In EDBT 2018, pages 528–539. doi: 10.5441/002/edbt.

2018.64. URL https://doi.org/10.5441/002/edbt.2018.64.

[24] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with hadoop. PVLDB, 5(12):

1878–1881, 2012. doi: 10.14778/2367502.2367527. URL http://vldb.org/pvldb/vol5/p1878_

larskolb_vldb2012.pdf.

[25] S. Kruse, Z. Kaoudi, J. Quiané-Ruiz, S. Chawla, F. Naumann, and B. Contreras. Rheemix in

the data jungle - A cross-platform query optimizer -. CoRR, abs/1805.03533, 2018. URL http:

//arxiv.org/abs/1805.03533.

[26] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data sets with

application to reference matching. In SIGKDD, August 20-23, 2000, pages 169–178. doi: 10.1145/

347090.347123. URL https://doi.org/10.1145/347090.347123.

[27] A. D. Sarma, Y. He, and S. Chaudhuri. Clusterjoin: A similarity joins framework using map-reduce.

PVLDB, 7(12):1059–1070, 2014. doi: 10.14778/2732977.2732981. URL http://www.vldb.org/

pvldb/vol7/p1059-dassarma.pdf.

[28] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Systems Concepts. McGraw-Hill Higher

Education, 4th edition, 2001. ISBN 0072283637.

[29] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapreduce. In

SIGMOD, June 6-10, 2010, pages 495–506. doi: 10.1145/1807167.1807222. URL https:

//doi.org/10.1145/1807167.1807222.

[30] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes (2nd Ed.): Compressing and Indexing

Documents and Images. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. ISBN

1558605703.

[31] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate detection. In

WWW, April 21-25, 2008, pages 131–140. doi: 10.1145/1367497.1367516. URL https://doi.

org/10.1145/1367497.1367516.

[32] S. Yan, D. Lee, M. Kan, and C. L. Giles. Adaptive sorted neighborhood methods for efficient record

linkage. In JCDL, June 18-23, 2007, pages 185–194. doi: 10.1145/1255175.1255213. URL https:

//doi.org/10.1145/1255175.1255213.

[33] S. Yeddula and K. Lakshmaiah. Investigation of techniques for efficient & accurate indexing for

scalable record linkage & deduplication. 2012.

87

https://doi.org/10.5441/002/edbt.2018.64
http://vldb.org/pvldb/vol5/p1878_larskolb_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1878_larskolb_vldb2012.pdf
http://arxiv.org/abs/1805.03533
http://arxiv.org/abs/1805.03533
https://doi.org/10.1145/347090.347123
http://www.vldb.org/pvldb/vol7/p1059-dassarma.pdf
http://www.vldb.org/pvldb/vol7/p1059-dassarma.pdf
https://doi.org/10.1145/1807167.1807222
https://doi.org/10.1145/1807167.1807222
https://doi.org/10.1145/1367497.1367516
https://doi.org/10.1145/1367497.1367516
https://doi.org/10.1145/1255175.1255213
https://doi.org/10.1145/1255175.1255213

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 The CLEENEX Data Cleaning Tool
	1.2 Problem
	1.3 Objectives
	1.4 Main Contributions
	1.5 Document Outline

	2 Background
	2.1 Relational Query Optimization
	2.1.1 System Catalog
	2.1.2 Rule-Based Optimization
	2.1.3 Cost-Based Optimization
	2.1.4 Join Reordering Algorithm
	2.1.5 Heuristics
	2.1.6 Cost-Based Optimization with Equivalence Rules

	2.2 Data Cleaning
	2.2.1 Approximate Duplicate Detection

	3 Related Work
	3.1 Scaling Up Approximate Duplicate Detection
	3.1.1 Traditional Blocking
	3.1.2 Sorted Neighborhood Join
	3.1.3 Q-gram based Indexing
	3.1.4 Suffix Array Based Indexing
	3.1.5 Canopy Clustering
	3.1.6 Discussion

	3.2 Parallel and Distributed Data Matching
	3.2.1 Dedoop
	3.2.2 Parallel Set-Similarity Joins
	3.2.3 Discussion

	3.3 Data Cleaning Research Prototypes
	3.3.1 CLEENEX
	3.3.2 CleanM
	3.3.3 BigDansing
	3.3.4 RHEEM
	3.3.5 Discussion

	4 Proposed Solution
	4.1 CLEENEX Component Architecture
	4.2 Optimizer Architecture
	4.2.1 Execution Plan
	4.2.2 Plan Converter
	4.2.3 Plan Cache
	4.2.4 Equivalent Plans Generator

	4.3 Cost Model
	4.3.1 Output Size Estimation
	4.3.2 CPU and I/O Cost
	4.3.3 Cost of a Physical Algorithm

	4.4 Execution Optimization
	4.4.1 Conversion from Runtime to Compile Time Code
	4.4.2 Matching Algorithms Optimization

	5 Experimental Validation
	5.1 Experimental Setup
	5.1.1 Datasets
	5.1.2 Data Cleaning Program
	5.1.3 Metrics

	5.2 Cost Model
	5.2.1 Plans Cost
	5.2.2 Output Size
	5.2.3 Discussion

	5.3 Matching Algorithms Optimizations
	5.3.1 Sorted Neighborhood Join
	5.3.2 Adaptive SNJ
	5.3.3 Traditional Blocking

	6 Conclusions
	6.1 Summary
	6.2 Future Work

