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Abstract

Multi-agent and multi-robot systems have been being widely studied in the last decades, not only
due to the practical applications in real quotidian life, but also due to the constant growth of appli-
cation possibilities arising with technological advances. Moreover, delivery systems and urban logistics
have also experienced a great investment and effort, given the modern city problems such as excessive
pollution, lack of sustainability, increasing road traffic or even due to the financial benefits of modern
transportation systems. Both private companies and public entities have found in drones a viable solu-
tion not only for urban logistic problems but also for search and rescue and surveillance missions. This
work, developed in the context of a research project regarding drone parcel transportation systems, ad-
dresses a study of optimization algorithms for task allocation in a fleet of drones with the goal of parcel
delivery. With this goal, many algorithms are discussed, focusing on the study and implementation of
Task Sequential Greedy Algorithm. This algorithm was modified to include drone battery limitations
and recharge possibilities with a configurable objective function giving the user the possibility of com-
bining and tuning both time and energy consumed. It was also modified to include relays, where parcels
can change carrier during an in-flight maneuver. A binary optimization algorithm is implemented to
decide where and when the relay maneuvers are beneficial to the system.
Keywords: Optimization; Drone transportation systems; Task allocation; Relay maneuvers; Cooper-
ative systems.

1. Introduction

1.1. Motivation

This work, developed within the scope of the
project REPLACE, focuses on studying and de-
signing algorithms for the planning and scheduling
of a set of tasks for a set of Unmanned Air Vehi-
cles (UAVs), part of the planning and optimization
challenges within REPLACE project, that aims to
study new strategies of parcel delivery in urban en-
vironments by drones. The inclusion of relay ma-
neuvers in the cooperative parcel delivery is one of
the main and disruptive key steps undertaken by
the research team during the development of this
work.

Numerous applications of Multi-Robot Systems
have been emerging in our society and are becom-
ing more and more generalized, mainly in situa-
tions where some places cannot be easily reached
or there are human lives in danger, such as help-
ing in preventing and fighting wild fires. Further
information and a review of the most recent appli-
cations and projects regarding this subject can be
found in [1].

Figure 1: Relay maneuver

1.2. State-of-the-Art

Studies about Multi-agent Systems (MAS) and
more specifically Multi-Robot Task Allocation
(MRTA), which include UAVs, are also becoming
more and more frequent and precise, both with in-
dustrial, commercial or security applications.

Some work regarding single task robots (robots
that are not able to perform more than one task
simultaneously) have used Integer Linear Program-
ming (ILP) or Mixed Integer Linear Programming
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(MILP), such as in [2]. In the first case, air vehicles
are expected to identify, classify and target ground
objects. Because of that, the tasks need to follow
a specific order, having strict time and precedence
constraints. Other articles dedicated to this topic
propose an approach based on Particle Swarm Op-
timization (PSO), as we can see in [3], and [4]. The
authors of [5] combine PSO and a Genetic Algo-
rithm for a weapon target task allocation for UAVs
in battlefield environment. The work produced in
[4] analyses scheduling in an indoor 3D situation in
order to minimize the total energy consumed.

Even though the majority of the approaches we
see in the literature are single robot tasks (tasks
that are performed by only one agent), we will fo-
cus mainly in cooperative systems. One article that
analyses a cooperative task allocation using also
PSO is [3]. Sequential Greedy Algorithm is used in
[6] as a baseline comparison, and some changes to
that algorithm are proposed to reach better solu-
tions, generating a Task based Sequential Greedy
Algorithm that will be very important in the de-
velopment of this. On top of that, more work have
been being dedicated to cooperative task allocation
as we can observe in [7], where a Multi-Structure
Genetic Algorithm is implemented in a fleet with
different types of UAVs.

Many stages and designs can be implemented us-
ing decentralized approaches, with the main ad-
vantages of time and computational resources effi-
ciency, operation under unknown and uncertain en-
vironments and robustness with respect to model
uncertainty. On the other hand, centralized algo-
rithms often demand high computational resources
for big missions, and so they commonly have a
problem regarding scalability. For example, using
a specific type of ILP, [8] describes the implemen-
tation of Binary Linear Programming and itera-
tive Network Flows and Auction algorithms. Fur-
thermore, a distinct decentralized approach is pre-
sented in [9]: Consensus-Based Bundle Algorithm
(CBBA). Despite the numerous publications and
studies regarding drone cooperative task allocation
for parcel delivery, there are few that incorporate
energy limitation and recharge possibilities.

In the context of city logistics, several authors
have investigated systems were many agents con-
tribute to perform one single delivery task, with a
change in the carrier during the task performance
itself. These approaches are called multi-hop parcel
delivery systems and are not very-well studied de-
spite having great advantages and potential if one
can create an efficient system. In [10], Chen et al
present an approach with a complex ILP formu-
lation solved by two different heuristics, with the
goal of using the spare capacity of existing trans-
portation flows, incorporating the option of trans-

fers between drivers.

In parallel, relays in multi-robot systems are also
under intense study in the context of Industry 4.0,
where smart transportation is one of the main fo-
cuses - [11]. Its applications in literature focus
mainly on cooperative agents regarding communi-
cation network planning, surveillance or video cov-
ering of live events and the research regarding this
subject is growing as well as its utility and rele-
vance [12]. In communicative systems, the plan-
ning of distance between agents is crucial, once the
antennas have a limited transmission and reception
radius. Examples of this are the works performed
by Kopeikin, Ponda et al in [13] and in [14].

It is also worth noting that the implementation
of MRTA (Multi-Robot Task Allocation) problems
are divided in two main areas: the decision mak-
ing of the group of agents and its execution. The
presented work focuses only on the first part. This
means that the drones are assumed to have the
capability of performing the trajectories planned,
not colliding with each other. The mechanisms to
well perform attitude control and collision avoid-
ance systems are assumed to be well implemented
in the agents. More over, the drones are considered
to be in a 2 dimensions plane.

2. Theoretical Background

2.1. Directed Acyclic Graphs

Directed acyclic graphs have a great relevance in
the algorithm definition for the problem of cooper-
ative parcel delivery. Considering a formal defini-
tion a graph, G = (V,E) is composed by a set of
vertices V (also called nodes) and a set of edges E,
where each edge has two nodes associated. In the
example, Figure 2, nodes are represented by the
letters u, v, w and x while edges by the letters from
a to f . Endpoints are defined to be the nodes that
delimit each edge, e.g u and v are endpoints of a.
Two edges are adjacent if they have an endpoint in
common. Edges can have directions depending on
the problem formulation (for examples in a road,
the direction in which the traffic flows). If this is
the case, it is called a digraph and the endpoints
might be called head and tail, depending on the
direction of the edge so that the direction points
from the head to the tail.

Figure 2: Graph example [15]

2



Continuing with some useful definitions, with the
analysis of a cooperative transportation problem on
mind: we say that a graph or sub-graph is a walk in
the form of the sequence {v0, e1, v2, e2, ..., vn} if for
every n = 1, ..., n, vn−1 and vn are endpoints of en.
In other words, a graph is a continuous sequence
of adjacent edges. A walk is said to be closed if
the the initial node coincides with the last node
(i.e v0 = vn). Also, we call trail to a walk that
has no repeated edges (ei 6= ej with e, j = 1, ..., n
and e 6= j). Similarly, a path is a trail that does
not repeat any internal node (initial and final nodes
can be the same and if this is the case, we say it
is a closed path). We say that a directed acyclic
graph (also DAG) is a digraph that has no cycles
(no closed paths). As a consequence, we can say
that in order to be a DAG, every walk inside a
graph must be a path.

Let’s now depict an useful example related to a
task allocation problem. Let’s assume we have 2
drones a1, a2 and 3 tasks t1, t2, t3 to be performed.
Task 1 only needs 1 agent to be performed whilst in
tasks 2 and 3, both drones are needed to complete
the tasks (because of the weight of the parcel for
instance). Let’s say that the vector Vn stores the
output of the ordered tasks to be performed by
the agent n after some task allocation decision was
made: V1 = (1, 2, 3) and V2 = (3, 2), meaning that
drone 1 performs task 1, then task 2 and in the
end task 3 (represented in red), and that drone 2
performs task 3 and then task 2 (represented in
green).

Figure 3: Example of task allocation representation

We can directly analyze the dependency of the
tasks: from drone 1 path, task 3 depends on task 2
to be executed, and task 2 depends on task 1. On
the other hand, given drone 2 task allocation, task
2 is dependent on task 3. We can easily observe
that task 2 and task 3 have a mutual dependency
and thus, it is an impossible solution for our prob-
lem. In the following image we can observe the time
dependency of the tasks on this example, knowing
that an edge directed from tn to tm means that task
m needs task n finished to begin (time hierarchy).

This graph has directed cycles and thus it is not
a DAG, which is the reason why it cannot be a
solution of a cooperative task allocation problem,
has we have seen before.

Figure 4: Task dependency graph

3. Task Allocation for Parcel Delivery with
Recharging

After careful review of the state-of-the-art and
selected literature, it was considered that a good
first step would be to understand and implement
the algorithms presented in [6] and [3] by Oh, Kim,
Ahn and Choi.

3.1. Problem Statement

Let us imagine a 2 dimension environment with
N agents (drones) and M delivery tasks. Each
drone i ∈ {1, 2, 3..., N} is initially characterized
by its initial x and y coordinates xi and yi re-
spectively and average velocity vi. Regarding task
k ∈ {1, 2, 3, ...,M} initialization, the user has to
provide information about its pickup and drop-off
locations (xp

k,ypk,xd
k and ydk) and number of agents

needed to perform the task Zk.
Within this framework, P is defined as the opti-

mization variable that stores the various tasks each
agent will perform, in order. We can say, by this
definition, that P is a list or vector of vectors that
store the duty of each agent, in the order in which
the tasks will be performed. The dimension of P
depends on the number of agents and on the num-
ber of agents needed to perform each task. For
instance, given an environment with 4 agents, with
10 tasks that need all agents to be performed, P
will be a matrix 4 × 10. Also, to each coalition
(group of agents that will perform task k) the au-
thor calls ak. For example, a2 refers to the group
of agents that are set to perform task number 2.
Thus, saying P2,3 = 4 means that the task number
4 will be the 3rd one performed by agent 2. Gen-
erally, Pi,m = k means that task k will be the mth

one performed by agent i. On the other hand say-
ing that ak = (m,n, o) means that the agents m,n
and o will perform task k. Also, t(P) is the total
mission time, corresponding to the latest parcel de-
livery time. Besides this, G is the graph generated
by the dependencies between the tasks as analysed
in Figure 4.

Given these initializations and definitions, the
formulation of our optimization problem is as fol-
lows, according to [3]:

minimize J = t(P)
subjected to n (ak(P)) = Zk,∀k ∈ K

isDAG(G) = 1
(1)

The second constraint ensures that G, the graph
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generated by the task allocation result, is a directed
acyclic graph as we have defined before. The con-
ceptual function isDAG() is simply a function that
returns 1 if the input graph is a directed acyclic
graph and 0 if not.

For the formulation of this problem, it is impor-
tant to clarify that each task only begins when all
agents needed arrive to the parcel pick up location.
This means that all the others that might be avail-
able at an earlier time are waiting for that agent to
arrive.

3.2. Proposed Solutions in the Literature

The first algorithm is presented in [3] and called
Sequential Greedy Algorithm (ASGA) for cooper-
ative timing missions. The coalitions in this algo-
rithms are chosen in a greedy procedure, among all
possible coalitions. For this, the algorithm com-
putes the ETA (Estimated Time of Arrival) of all
pairs (agent,task), and chooses the best of these
times to decide the next task to be allocated and
the coalition leader for that tasks, which are the
pair (agent,task) with minimum ETA. After this,
until the sufficient number of agents, the agent
with minimum ETA to that task is allocated se-
quentially. This procedure is repeated until all
tasks have an allocated coalition. This algorithm
is purely greedy and might be far from the opti-
mum. Despite this, an important characteristic of
this procedure given the cooperative nature of this
problem, is that it automatically ensures that the
DAG constraint is met, because each task is allo-
cated consecutively in the end of each agent sched-
ule, preventing the appearance of crossed depen-
dencies.

In [6], modifications to this algorithm are pro-
posed, leading to Task Sequential Greedy Algo-
rithm (TSGA).

It is worth noting that in ASGA, two major
greedy decisions are made. Those are:

• The next task in each step, and thus the order
in which the allocation is performed;

• The agent allocation within each task;

The authors suggest that the first decision is
more important than the second one to the over-
all performance of the algorithm, because it is the
one that establishes the order in which each task
will be performed. For this reason, the author sug-
gests changing the order in which the tasks are be-
ing considered inside the algorithm, performing an
allocation in all possible combinations, storing at
each step the best result so far. This means that
the first greedy decision disappears.

As stated, the second greedy decision inside each
allocation is maintained and this keeps the au-
tomatic satisfaction of the DAG constraint. In

essence, this algorithm runs M ! (M factorial) AS-
GAs with a specific and constrained allocation or-
der. For this reason, there is no need to demon-
strate that this algorithm improves ASGA results,
because the original ASGA allocation is for sure
a subset of TSGA result, noting that the greedy
order chosen for ASGA is for sure one of the M !
permutations. This ensures that TSGA is in the
worst case as good as ASGA. Nevertheless, some
numerical simulation results are shown in [6].

In the next figure the development data set can
be observed in a graphical representation of the en-
vironment, where the red circles are the drones ini-
tial position, and the crosses are the initial (P) and
final (D) points of each parcel delivery task. Re-
garding the number of agents needed in each task,
task 1 and 4 need only one agent to be performed,
task 0, 2 and 5 need two agents while three agents
are necessary to perform task 3. and the velocities
of the drones are set to be 0.02 distance units per
time units.

Figure 5: Development data set environment

The task allocation result with the TSGA algo-
rithm for this environment is as follows:

Task Allocation Result - TSGA
Agent TA

1 [0,5,3]
2 [0,5,3]
3 [2,1,4]
4 [2,3]

Mission time: 656.905

Table 1: Task allocation 1

This notation for the task allocation result will
be used along all this work, and can be interpreted
as each row corresponding to each one of the agents
(identified in the left column), with the result of
the task allocation in the right column. The task
allocation list represents the tasks performed by
each drone in order. Meaning that, as an example,
agent 1 in this problem will perform task 0, then
5 and finishes with task 3. In Figures 6 and 9 a
graphical representation of the scheduling of the
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agents and the time interval of tasks execution is
presented.

Figure 6: Task Execution Times

Figure 7: Agent Scheduling

3.3. Modifications discussion and implemen-
tation

The next step of our implementation procedure is
the inclusion of a battery limitation on the drones.
This implementation increases the degree of real-
ity of the studied environment given that there are
no real agents with no energy limitation and also
enables the study of more complex missions, where
the drone team does not have enough energy to
complete all tasks.

Concerning how energy consumption is imple-
mented in the code, an ”energy left” parameter was
created internally associated to each drone (and
restored in each permutation analysis). This pa-
rameter is updated every time a task is allocated
to the drone schedule. Also, before the allocation
of any task, to drone is checked to determine if it
has sufficient energy to both travel to the pick up
point of the task and to perform the delivery itself.
If not, the drone is considered unsuitable for that
task as it will not be able to complete the entire
task. For this reason, some modifications to the
problem formulation might be needed as described
in the following paragraphs. It is also worth not-
ing that the mission is considered concluded if all

the tasks are performed or alternatively, when all
drones are considered not assignable to any of the
remaining tasks, meaning that they do not have
enough energy to perform any of them.

After implementing a limitation of 15 energy
units to the agents, it was noted that the algo-
rithm retrieved a task allocation without complet-
ing task 3. Note that task 3 is not completed.
This happens because some of the allocation orders
tested in the Task Sequential Greedy Algorithm do
not allow every task to be completed, but in the
considered formulation and objective function, we
are only minimizing mission time. For this reason,
given all the task allocations correspondent to all
the possible orders (with and without all tasks com-
pleted), the algorithm chooses the minimum mis-
sion time that logically corresponds to a mission
where less tasks are performed. A quick analysis
to every task allocation retrieved during the algo-
rithm process, confirms that other allocation orders
enable the completion of all the tasks. Given this
particularity, triggered by the inclusion of the bat-
tery limitation, a modification to the actual formu-
lation is proposed, because the main objective of a
task allocation procedure is to complete all tasks.
Instead of minimizing the mission time, the algo-
rithm will now be set to maximize a score function
f(P), where both the number of completed tasks
and total energy consumed are taken into account,
such that:

f(P) = k1×stask(P)−k2×st(P)−k3×se(P) (2)

where stask(P), st(P) and se(P) are measures of
performance regarding task completion, mission
time and energy consumed respectively. Given
this score function, the algorithm is maximizing
the number of tasks completed, having the mission
time and energy as penalties to the score. Note that
k1, k2 and k3 are the weight of the task completion,
mission time and energy consumption respectively
and that can be tuned to the preferences of the
user. We can continue studying a pure TSGA by
setting k1, k3 = 0, for instance. With this modifi-
cation, the algorithm was able to achieve exactly
the same result as before, represented in table 1
showing that the implementation was successful.

Following the line of thought of trying to reach
simulation conditions as close as possible to the real
ones, the next step is to create the possibilities for
the drone to recharge batteries.

This feature will be implemented with some ini-
tial considerations: the agents recharge in specific
places on the map called bays; the recharge is in-
stantaneous (one can think of a battery swap, as a
parallel to a real process) and do not have opera-
tional time of approaching and leaving the bay; this
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means that the drone recharges just by equalling its
coordinates to the coordinates of a charging bay;
the bays do not have a limited space for drones
to recharge, meaning that any bay is always avail-
able for any drone to recharge and there are no
queues or waiting on the recharge process; when a
recharge happens, the drone battery becomes full;
an agent is not capable of recharging while per-
forming a task.

The biggest decision at this point is when to send
a drone to recharge, i.e, when should the drone
be considered with ”low battery” and a recharge
task added to the allocation. Two hypothesis were
considered: the first one was the definition of a
minimum threshold below which the drone would
be sent to recharge. For example, every time a
drone drops below 3 energy units, it would go to a
recharge bay. This option clearly lowers the opti-
mality of the algorithm. To prove this, one might
just imagine a small task that would require less
energy than the minimum energy threshold, begin-
ning exactly where the drone is and in the direc-
tion of the recharge bay. Also, this option gives
the chance to a drone to run easily without any
energy left. Considering these limitations, the pro-
posed implementation relies on the evaluation, at
each time that the a task is appended to a drone
schedule, if the drone will have enough energy to
perform the task that the algorithm is trying to al-
locate and then to go to the nearest bay (relatively
to the task drop off point). If that verification is
false, the drone will go recharge in the nearest bay
(relatively to the point he is at). It is ensured that
the drone can reach the nearest recharge bay be-
cause it was evaluated before appending this task.

Reducing now the energy limitation of each
drone to 10 energy units (that would result in a
task allocation again without completion of task 3
but this time even with the modifications of the
objective function), and setting the 2 bays with ge-
ographical location of the points (x = 3; y = 1)
and (x = 0; y = 4), and with the implementation
of the recharge option, results in the task alloca-
tion are shown in Table 2, where ”r” represents a
recharge task. Also note that the algorithm (as an
implementation option) forces the drones to end
the mission in a bay.

Task Allocation Result
Agent TA

1 [0,r,4,r]
2 [0,5,r,3,r]
3 [2,5,r,3,r]
4 [2,1,r,3,r]

Mission time: 834.29

Table 2: Task allocation w/ recharge

Figure 8: Agent Scheduling with recharge

4. Relay Maneuvers

4.1. Problem Description

In this section, relay maneuvers will be imple-
mented in the task allocation algorithm. With the
relay points, the tasks are from now on considered
to be composed by various sections that will be
processed as separated tasks. Take in considera-
tion the next example.

Figure 9: Agent Scheduling with recharge

In Figure 9 we are able to see 2 different tasks.
Task 0 is divided in 3 different minor tasks by the
means of 2 relay points whereas task 1 does not
have relay points and thus, is not divided.

In order to ensure language coherence, let us de-
tail some useful definitions. From this point on the
total task will be called task (green dashed line in
the graphical environment), and the referred mi-
nor tasks will be named relay task. A relay point
is the place where a relay maneuver is set to hap-
pen (represented with blue crosses in the graphical
environment). A more rigorous definition of relay
task can be: a relay task is a task limited by at
least one relay point. Additionally, to enumerate
and refer the relay tasks, a new notation will be
used. As noted, all relay tasks are associated to a
original ”big” task, and the notation used will be
”X.Y” where ”X” relates to the original task asso-
ciated with the relay task (global numeration) and
”Y” represents that the relay task is the Yth inside
of the original task (internal numeration in each
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original task).

In order to better formulate the problem, some
assumptions should be made: in the first place,
it is considered that 100% of the performed re-
lay maneuvers are successful; it is also assumed
that relay maneuvers are only performed in tasks
that require only one agent; this consideration does
not come with the intention of decreasing the com-
plexity of the problem but instead some increasing
the real applications of the study since it would
be very difficult to create the transmission mecha-
nisms for transferring a parcel carried by more that
one drone; finally, it is also supposed that for a relay
maneuver to take place, the receiving drone should
reach the relay point earlier than the drone that
is providing the parcel (or simultaneously). Given
these assumptions, the optimization problem relies
on finding the best task allocation for each drone
given all the relay tasks.

It is worth recalling the inputs that the algo-
rithm is expected to receive that are only a set of
tasks and the characterization of the drones, mean-
ing that the user is not expected to define the re-
lay points. As a consequence, the algorithm is ex-
pected to (optimally) define the relay points it will
use for each one of the tasks (if any) according to
the drones limitations and the specific geometry of
the mission.

The more severe problems that arise are resul-
tant of the algorithm decision of where to locate
the relay points as well as how many relay points
in one single task and , given the relay points, when
to trigger or ask the relay maneuver. These prob-
lems were by far the most difficult to address and to
produce the final solution, and so these two prob-
lems are considered to be the core of an algorithm
with relay maneuvers and where many of them can
have significant contributions.

After careful thinking and numerous tests about
the implementation and correctness of some strate-
gies, the conclusion is that it is difficult to establish
a priori a generic rule, or chain of rules or even
a deterministic strategy that would be successful
tackling the two aforementioned problems, given
that deterministic algorithm would need to decide
how many relay points in each task, the position of
the relay points and the reason to call the relay ma-
neuver. It would be extremely difficult or almost
impossible to build a deterministic algorithm that
would ensure that the decision making was the best
for the global mission (one is able to imagine a mis-
sion with a big number of tasks) and not only to a
small system near to the point where the decision
is being taken. For this reason, a non-deterministic
approach will be proposed.

4.2. Proposed Solution

Two of the main focuses of the proposed solu-
tion are to maintain a centralized algorithm and to
create a possibility for the utilization of the work
performed developed before, namely the TSGA al-
gorithm.

As stated before, the two decisions of where and
when to perform the relay must be found by the
algorithm. However, it is possible for the program-
mer to give some possibilities of relay points lo-
cations to the algorithm and these two decisions
would be taken on top of those possibilities. This
is of course a relaxation of the problem and its con-
strains, narrowing the possible locations of the re-
lay points, and reducing the optimality of the re-
sult. However, the programmer is in practice creat-
ing a grid, or a mesh, on top of which the algorithm
is going to optimize. This means that the quality
of the solution can be increased with the refining
of the grid as long as computational power is avail-
able.

This strategy would be programmed to be solved
using binary optimization algorithms. For this, af-
ter the definition of the possible location to the re-
lay points, associated with each one of those points,
a binary variable would be created, encoding an
active or inactive point. The decision variable vec-
tor would be the vector made of all these binary
variables to be set by the binary optimization al-
gorithm, resulting in the best places in the map
for performing a relay maneuver. For the study to
be conductive to an appropriate solution, the pro-
grammer should run some simulations with differ-
ent possible relay points (considering the available
computational power) in order to understand if the
task division is not limiting the optimality of the
solution.

Figure 10: Relay Point Binary Optimization Dia-
gram

4.3. Implementation and Discussion

First of all, an important assumption was made:
for one task, with m relay points, the same drone
is not able to perform more than one relay task,
i.e, more than one segment of the task. One drone
is not able to perform the path from the pick up
point to the first relay point, for example, and after
picking up again the parcel in any of the ensuing
segments. This decision was taken bearing in mind
that it is considered that the velocity of the drone
is constant (with or without parcel). This implies
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that the drone that transported the parcel from the
pick up point to the first relay point, in order to be
able to be on time in another relay point forward,
would have to assume the trajectory of the task
itself (the straight line) because the other drones,
with the same velocity, will carry the parcel in that
trajectory. Note that ”being on time” means that
the reaching drone will not have to wait for another
drone in the relay point in order to perform the
relay maneuver. Thus, it would not make sense in a
way that if the drone is doing the parcel trajectory
itself, that drone should be carrying the parcel and
the relay maneuver should not have happened in
the first place. This decision has a considerable
consequence which is that the number of drones of
the mission, should be no lower than the maximum
number of relay segments in a single task, or in
other words, should be higher than the maximum
number of relay points in a single task.

So, the first analysis will focus on a simple case
of a single task with 2 relay points with 3 drones, as
shown in the next figure, where a single task with
2 relay points and 3 UAVs in their initial positions
are represented. For the analysis and comparison
of time of the missions, let us assume that the speed
of the drones is 0.02 distance units per time units.

In a first approach to create the algorithm that
will dictate which drone is going to perform each
one of the segments of the tasks, a greedy procedure
was implemented from the beginning to the end
of the task. This means that the procedure is to
sequentially look for the closest drone for the relay
task and allocate that segment to that agent.

Figure 11: Relay development environment

With this approach, the task allocation result
would be drone 1 to perform relay task 0.0, drone
2 to perform relay task 0.1 and drone 3 to perform
relay task 0.2, with a total mission time of 200 time
units and a total distance of 7.618 distance units.

It is worth noting that the algorithm was coded
to wait for the limiting agent to deploy the task.
This means that if one of the above agents was far
away from the task (and no other was closer) the al-
gorithm computes the time that the farthest agent
takes to reach the attributed relay point and only

deploys the task at the right time to assure the
time synchronization of the mission. This means
that the algorithm will not leave any task not per-
formed, as long as the unlimited battery of the
drones is kept, and no feasibility condition is bro-
ken.

However, given the above map, one can observe
that it is possible to achieve a solution that deliv-
ers an equal mission time of 200 time units with a
lower total distance travelled by the agents, which
implies a reduced cost if we consider both the goals
of minimizing time and consumed energy. This so-
lution would be allocating UAV3 to the first relay
point (second segment of the task) and UAV2 to
the second relay point (third and final segment).
Note that concerning elapsed time this allocation
would not modify the result as UAV3 reaches the
first relay point before UAV1 with the parcel and
UAV2 reaches the second relay point also before
the parcel. In any case, it ”saves” energy.

To achieve this result based on the conceptu-
alized algorithm, some changes must be imple-
mented. The algorithm will from now on, before
allocating the relay tasks to each drone, choose the
best coalition, i.e the group of drones, to perform
the task. This is going to be done by choosing the
closest available agents to each segment of the task,
forming the coalition. Inside this coalition, an opti-
mization procedure will be run: the algorithm will
test all permutations of the chosen agents to each
relay point and choose the best allocation, by the
means of a minimization of an objective function:

f1(ak) = k1 × stime(ak) + k2 × senergy(ak) (3)

This optimization level, where within 1 single
task the best coalition of drones is chosen and allo-
cated to the relay tasks will be called micro alloca-
tion cycle from now on to denote the difference to
the optimization cycle that will be discussed next.

The allocation result after the implementation
of the micro allocation cycle is drone 1 to perform
relay task 0.0, drone 2 to perform relay task 0.2
and drone 3 to perform relay task 0.1, with a total
mission time of 200 time units and a total distance
of 6.920 distance units.

The next step in complexity is adding more than
one task. As we have analysed, the order in which
tasks are allocated is one of the key factors for the
performance of this allocation strategy and for this
reason, an optimization cycle iterating the order
in which the tasks are considered is going to be
implemented, following the idea behind TSGA. To
this cycle of task order iteration we will, from now
on, call macro allocation cycle as opposed to the
micro allocation cycle, defined before. To sum up
the differences, and it is important that the reader
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notes that they are two independent cycles and lev-
els of optimization, micro allocation cycle is done
to allocate the agents to the best relay points in-
side one single task, whereas macro allocation cycle
tests the order in which to allocate the tasks, given
a set of tasks.

In this allocation cycle, the objective will also
be minimizing an objective function that will take
into account the total mission time, total distance
covered by the drones, as the aforementioned f1,
such that:

f2(P) = k3 × stime(P) + k4 × senergy(P) (4)

Next one can see another environment example
and the impact of the macro allocation cycle in
the task allocation algorithm by analysing two task
allocation results with and without it.

Figure 12: Multi task relay development environ-
ment

Task Allocation with no macro cycle
Agent TA

1 [0.0; 1.0; 3.0; 4.1; 5.1]
2 [0.2; 2.1; 4.0; 5.2]
3 [0.1; 2.0; 3.1; 5.0]

Mission time: 937.63
Total distance: 45.06

Table 3: Relay Task Allocation 1

Task Allocation with macro cycle
Agent TA

1 [4.0; 0.0;1.0; 5.0]
2 [3.1; 0.2; 2.1; 5.2]
3 [3.0; 4.1: 0.1; 2.0; 5.1]

Mission time: 761.73
Total distance: 37.66

Table 4: Relay Task Allocation 2

After observing these results, the last optimiza-
tion cycle regarding the relay points was consid-
ered. It is worth mentioning that this binary opti-
mization of the relay points is performed over a
finite set of possible relay points, predefined by
the user and that the intention of this optimiza-
tion phase is, given a set of specific locations where
relay maneuvers can happen, find the ones that op-
timize mission time and energy. The chosen algo-
rithm to perform the binary optimization is a ge-
netic algorithm as it is an algorithm that is well
studied and has numerous optimization parameters
that the user can change in order to perform rele-
vant studies. In Image 13, the global architecture
of the problem can be observed.

Figure 13: Architecture of TSGA with Relays with
Relay Points Genetic Optimization

After some testing on different data sets, it was
concluded that with no battery limitation of the
drones and with an homogeneous fleet, since there
is no incentive for the system to call for relay ma-
neuvers as there is no time or energy saving in this
procedure. However, this algorithm can prove its
utility in the study of heterogeneous fleets, where
the algorithm tends to maximize the relay tasks
performed by the fast or more efficient drones. An-
other example of application can be seen below,
where a minimum of 3 relay maneuvers was estab-
lished. The result of the 3 best relay points, opti-
mized over the possible points shown in Figure 14,
is presented below.

5. Conclusions

5.1. Contributions

The present work combines multi-agent systems
study applied with modern urban logistics, given
that it is aimed to study a multi-drone coopera-
tive parcel delivery system. The main objectives
were accomplished since an already known algo-
rithm, Task Sequential Greedy Algorithm, was im-
plemented and modified to have not only recharge
possibilities but also the relay maneuvers.
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Figure 14: Result of the optimization

This work also had the objective of producing a
generic algorithm, meaning that the algorithm and
the framework are coded in a way that any type or
size of the data sets can be considered as inputs.
In practice, any fleet of drone (both homogeneous
and heterogeneous) and any type of tasks (with di-
verse weights or lengths) can be studied in this al-
gorithm. Both stages of the algorithm were char-
acterized from a evaluative point of view, meaning
that the user has the information about the perfor-
mance of the algorithm in certain conditions and
also its limitations.

5.2. Further work

Firstly, a modification that aims to provide the
algorithm with the possibility to evaluate the task
according to their priority in time can be imple-
mented such as in the baseline article. Another
good implementation for the algorithm would be
time varying velocity and consumption. Another
modification that would provide a more realistic
simulation environment would be to consider a 3D
space or the inclusion of a real drone model.

One of the biggest limitations of the algorithm
we implemented and modified is its combinatorial
nature. Data clustering techniques can be imple-
mented in order to tackle this problem. Also, an
interesting approach would be given by a multi-
objective optimization procedure.

To conclude, the study of a decentralized ap-
proach to this algorithm would be of interest, not
only to study the differences regarding the system
response but also because this modification would
allow for the usage of bigger data sets without es-
calating in computational effort or run time, thus
improving the scalability of the strategy.
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