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A Mixture-of-Experts approach to deep image
clustering: Estimating latent sizes and number of

clusters
PEDRO SANTOS

Abstract—Deep clustering is a field with many widespread
applications, ranging from Biology [1] to Marketing [2]. It
differs from classical clustering by using a deep algorithms
(i.e. autoencoders) to perform representation learning on the
raw data. Despite the importance of these deep representation
learning algorithms, little to no priority is given to their structure,
making most theoretical works fail in real-life applications and
most bodies of work do not allow specialization of parts of the
network to subsets of data, making it very hard to influence
the type of data that is generated. Hence this thesis aims at
exploring a novel deep clustering technique based on a mixture
of variational autoencoders in which each VAE models a cluster,
and a manager network gives, based on the data, a relative
importance score to each of the experts. The main contributions
of this body of work are fourfold: it is a generative approach to
clustering, it has a fully data dependant architecture, removing
the need for most hyperparameter selection, the latent dimension
finder is a novel approach to determine the optimal number of
neurons to have in the bottleneck layer of an autoencoder, and
finally by using an algorithm such as HDBSCAN instead of a
classical clustering algorithm allows us to have a better algorithm
initialization and automatically define the optimal number of
clusters for the MoE architecture. The results of the experiments
done to evaluate our algorithm’s performance were very positive:
it surpasses most state-of-the-art deep clustering techniques such
as N2D [3], and DynAE [4] and becomes the definitive baseline
for Mixture-of-Experts based clustering, far surpassing previous
baselines such as DAMIC [5] and MIXAE [6].
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Mixture of experts model, Pretraining architecture, Automatic
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I. INTRODUCTION

Unsupervised clustering is both one of the fundamental
motivators, and one of the most challenging tasks in machine
learning. By grouping data in a meaningful manner, we
can gain insights and knowledge that is often valuable and
not straightforward by regular data analysis. This task gets
exponentially harder for traditional methods such as K-means
and Gaussian mixture models when we are talking about high
dimensional data such as video or images mainly due to the
curse of dimensionality [7].

With the advent of deep learning, architectures such as
autoencoders somehow alleviated the challenges of higher-
dimensional clustering by using what is called Representation
Learning. By training a network to reconstruct data using an
information bottleneck, it can learn a latent representation of
the data that not only has lower dimensionality but also is op-
timized and deduced from the data itself. This training allows

us to, automatically and in an unsupervised manner, extract the
essential features underlying the data, making clustering easier.
In recent years several architectures have used autoencoders,
variational autoencoders (VAEs) [8], adversarial autoencoders
(AAEs) [9], and Generative adversarial networks (GANs) [10]
as a way to perform representation learning with moderate to
great performances [3] [4] [11].

But this is often not enough. Suppose we assume that any
given dataset is a union of low dimensional latent representa-
tions. In that case, we need to find a way to, given a particular
input xi, not only know from which latent model it belongs
to but also to provide ways to generate from and visualize
the multiple latent representations. We also have a problem of
hyperparameters: for most theoretical works the architecture
topology is left at the author’s discretion, often being an
afterthought and not working or having a bad performance
for real-life datasets.

We built an original architecture based on the mixture-
of-experts framework. Each expert models and generates a
separate cluster of data, and the data distribution is controlled
by a manager. We used a fully dynamic architecture in which
the depth of the network, the latent size of the experts, and
the number of experts used to model the data are all data
dependant. Hence, the main contributions of this dissertation
are as follows:

• Generative approach to clustering - The architecture
is generative, i.e., we can generate data from each of the
clusters separately. This ability to create per-cluster data
presents a new approach for understanding not only how
the algorithm groups data, but what prominent features
from the data are used when making these decisions.

• Mixture of experts - The proposed architecture surpasses
state-of-the-art mixture of experts clustering approaches
by several percentage points, becoming the de-facto
model for this type of framework.

• Automatic clustering estimation - The proposed model
also features an automatic number-of-centroid finder
based on the HDBSCAN and the N2D architecture. With
this feature in place, there is no need to hardcode the
appropriate number of clusters and to perform previous
data exploration.

• Automatic autoencoder latent size finder - One of
the most crucial problems when using autoencoder-like
architectures is knowing the number of neurons in the
latent space often being left as a hyperparameter. We
devised a methodology based on PCA decomposition
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that eliminates the need for guesswork. An estimate of
the optimal latent size is made based on the explained
variance of the PCA decomposition of the data at the
autoencoder bottleneck.

• Comparison of autoencoders in the architecture - We
also compared several autoencoders to determine the best
architecture for clustering purposes, always relating each
result to the theoretical background of each architecture.

II. RELATED WORK

A. Clustering

The task of clustering data in an unsupervised manner
is not new. Since its inception, several models have been
analyzed and proposed. These methods do not present a
unified framework, but rather several interpretations on what
clustering data means. When dealing with the grouping of data,
we can have different definitions for what constitutes a group
in the space, different methodologies for finding the clusters,
and different understandings on how to measure the distance
on the data space. These models can be separated on a high
level by classical clustering and deep clustering.

Classical clustering: Classical clustering algorithms in-
volve all methodologies that do not use deep learning.
These were the original methodologies to perform cluster-
ing and often are the final step in deep learning cluster-
ing approaches. We can sub-divide these methods into four
main groups: Connectivity-based clustering, Centroid-based
clustering, Density-based clustering and Distribution-based
clustering. Connectivity-based clustering defines a distance
function between objects and a maximum distance by which
a connection between objects constitutes a cluster, and hi-
erarchically clusters them, using a dendrogram. In centroid-
based clustering, we optimize the cluster centres instead of
the distance between individual data points. Optimization, in
this case, is done by attempting to minimize the intra-cluster
distance while maximizing the inter-cluster reach, leaving the
borders of the proposed clusters unoptimized. In distribution-
based clustering, we assume that we can express the whole
dataset as a set of probability distributions, where points on
the same cluster are likely to have been generated from the
same probability distribution. The final type of clustering
methodology is Density-based clustering. Here clusters are
defined by regions with higher data point density than the
rest of the space, and areas with lower point density represent
noise/outliers.

Deep clustering: In recent years, advances in deep learn-
ing architectures over a multitude of fields, the availability of
vast amounts of data, and the increase of processing power of
computers have galvanized the use of artificial neural networks
for computational tasks. By leveraging a neural network, we
can perform feature selection and clustering in an end to end
manner that surpasses most classical clustering approaches.
Most deep learning algorithms use a deep learning architecture
to perform representation learning and then a shallow cluster-
ing algorithm on the learned manifold to get the labels for
the data. Depending on the deep learning architecture, we can
subdivide the algorithms into four groups:

• Autoencoder-based clustering Autoencoders [12] are a
type of Neural Network used for efficient data com-
pression and dimensionality reduction in an unsupervised
manner. It is composed of 3 main blocks: an encoder, a
latent dimension, and a decoder. The encoder aims to
learn a low dimensional representation of the input data,
by discarding input noise and attempting to learn relevant
features and patterns of the data. On the opposite side,
we have a decoder that does the opposite: from the low
dimensional code, it attempts to reconstruct the data as
close as possible to the input data. The latent dimension
is the reduced code that we get by encoding the data.
The main idea of autoencoder based clustering is to use
an autoencoder to reduce the dimensionality of the data
while using a clustering loss to group the low dimensional
space. Most of these approaches use a pretraining scheme
based on the reconstruction loss before applying the
clustering loss. Popular methodologies include but are
not limited to DEC [13], Deep embedded regularized
clustering [14], N2D [3] and DynAE [4].

• Generative model-based clustering As the name sug-
gests, generative model-based clustering uses generative
models like VAEs in an architecture. These types of mod-
els can sample the representation space to generate new
samples from the underlying data distribution. Despite
the VAE having autoencoder in its name, the two should
not be confused. The autoencoder maps the input data
into a latent variable space z, often compressing the
data, and then proceeds to decode the latent variable
back into the input data. In contrast, the variational
autoencoder tries to predict the probability distribution of
the input variable, and from this distribution, get the input
data back. So we have a dataset that has an associated
probability density function P (X), a latent vector z with
an associated probability density function P (z) and a
set of deterministic functions f(z; θ) that map the latent
variable back to the dataset X, where θ is the optimization
parameter. More precisely, we are attempting to maximize
the probability of each Xi in the dataset via the following
expression:

P (X) =

∫
z

P (X|z; θ)P (z)dz (1)

where f(z; θ) = P (X|z; θ) due to the maximum likeli-
hood principle. In VAEs, the choice of output distribution
is often made Gaussian with mean f(z; θ) and covariance
matrix equal to the identity multiplied by a scalar σ
(hyperparameter). The choice of this function is because,
with this distribution, we can easily perform gradient
descent and train the model to make adjustments to
θ to make the model approximate P (X). Despite this
theoretical background being solely focused on stan-
dard Gaussians, several authors have also already shown
how to optimize this type of networks to several other
probability distributions [15], [16]. Examples of these
types of algorithms are VaDE [17], InfoGAN [18] and
ClusterGAN [19]
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• Direct cluster optimization based clustering Cluster
optimization algorithms only use clustering loss to op-
timize the latent space, skipping over the reconstruction
loss. Algorithms include JULE [20] and DAC [21].

• Mixture of experts clustering MoE clustering can be
considered a subset of autoencoder based clustering, and
in some cases, can also be perceived as a generative
approach. However, due to the main focus on this paper
being an architecture of this kind, it required a separate
section. MoE clustering is based on a set of independent
neural networks called experts, and a balancing system
called a manager (Figure 1). The experts’ objective is to
specialize in one subset of the data while the manager
aims to ensure that the correct expert is chosen for
each data point. The main contributions in this field are
DAMIC [5], MIXAE [6] and MoeSim-VAE [22]

Fig. 1: MoE general architecture

In Table 1, we provide an overview of the performance of
deep clustering algorithms on the MNIST dataset. To collect
this data, we consulted several surveys, such as [23], [24]
[25] and [26]. As seen from the table, the type of result by
which the performance is inferred varies greatly from model
to model. It can be an average of multiple runs, the best of a
subset of runs or even unspecified. This discrepancy of ways
to get final results leaves a lot of margin for error. It also
reduces the credibility of algorithms, since there isn’t a real
base standard for evaluating clustering performance. Still, at
the time of this dissertation’s writing, the best algorithms for
clustering are N2D, DynAE and ASPC-DA, all autoencoder-
based methods. The MoE based methods are far from the state-
of-the-art (by MNIST standards), with very few works using
this framework to perform clustering.

III. THE ARCHITECTURE

We start by formally introducing our clustering methodol-
ogy. Suppose a data set X = {x1, x2, · · · , xN}, composed of
N samples lying on and-dimensional feature space, xi ∈ X d .
We formally assume that the set of N samples were generated
through K models. As each model is statistically different, it
generates samples on different regions of the feature space,
each corresponding to a different scenario. A natural way to
approach to clustering under this assumption relies on the
use of a mixture of experts to formally divide the feature
space into different regions, each represented by a different
cluster cj . Hence, the experts’ objective is to model individual

TABLE I: Comparison of state-of-the-art methods based on
network architecture and MNIST results reported in the origi-
nal papers. DNN - Deep Neural Network; AE - Autoencoder;
VAE - Variational Autoencoder; GAN - Generative Adversarial
Network; MoE - Mixture of Experts

Type of Method Pre- MNIST
Arch. train? Acc NMI Type of result

DNN

JULE [20] – 0.91 avg 3 trials
IMSAT [27] 98.4% – avg 12 trials
DAC [28] 97.8% 0.94 –
CCNN [29] yes – 0.88 –
SpectralNet [11] 97.1% 0.92 –
IIC [30] 98.4% – –

AE

DEC [13] yes 84.3% – best 20 trials
DMC [31] yes – 0.86 avg
DCN [32] yes 83.0% 0.81 –
IDEC [33] yes 88.1% 0.87 –
DEPICT [14] yes? 96.5% 0.92 avg 5 trials
DCEC [34] yes 89.0% 0.89 –
DCC [35] yes 96.2% 0.91 –
Tzoreff et al. [36] yes 97.4% – –
DEC-DA [37] yes 98.5% 0.96 avg 5 trials
DBC [38] yes 96.4% 0.92 –
ASPC-DA [39] yes 98.8% 0.97 avg 5 trials
Yang et al. [40] yes 97.8% 0.94 avg 10 trials
BAE [41] yes 83.7% 0.81 best 5 trials
N2D [3] 97.9% 0.94 –
DynAE [4] yes 98.7% 0.96 –
DERC [42] yes 97.5% 0.93 –

VAE

GMVAE [43] 96.9% – best
VaDE [17] yes 94.5% – best 10 trials
Figueroa et al. [44] 85.8% 0.82 best
LTVAE [45] yes 86.3% 0.83 best 10 trials
DGG [46] yes 97.6% – –
VIB-GMM [47] yes 96.1% – best 10 trials
S3VDC [48] yes? 93.6% – avg 5 trials

GAN

CatGAN [49] 95.7% – –
InfoGAN [18] 95.0% – –
DAC [21] 94.1% – median 10 trials
ClusterGAN [19] 95.0% 0.89 best 5 trials
ClusterGAN [50] 96.4% 0.92 avg 5 trials

MoE
MIXAE [6] 85.6% – –
DAMIC [5] yes 89.0% 0.87 avg 5 trials
MoE-Sim-VAE [22] 97.5% 0.94 –

clusters, whereas the manager has a task to split the data
among the experts. If done right, this approach encourages
cooperation between experts to ensure meaningful subspaces
and makes each expert model a separate cluster, allowing for
the separation of groups for subsequent analysis.

Let Y be the space of one-hot encoded vectors representing
the assignments made by the network. In the mixture of experts
framework, we wish to learn a function f : X d → Y through
a set of K experts, each specialized in a different scenario. A
manager is then assigned the job of selecting the best expert
for each particular case:

f(xi) =

K∑
k=1

πk(xi)fk(xi) (2)

where πk(xi) ∈ [0; 1] represents the manager decision regard-
ing sample xi, which is constrained such that

∑
k πk(xi) = 1,

and fk(xi) is the output of expert k. Despite these probabilities
being continuous we want each probability to be as close to
zero or one as possible (one-hot encoded probability vectors
π). Accordingly, the proposed model includes K specialized
experts, each assigned to the modelling of a distinct cluster
ck.
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To construct f , we wish to learn a latent space represen-
tation that can accurately model the data within each cluster.
In this section, we will provide a theoretical overview of the
architecture from a top-down perspective. The full architecture
can be divided into two sub-groups: the mixture of experts
architecture and the pretraining architecture, fundamental to
achieve a good performance consistently.

A. Training

The training architecture is represented in Figure 2.

Fig. 2: Diagram of the full architecture

It consists onset of K experts controlled by a manager that,
depending on the input data xi, gives an importance value
πk(xi) ∈ [0; 1] to each expert on the model, as per the DAMIC
architecture [5]. However, this approach has a central problem:
if left as-is we have cluster collapse: the experts compete
instead of cooperating, leading to one expert specializing in the
whole dataset, reducing clustering performance. To attenuate
this effect we took a page from the MIXAE architecture [6]
and changed the vanilla loss function by adding batch entropy
and sample entropy.

The MoE loss function is composed of 3 elements. The
first one is the weighted sum of the reconstruction loss of
each expert averaged over the batch:

R(θ) =
1

η

η∑
i=0

K∑
k=0

pik ∗ d(xi, x̂ik) (3)

where pik is the importance associated with sample i for
expert k, d(xi, x̂ik) is a loss function such as MSE or binary
crossentropy coupled with a normalized KL loss term, η is the
batch size, and K is the number of clusters.

The second part of the loss function is the sample wise
entropy averaged over the batch, which forces the distribution
of probabilities to follow a one-hot vector encoding:

S(θ) = −1

η

η∑
i=0

K∑
k=0

pik ∗ log(pik) (4)

The third one is the batch-wise entropy that ensures that
we have a balanced distribution of labels, and prevents cluster
collapse in the network:

B(θ) =

K∑
k=0

p̂k ∗ log(p̂k) (5)

Where p̂k is the mean of all predicted importances for the
manager in a batch for a specific expert.

So the overall loss function will be as follows:

L(θ) = R(θ) + αS(θ) + βB(θ) (6)

Where α and β are hyperparameters to be tuned, despite
this architecture presenting several improvements over vanilla
architectures, it still has some downsides. A non-pretrained ar-
chitecture presents very variable performance when compared
to a pretrained one, mainly due to the random initialization
of the network’s weights, making it unreliable for clustering
efforts. This architecture also requires a priori knowledge
about the number of experts to model the data, which must
be determined before training commences. Finally, it is also
required the size of the latent space of the experts. To address
these effects, we made a pretraining procedure.

B. Pretraining

The pretraining architecture (Figure 3) is where most of the
innovation of this architecture is established.

Fig. 3: Diagram of the pretraining architecture

As previously stated, the objective of the pretraining pro-
cedure is finding two distinct values (the optimal number of
clusters by which to cluster the data and the optimal size for
the latent dimension for each of the experts), and train the
network to ensure consistent results over different iterations
of the algorithm. The pretraining task goes as follows:

1) Train an autoencoder-like architecture with a predeter-
mined large latent dimension size (e.g. 100) on the full
dataset.

2) Apply a latent dimension finder on the latent space of the
VAE architecture and find the optimal latent dimension
size

3) Retrain the VAE architecture with this new latent size
on the input dataset.

4) Apply UMAP on the latent manifold of the trained VAE
architecture.

5) Apply HDBSCAN on the manifold outputted from the
UMAP block, getting a vector of cluster assignments for
each datapoint and the number of clusters.
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6) Excluding the noisy samples, train the manager using
the provided labels and original data.

7) Use the latent dimension finder on each subset of data
(each cluster found in the HDBSCAN block) find the
optimal latent dimension for each expert

8) Using the found number of clusters and optimal latent
dimensions construct the MoE architecture.

9) Run the MoE architecture with the pretrained manager.

In the next paragraphs, we will dive into the pretraining
process in more detail.

Latent dimension finder: Given a set of data points
X , we must first find the optimal number of variables by
which we can encode the data. Currently, there are no best
practices regarding layer size, generally being left to the
discretion of each person (a hyperparameter essentially), and
in most works, it is left, dataset independent. We argue that
this parameter must be variable and data dependant, mainly
because a bottleneck that is suited for a 16x16 image will not
be the same as one suited for a 128x128 image.

Suppose we use the PCA on the latent space from a VAE or
a WAE with an L1 constraint. In that case, we can ensure that
the data follows a multivariate gaussian distribution with zero
mean, unitary standard deviation and that each component is
as uncorrelated to the others as possible. With this setup, we
can infer three main assumptions about the data.

• Features of the data must be linearly dependant
• Features with high variance are essential in the dataset
• The principal components of the data are orthogonal

With these 3 points in mind, we can theoretically use PCA
on the latent dimension of the autoencoder-like architecture,
where the number of nodes in the autoencoder, i.e., the number
of Gaussian mixtures modelling the data, is equal to the
number of principal components, and analyze the explained
variance ratio of each principal component to determine the
most influential components. This procedure allows us to
determine a data dependant bottleneck for almost any autoen-
coder based network.

As shown above, the optimal number of dimensions does
not change: for a large enough dimension, it uses the minimum
number of components to encode necessary features (high
variance), allowing us to find the optimal latent size for
autoencoders. In practice, we attempt to retain around 90%
of the explained variance for clustering and 95% for data re-
construction. The latent dimension finder block is represented
in figure 4

Fig. 4: Diagram of the Dynamic latent space finder

We use this block not only to determine the optimal dimen-
sion for each expert but also for all networks involved in pre-
training the MoE architecture. We first train an autoencoder-
like architecture with a very high latent space dimension (100

neurons, for example) on the full dataset and obtain the low-
level manifold representing the full dataset. We then use a
PCA to transform the data at the latent dimension level and
analyze the explained variance ratios for all the components.
By selecting several components that account for 90/95 % of
the explained variance, we can obtain a number for the optimal
dimensions for each dataset, discarding possible irrelevant
dimensions.

UMAP: After determining the optimal latent space, we
retrain the VAE architecture with the optimal latent dimension.
We use a UMAP transform on the latent dimension of the
encoder to make the low dimensional space more clusterable
and overall improve clustering results, as seen in [3].

In N2D [3], it was shown that the use of UMAP on the
latent space of a dense autoencoder, without dimensionality
reduction, improves classification, achieving the state of the art
results in most image datasets. The reason for this behaviour is
that UMAP can cluster the data taking into account the global
structure of the data, providing better inter-cluster separability
and intra-cluster compactness.

HDBSCAN for automatic cluster and outlier detection:
Most works in deep clustering, be it MoE based architectures
such as DAMIC [6] or otherwise, such DynAE [4] use a
shallow clustering algorithm at the end of the pretraining stage
to get initial clustering assignments. The two most widespread
methodologies are the K-Means and the GMM. Still, both of
them have several problems such as no resistance to outliers,
points between clusters being mislabelled. They also do not
support highly irregular cluster shapes and the fact that the
number of clusters needs to be fed to the algorithm. The
usage of HDBSCAN as the final clustering algorithm of
the pretraining stage presents two distinct advantages when
compared to a regular GMM or KMeans approach. On the
one hand, it automatically detects the appropriate number of
clusters that best fit the data, removing the need to know
a priori how many groups the data has, or to find the best
amount of clusters using silhouette coefficients/gap statistics.
On the other hand, it presents a noise vector: points which the
algorithm considers outliers are put in a separate cluster that is
not labelled. This outlier detection mode can be useful if we do
not pretrain the network in noisy points: it allows the experts
to initialize their latent spaces better, and the conflicting data
can be introduced during training.

Manager Training: The final step is training the manager
network using the labels obtained from the HDBSCAN to gain
insights about the overall structure of the data. In the previous
step, the data points can be labelled as noise. These points are
not used when training the manager, improving the distinction
between clusters of the manager network. We also train K
latent dimension finders on each subset of data to dynamically
assign different bottlenecks to each expert.

At the end of the pretraining phase, we have three differ-
ent elements: the weights of the manager, the latent space
dimension of the experts and the number of experts in the
training architecture. We pass these elements onto the training
architecture as seen in figure 2, solving the problems brought
up in the MoE architecture.
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By not training the experts, we hope to learn better repre-
sentations for each cluster using the reconstruction loss while
progressively hardening the assignments using the entropies.
In the next sections, we discuss the particulars of the fully
dynamic architecture and the architecture of the building
blocks.

C. Dynamic architecture features

In this section, we discuss the overall architecture for all
autoencoders featured in our algorithm. This architecture is
the same, whether we are talking about AEs, VAEs, or WAEs.

Convolutional architecture: It has been shown [51] [52]
that by mixing different kernel sizes we can have more
dynamic architectures that better model image features, so
we created two distinct blocks: general and specific. General
blocks reconstruct general/significant features of the image,
and specific blocks reconstruct particular features. These dif-
ferent blocks are important since different kernel sizes/number
of filters can map different features of an image. Smaller
kernel sizes map smaller image details whereas larger kernel
sizes map overall image structure, improving latent space sep-
arability and image reconstruction. The two most widespread
choices for filters are 3x3 or 5x5 due to memory and simplicity
sake. We chose to use two 3x3 blocks instead of 5x5 since
both have the same receptive field, but the two 3x3 blocks
have less mathematical operations, leading to lower training
times as found in [53]. We also use Batch Normalization [54]
before the activation function, according to [55]. The to the
two primary blocks of our autoencoder-like networks can be
seen in figure 5.

Fig. 5: Diagram of the Convolutional blocks

Depth of the architecture: A network that works well for
a 16x16 image dataset such as USPS may not work as well
for a dataset such as COIL20 that has 128x128 sized images.
To tackle this, we made the depth of the network, and the
filters depend on the image size. Assuming that an image has
dimensions DxD, we can calculate the number of blocks in
the encoder like:

NBlocks = log2(D)− 1 (7)

This amount of blocks assures us that no matter how big
the image is, before the latent space of the encoder we have
data that is 2x2xF in size, where F is the number of filters
in the last layer of the encoder. The number of general and
specific blocks is given by:

Ngeneral = dNBlocks/2e (8)

Nspecific = NBlocks −Ngeneral (9)

The number of filters is given by multiplying D by two
every for each block of the encoder. The autoencoder-like
architecture can be summarized like so:

Fig. 6: Diagram of the Autoencoder-like architecture

Where each General block is repeated Ngeneral times and
each Specific block is repeated Nspecific times.

IV. EXPERIMENTAL RESULTS

A. Datasets

We compare our architecture with an array of various
clustering algorithms in 5 baseline datasets: MNIST [56],
FMNIST [57], USPS [58], CIFAR10 [59] and COIL20 [60].

• MNIST: A dataset of 70000 images of handwritten
digits separated into ten classes. Each sample is a 28x28
grayscale image.

• FMNIST: A dataset of 70000 images of fashion items
separated into ten classes. Each sample is a 28x28
grayscale image.

• USPS: A dataset of 9298 images of handwritten dig-
its separated into ten classes. Each sample is a 16x16
grayscale image.

• CIFAR10: A dataset of 60000 images of handwritten dig-
its separated into ten classes. Each sample is a 32x32x3
RGB image.

• COIL20: A dataset of 1440 images of handwritten digits
separated into ten classes. Each sample is a 128x128
grayscale image.

All samples were standardized, and the FMNIST and
MNIST samples were padded from 28x28 to 32x32 to fit
the architecture. The COIL20 dataset was downsampled from
128x128 to 64x54 using an antialiasing filter so as not to
overcomplicate the architecture.

B. Pretraining Results

At each step of the architecture, as mentioned earlier,
we used a VAE with data augmentation. Data augmentation
consists of random rotations, shifts, and crops on an image.
We use this method in supervised learning as a form of
regularization. With data augmentation, we have more data and
variability between samples, which allows for better feature
generalization cluster distinction. The main idea is that when
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we perform augmentation, the augmented data shares the
same manifold/probability distribution of the input data. This
augmentation allows the data manifold/distribution to become
smoother, especially in datasets with few samples. We used a
rotation range of 10 degrees for all datasets, a zoom range of
0.1 and width and height shift ranges of 0.1. For the FMNIST,
COIL20, and CIFAR10 dataset, we also use horizontal flips.

Each instance of VAE training consisted of a learning rate
of 5−4, a batch size of 100 and training for 1000 epochs with
the loss being the standard VAE loss. We used UMAP with a
dynamic number of neighbours that according to the following
formula

n neighbours = max{int
(dataset size

300

)
, 100} (10)

and the HDBSCAN had default parameters. At the end of
the pretraining stage the results for the MNIST and FMNIST
datasets were as follows (Figure II)

TABLE II: Results clustering the pretrained data

MNIST FMNIST
Nº experts 10 11

% of dataset labeled 0.96 0.48
Accuracy on labeled dataset 0.978 0.673

GMM accuracy for the dataset 0.956 0.583

Just this clustering alone already gives outstanding cluster-
ing results: by integrating the manifold learning techniques of
UMAP and the density-based cluster estimation of HDBSCAN
we could not only find a number of clusters that is very close
to the theoretical optimum, but also increase the clustering
accuracy of the labelled area when compared to a GMM.
Afterwards, we used the labels provided by this step to train
the manager network.

C. Manager training Results

The manager network was trained with a learning rate of
10−3, batch size of 100 and for 1000 epochs with the loss
being the kullback-Leiber distance between the soft assign-
ments produced by the manager and the soft cluster labels
produced by the shallow clustering methods. This loss function
choice was not random. We wanted to train the manager with
a soft probability output to make samples that are close to
two clusters (for example a four that looks like a 9 in the
MNIST dataset) remain in between two clusters. This noise
vector reduces sample misclassification and allows for better
expert initialization in the training phase. The results for each
dataset are present in Table III.

As we can see, training the manager using only the HDB-
SCAN labels makes the manager’s accuracy improve on most
datasets. This performance improvement is mainly because the
HDBSCAN has far fewer mislabelled samples, reducing pos-
sible errors in the manager training and improving clustering
performance on the whole dataset.

D. Training Results

In this last step, we use the entropy losses mixed with the
standard VAE loss to progressively harden assignments and

TABLE III: Results of manager training on each of the
datasets

MNIST FMNIST
ACC NMI ARI ACC NMI ARI

Manager 0.967 0.922 0.927 0.623 0.685 0.528

achieve one-hot labels for each data point. The full training
stage is composed of 100 epochs, and the architecture was
trained with a learning rate of 10−4 and a batch size of 100.
The hyperparameters were set to α = 100 and β = 1. The
average of five runs’ final accuracy, NMI and ARI results for
the whole architecture and MNIST and FMNIST is present in
table IV

TABLE IV: Accuracy for all mixture of experts models

MNIST FMNIST
DEC 0.89 0.518
N2D 0.97 0.672

DynAE 0.98 0.591
DAMIC 0.89 0.60
MIXAE 0.85 -

MoE 0.97 0.68

As we can see, our model far surpasses these two MoE
architectures in the two datasets for all metrics. These results
provide a way for our algorithm to be a definitive baseline in
MoE based clustering: all of our design decisions are justified,
and we have results to back them up. For the autoencoder
based clustering architectures, we once again see that our
algorithm presents the state of the art accuracy results on all
given datasets from these results. It far surpasses DEC and
is on par with the DynAE approach. N2D only outperforms
it in the pretraining stage on the FMNIST dataset, which
seems strange because our pretraining stage is essentially an
N2D with a few modifications. Since there is no information
on how the results on N2D were achieved (e.g. whether the
results are an average across runs or a best case) and we
couldn’t reproduce these results with the authors’ proposed
architecture, we assumed that it is a best of multiple runs. Still,
our pretraining method surpasses or equals the N2D approach
for the rest of the datasets.

E. Expertise of the experts

Expertise of reconstruction: To determine how each
expert specializes in the final architecture, we reconstructed
an input image where every pixel value is equal to one for the
USPS dataset (Similar to MNIST). The results are present in
Figure 7 where the leftmost image is the original image, and
the rest are the reconstructions made by each expert.

From this figure, we can deduce that each expert is special-
ized in the reconstruction of a separate class of the dataset. It
makes sense to view the clustering problem as a set of experts
competing for the best reconstruction: given a new image we
can cluster/perform classification of this new data by checking
which expert presents the lowest reconstruction error.

Expertise of data generation: By feeding random multi-
variate Gaussian vectors with the same length as the expert’s
latent dimension, we can generate new samples from the
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Fig. 7: Reconstructed images

Fig. 8: Images generated from the experts trained on the USPS
dataset

inherent distribution of the network. By applying this process
to the experts trained in the USPS dataset, we obtained the
samples in Figure 8, where each line represents the generated
images from 10 random vectors taken from a multivariate
Gaussian with zero mean and diagonal unitary covariance
matrix.

As seen from the figure, every single expert once again
specializes in one specific digit/class and provides high-quality
image generation. One advantage of the latent space of the
experts is that not only is it continuous, but by sampling
it along its dimensions makes the data generated gradually
change. For example, suppose we perform a walk between -1
and 1 on the first dimension of the variational autoencoder
trained on the USPS dataset. In that case, we have the
following images (Figures 9 and 10).

Fig. 9: Images generated from the expert specialized in fours

Fig. 10: Images generated from the expert specialized in fives

As we can see, by gradually increasing the first dimension
of the latent space, we can gradually change the style of
writing of this digit, proving that this latent space is not only
continuous but also directly affects palpable features of the
image data.

V. CONCLUSIONS

This thesis presented an architecture for clustering and
image generation based on the mixture of experts framework
that had several proposed baselines that it should have adhered
to:

• The architecture must allow for the generation of data.
• The architecture must be fully data dependant and dynam-

ically change based on the requirements needed from the
input data.

• The architecture must automatically and, in an unsuper-
vised manner, find the optimal number of clusters by
which to model the data.

The proposed architecture not only achieved all the pro-
posed points but significantly improved them. The architecture
not only can generate new data but, due to the Mixture
of Experts framework, can generate data from withing each
cluster independently and allows for additional sub-clustering
capabilities by using the manifold of the experts to perform
further analysis. The architecture topology and depth are
entirely data dependant, using shallower networks for smaller
images and bigger networks for bigger images, leading to a
network that can automatically change its topology based on
the data. The latent dimension finder is a development that
allows us to not only achieve but surpass the second proposed
point, by finding a way to numerically find the optimal
bottleneck size for all architectures, leaving a hyperparameter
that had significant influence in the network’s performance
behind. Finally, and by using the HDBCAN algorithm allied
with the manifold learning techniques of UMAP, we found a
way to not only select the optimal number of clusters by which
to model the data but, by using HDBSCAN’s noise vector,
found a way to isolate conflicted samples in the pretraining
stage. This noise vector provided us with a way to increase
pretraining performance and better initialize the manager of
the final training architecture. Every single point was not
only done but surpassed, all while achieving state-of-the-art
performance in datasets of varying complexities, sizes and
distributions which proves the robustness and adaptability of
this algorithm.
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