
Profiling ALS disease progression through data mining techniques

Tiago Leão
Instituto Superior Técnico
Universidade de Lisboa

Lisbon, Portugal
tiago.miguel.leao@tecnico.ulisboa.pt

Alexandra M. Carvalho
Instituto de Telecomunicações

Instituto Superior Técnico
Universidade de Lisboa

Lisbon, Portugal
alexandra.carvalho@tecnico.ulisboa.pt

Sara C. Madeira
LASIGE

Faculdade de Ciências
Universidade de Lisboa

Lisbon, Portugal
sacmadeira@ciencias.ulisboa.pt

Abstract—Amyotrophic lateral sclerosis (ALS) is a neurode-
generative disease that causes a fast functional decline of the
patients. This Thesis tackles ALS disease progression using
dynamic Bayesian networks (DBNs), a machine learning model
that graphically displays the joint probability distribution
of dynamic (time-dependent) random variables. To include
static (time-independent) information in DBNs, the sdtDBN
framework is proposed, which learns optimal DBNs with static
and dynamic variables, having polynomial-time complexity
in the number of variables. The sdtDBN framework can
also introduce prior knowledge (by restricting the networks’
relations) and make inference in learned sdtDBNs. The dis-
ease progression is assessed using observations of 1214 ALS
patients, studying all patients and also dividing them into three
progression groups, being sdtDBNs employed to predict the pa-
tients’ functional decline and to determine correlations between
clinical indicators. The predictions provide promising results,
with accuracies generally above 75%. The correlations found
present an intuitive overview of the interactions among vari-
ables. The Thesis ends by answering three clinical questions
using sdtDBNs, providing an analysis with clinical impact. All
assessments presented show that sdtDBNs can properly profile
ALS disease progression, motivating its use as a clinical tool.

Index Terms—amyotrophic lateral sclerosis, data mining, dis-
ease progression, dynamic Bayesian networks, polynomial-time
algorithm, time-dependent and time-independent variables

1. Introduction

AMYOTROPHIC lateral sclerosis (ALS) is a neurodegen-
erative disease that quickly affects the loss of motor

neurons of the patients [1]. The disease’s symptoms are
usually associated to limb weakness and difficulties in activ-
ities such as speaking and breathing, being one of the most
used criteria to diagnose ALS the El Escorial criteria, whose
result is a degree of probability for a patient to have ALS [1].

There is not a known cure for ALS, so, treatments focus
on slowing the progression of the disease. The functional de-
cline of a patient is assessed with a standardized set of tests
that compose the ALS functional rating scale (ALS-FRS),
currently in its revised version (ALS-FRS-R) [2].

As the main cause of death among ALS patients is
respiratory failure [3], doctors’ major concern is to deter-
mine when ventilatory support is needed, which is usually
provided through non-invasive ventilation (NIV). However,
no standard criteria specify the proper moment to apply
NIV to a patient. Therefore, obtaining statistical information
regarding the patients’ progression is extremely beneficial,
giving doctors a tool that helps them apply NIV at the proper
time. In this work, ALS disease progression is described us-
ing dynamic Bayesian networks (DBNs), a machine learning
model that includes in its framework the temporal compo-
nent of clinical indicators and is easily interpretable.

1.1. Previous work

Multiple works tackle several aspects of the learning
procedure of DBNs, for example, presenting an overview
regarding learning and making inference on DBNs [4], ex-
plaining how to learn the structure of DBNs from complete
or incomplete data [5], or debating how to determine DBNs
from time-series data [6]. Some works focus specifically
on learning non-stationary DBNs, for instance, determin-
ing the transition probabilities with the l1-regularized least
square linear regression method [7], employing the Markov
chain Monte Carlo method (MCMC) [8], or adapting the
maximum-minimum hill-climbing algorithm (MMHC) to
the temporal domain [9].

Regarding the contributions of this Thesis, it is ex-
tended the tDBN framework [10], which is an algorithm
that optimally learns the inter-slice and intra-slice structures
and parameters of DBNs, naming the resulting DBNs as
tree-augmented DBNs (tDBNs), because the intra-slice con-
nectivity is restricted to trees, while also allowing each node
of the DBNs to have a maximum number of parents from
previous time-slices (hence the “augmented”). Extensions
to the tDBN work have already been tried. An example is
the extension of the intra-slice connectivity of tDBNs to
forests [11], using an ordering of the optimal branching of
tDBNs consistent with a breadth-first search.

With regard to the application of data mining techniques
to study the progression of ALS patients, most studies focus
on the survival of patients, using population-based statistical

1

approaches, such as the Kaplan-Meier method and Cox
models [12]. When employing machine learning techniques,
two of the most used models are random forests [13] and
neural networks [14]. Some studies focus on determining
when NIV should be applied to the patients [15, 16].

In the medical field, DBNs are often used to describe the
progression of a disease and predict several outcomes [17].
However, the use of DBNs to model the progression of ALS
patients is a relatively new topic, which has only started to
be explored in recent literature [18].

1.2. Approach of this work

The ALS dataset analyzed in this Thesis has obser-
vations of patients’ static (time-independent) and dynamic
(time-dependent) indicators. However, the standard DBN
framework does not include static variables. Therefore, this
work proposes a DBN framework that includes static and
dynamic variables in its structure, also allowing a user to
introduce prior knowledge (by inserting restrictions in the
networks) and to make inference in learned DBNs. After
creating the mentioned DBN framework, the ALS dataset is
addressed. First, data is preprocessed, then, ALS disease
progression is tackled with the developed DBN framework.

The remaining of this document is organized as follows.
Section 2 presents the ALS dataset used in the Thesis.
Section 3 provides the background needed regarding data
mining and DBNs. Section 4 explains the proposed DBN
framework. Section 5 shows the assessment done using ALS
data. Section 6 presents the conclusions of the Thesis and
some ideas for future work.

2. ALS dataset

The dataset used in this work is the Portuguese ALS
dataset from the Translational Clinic Physiology Unit at
Hospital de Santa Maria, IMM, Lisbon. The dataset was
created in 1995 and its latest update was in March 2020.
The current version of the dataset stores medical observa-
tions of 1374 ALS patients and has around 50 static and
100 dynamic features. An overview of the main features of
the Portuguese ALS dataset is presented in Table 1.

TABLE 1. MAIN FEATURES OF THE PORTUGUESE ALS DATASET
(ORANGE: NUMERICAL; PINK: CATEGORICAL).

Body mass index (BMI) at onsetDemographic information Gender Age at onset
Retired at diagnosis

Medical and family history Family history of motor neuron disease (MND)
Onset form UMN vs LMN El Escorial reviewed criteriaOnset evaluation

Diagnostic delay Cirurgical interventions before

Main
static

features

Genetic biomarkers Expression of C9orf72 mutations
ALS-FRS ALS-FRSsUL ALS-FRSbFunctional scores

ALS-FRS-R ALS-FRSsLL ALS-FRSr
R

Vital capacity (VC) Maximal inspiratory pressure (MIP)
Forced VC (FVC) Maximal expiratory pressure (MEP)

Maximal sniff nasal inspiratory pressure (SNIP)P0.1, PO2, PCO2
concentrations Peak expiratory flow (PEF)

Forced expiratory volume (FEV)

Respiratory tests

Depressions in O2 saturation Mean O2 saturation
Respiratory status Starting date of non-invasive ventilation (NIV)

Phrenic nerve response amplitude (PhrenMeanAmpl)
Phrenic nerve response latency (PhrenMeanLat)Neurophysiological tests
Phrenic nerve response area (PhrenMeanArea)

Main
dynamic
features

Other physical values Cervical extension Cervical flexion

The functional scores of Table 1 consist of evaluations
specific to the ALS treatment. ALS-FRS is a standard set of

tests and ALS-FRS-R is an improvement on ALS-FRS, with
more respiratory tests. The remaining functional scores of
Table 1 are sub-scores of ALS-FRS-R. Each functional score
is composed by questions that evaluate the functional condi-
tions of a patient. Each question is answered with an integer
number from 0 to 4, where 0 is the worst condition and 4 is
the best. ALS-FRS is the sum of ten questions. ALS-FRS-R
is the sum of the first nine questions of ALS-FRS, plus three
extra ones about specific respiratory indicators.

In this Thesis, most data used for learning the DBNs is
retrieved from a pretreated version of the latest update of the
ALS dataset (March 2020), provided by a student from the
same research group in which this Thesis is inserted. The
pretreated version used has records of 1214 patients, with
measures of 9 static features and 31 dynamic features. It has
average values of 5,52 records (consultations) per patient,
8,04 static features measured per patient and 21,94 dynamic
features measured per consultation, with median values of
4 records per patient, 8 static features measured per patient
and 21 dynamic features measured per consultation.

3. Theoretical background

3.1. Data mining

Data mining can be defined as the process of discovering
useful patterns from large amounts of data [19], where the
process must be at least semi-automatic [20]. Data mining
is one step of the full process of knowledge discovery from
data (KDD) [19], summarized in Fig. 1.

Original
data

-
source 1

Consistent
data

-
source 1

Original
data

-
source N

Consistent
data

-
source N

Consistent
data

aggregated
Target
data

Preprocessed
data

Patterns
learned from

data

Knowledge
learned from

patterns

Feedback given to improve each stage according to the patterns found

1 2 3 4 5 6

Data
cleaning

Data
integration

Data
selection

Data
transformation

Data
mining

Pattern evaluation
and knowledge
representation

Figure 1. Overview of the process of knowledge discovery from data.

Steps 1 to 4 of the process presented in Fig. 1 compose
the data preprocessing stage, which is a significant and
possibly time-consuming activity [21]. Some of the most
important procedures of the preprocessing stage are the
filling of missing values [22], the detection of outliers [19],
the selection of features [20], and the normalization [22] and
discretization [19] of data. The preprocessing stage prepares
the data for the mining operation, done in this work using
dynamic Bayesian networks, described in Section 3.2.

3.2. Dynamic Bayesian networks

Bayesian networks (BNs) are a class of probabilistic
graphical models [23]. Def. 1 rigorously presents the con-
cept of Bayesian network.

2

Definition 1. A BN is a triple B = {X,G,θ}, where:
• X = {X1, . . . , Xn} is a vector of n random variables.
• G = {X,E} is a directed acyclic graph (DAG) with

nodes X and edges E. Each node represents a random
variable and each edge denotes a conditional depen-
dency relation between a pair of nodes. For simplicity
of notation, each Xi represents both the random vari-
able and the respective node in G. The parents of Xi

in G are represented by pa(Xi).
• θ is the set of all conditional probabilities needed to

encode the joint probability distribution of X . If the
variables are discrete with each variable Xi having at
most ri states, θ = {θijk}, where

θijk = PB(Xi = xik | pa(Xi) = wij). (1)

In Eq. (1), i ∈ {1, . . . , n}, k ∈ {1, . . . , ri} and
j ∈ {1, . . . , qi}, with qi =

∏
Xl∈pa(Xi)

rl. To spec-
ify θ, there must be provided the probabilities for each
node Xi to take each of the possible ri values, given
each of the possible parents’ configurations wij .

In a BN, a node, given its parents, is conditionally inde-
pendent of all other variables in the BN. Therefore, the joint
probability distribution of all nodes X of a BN is given by

PB(X1, . . . , Xn) =

n∏
i=1

PB(Xi | pa(Xi)). (2)

An extremely important task in a BN is the prediction
of the values of certain unobserved nodes, given the values
of some observed nodes, which is called making inference.
Inference in BNs is based on Bayes’ rule, applying it in the
way described by

p(h | e) = p(e | h)p(h)
p(e)

, (3)

where e denotes the observed nodes and h the unobserved
nodes. Exact inference in BNs is NP-hard [24], so, the only
feasible options are to either apply restrictions to the BNs,
or to make approximate inference.

Another crucial task in a BN consists in learning its
structure and parameters, from certain observations. Learn-
ing the BN B that best fits some observations S means
finding the graph G and the parameters θ that best de-
scribe S. Using a scoring function φ(B,S), for which
φ(B1, S) > φ(B2, S) if a BN B1 describes S better than a
BN B2, finding the BN B that best describes S, from a cer-
tain search-space Bn, is an optimization problem given by

BBest fit = argmaxBi∈Bn
φ(Bi, S). (4)

An important property of a scoring function is its decom-
posability, which assures that changes in a certain variable
of a BN only affect a certain component of the score. This
property can be expressed as

φ(B,S) =

n∑
i=1

φi((Xi | pa(Xi)), S). (5)

Minimizing the size of an optimal code induced by
the BN B when encoding the data S originates the

log-likelihood (LL) score, whose expression is given by

φLL(B,S) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog

(
Nijk
Nij

)
, (6)

where n is the number of nodes of the BN B, being ri
and qi as defined in Eq. (1). Nijk is the number of times
in S where Xi takes its k-th value xik and pa(Xi) take their
j-th configuration wij , while Nij is the total number of
times in S where pa(Xi) take their j-th configuration wij .

The LL score is prone to overfitting. The minimum
description length (MDL) score tries to avoid this phe-
nomenon, penalizing complex network structures by making

φMDL(B,S) = φLL(B,S)−
1

2
log(N)× |B|, (7)

where N is the total number of observations in S, and
|B| =

∑n
i=1(ri − 1)qi is the number of parameters of B,

with ri and qi as defined in Eq. (1).
Regarding the search-space of Eq. (4), if Bn is composed

by all possible BNs with n nodes, the problem of Eq. (4)
is NP-hard. One solution is to restrict the search-space,
being a common restriction to only consider tree struc-
tures, where the Chow & Liu algorithm [25] can efficiently
find a BN that maximizes the LL score, and may also
be adapted to maximize any other decomposable scoring
function [26]. Another solution is to perform an approx-
imate search, where a popular example is the structural
expectation-maximization algorithm (SEM) [27].

After learning the structure of a BN, its parameters θ
should also be determined, which is generally done us-
ing the observed frequency estimates (OFE), by making
θ̂ijk =

Nijk

Nij
, where Nijk and Nij are as defined in Eq. (6).

Dynamic Bayesian networks (DBNs) provide an exten-
sion of BNs to the dynamic/temporal domain. As notation,
Xi[t] denotes the random variable that, in timestep t, is
associated to the feature Xi. The initial timestep is always
t = 0, the last timestep is t = T , and Xi[a : b] denotes
all random variables associated to Xi between timesteps a
and b. The trajectory of a random variable Xi consists of the
values assigned to Xi, in each intermediate timestep, from a
certain initial to a certain final timestep. Given the previous
notation, Def. 2 presents the rigorous definition of DBN.

Definition 2. A DBN is a pair (B0 , B→), where:
• B0 is a prior BN that defines P (X[0]), which is the

probability distribution over the variables in t = 0.
• B→ consists of the transition networks, being com-

posed by the set of all B→[0 : t], for t ∈ {1, . . . , T}.
Each B→[0 : t] defines the distribution over the vari-
ables in timestep t, given all the trajectories that the
variables may take between timesteps 0 and t − 1.
Rigorously, each B→[0 : t] is defined as

B→[0 : t] = P (X[t] |X[0 : t− 1]). (8)

A DBN defines the joint probability distribution of all
possible trajectories of all features, which is given by

P (X[0 : T]) = B0

T∏
t=1

B→[0 : t], (9)

3

where the chain rule is used, being B0 and B→ as specified
in Def. 2. Applying Eq. (8), Eq. (9) can also be expressed as

P (X[0 : T]) = P (X[0])

T∏
t=1

P (X[t] |X[0 : t− 1]). (10)

Often two assumptions are made when learning a DBN.
The first assumption is the mth-order Markov assumption,
which consists in stating that the distribution of variables in
timestep t only depends on the values of variables from up
to m timesteps before t, thus simplifying Eq. (10) into

P (X[0 : T]) = P (X[0])

T∏
t=1

P (X[t] |X[t−m : t− 1]).

(11)
The second simplifying assumption is the stationary

assumption, which assumes that, in a DBN respecting
the mth-order Markov assumption, the transition networks
P (X[t] |X[t−m : t− 1]) are the same for all timesteps t.

Inference in DBNs is an extension of inference in BNs.
The description done in Eq. (3) remains valid, with e and h
incorporating the temporal component of DBNs.

Structure and parameter learning in DBNs also extends
the methods used in BNs. Usually, greedy search procedures
or the MCMC algorithm are used. Other approaches restrict
the intra-slice structures and extend optimal algorithms of
BNs, such as the Chow & Liu algorithm, to DBNs [10].

Regarding parameter learning, the parameters θijk (see
Def. 1) can be extended to the temporal domain, by defining

θijk[t] = PBd
(Xi[t] = xik | pa(Xi[t]) = wij [t]), (12)

where Bd is a DBN, with known structure, and the re-
maining terms are as defined in Def. 1, with the temporal
component properly added. Provided Eq. (12), the OFE can
be defined in DBNs as θ̂ijk[t] =

Nijk[t]
Nij [t]

, being Nijk[t] the
number of times in the dynamic observations D where the
node Xi[t] of Bd takes its k-th value xik and the nodes in
pa(Xi[t]) of Bd take their j-th configuration wij [t], while
Nij [t] is the total number of times in D where the nodes in
pa(Xi[t]) of Bd take their j-th configuration wij [t].

4. Contributions on DBNs methods

4.1. The sdtDBN framework

As stated in Section 1.1, the tDBN framework [10] is
used in this Thesis. To properly analyze the ALS dataset,
there is the need of including static attributes/variables in
the DBNs, which is done in this work by extending tDBNs
to sdtDBNs (tDBNs with static and dynamic variables).

Introducing some notation, Y denotes the static at-
tributes of the DBNs, with S being the static observations,
and X[t] represents the dynamic attributes in timestep t,
with D being all dynamic observations, and Dt+j

t the obser-
vations of dynamic attributes between timesteps t and t+ j.
All attributes are discrete, with a finite number of states,
having the DBNs nstatic static attributes and n dynamic

attributes in each timestep, with a maximum of T timesteps.
Each node Xi[t] has a maximum of p dynamic parents
from the m previous timesteps (m is the Markov lag) and
a maximum of b static parents. The decomposable scoring
function is denoted as φ, with local terms given by φi, for
each node Xi[t]. Finally, P≤γ(A) represents all possible
subsets, with cardinality at most γ, of a certain set A.

Given all presented notation, it is possible, for a node
Xi[t+1] of an sdtDBN, to get the maximum possible score
of φi, when not considering any connection among nodes
in timestep t+ 1. This maximization is given by

si = max
Xdp,Y sp

φi(Xdp ∪ Y sp, D
t+1
t+1−m ∪ S)

s.t. Xdp ∈ P≤p(X[t+ 1−m] ∪ · · · ∪X[t]),

Y sp ∈ P≤b(Y),
(13)

where the Y sp and Xdp that maximize Eq. (13) are the
optimal sets of static and dynamic parents of Xi[t+ 1],
when not considering any connections in timestep t+ 1.

As the intra-slice connectivity is restricted to trees [10],
each node Xi[t+ 1] of an sdtDBN may have, at most, one
parent from timestep t+ 1. For a certain node Xi[t+ 1], it
may be obtained the maximum score of φi, when consider-
ing that a connection Xj [t+ 1]→ Xi[t+ 1] is in the DBN
structure. This maximization is given by

sij = max
Xdp,Y sp

φi(Xdp ∪ Y sp ∪Xj [t+ 1], Dt+1
t+1−m ∪ S)

s.t. Xdp ∈ P≤p(X[t+ 1−m] ∪ · · · ∪X[t]),

Y sp ∈ P≤b(Y),
(14)

where the Y sp and Xdp that maximize Eq. (14) are the
optimal sets of static and dynamic parents of Xi[t+ 1], con-
sidering that Xj [t+ 1]→ Xi[t+ 1] is in the DBN structure.

Given Eqs. (13) and (14), it is possible to express the
benefit eij of including Xj [t+ 1] as a parent of Xi[t+ 1],
instead of just having Xi[t + 1] with the optimal static
parents from Y and the optimal dynamic parents from
X[t+ 1−m] ∪ · · · ∪X[t]. This benefit is expressed as

eij = sij − si. (15)

The procedure for finding an optimal sdtDBN employs
the same rationale of the tDBN structure learning algo-
rithm [10], adding the influence of static variables in the
computation of the eij terms using Eqs. (13), (14) and (15).
For a certain timestep t+1, first, a complete directed graph
with nodes X[t+1] is created, using each eij as the weight
of the respective edge Xj [t+ 1] → Xi[t+ 1]. Then, using
Edmonds’ algorithm [28], a maximum spanning tree is com-
puted in the created graph. The edges belonging to the span-
ning tree compose the intra-slice connectivity of timestep
t + 1. Using each intra-slice edge, the static and dynamic
parents of each node are extracted from Eq. (14), except
for the root node of the tree, for which Eq. (13) should be
used. Applying the previous procedure for all timesteps, an
optimal sdtDBN is found. Algorithm 1 presents the sdtDBN
learning methodology, using Algorithm 2 to determine the
optimal sets of static and dynamic parents and the eij terms.

4

Algorithm 1: Structure learning of mth-order Markov
non-stationary sdtDBNs.

Input :
• X: the n dynamic attributes of the DBN.
• Y : the nstatic static attributes of the DBN.
• T : the total number of timesteps of the DBN.
• D: dataset with observations for each dynamic node

of the DBN.
• S: dataset with observations for each static node of

the DBN.
• φ: a decomposable scoring function.

Output :
• An optimal non-stationary sdtDBN.

1 for each timestep t+ 1 between m and T do
2 Construct a complete directed graph in X[t+ 1].
3 Determine the weights of all edges

Xj [t+ 1]→ Xi[t+ 1], i 6= j, using Algorithm 2,
also extracting the optimal sets of static and
dynamic parents of each node Xi[t+ 1].

4 Apply a maximum branching algorithm in the
graph of line 2 using the weights determined in
line 3, in order to have a maximum spanning tree
considering the weights of line 3.

5 Extract the static and dynamic parents of each node
Xi[t+ 1] from the spanning tree determined in
line 4 and the sets of parents determined in line 3.

6 Join all transitions obtained in the for loop, to get the
complete description of the determined sdtDBN.

The procedure of Algorithm 1 can be changed to learn
stationary sdtDBNs, with only one transition network that
achieves the maximum global score considering the obser-
vations of all timesteps. To do so, the for loop in line 1 of
Algorithm 1 should be just one iteration (instead of a loop),
line 6 of Algorithm 1 can be removed (only one transition is
determined), and, in lines 7 and 19 of Algorithm 2, the sub-
dataset Dt+1

t+1−m should be replaced by the whole dataset D.
The optimality of Algorithm 1 is provided in Theorem 1.

Theorem 1. Algorithm 1 finds globally optimal sdtDBNs.

Proof. As Algorithm 2 searches all parents’ combinations
to obtain the matrix E, the optimality per timestep of Algo-
rithm 1 is inferred from the correctness of Edmonds’ max-
imum branching algorithm [28]. Given the optimality per
timestep, the global optimality of Algorithm 1 is also shown,
because a certain iteration of the for loop of Algorithm 1
cannot affect the structures found in other iterations.

The computational complexity of Algorithm 1 is given
in Theorem 2.

Theorem 2. The worst-case complexity of Algorithm 1 is
polynomial in the number of dynamic attributes n and
the number of static attributes nstatic, exponential in the
number of dynamic parents p and the number of static
parents b, linear in the number of dynamic observations
Ndynamic and the number of static observations Nstatic.

Algorithm 2: Edge weights and optimal parents for
mth-order Markov non-stationary sdtDBNs.

Input :
• t+ 1: the current timestep.
• m: the Markov lag of the DBN.
• X[t + 1 −m] ∪ · · · ∪X[t + 1]: sets of nodes from

the current timestep and the m previous timesteps,
each timestep having n nodes.

• Y : set of nstatic static nodes.
• p: upper-bound on the number of dynamic parents

from the m previous timesteps.
• b: upper-bound on the number of static parents.
• Dt+1

t+1−m: dataset with observations for each dynamic
node, from timesteps t+ 1−m to t+ 1.

• S: dataset with observations for each static node.
• φi(parentNodes, dataset): local terms of the decom-

posable scoring function φ, for each node Xi[t+1].
Output :
• E[n×n]: matrix with edge weights eij .
• dynamicParentsPast[n], staticParentsPast[n]: for each
Xi[t + 1], the optimal set of dynamic parents from
the m previous timesteps and the optimal set of static
parents, not considering connections in timestep t+1.

• dynamicParents[n×n], staticParents[n×n]: for each
Xi[t + 1], the optimal set of dynamic parents from
the m previous timesteps and the optimal set of static
parents, when considering each possible connection
Xj [t+ 1]→ Xi[t+ 1] in the sdtDBN.

1 allDynamicParentSets← P≤p(X[t+1−m]∪· · ·∪X[t])
2 allStaticParentSets ← P≤b(Y)
3 for Xi[t+ 1] in X[t+ 1] do
4 bestScore ← −∞
5 for Xdp in allDynamicParentSets do
6 for Y sp in allStaticParentSets do
7 currentScore← φi(Xdp∪Y sp, D

t+1
t+1−m∪S)

8 if currentScore > bestScore then
9 bestScore ← currentScore

10 dynamicParentsPasti ← Xdp

11 staticParentsPasti ← Y sp

12 for Xj [t+ 1] in X[t+ 1] do
13 Eij ← −bestScore

14 for Xi[t+ 1] in X[t+ 1] do
15 for Xj [t+ 1] in X[t+ 1] do
16 bestScore ← −∞
17 for Xdp in allDynamicParentSets do
18 for Y sp in allStaticParentSets do
19 currentScore ←

φi(Xdp∪Y sp∪Xj [t+1], Dt+1
t+1−m∪S)

20 if currentScore > bestScore then
21 bestScore ← currentScore
22 dynamicParentsij ← Xdp

23 staticParentsij ← Y sp

24 Eij ← Eij + bestScore

5

Proof. The bottleneck of each iteration of Algorithm 1 is
when Algorithm 2 is used, being the bottleneck of Algo-
rithm 2 the nested loops starting in line 14.

The loops in lines 14 and 15 have complexityO(n) each.
As |P≤p(X[t + 1 − m] ∪ · · · ∪ X[t])| =

∑p
i=0

(
nm
i

)
,

the loop in line 17 has complexity O((nm)p), because∑p
i=0

(
nm
i

)
<
∑p

i=0(nm)i ∈ O((nm)p).
Regarding static parents, as |P≤b(Y)| =

∑b
i=0

(
nstatic

i

)
,

the loop in line 18 has complexity O(nbstatic), because∑b
i=0

(
nstatic

i

)
<
∑b

i=0 n
i
static ∈ O(nbstatic).

The worst-case complexity of determining φi in line 19
happens when a node has b + p + 1 parents. Assuming
that each attribute can take at most λ different values,
each conditional probability distribution has a space com-
plexity of O(λb+p+2). Each configuration of a probability
distribution is evaluated in each observation of Dt+1

t+1−m
and S, which have space complexities of, respectively,
|Dt+1

t+1−m| × (m + 1) × n and |S| × nstatic. Joining all
previous components, line 19 has a total complexity of
O(|Dt+1

t+1−m| × (m+ 1)× n× |S| × nstatic × λb+p+2).
Algorithm 1 uses Algorithm 2 a total of O(T) times

in the loop. Defining Ndynamic =
∑T−1

t=0 |D
t+1
t+1−m| and

Nstatic = |S| as the total dimensions of the dynamic and
static datasets, respectively, and joining all aforementioned
complexities of Algorithm 2, the total complexity of Algo-
rithm 1 can be expressed as

O(np+3nb+1
staticm

p+1λb+p+2NdynamicNstatic), (16)

which proves Theorem 2.

To properly study the ALS data, there is the need of
including prior knowledge in the sdtDBNs, which can be
done by restricting the relations of the learned networks. For
a certain relation in an sdtDBN, a restriction may force that
relation either to exist or not to exist. To cover all possible
situations, there must be considered three types of relations:

(i) Between dynamic nodes in different timesteps.
(ii) Between dynamic nodes in the same timestep.

(iii) Between dynamic nodes and static nodes.
Restrictions in relations of types (i) and (iii) are in-

cluded in the learning algorithm by changing the proper
search-spaces, in lines 1 and 2 of Algorithm 2, respec-
tively. If a node Xi[t+ 1] has some mandatory and some
forbidden parents from previous timesteps, then, when an-
alyzing the possible parents of Xi[t + 1], all subsets of
P≤p(X[t+ 1−m] ∪ · · · ∪X[t]) that contain at least one
forbidden parent, or do not contain all mandatory parents,
are removed from the search-space. The rationale for incor-
porating restrictions in relations of type (iii) is similar.

Restrictions in relations of type (ii) are included by
biasing the weights Eij , determined in Algorithm 2. For
each timestep, Algorithm 1 applies a maximum branching
algorithm using the weights Eij , and the resulting maximum
spanning tree contains the intra-slice connectivity of the
corresponding timestep. Therefore, restrictions in relations
of type (ii) can be introduced in Algorithm 2 by biasing
the weights Eij , which is done by replacing line 24 of
Algorithm 2 with the procedure presented in Algorithm 3.

Algorithm 3: Procedure to include restrictions in rela-
tions of type (ii) in sdtDBNs, biasing the weights Eij
with bigNumber, which is a positive number several
orders of magnitude higher than the weights Eij .

1 if Xj [t+ 1]→ Xi[t+ 1] is mandatory then
2 Eij ← Eij + bestScore + bigNumber
3 else if Xj [t+ 1]→ Xi[t+ 1] is forbidden then
4 Eij ← Eij + bestScore - bigNumber
5 else
6 Eij ← Eij + bestScore

By directly changing the search-spaces, any restriction
in relations of types (i) and (iii) is always respected. Restric-
tions in relations of type (ii) are always respected due to the
soundness of Edmonds’ maximum branching algorithm [28].
The learning procedure of sdtDBNs remains optimal given
the restrictions, because restricting the search-spaces only
avoids evaluating forbidden parents sets, and the bias on a
certain Eij is done after getting all parents sets associated
with node Xi[t+1] as a child node, being these sets obtained
as in the unrestricted algorithm (see Algorithm 2).

The computational complexity of the learning algorithm
with restrictions depends on how much the restrictions in
relations of types (i) and (iii) reduce the search-spaces.
Restrictions in relations of type (ii) do not change the com-
plexity of the learning algorithm, as biasing the Eij terms
does not change the complexity of line 24 of Algorithm 2.

After defining the sdtDBN framework and including
restrictions in the networks, the predictive capabilities of
the model must be tackled, in order to allow a user to make
inference in learned sdtDBNs.

Denoting staticObs and dynObs as, respectively, the
static and dynamic observations provided by a user, Algo-
rithm 4 presents the depth-first search (DFS) approach for
estimating the value of a certain node Xj [t] of an sdtDBN.

Algorithm 4: DFS approach to estimate the value of
a certain node Xj [t] of an sdtDBN.

1 function getVal(Xj [t], staticObs, dynObs):
2 if Xj [t] does not have parents in the network then
3 return False

4 for sParent in static parents of Xj [t] do
5 if sParent not observed in staticObs then
6 return False

7 for dParent in dynamic parents of Xj [t] do
8 if dParent not observed in dynObs then
9 ret = getVal(dParent, staticObs, dynObs)

10 if ret == False then
11 return False

12 Randomly determine/sample a value for Xj [t],
using the probabilities of its distribution. Update
dynObs with the estimated value.

13 return True

6

In Algorithm 4, the dynamic parents of each node should
be searched in a topological order, to guarantee that, when
Algorithm 4 is recursively called for a certain node, its par-
ent from the same timestep already has its value estimated.

When determining the distribution of a node Xi[t], Algo-
rithm 4 is used to estimate the values of the parents of Xi[t]
without observations in dynObs. Regarding complexity, the
worst-case scenario happens when only the dynamic nodes
in the first m timesteps have observations in dynObs and
every node used in the DFS has p+b+1 parents (p dynamic
from the previous timestep, b static and 1 from the same
timestep). In this situation, Algorithm 4 is called p times
(for each parent of Xi[t]), analyzing

∑t−1−m
k=0 pk nodes in

each call. To estimate a node’s value, its p+b+1 parents are
checked. Given the previous explanation, the complexity of
determining the distribution of a node Xi[t] of an sdtDBN is

O

(
p

t−1−m∑
k=0

pk

)
×O(p+ b+ 1) ≈ O(pt−m+1 + bpt−m).

(17)

4.2. Graphical user interface and publicly available
implementations

For the sdtDBN framework to be available to all kinds
of users, including non-experts in computer science, there
is provided a graphical user interface (GUI) for the sdtDBN
program. The GUI is composed by seven tabs, which allow
a user to exploit all capabilities of the sdtDBN framework.

The sdtDBNs are implemented in Java, being the source
code available at https://github.com/ttlion/sdtDBN_code.
The latest executable version, provided in a JAR file, can
be obtained at https://ttlion.github.io/sdtDBN. The GUI is
implemented in Python, being the source code available
at https://github.com/ttlion/sdtDBNsGUI_code. The latest
standalone executable versions of the GUI can be obtained
at https://ttlion.github.io/sdtDBNsGUI (for Windows and
Linux). The websites with the executable versions of the
programs also provide examples detailing how to insert the
inputs of the programs and interpret the several outputs.

5. Assessment of the ALS dataset

5.1. Data preprocessing

The sdtDBNs (see Section 4) are applied to tackle ALS
disease progression, being learned using a pretreated version
of the ALS dataset (see Section 2). This pretreated version is
called “ALS dataset” throughout Section 5, and must be pre-
processed, to be in the proper format for learning sdtDBNs.

The preprocessing of static data consists of the selection
(done by eliminating variables with high quantity of missing
data) and discretization (done as proposed by ALS experts)
of data, which are presented in Table 2. The preprocessing
of dynamic data starts by creating the sub-datasets before
and after NIV, splitting each patient’s data according to NIV
having been applied, or not, when the data was obtained.
The procedure of Fig. 2 is then applied to each sub-dataset.

TABLE 2. SELECTION AND DISCRETIZATION OF THE VARIABLES OF
THE ALS DATASET (ORANGE: STATIC; PINK: DYNAMIC). THE

VARIABLES WITH † ARE ONLY USED IN THE ANALYSES BEFORE NIV.
Variable Discretization (label: respective elements)

Gender 1: male; 2: female
BMI 1: [0,20[; 2: [20,25[; 3: [25,30[; 4: [30,+∞[

Familiar History MND 1: yes; 2: no; 3: unknown
Age at onset (years) 1: [0,30[; 2: [30,50[; 3: [50,70[; 4: [70,+∞[

Disease duration
(months)

1: [0,6]; 2:]6,12]; 3:]12,18];
4:]18,36]; 5:]36,+∞[

El Escorial
reviewed criteria

1: definitive; 2: probable;
3: possible; 4: progressive muscular atrophy

Onset form
1: spinal; 2: bulbar; 3: respiratory/axial;
4: mixed; 5: frontotemporal degeneration

C9orf72 1: yes; 2: no; 3: unknown
ALS-FRS 1: {0,...,11}; 2: {12,...,23}; 3: {24,...,35}; 4: {36,...,40}
ALS-FRSb 1: {0,1,2,3}; 2: {4,5,6,7}; 3: {8,9,10,11}; 4: {12}

ALS-FRSsUL 1: {0,1,2,3}; 2: {4,5,6,7}; 3: {8,9,10,11}; 4: {12}
ALS-FRSsLL 1: {0,1,2,3}; 2: {4,5,6,7}; 3: {8,9,10,11}; 4: {12}

R 1: {0,1,2,3}; 2: {4,5,6,7}; 3: {8,9,10,11}; 4: {12}
ALS-FRS-R questions 1: {0}; 2: {1}; 3: {2}; 4: {3}; 5: {4}

FVC† 1: [0,40[; 2: [40,60[; 3: [60,80[; 4: [80,100]
MIP† 1: [0,40[; 2: [40,60[; 3: [60,100]
MEP† 1: [0,40[; 2: [40,60[; 3: [60,80[; 4: [80,100]

PhrenMeanAmpl† 1: [0; 0,4[; 2: [0,4;+∞[

Preprocessing steps included:
 1. Creation of time-series from patients' snapshots and feature selection.
 2. Fill of missing data.
 3. Removal of any patients still with missing data, discretization and
 split using 5-fold cross-validation.

1

Data filled with
interpolation

2

3

Data with
questions

Dataset before NIV or
dataset after NIV

Data filled with
LOCF

5 training sets
(with proper
testing sets)

3

5 training sets
(with proper
testing sets)

Data filled with
interpolation

2

3

Data with
sub-scores

Data filled with
LOCF

5 training sets
(with proper
testing sets)

3

5 training sets
(with proper
testing sets)

Figure 2. Preprocessing of the datasets before and after NIV.

Fig. 2 shows that, since the dataset has snapshots of the
patients’ consultations, but sdtDBNs describe time-series,
data is converted to time-series, assuming that consecutive
timesteps are separated by three months. The ALS-FRS-R
sub-scores and questions are split into distinct sub-datasets,
for the sdtDBNs not to learn relations among a score and its
questions, being the respiratory tests included in all datasets
before NIV. Table 2 shows the dynamic features selected.
Missing data is filled using two methods, last observation
carried forward (LOCF) and linear interpolation, in order to
improve the reliability of the results. Patients with missing
data after the filling procedure are removed from the dataset,
as they have at least one variable without any observation.
The discretization of dynamic data (see Table 2) is done after
filling data, for the interpolation to be done with the real val-
ues. It is used 5-fold cross-validation to get the training and

7

https://github.com/ttlion/sdtDBN_code
https://ttlion.github.io/sdtDBN
https://github.com/ttlion/sdtDBNsGUI_code
https://ttlion.github.io/sdtDBNsGUI

testing sets with dynamic data, being each corresponding set
with static data obtained by selecting, from the static dataset,
the data of the patients in the respective dynamic set.

5.2. Study of the whole ALS dataset and division
into progression groups

This section studies the whole ALS dataset and also gets
the differences among the several kinds of patients, by split-
ting them into three progression groups, according to their
progression rates. A patient’s progression rate is obtained by

progression rate =
48− ALS-FRS-RFirst consultation

α
, (18)

where α is the number of months between the initial symp-
toms and the first consultation, and 48 is used as it is the
maximum possible value of ALS-FRS-R. The patients with
the lowest 25% and the highest 25% progression rates com-
pose, respectively, the slow and fast progression groups. The
remaining patients compose the average progression group.

Applying the preprocessing from Section 5.1 to each
of the four mentioned groups (the whole dataset and the
three progression groups), there are obtained, per group, ten
training sets (see Fig. 2) for each of the following four
scenarios: (i) before NIV with questions; (ii) before NIV
with sub-scores; (iii) after NIV with questions; (iv) after
NIV with sub-scores. For each scenario of each group, three
assessments are done, which are presented next.

The first assessment predicts the values of the questions
and sub-scores of ALS-FRS-R using sdtDBNs. From each
training set, stationary sdtDBNs are learned (to avoid over-
fitting the training sets), using {m = 1, p = 2, b = 1, T = 8}
(see Section 4) with the LL and MDL scores.

For a certain variable X[t] in a scenario W of a group G,
it is determined the accuracy of the predictions (the fraction
of correct predictions of X[t]). There are also determined the
sensitivity and the AUC, by classifying a value as negative
if it is higher than Q1 and as positive if not, where Q1 is the
first quartile of the values of X[t] considering all testing sets
of scenario W of group G (the sensitivity and the AUC are
not determined if Q1 is the highest possible value of X[t]).

Table 3 shows the results of the predictions of sdtDBNs
learned with MDL in the scenarios with sub-scores, pro-
viding the mean values of the results of all timesteps. The
results are, in general, above 75%, which demonstrates
that sdtDBNs are competitive with state-of-the-art works
[13, 15, 16]. The division into progression groups does not
improve the performance, because the models overfit the
training data, due to the low quantity of data of each group.

The second assessment graphically determines the influ-
ence of each variable in each timestep of the sdtDBNs, based
on the reasoning that a variable X has more influence in a
timestep t than a variable Y if X is a parent of more vari-
ables in t than Y . From the training sets filled with LOCF
(only LOCF is used, as the results with interpolation are
similar), non-stationary sdtDBNs are learned using the LL
score with {m = 1, p = 2, T = 8} and either b = 1 or b = 2
(b = 2 is only used in the scenarios with sub-scores, to

learn sdtDBNs in reasonable time). The learned sdtDBNs
are restricted so that a variable can never be a parent of itself
in the next timestep (those relations are intuitively known).

For each scenario of each group, it is counted the number
of children that each variable has in every timestep of the
respective sdtDBNs. The counts done in each scenario of
each group are normalized per timestep, being presented in
stacked bar charts, where the larger the bar of a variable, the
higher the variable’s influence in the corresponding timestep.

The influence of each variable in the scenarios before
NIV with questions is given in Fig. 3, which shows that the
influence of the variables varies according to the progression
groups. Some interesting observations regarding Fig. 3 are
the high influence of P9, MIP, MEP and disease duration in
slow progressors, the high influence of P1, P9, MEP, BMI
and disease duration in average progressors, and the high
influence of P1, BMI and age at onset in fast progressors.

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8
R

el
a
ti
v
e

in
fl
u
en

ce

Timestep

P1 P2 P3 P4(a) Without progression groups.

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

R
el

a
ti

v
e

in
fl
u
en

ce

Timestep

(b) Slow progression group.

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

R
el

a
ti

v
e

in
fl
u
en

ce

Timestep

(c) Average progression group.

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

R
el

a
ti

v
e

in
fl
u
en

ce

Timestep

(d) Fast progression group.

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 R1 R2

R3 FVC MIP MEP

PhrenMeanAmpl Gender BMI Familiar History MND

Age at onset Disease duration El Escorial criteria Onset form

C9orf72

Figure 3. Influence of each variable in every timestep of the sdtDBNs
learned in the scenarios before NIV with questions.

8

TABLE 3. RESULTS OF THE PREDICTIONS OF THE SDTDBNS LEARNED, WITH THE MDL SCORE, IN THE SCENARIOS WITH SUB-SCORES.

Metric Accuracy (%) Sensitivity (%) AUC (%)
Group None Slow Average Fast None Slow Average Fast None Slow Average Fast

Before
NIV

ALS-FRS 79,72 82,40 77,43 76,61 77,74 84,50 71,04 70,10 86,57 89,16 82,82 84,87
ALS-FRSb 83,12 88,15 79,59 78,33 86,92 83,39 83,23 74,07 91,65 90,09 90,75 86,54

ALS-FRSsUL 79,02 80,04 76,54 71,87 79,39 78,70 71,54 70,58 88,21 87,39 84,51 83,46
ALS-FRSsLL 78,53 80,89 73,99 68,33 86,07 78,60 71,12 64,14 89,79 87,55 84,57 80,47

R 83,46 87,29 79,30 78,46 61,32 x 53,49 70,82 77,52 x 72,55 79,17

After
NIV

ALS-FRS 81,15 78,34 79,50 82,82 78,91 79,70 75,42 74,91 88,49 87,31 86,82 86,89
ALS-FRSb 82,20 81,90 82,28 81,14 89,00 86,53 81,24 88,22 93,88 92,24 89,87 93,89

ALS-FRSsUL 81,50 81,22 80,30 81,00 84,58 80,73 80,20 85,59 90,36 88,52 88,91 90,19
ALS-FRSsLL 82,10 82,52 81,32 75,58 83,29 82,03 81,49 80,99 90,50 90,76 89,80 89,38

R 81,17 80,10 82,03 78,03 75,88 72,26 76,80 79,96 83,72 81,96 84,03 86,11

The third assessment determines the correlations among
variables in the disease progression. The reasoning used is
that, given any three variables X , Y and Z of an sdtDBN,
X is more correlated with Y than with Z if there are more
edges between X and Y than between X and Z, throughout
all timesteps of the sdtDBN. As the graphical display of
sdtDBNs is used, there are learned in this third assessment
the same sdtDBNs learned in the second assessment.

For each scenario of every group, it is counted the
number of edges that each variable has with each of the
other variables in the learned sdtDBNs (independently of the
edges’ directions, as both X → Y and Y → X indicate a
correlation between variables X and Y). The counts done in
each scenario of each group are normalized per variable and
presented in tables where each column has the normalized
values of a variable (thus representing the correlations of that
variable with all other variables). The correlations between
the sub-scores after NIV are given in Table 4.

TABLE 4. CORRELATIONS BETWEEN SUB-SCORES OF THE SDTDBNS
LEARNED IN THE SCENARIOS AFTER NIV WITH SUB-SCORES.

(a) Without progression groups.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 27,21% 23,88% 21,08% 7,38%
ALS-FRSb 39,38% — 30,18% 28,83% 37,81%

ALS-FRSsUL 29,69% 25,93% — 27,93% 27,29%
ALS-FRSsLL 24,12% 22,79% 25,70% — 27,52%

R 6,80% 24,07% 20,23% 22,16% —
Sum per column: 100% 100% 100% 100% 100%

(b) Slow progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 27,96% 25,27% 25,00% 17,70%
ALS-FRSb 36,88% — 34,34% 36,18% 33,43%

ALS-FRSsUL 24,38% 25,12% — 20,73% 23,88%
ALS-FRSsLL 25,63% 28,12% 22,03% — 25,00%

R 13,13% 18,80% 18,36% 18,09% —
Sum per column: 100% 100% 100% 100% 100%

(c) Average progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 28,26% 26,90% 14,96% 12,27%
ALS-FRSb 39,79% — 28,71% 29,92% 37,96%

ALS-FRSsUL 33,61% 25,48% — 32,87% 23,61%
ALS-FRSsLL 15,67% 22,25% 27,56% — 26,16%

R 10,93% 24,01% 16,83% 22,24% —
Sum per column: 100% 100% 100% 100% 100%

(d) Fast progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 40,90% 48,73% 43,77% 25,91%
ALS-FRSb 38,74% — 27,97% 27,76% 53,44%

ALS-FRSsUL 23,33% 14,13% — 14,95% 5,26%
ALS-FRSsLL 24,95% 16,70% 17,80% — 15,38%

R 12,98% 28,27% 5,51% 13,52% —
Sum per column: 100% 100% 100% 100% 100%

Some conclusions regarding Table 4 are the high correla-
tion of ALS-FRSb with the scores after NIV and the low cor-
relation of R with the scores after NIV (see the ALS-FRSb
and R rows, respectively). The diagonals of the tables of the
third assessment are never considered, as the sdtDBNs are
restricted for a variable never to be a parent of itself.

5.3. Analysis of some clinically relevant questions

For the assessments using sdtDBNs to have clinical im-
pact, this section presents three clinical questions (proposed
by ALS experts) and how they are answered using sdtDBNs.
Question 1: which variables are the most associated to a
patient needing NIV? To answer this question, it is added to
the dataset a dynamic variable named NIV. In a consultation
of a patient, this variable is 1 if the patient already has NIV,
and 0 otherwise. The question is answered using the third
assessment of Section 5.2 to determine the correlation of the
NIV variable with each variable of the dataset. The results
provide high correlation of NIV with ALS-FRS and BMI.
Question 2: which variables are the most important in each
year of the patients’ progression? Assuming that the years
of a patient’s progression start in the first consultation, this
question is answered using the second assessment of Sec-
tion 5.2, applying the graphical reasoning to years instead of
timesteps. As consecutive timesteps are separated by three
months (see Section 5.1), the conversion from timesteps to
years is direct. The results present high influence of ALS-
FRSsUL and ALS-FRSsLL in slow and average progressors
and high influence of ALS-FRSb in fast progressors.
Question 3: considering the sub-score of ALS-FRS with
the lowest value in the first consultation of a patient, how
are its relations with the remaining variables, throughout
that patient’s progression? To get the answer to this ques-
tion, patients are divided into three sub-groups, according to
the sub-score with the lowest value in the first consultation
being ALS-FRSb, ALS-FRSsUL or ALS-FRSsLL. For each
sub-group, the third assessment of Section 5.2 is applied.
The third question is answered by selecting, from the table
obtained for each sub-group, the column of the sub-score
with the lowest value in the first consultation (which varies
per sub-group). The previous procedure is applied to each
progression group (see Section 5.2). The results show, in
general, high correlation of ALS-FRSb with FVC, and high
correlation of ALS-FRSsUL and ALS-FRSsLL with MEP.

9

6. Conclusions and future work

This Thesis proposes the sdtDBN framework (see Sec-
tion 4), which learns optimal DBNs with static and dynamic
variables. The inclusion of static variables is a huge im-
provement on standard DBNs (which only include dynamic
variables), being particularly relevant when studying medi-
cal datasets, which usually have static indicators, such as the
patients’ gender. As sdtDBNs cannot predict values of static
variables (they never have parents in learned sdtDBNs),
future work can extend the sdtDBN framework, for sdtDBNs
to learn the optimal parents of static variables, which may
not be a simple task (for instance, considering all combina-
tions of dynamic nodes from all timesteps is unfeasible).

The sdtDBNs are employed to assess ALS disease pro-
gression (see Section 5). The prediction of the functional
decline of patients shows that sdtDBNs are competitive with
state-of-the-art models. The analyses of the graphical display
of sdtDBNs present interesting relations among variables,
which vary according to the patients’ progression groups.
Finally, the answers to the questions proposed by ALS ex-
perts provide results with clinical relevance. As future work,
sdtDBNs can be applied in the preprocessing procedure (for
example, using sdtDBNs to fill missing data) and in the
division of patients into progression groups (for instance,
representing the progression groups using a static variable).
Future work can also impose restrictions in the sdtDBNs
different from the ones used in Section 5.2, and assess
outcomes not covered in this work.

References

[1] M. A. Van Es, O. Hardiman, A. Chiò, A. Al-Chalabi, R. J.
Pasterkamp, J. H. Veldink, and L. H. Van den Berg, “Amyotrophic
lateral sclerosis,” The Lancet, vol. 390, no. 10107, pp. 2084–2098,
2017.

[2] N. Simon, M. Turner, S. Vucic, A. Al-Chalabi, J. Shefner, C. Lomen-
Hoerth, and M. Kiernan, “Quantifying disease progression in amy-
otrophic lateral sclerosis,” Annals of Neurology, vol. 76, no. 5, pp.
643––657, 2014.

[3] C. Heffernan, C. Jenkinson, T. Holmes, H. Macleod, W. Kinnear,
D. Oliver, N. Leigh, and M. Ampong, “Management of respiration in
MND/ALS patients: An evidence based review,” Amyotrophic Lateral
Sclerosis, vol. 7, no. 1, pp. 5–15, 2006.

[4] K. Murphy, “Dynamic Bayesian networks: Representation, inference
and learning,” Ph.D. dissertation, University of California, Berkeley,
California, USA, 2002.

[5] N. Friedman, K. Murphy, and S. Russell, “Learning the structure of
dynamic probabilistic networks,” in Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, ser. UAI’98.
Morgan Kaufmann Publishers Inc., 1998, pp. 139–147.

[6] H. Lähdesmäki and I. Shmulevich, “Learning the structure of dynamic
Bayesian networks from time series and steady state measurements,”
Machine Learning, vol. 71, no. 2–3, pp. 185–217, 2008.

[7] L. Song, M. Kolar, and E. P. Xing, “Time-varying dynamic Bayesian
networks,” in Proceedings of the 22nd International Conference on
Neural Information Processing Systems, ser. NIPS’09. Curran
Associates Inc., 2009, pp. 1732–1740.

[8] J. W. Robinson and A. J. Hartemink, “Learning non-stationary dy-
namic Bayesian networks,” Journal of Machine Learning Research,
vol. 11, pp. 3647–3680, 2010.

[9] G. Trabelsi, P. Leray, M. Ben Ayed, and A. Alimi, “Dynamic MMHC:
A local search algorithm for dynamic Bayesian network structure
learning,” in Advances in Intelligent Data Analysis XII. Springer,
Berlin, Heidelberg, 2013, pp. 392–403.

[10] J. L. Monteiro, S. Vinga, and A. M. Carvalho, “Polynomial-time
algorithm for learning optimal tree-augmented dynamic Bayesian net-
works,” in Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence, ser. UAI’15. AUAI Press, 2015, pp. 622–
631.

[11] M. Sousa and A. M. Carvalho, “Polynomial-time algorithm for learn-
ing optimal BFS-consistent dynamic Bayesian networks,” Entropy,
vol. 20, no. 4, 2018.

[12] B. Marin, P. Couratier, S. Arcuti, M. Copetti, A. Fontana, M. Nicol,
M. Raymondeau, G. Logroscino, and P.-M. Preux, “Stratification
of ALS patients’ survival: a population-based study,” Journal of
Neurology, vol. 263, no. 1, pp. 100–111, 2015.

[13] A. Taylor, C. Fournier, M. Polak, L. Wang, N. Zach, M. Keymer, J. D.
Glass, and D. Ennist, “Predicting disease progression in amyotrophic
lateral sclerosis,” Annals of Clinical and Translational Neurology,
vol. 3, no. 11, pp. 866–875, 2016.

[14] H. K. Van der Burgh, R. Schmidt, H.-J. Westeneng, M. A. de Reus,
L. H. Van den Berg, and M. P. Van den Heuvel, “Deep learning pre-
dictions of survival based on MRI in amyotrophic lateral sclerosis,”
NeuroImage: Clinical, vol. 13, pp. 361–369, 2017.

[15] A. V. Carreiro, P. M. Amaral, S. Pinto, P. Tomás, M. de Carvalho,
and S. C. Madeira, “Prognostic models based on patient snapshots and
time windows: Predicting disease progression to assisted ventilation
in amyotrophic lateral sclerosis,” Journal of Biomedical Informatics,
vol. 58, pp. 133–144, 2015.

[16] S. Pires, M. Gromicho, S. Pinto, M. de Carvalho, and S. C. Madeira,
“Predicting non-invasive ventilation in ALS patients using stratified
disease progression groups,” in 2018 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 2018, pp. 748–757.

[17] M. Van Gerven, B. Taal, and P. J. Lucas, “Dynamic Bayesian net-
works as prognostic models for clinical patient management,” Journal
of Biomedical Informatics, vol. 41, no. 4, pp. 515–529, 2008.

[18] A. Zandonà, R. Vasta, A. Chiò, and B. Di Camillo, “A dynamic
Bayesian network model for the simulation of amyotrophic lateral
sclerosis progression,” BMC Bioinformatics, vol. 20, no. S4, 2019.

[19] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Tech-
niques, 3rd ed. Morgan Kaufmann Publishers Inc., 2011.

[20] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical Machine Learning Tools and Techniques, 4th ed. Morgan
Kaufmann Publishers Inc., 2016.

[21] P. Cabena, P. Hadjinian, R. Stadler, J. Verhees, and A. Zanasi, Dis-
covering Data Mining: From Concept to Implementation. Prentice
Hall, 1998.

[22] D. Pyle, Data Preparation for Data Mining. Morgan Kaufmann
Publishers Inc., 1999.

[23] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[24] G. F. Cooper, “The computational complexity of probabilistic in-
ference using Bayesian belief networks (research note),” Artificial
Intelligence, vol. 42, no. 2–3, pp. 393–405, 1990.

[25] C. Chow and C. Liu, “Approximating discrete probability distributions
with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, no. 3, pp. 462–467, 1968.

[26] A. M. Carvalho, “Scoring functions for learning Bayesian networks,”
INESC-ID, Lisbon, Portugal, Tech. Rep., 2009.

[27] N. Friedman, “The Bayesian structural EM algorithm,” in Proceedings
of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
ser. UAI’98. Morgan Kaufmann Publishers Inc., 1998, pp. 129–138.

[28] J. Edmonds, “Optimum branchings,” Journal of Research of the
National Bureau of Standards, vol. 71B, no. 4, pp. 233–240, 1967.

10

	Abstract
	1 Introduction
	1.1 Previous work
	1.2 Approach of this work

	2 ALS dataset
	3 Theoretical background
	3.1 Data mining
	3.2 Dynamic Bayesian networks

	4 Contributions on DBNs methods
	4.1 The sdtDBN framework
	4.2 Graphical user interface and publicly available implementations

	5 Assessment of the ALS dataset
	5.1 Data preprocessing
	5.2 Study of the whole ALS dataset and division into progression groups
	5.3 Analysis of some clinically relevant questions

	6 Conclusions and future work
	References

