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Resumo

A esclerose lateral amiotrófica (ELA) é uma doença neurodegenerativa cujos pacientes sofrem um rápido declı́nio

funcional. Estudar a progressão da doença usando técnicas de mineração de dados é utilı́ssimo, porque ajuda os

médicos a entender quando devem administrar procedimentos que evitem a insuficiência respiratória dos pacientes

(a principal causa de morte). Esta Tese aborda a progressão de ELA usando redes de Bayes dinâmicas (RBDs),

uma técnica de aprendizagem automática que representa graficamente a distribuição de probabilidade conjunta de

variáveis aleatórias dinâmicas (temporalmente dependentes). Para incluir informação estática (temporalmente in-

dependente) nas RBDs, são propostas as sdtDBNs, que aprendem RBDs com variáveis estáticas e dinâmicas, tendo

complexidade temporal polinomial no número de variáveis. O modelo proposto permite introduzir conhecimento

prévio (restringindo as relações das redes) e fazer inferência nas sdtDBNs. Uma implementação em software

das sdtDBNs e uma interface gráfica estão publicamente disponı́veis. A progressão de ELA é abordada usando

observações de 1214 pacientes, primeiro, considerando todos os pacientes, e, depois, dividindo-os em três grupos

de progressão. Para cada um destes quatro conjuntos de pacientes, prevê-se o seu declı́nio funcional e obtêm-se

graficamente as correlações entre os indicadores clı́nicos, usando sdtDBNs. As previsões oferecem resultados

promissores, com exatidões geralmente acima de 75%. As correlações encontradas fornecem uma descrição in-

tuitiva das interações entre as variáveis. A Tese termina respondendo a três questões clı́nicas usando sdtDBNs,

fornecendo uma análise com impacto clı́nico. Todas as avaliações apresentadas mostram que as sdtDBNs carac-

terizam adequadamente a progressão de ELA, motivando o seu uso como uma ferramenta clı́nica.

Palavras-chave: esclerose lateral amiotrófica, mineração de dados, progressão da doença, redes de

Bayes dinâmicas, algoritmo polinomial, variáveis temporalmente dependentes e independentes
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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes a fast functional decline of the

patients. Studying the disease progression using data mining techniques is extremely useful, as it helps clinicians

understand when they should apply procedures to avoid patients’ respiratory failure (the main cause of death).

This Thesis tackles ALS disease progression using dynamic Bayesian networks (DBNs), a machine learning model

that graphically displays the joint probability distribution of dynamic (time-dependent) random variables. To in-

clude static (time-independent) information in DBNs, the sdtDBN framework is proposed, which learns optimal

DBNs with static and dynamic variables, having polynomial-time complexity in the number of variables. The

sdtDBN framework can also introduce prior knowledge (by restricting the networks’ relations) and make infer-

ence in learned sdtDBNs. A software implementation of the sdtDBN framework and a graphical user interface

are publicly available. The disease progression is assessed using observations of 1214 ALS patients, considering,

first, all patients, and, then, their division into three progression groups. For each of these four sets of patients,

their functional decline is predicted using sdtDBNs, and the correlations between the clinical indicators are deter-

mined with the graphical display of sdtDBNs. The predictions provide promising results, with accuracies generally

above 75%. The correlations found present an intuitive overview of the interactions among variables. The Thesis

ends by answering three clinical questions using sdtDBNs, providing an analysis with clinical impact. All assess-

ments presented show that sdtDBNs can properly profile ALS disease progression, motivating the use of sdtDBNs

as a clinical tool.

Keywords: amyotrophic lateral sclerosis, data mining, disease progression, dynamic Bayesian networks,

polynomial-time algorithm, time-dependent and time-independent variables
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Chapter 1

Introduction

1.1 Contextualization

This work is the final endeavor of the Integrated Master’s in Electrical and Computer Engineering, at Instituto

Superior Técnico, Lisbon, in order for its author to obtain the Master’s degree in Electrical and Computer En-

gineering. The Thesis studies amyotrophic lateral sclerosis (ALS) disease progression using dynamic Bayesian

networks (DBNs), also providing improvements on state-of-the-art methods of DBNs structure (and parameter)

learning and inference. An overview of the most common data preprocessing techniques is also done, as these

techniques are needed to prepare the ALS data for learning the DBNs.

1.2 Motivation

Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease (MND), is a neurodegenerative

disease that quickly affects the loss of motor neurons of the patients [1], although, in general, without major

cognitive damages. ALS has a prevalence of 3–5 cases per 100000 people, with risk increasing in men and elder

people [2]. ALS symptoms are usually associated to limb weakness and difficulties in activities such as speaking

and breathing. The main cause of death among ALS patients is respiratory failure [3]. ALS is divided into two

groups: familial ALS (around 10%) and sporadic ALS (the remaining 90%). Patients with familial ALS are the

ones who have relatives with ALS, being ALS usually detected earlier in these situations [4], as multiple gene

mutations are known in these cases. Sporadic ALS is more difficult to identify, causing disease onset to be only

58–63 years, when comparing to familial ALS, where it is 43–63 years [5].

One of the main areas of ALS research is the diagnosis of the disease, as usually there is a delay of 13–18

months from the moment a patient develops ALS until the moment of the diagnosis [6], which is due to ALS being

a rare disease and many symptoms overlapping with other neurodegenerative diseases [7]. To properly diagnose

ALS, the main goal is to find clinical features to use as diagnostic predictors [8]. More than 20 genes have already

been associated with ALS, being C9orf72 currently the gene most associated with ALS [2]. The Mine project [9]

started a large-scale study of the genome sequencing of ALS patients. There are also some non-genetic factors

associated to ALS [1, 10]. One of the most used criteria to diagnose ALS is the El Escorial criteria, whose result
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is a degree of probability for the patient to have ALS [1]. To perform the final diagnosis, several kinds of tests can

be used [6].

Currently, there is no cure for ALS. Therefore, treatments focus on slowing the progression of the disease and

increasing survival of patients. Riluzole is the only known effective drug, with a median survival increase of seven

months [1]. The remaining treatments consist mostly in pain attenuation, being performed several tests to keep

track of the disease progression. The functional decline of a patient is assessed with a standardized set of tests

that composes the ALS functional rating scale (ALS-FRS), currently in its revised version (ALS-FRS-R) [11]. As

the main causes of death among ALS patients are respiratory problems, most prognostic exams are respiratory

tests, such as the vital and forced vital capacities (VC/FVC) and the maximal inspiratory and expiratory pres-

sures (MIP/MEP) [12]. The goal of these tests is to predict when ventilatory support will be needed, preventing

the need for aspiration [4]. The ventilatory support is given through non-invasive ventilation (NIV), which helps

improve the survival and quality of life of patients [5, 13], preventing them from dying from hypoventilation,

mainly caused by hypoxemia and hypercapnia, associated with respiratory infections [3]. When patients suffer

from malnutrition, Neogastric feeding is also beneficial for their survival [1].

As explained, NIV is essential to prevent hypoventilation, being of most importance to start NIV as soon as

patients need it. However, there are no standard criteria to define the proper moment to start NIV, being up to

doctors to identify the appropriate moment, strongly relying on their experience. Therefore, providing statistical

information regarding the progression of ALS patients is a fantastic help, guiding doctors to start NIV at the right

time, and, consequently, improving the survival and quality of life of patients.

1.3 Scope of the Thesis and main contributions

Given the motivation presented in Section 1.2, the ultimate goal of the Thesis is to develop a probabilistic model

that can answer the question knowing the progression of an ALS patient until a certain consultation, how will

his progression in the following consultation be described?

To answer the mentioned question, the probabilistic model is created from data of the Portuguese ALS dataset.

As doctors need to understand the reasoning for the model’s decisions [14], this Thesis focuses on graphical

models, particularly on Bayesian networks (BNs), and their extension to the temporal domain, dynamic Bayesian

networks (DBNs), as they describe data in an interpretable fashion. It is developed a DBN framework capable of

studying the ALS dataset, by creating networks that simultaneously include static (time-independent) and dynamic

(time-dependent) variables. It is also provided a graphical interface for the proposed DBN framework, for doctors

to be able to use it themselves. After presenting the proposed DBN framework, the ALS dataset is assessed. First,

some data preprocessing techniques are applied, then, there are learned DBNs from ALS data in several scenarios,

providing multiple analyses, useful for profiling ALS disease progression.

Overall, the main contributions of this Thesis are the following:

1. A theoretical revision of some important data preprocessing techniques, BNs and DBNs.

2. A DBN framework that optimally learns DBNs with static and dynamic variables, allowing a user to make

restrictions in the networks and providing a user with inference capabilities. A software implementation of

the proposed framework and a webpage explaining its functioning are publicly available (see Section 5.4).
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3. A graphical user interface for the proposed DBN framework. A software implementation of the graphical

interface and a webpage explaining its functioning are publicly available (see Section 6.4).

4. Some programs created to preprocess time-series data and to obtain relevant statistical indicators for the

results of the analyses performed on the ALS dataset. The developed programs are publicly available at

https://github.com/ttlion/preprocessAndStatsThesis.

5. A comprehensive assessment of the Portuguese ALS dataset, done using the proposed DBN framework.

6. A paper with focus on the developed DBN framework and a case-study in ALS, submitted in the Journal of

Biomedical Informatics.

7. A paper providing a study of ALS disease progression using the proposed DBN framework and stratifying

patients into three progression groups. This paper is already finished and waiting for the supervisors’ review,

being planned its submission in the journal BMC Medical Informatics and Decision Making.

8. A paper emphasizing the clinical relevance of studying ALS disease progression with DBNs, which is being

written by the clinical team that maintains the Portuguese ALS dataset, using the results of this Thesis.

1.4 Previous work

Dynamic Bayesian networks

Although there is much work on BNs, there is not such an extensive literature on how to do proper structure and

parameter learning of DBNs, especially when learning from medical data, where the quantity of data is usually low.

Comprehensive books [15, 16] are essential to understand the principles of DBNs, but they cover several other

topics, so they do not get into specific details and scientific novelties on DBNs learning and inference.

In DBNs literature, there is an important Thesis contribution that presents a detailed explanation on how to learn

a DBN and make inference on it [17]. There are other works that focus on several aspects of the learning procedure

of DBNs, for instance: learning the structure of a DBN, either from complete or incomplete data [18]; learning

the structure of DBNs from time-series [19]; learning DBNs using the mutual information test score (MIT) [20];

learning dynamic Bayesian multinets (an interesting topic not covered in this work) from data [21].

The aforementioned works show how DBNs are learned, applying the methods mostly to stationary DBNs,

for simplification (see Section 4.2.4 for details on this assumption). Some works show how learning methods

can be applied to non-stationary DBNs, presenting approaches such as: computing the transition probabilities in

matrix format, using the l1-regularized least square linear regression method [22]; using a Markov chain Monte

Carlo method (MCMC) to learn the structure of DBNs from time-series data [23]; adapting to the temporal domain

(DBNs) the maximum-minimum hill-climbing algorithm (MMHC) used in BNs, which is an algorithm that com-

bines a local discovery (maximum-minimum parents and children, MMPC) with a greedy search procedure [24].

A recent work proposes an algorithm that learns both inter-slice and intra-slice parameters of a DBN [25]. The

authors name this algorithm tree-augmented DBN (tDBN), as it restricts the search-space, in each time-slice, to tree

structures, also allowing the variables of each time-slice to be affected by a maximum fixed number of variables

from the previous time-slices (hence the “augmented”). The algorithm learns both stationary and non-stationary
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(with maximum lag fixed) tDBNs, providing polynomial-time complexity in the number of variables, the most

relevant parameter. The tDBN algorithm is proposed by researchers from the same investigation group in which

this Thesis is included and constitutes the basis for the model developed in this work (see Chapter 5). Extensions

to the tDBN work have already been tried. An example is the extension of the tDBN approach to a search-space of

forests, using an ordering of the optimal branching of the tDBNs consistent with a breadth-first search (BFS) [26].

Data mining and DBNs applied to the study of ALS

As already stated, data mining processes are of tremendous importance in the medical environment. Regarding

ALS studies, usually, the patients are stratified into three progression groups (slow, neutral and fast), according to

the velocity of progression of the disease. This stratification can be seen, for example, in a work where the authors

develop a model to infer an adequate moment to start NIV on a patient, according to his progression group [27].

An alternative approach can be, for example, to use four categories, combining early or late stage with slow or fast

progression [28].

In the same research group where this Thesis is included, several attempts have been done to model the proper

time to apply NIV to ALS patients [29, 30]. The same research group also has some interesting Thesis contributions

for the study of ALS [31–33].

Regarding the use of DBNs to study ALS disease progression, the literature is not very extensive, as this is

a relatively new topic. A recent work applies DBNs to simulate ALS progression and to find which biomarkers

are associated with each of the several patients’ statuses analyzed, such as survival time and movement impair-

ment [34]. The authors use the MMHC method to learn the DBN structure.

A popular way of applying DBNs to medical data is the use of DBN structure learning to model gene interac-

tions [35, 36]. This is important for the study of ALS, because some of the interactions among genes discovered

in these studies may allow a better understanding of the genetic relations in ALS patients. There are also, in

the context of using medical data, some studies where DBNs are used to describe a disease and predict specific

outcomes [37, 38]. This is useful, because these studies can be transposed into using DBNs to study ALS data.

1.5 Outline of this work

Besides this chapter, this work has seven more chapters, which are presented next. Chapter 2 provides an overview

of the dataset used, in order for the reader to keep the dataset contextualization while reading the remaining

chapters. Chapter 3 gives an overview on how the data mining process works. Chapter 4 goes deeper into

the data mining process, explaining with some detail the proper background studied and needed for the Thesis

elaboration. Chapter 5 presents the improvements done on DBNs state-of-the-art methods, in order to include

static attributes in the DBN framework, to learn DBNs with restrictions in the networks, and to provide a user

with inference capabilities on created DBNs. Chapter 6 introduces the graphical interface developed, so that

doctors and, in general, non-experts in data mining and machine learning techniques can use the developed DBN

framework. Chapter 7 displays the application of the data mining process to study ALS data, detailing both the

preprocessing stage and the knowledge extracted from the process. Chapter 8 ends the work with a conclusion on

the usefulness of the Thesis, providing an overview of its main contributions and some ideas for future work.
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Chapter 2

Portuguese ALS dataset

To meet the goals described in Chapter 1, the dataset used in this Thesis is the Portuguese ALS dataset from

the Translational Clinic Physiology Unit at Hospital de Santa Maria, IMM, Lisbon. The dataset was created

in 1995 and its latest update was in March 2020. The current version of the dataset stores medical observations

of 1374 ALS patients.

The dataset has two kinds of features: static and dynamic. Static features do not change over time and can

be divided into four subgroups: (i) demographic information, such as gender and body mass index in the first

evaluation; (ii) medical and family history, with information about motor neuron diseases of ancestors; (iii) onset

evaluation, with parameters such as the onset form and the diagnostic delay; (iv) genetic biomarkers, with

information about specific genes that doctors think that may be associated with ALS. Dynamic features vary over

time and are the result of measurements done by doctors in different consultations. Dynamic features are divided

into five subgroups: (i) functional scores; (ii) respiratory tests; (iii) respiratory status; (iv) neurophysiological

tests; (v) other physical values. The full dataset has around 50 static features and 100 dynamic features. An

overview of the main features of the Portuguese ALS dataset is presented in Table 2.1.

Table 2.1: Main features of the Portuguese ALS dataset (orange: numerical; pink: categorical).

Body mass index (BMI) at onsetDemographic information Gender Age at onset
Retired at diagnosis

Medical and family history Family history of motor neuron disease (MND)
Onset form UMN vs LMN El Escorial reviewed criteriaOnset evaluation

Diagnostic delay Cirurgical interventions before

Main
static

features

Genetic biomarkers Expression of C9orf72 mutations
ALS-FRS ALS-FRSsUL ALS-FRSbFunctional scores

ALS-FRS-R ALS-FRSsLL ALS-FRSr
R

Vital capacity (VC) Maximal inspiratory pressure (MIP)
Forced VC (FVC) Maximal expiratory pressure (MEP)

Maximal sniff nasal inspiratory pressure (SNIP)P0.1, PO2, PCO2
concentrations Peak expiratory flow (PEF)

Forced expiratory volume (FEV)

Respiratory tests

Depressions in O2 saturation Mean O2 saturation
Respiratory status Starting date of non-invasive ventilation (NIV)

Phrenic nerve response amplitude (PhrenMeanAmpl)
Phrenic nerve response latency (PhrenMeanLat)Neurophysiological tests
Phrenic nerve response area (PhrenMeanArea)

Main
dynamic
features

Other physical values Cervical extension Cervical flexion
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The functional scores of Table 2.1 consist of evaluations specific to the ALS treatment. ALS-FRS [39] (ALS

functional rating scale) is a standard evaluation. ALS-FRS-R [40] (ALS-FRS-revised) is an improvement on

ALS-FRS with more respiratory evaluations, as respiratory failure is the biggest cause of death of ALS patients.

The scales consist of questions that evaluate conditions such as the ability to swallow, walk and speak. These

questions must be answered with an integer number from 0 to 4 (five options in total), where 0 is the worst con-

dition and 4 is the best. ALS-FRS has 10 questions. ALS-FRS-R has the first nine questions of ALS-FRS, plus

three extra ones about specific respiratory indicators. The other functional scores of Table 2.1 are sub-scores of

ALS-FRS-R that give information about a specific component of ALS-FRS-R. ALS-FRSb (ALS-FRS bulbar) is

the sum of questions 1, 2 and 3, related to the ability to speak, salivate and swallow. ALS-FRSsUL (ALS-FRS

upper limbs) is the sum of questions 4, 5 and 6, related to the upper limbs abilities. ALS-FRSsLL (ALS-FRS lower

limbs) is the sum of questions 7, 8 and 9, related to the lower limbs abilities. ALS-FRSr is the score of question 10,

the only respiratory question of ALS-FRS. R is the sum of the three extra respiratory questions of ALS-FRS-R.

An important feature of the Portuguese ALS dataset is that it stores the date of the application of non-invasive

ventilation (NIV) to the patients. This helps distinguish the consultations before NIV and after NIV, which allows

studying, as two distinct progressions, the patients’ progressions before and after applying NIV. Having the NIV

dates is also extremely useful when using the model to estimate the proper moment to apply NIV to the patients,

because the real NIV dates can be used as the true labels, when evaluating the performance of the model.

One property that makes the database reliable is the fact that each patient is evaluated by the same group

of doctors using standardized approaches and performing all evaluations in the same way, which reduces the bias

introduced by the fact that doctors are humans. However, as the data is obtained in a real-life environment, there are

some limitations of the database that must be met with proper preprocessing. Three limitations are mentioned next.

The first limitation is that, although each set of examinations is related to a single consultation, some exami-

nations that should be done in the same day sometimes take some days, or even weeks, to be done. The database

stores the days of each examination, allowing users to do their own preprocessing.

The second limitation is that there are several missing values, as sometimes it is not possible to do some

examinations and patients miss some consultations.

The third limitation is the number of consultations of each patient being very low (life-expectancy of ALS

patients is 3–5 years). The number of consultations also varies greatly among different patients (after the diagnosis,

some may die in less than a year, while others may survive more than 10 years). The number of evaluations per

patient of the dataset goes from 1 to 27.

In this Thesis, although some indicators (such as a patient’s progression group, see Section 7.3) are obtained

using the complete ALS dataset, most data used for learning the DBNs is retrieved from a pretreated version of

the latest update of the dataset (March 2020). This pretreated version was provided by a student from the same

research group in which this Thesis is inserted, and has records of 1214 patients, with measures of 9 static features

and 31 dynamic features. It has a minimum of 1 and a maximum of 27 records (consultations) per patient, with

average and median values of, respectively, 5,52 and 4 records per patient. The average and median values of

the number of static features measured per patient are, respectively, 8,04 and 8 static features. The average and

median values of the number of dynamic features measured per consultation are respectively, 21,94 and 21 dynamic

features (these two low values are biased by some particular dynamic features, which have several missing values).
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Chapter 3

Data mining – full process overview

Data mining can be defined as the process of discovering useful and interesting patterns from large amounts of

data [41], where the process must be at least semi-automatic [42], as there must exist some computerized aid in

order to apply the process to large amounts of data.

Data mining is one step of the full process of knowledge discovery from data (KDD) [41], being one of the

most important parts (some authors even use both terms as being equivalent). Fig. 3.1 presents an overview of the

process of KDD.

Original 
data

- 
source 1

Consistent 
data

-
source 1

Original 
data

- 
source N

Consistent 
data

-
source N

Consistent 
data

aggregated
Target
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1 2 3 4 5 6

Data
cleaning

Data
integration

Data
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Data
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Data
mining

Pattern evaluation 
and knowledge
representation

Figure 3.1: Overview of the process of knowledge discovery from data.

As Fig. 3.1 shows, the process of KDD can be divided into six main steps:

1. Data cleaning: this step allows getting, from the full dataset, only reliable and usable data by either chang-

ing, replacing, or deleting some data. For this step, domain knowledge and a good insight on the database

itself are extremely important, in order to accurately identify the incomplete, inaccurate and inconsistent

data and correctly change it.

2. Data integration: in this step, if different sources of data are being used, they are all combined, in order to

have a unified database, which is essential to have all data in the same format.

7



3. Data selection: this step is where data not relevant for the problem is removed from the full dataset. For

this operation, constant feedback is needed from the patterns learned, as the patterns found may indicate that

some features kept in the dataset are not important, or that some features retrieved from the dataset may be

crucial and should not have been removed.

4. Data transformation: in this step, data is put in appropriate formats for the mining operation. If possible,

a process of data reduction may be applied, reducing the dimensionality of the data while keeping the same

information. Another usual transformation is the discretization of data, if needed. Some features may even

be excluded in this step, if the mining process cannot work with them.

5. Data mining: this is the step where knowledge is extracted from data. The goal of this step is to discover

data patterns. The way these patterns are discovered is by means of learning procedures, usually associated

with machine learning ideas and processes. This step also gives feedback to the previous steps, providing

information on how the data could be differently processed, in order for this mining step to discover different

patterns, or confirm already discovered ones.

6. Pattern evaluation and knowledge representation: in this step, there are defined which patterns discovered

are interesting (by using some defined metric), and the knowledge given by those patterns is presented in a

way a user can understand.

Given the previous explanation of the steps that compose the KDD process, it can be seen that steps 1 to 4

prepare the data, putting it in a way suitable for the learning task. Therefore, steps 1 to 4 compose a big stage

named data preprocessing stage.

Chapter 4 provides an in-depth description of some important techniques used in the aforementioned steps of

the KDD process.

Section 4.1 details some important aspects used in data preprocessing, being divided into three subsections.

Section 4.1.1 describes one of the most important elements of step 1, which is the imputation of missing values.

Section 4.1.2 describes the process of identifying outliers, which is very useful for step 3. Section 4.1.3 describes

important procedures used in step 4. Step 2 is not covered in Chapter 4, because only one dataset is used in this

Thesis, and the doctors that maintain it already assure the reliability and consistency of the data.

Section 4.2 describes how this work applies step 5 by resorting to graphical models, specifically BNs and

DBNs. Using graphical models to perform the learning task, Section 4.2 also describes step 6, as it comes naturally

from the graphical framework used by the models.
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Chapter 4

Data mining – step by step

4.1 Data preprocessing

In the real world, data is often offered in big and confusing datasets, from which it is impossible to extract any

reliable knowledge. As a result, in order to learn from data, proper preprocessing is needed, as shown in Chapter 3.

In real-world scenarios, the preprocessing of data is a significant and possibly time-consuming activity, with some

studies estimating that up to 60% of the effort in a data mining process is devoted to proper preprocessing [43].

This section approaches some of the most relevant procedures regarding data preprocessing.

4.1.1 Missing values

In most datasets, some observations either do not have values for all features analyzed in the generality of the

observations, or do not have a label associated. In these cases, there is a missing value, which is a problem for the

learning procedure, so it must be corrected.

The simplest option is to ignore/discard the observations with any missing value. However, by doing this,

none of the values of those observations is used, when some can be useful. This is especially unfeasible in small

datasets, where, with this procedure, one would get as a result an almost empty dataset.

As replacing the data manually is unfeasible and statistically unreliable, there is the need of having estimators,

which are procedures that make logical predictions of the value of a feature (or a label) that is not in the original

data [44]. An estimator should be unbiased, that is, the expected value of the features should be the same before

and after the imputation of the values determined by an estimator.

Some of the most used estimators to fill a missing occurrence of a value of a feature are [41, 44]:

• Using a constant to fill each missing occurrence of a feature. This is usually not desired, as it does not take

into account the context in which the missing data occurs.

• Using an indicator of central tendency, such as the mode, the mean or the median of all values of that

feature. This method is fast and easy to implement, but may introduce some bias if not applied carefully.

For example, in time-series data, imputing with the mean of all values of a feature is usually not correct, as

each feature is expected to evolve over time.
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• Using an indicator of central tendency as before, but having the observations separated into different

classes and computing the indicator only over the values from observations belonging to the same class as

the observation with a missing value. This method reduces some bias in cases where features behave very

differently in distinct classes.

• In time-series, using last observation carried forward (LOCF). This is a very popular method used in

time-series. The method fills a missing value of a feature with the value of that feature in the previous

observation of the respective time-series. The rationale behind this method is that, not knowing some value,

the best “guess” is to assume that the value stays the same as before, which is often a reasonable assumption,

especially in the medical context. However, it may introduce some bias in the observations [45].

• Using the most probable value to fill the missing value. This is the probabilistic way of imputing missing

values. The concept is to choose as value to make the imputation the most probable value according to a prob-

abilistic model, such as regression or a Bayesian method like the structural expectation-maximization (SEM)

algorithm (see Sections 4.2.3 and 4.2.6 for details on this algorithm). Probabilistic models are often used, as

they help avoid the introduction of bias.

4.1.2 Outlier detection

Even after satisfactorily filling the missing data and having consistent data, there are subsets of the dataset whose

behavior is different from the common behavior of the observations of the dataset. These subsets are called outliers.

Finding outliers is very important, as these observations are often originated by a different mechanism [46], so, they

should be separated from the primary dataset, either for studying the outliers themselves or just for the study of the

primary dataset not to be affected by the outliers.

Outliers can be divided into three groups/types [41]:

1. Global outliers. These outliers are the ones that significantly deviate from the whole dataset.

2. Contextual/conditional outliers. These observations are only outliers given a certain context of the obser-

vations. Regarding this kind of outliers, it is needed, for an observation, to specify its contextual attributes

(the observation’s context) and behavioral attributes (what defines the observation), being the relation be-

tween these two kinds of attributes that determines if an observation is an outlier or not.

3. Collective outliers. This kind of outliers consists of several observations that, together, are outliers, but

individually may not be.

Regarding the approaches for finding outliers, they can be divided into two groups: according to the format of

the data and according to the assumptions made about the differences between normal observations and outliers.

According to the format of the data, outlier detection methods can be divided into three groups [47]:

1. Unsupervised methods. In these methods, there is the goal of finding outliers without any prior knowledge

of the data. When using these methods, there is the assumption that outliers can be completely separated

from the primary dataset.
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2. Supervised methods. In these methods, there is already training data pre-labeled as normal or outlier, so

that an outlier detector can be properly trained. Outliers must be present in the training data in the most

different ways possible, for the training to be effective.

3. Semi-supervised methods. In these methods, only the normal data is given labeled. Therefore, the outlier

detection model to be generated must create some boundary for a new observation to be considered normal,

classifying the observation as an outlier if it does not lie within that boundary.

According to the assumptions made regarding differences between normal observations and outliers, outlier

detection methods can be divided into three groups [41]:

1. Statistical/model-based methods. These methods assume that normal observations are generated by a

certain probabilistic model, from which outliers are not. In parametric methods, the probabilistic model is

assumed a priori, while in non-parametric methods the probabilistic model is learned from data.

2. Proximity-based methods. These methods assume that an outlier is an observation whose proximity to its

neighbors in the feature space is very different from the proximity of most observations to their neighbors.

The two major types of this kind of methods differ on how “proximity” is determined: distance-based

methods use the distance of an observation to its neighbors, while density-based methods use the density of

an observation and its neighbors.

3. Clustering-based methods. These methods consider that big and dense clusters have normal data, while

small and sparse clusters have outliers. Observations that are not in any cluster are also seen as outliers.

The aforementioned methods are common to the generality of outlier detection scenarios. When detecting

outliers in temporal data, some additional considerations should be taken into account, so that the detection mech-

anisms are considerably influenced by the temporal continuity of the data: unexpected changes in the temporal

evolution of data are a substantial indicator of outliers.

Regarding detecting outliers in time-series, there is the need of specifying which of the two following goals

is desired: (i) given a dataset of several time-series, determine the time-series (or the sub-sequences) that deviate

from the dataset; or (ii) given just a single time-series, determine the observations (or the sub-sequences) of that

time-series that deviate from the time-series being analyzed.

To determine the outlier time-series in a certain dataset, often two approaches are considered [48]:

1. Directly detecting the outlier time-series. In this situation, a model is learned from the whole dataset.

Then, assuming that most time-series of the dataset are not outliers, it is determined how different each

time-series is from the model learned (usually, this is done using a score, which is higher the more similar a

time-series is to the model), considering outliers the time-series that most deviate from the model.

2. Detecting the outlier time-series by detecting outlier time-windows. In these techniques, each time-series

is seen as a succession of overlapping sub-sequences (time-windows) and it is evaluated, for each time-series,

the similarity between each time-window and the respective time-window in all time-series of the dataset.

The time-series with the most different time-windows are considered outliers (there are several ways of

defining what it means for a time-series to have more different time-windows than other time-series).
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To determine the outlier observations in a time-series, often three approaches are considered [48]:

1. Using prediction models. In this approach, a model is created for each observation of the time-series. Then,

each observation is compared with the predicted value using the model created. The observations that most

deviate from the model’s predictions are considered outliers.

2. Determining profile similarities. The idea of this approach is to have a profile for normal observations and

compare each observation with the profile, assessing an observation as an outlier if it significantly deviates

from the profile of normal observations.

3. Adopting a minimum description length (MDL) strategy. The MDL is an information-theoretic scoring

function which considers the trade-off between a model that accurately represents the data and a simple

model (see Section 4.2.3 for more details). Applying the concept to outlier detection, the idea is to evaluate

an observation as an outlier if the model that represents the time-series not considering the observation is

substantially simpler than the model that represents the time-series when the observation is considered.

4.1.3 Data transformation

Data transformation, as explained in Chapter 3, is the last step of the preprocessing stage, and consists in converting

data into formats adequate for patterns to be learned. In this section, there are covered three of the main possible

data transformations: feature selection, normalization and discretization.

Feature selection

Feature selection consists in determining which features should contribute for learning patterns from data. This

data transformation is very important, because, in practice, having irrelevant features may confuse the learning

procedures [42].

There are two main approaches to select the best subset of features. The first approach is called filter method.

The idea of the filter method is to filter the data according to the general properties of the dataset being used,

producing a subset of data that, a priori, should be the most adequate. The second approach is called wrapper

method. The idea of the wrapper method is to produce subsets from the whole dataset and evaluate them using

the learning algorithm. The second approach is the most used, as it allows the learning procedure to give feedback

about the proper features to be selected from the dataset.

Normalization

Normalization of data can be divided into the two following main categories [44]:

1. Normalizing the variables’ range, that is, transforming the data so that all data lies within a specific range,

which is usually small (typical ranges are [-1, 1] or [0, 1]). This kind of normalization is crucial, as it

eliminates the dependency of the results on the unit of measure chosen for each feature. Three examples of

possible normalizations are the min-max normalization, the Z-score normalization, and the decimal scaling

normalization (each of these three given examples has a respective mathematical expression [41]).
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2. Normalizing the variables’ distributions, where the data is transformed to change the patterns obtained

when grouping the several instances of the variables, so that these patterns conform to some desired ones.

This kind of normalization is extremely important, as having the variables satisfying some known proba-

bilistic distributions may help the development of simple and effective data mining processes. Two often

used distributions are the normal and the uniform distributions.

Discretization

Discretization is the method used to transform the values of the features of a dataset into some fixed groups. These

groups are usually identified by a number (unique number per group), and can represent either numeric intervals

(for example, instead of representing all possible months in a dataset, one can divide months into two groups:

months 1–6 and months 7–12) or conceptual categorical labels (in the same example, the division could be first

and second semesters of a year). Discretization is an advantageous method of data reduction, which makes it an

essential step to use simple learning models that only need to learn the specified groups, instead of the range of all

possible values of the features. Three of the most used discretization techniques are the following [41]:

1. Discretization by binning, where the possible range of values is divided into K bins, being K a priori

specified, and eventually tuned.

2. Discretization by histogram analysis, which consists in defining intervals according to histograms of the

values of the data.

3. Discretization by cluster analysis. In this technique, there are generated clusters from data using a cluster-

ing algorithm, and then each cluster is seen as a group of the discretization to be done. As this procedure

takes into account how close the values are (to create the clusters), this method usually gets good discretiza-

tions. However, clustering may be an expensive operation.

4.2 Learning with graphical models

Any learning model can be formulated as a set of complex mathematical expressions. However, it is beneficial

that the mechanism behind the learning procedure is easily described, as that allows more people to understand the

model and constructs models that are more easily interpretable [49].

One of the best ways to describe anything is through a graphical representation. Probabilistic graphical models

(PGMs) represent the probability distribution of random variables in a graph-based way, providing several useful

properties [50], such as giving insight into the model’s properties just by graphical inspection and allowing complex

mathematical expressions to become implicit by expressing them in terms of graphical manipulations.

Given that the main goal of the work is to provide doctors with a useful and easily understandable framework

(see Section 1.3), graphical models are one of the best options to represent the data. The two most used PGMs are

the Markov random fields (MRFs) and the Bayesian networks (BNs).
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Markov random fields (MRFs)

Markov random fields [15, 51, 52] are undirected PGMs, which means that the edges do not mean by themselves

any causality. In MRFs, the elements of interest are maximal cliques, which are cliques (subsets of nodes where

each node is connected to every other node in the subset) that stop being cliques if any other node of the graph is

added to the subset. In MRFs, the joint probability distribution of the random variables is given by

P (X) =
1

Z

∏
C

ψC(XC), (4.1)

whereX are the model’s random variables,C represents all possible maximal cliques of the graph, with nodesXC ,

Z is a normalization constant, and ψC are the potential functions, which may be any non-negative function and

this is why there is the Z term, as the values may not be normalized. The main idea behind Eq. (4.1) is that if there

is a function defined over a maximal clique C with nodes XC , defining any function over a subset of XC would

be redundant [50]. The MRF representation has a strong mathematical component, as the potential functions ψC

do not have a probabilistic interpretation by themselves. This is why MRFs are not the option used in this Thesis.

Besides, the calculation of Z has exponential complexity (although that exponential component can be minimized).

4.2.1 Bayesian networks

Bayesian networks are directed PGMs, where the edges have information of causality between nodes, and the

whole directed graph represents the joint probability distribution of a set of variables. Definition 4.1 states rigor-

ously the concept of Bayesian network.

Definition 4.1. A Bayesian network B consists of a triple {X,G,θ}, where:

• X = {X1, . . . , Xn} is a vector of n random variables.

• G = {X,E} is a directed acyclic graph (DAG) with nodesX and edgesE. Each node represents a random

variable and each edge represents a conditional dependency relation between a pair of nodes. For simplicity

of notation, each Xi represents both the random variable and the respective node in G. The parents of Xi

inG are represented by pa(Xi).

• θ is the set of all conditional probabilities needed to encode the joint distribution of X . If the variables are

discrete with each variable Xi having at most ri states, this allows the specification θ = {θijk}, where

θijk = PB(Xi = xik | pa(Xi) = wij). (4.2)

In Eq. (4.2), i ∈ {1, . . . , n}, k ∈ {1, . . . , ri} and j ∈ {1, . . . , qi}, with qi =
∏
Xl∈pa(Xi)

rl. The only

probabilities that need to be given to define θ are the probabilities for each node Xi to take each of the

possible ri values, given each of the possible parents’ configurations wij . For each node Xi, the several

θijk are usually given in conditional probability tables (CPTs), where the rows are the possible wij , the

columns are the possible xik and each entry is a θijk according to Eq. (4.2).
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The particularization done in the last bullet point of Definition 4.1 is only valid for discrete variables. As the

dataset used in this work is discretized, this is not a big restriction. Although outside of the scope of this work,

the same main principles apply to continuous-state random variables, where one main idea is to use mixtures of

Gaussians [15, 50] instead of the CPTs used with discrete variables.

A BN always encodes the rule given in Definition 4.2.

Definition 4.2 (Conditional independence assumption in BNs). Given its parents, a node is conditionally indepen-

dent of all other variables in the BN.

Applying Definition 4.2 to Definition 4.1, a BN allows specifying the joint probability distribution over X in

a simple way, given by

PB(X1, . . . , Xn) =

n∏
i=1

PB(Xi | pa(Xi)). (4.3)

Eq. (4.3) states that the joint probability distribution is obtained by multiplying all CPTs. As the CPTs are small

comparing to the whole graph, the description of the joint probability distribution using BNs is significantly smaller

than a naive description (exponential in the number of variables). This gain is due to the implicit independence

assumptions [53] of the BN framework, stated in Definition 4.2. An also important aspect of Eq. (4.3) is that the

joint probability distribution already comes normalized, unlike what happens in MRFs.

D-separation theorem

One of the main advantages of BNs is that the conditional independence properties can be expressed through

graphical inspections. To do that, there is a theorem called d-separation. The theorem is based on the possible

graphical constructions provided in Fig. 4.1.

A

C

B

(a)

A

C

B

(b)

A

C

B

(c)

Figure 4.1: Possible configurations of three nodes in a BN: (a) diverging/tail-to-tail; (b) linear/head-to-tail;
(c) converging/head-to-head/v-structure.

Given the structures of Fig. 4.1, the d-separation theorem is presented in Theorem 4.1 [50].

Theorem 4.1 (D-separation theorem). Given any non-intersecting sets of nodes A, B and C from a BN N , a path

from a node in A to a node in B is blocked by C if it includes a node satisfying one of the following conditions:

• The arrows on the path meet either head-to-tail or tail-to-tail at that node and the node is in C.

• The arrows on the path meet head-to-head at that node and neither the node nor any of its descendants is

in C (this phenomenon is known as explaining away).

If all paths from all nodes in A to all nodes in B are blocked by C, then A is said to be d-separated from B

by C and the joint probability distribution represented by the BN N satisfies A |= B | C.

Some authors define the meaning of a d-connecting path and state Theorem 4.1 using d-connecting paths [53].
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Markov blanket

Given a BN B, the Markov blanket of a node Xi is the minimal set of nodes of B that separates Xi from the rest

of the graph. In other words, given the values of the variables of the Markov blanket of Xi, no other variable of B

influences the value taken byXi. Therefore, knowing the Markov blanket ofXi allows knowing for which nodes to

search to completely specify the distribution of Xi. Given Definition 4.2, one could think that the Markov blanket

of Xi would be its parents and its children. However, the d-separation theorem (see Theorem 4.1) introduces the

explaining away phenomenon in head-to-head configurations. As a result, the parents of the children of Xi also

influence the value of Xi. This leads to conclude that the Markov blanket of a node Xi in a BN is composed by

the parents, children and parents of children (co-parents) of Xi.

Dependency, independence and perfect maps

A graph is a dependency map (d-map) of a distribution if every conditional independence statement of the dis-

tribution is reflected in the graph. A graph is an independence map (i-map) of a distribution if every conditional

independence property encoded in the graph is present in the distribution. A graph is said to be a perfect map of

a distribution if it is simultaneously a d-map and an i-map of that distribution. The goal of a BN is to be a perfect

map of the distribution it encodes.

I-equivalence

Two graphs are i-equivalent if they encode the same conditional independence properties. If two graphs are

i-equivalent, there is no distribution for which one of them is an i-map and the other is not. If two graphs encoding

a distribution P (X) have the same skeleton (undirected graph obtained by removing the directions of all edges)

and the same head-to-head structures, they are i-equivalent. If the graphs of two different BNs are i-equivalent,

the two BNs encode the same joint probability distribution. G is an essential graph of a group Q of graphs if G is

i-equivalent to all graphs in Q. Essential graphs may be partially DAGs (PDAGs) and are extremely useful when

creating BNs to encode a certain probability distribution.

4.2.2 Inference in BNs

A probabilistic model should be able to, given the values of certain observed nodes, perform two important

queries: (i) What are the values of certain unobserved nodes? (ii) What are the reasons for the observations?

These queries are answered by making inference, where, given some observed nodes, there are found probability

distributions over the values that some hidden/latent nodes can take.

Inference in BNs is based on Bayes’ rule, applying it in the way described by

p(h | e) =
p(e | h)p(h)

p(e)
. (4.4)

In Eq. (4.4), e denotes the evidence, the nodes whose values are observed, while h denotes the hidden nodes,

whose values are unknown. Therefore, Eq. (4.4) allows computing the probability distribution over the values of

the unknown nodes, given the information provided by the observed nodes.

16



Exact inference in BNs

In general, exact inference in BNs is NP-hard [54], forcing people to resort to approximate inference. However,

when imposing restrictions in the graph structure, there are efficient exact inference algorithms. The most common

restriction is to assume that the graph of a BN is a tree, where polynomial-time algorithms can be found.

The sum-product algorithm [50] is one of the best algorithms to make exact inference in polytrees (trees where

each node may have more than one parent, as long as the graph stays singly connected).

To apply the sum-product algorithm, there is needed the concept of factor graph. Given a probability distribu-

tion over a graph, the joint distribution ofX = {X1, . . . , Xn} can be encoded in a product of factors, given by

P (X) =
∏
s

fs(Xs). (4.5)

In Eq. (4.5), Xs denotes a subset of nodes. Comparing Eqs. (4.3) and (4.5), it can be seen that, in a BN, the

factors fs are given by the conditional probability expressions of Eq. (4.3).

A factor graph is a graph obtained by explicitly creating additional nodes for the fs terms, called factor nodes

and represented with squares, connecting them with undirected edges to the proper Xi on which each fs depends,

being these Xi called variable nodes and represented with circles. An example of a conversion of a graph of a BN

to a factor graph is provided in Fig. 4.2.

X1

X3

X2

(a)

X1

X3

X2

f

(b)

X1

X3

X2

fcfa fb

(c)

Figure 4.2: Directed graph and two equivalent factor graphs: (a) original directed graph; (b) factor graph with
f(X1, X2, X3) = p(X1)p(X2)p(X3 | X1, X2); (c) factor graph with fa(X1) = p(X1), fb(X2) = p(X2) and
fc(X1, X2, X3) = p(X3 | X1, X2).

Fig. 4.2.c is the most interesting conversion, as it explicitly uses the conditional independence properties of

BNs, presented in Eq. (4.3).

The sum-product algorithm uses propagation messages from factor nodes to variable nodes and vice-versa.

These propagation messages are given by µsender→receiver. The messages sent from leaf factor nodes to variable

nodes are given by

µfLeaf→Xi
(Xi) = f(Xi), (4.6)

whereas the messages sent from non-leaf factor nodes to variable nodes are given by

µfs→Xi
(Xi) =

∑
X1

· · ·
∑
XM

fs(Xi, X1, . . . , XM )
∏

m∈ne(fs)\Xi

µXm→fs(Xm). (4.7)

The messages sent from leaf variable nodes to factor nodes are given by

µXLeaf→fs(XLeaf) = 1, (4.8)
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whereas the messages sent from non-leaf variable nodes to factor nodes are given by

µXm→fs(Xm) =
∏

k∈ne(Xm)\fs

µfk→Xm
(Xm). (4.9)

In Eqs. (4.7) and (4.9), ne(·) denotes the neighbors of the specified node. In Eq. (4.7), the set {X1, . . . , XM}

represents all neighbors of fs, excluding Xi. The sum-product algorithm finds the probability distribution of every

node Xi of a BN, being presented in Algorithm 4.1 [50].

Algorithm 4.1: Sum-product algorithm.
Input : A Bayesian network.
Output: Joint probability distribution over all variables.

1 Convert the BN graph into a factor graph.
2 Choose one Xi to be the root node and identify the according leaves.
3 Get the µfs→Xi(Xi) of all fs connected to Xi, by starting propagations at the leaves according to

Eqs. (4.6) and (4.8), and propagating messages until the root using Eqs. (4.7) and (4.9).
4 Compute p̃(Xi) =

∏
fs∈ne(Xi)

µfs→Xi(Xi).

5 Normalize p̃(Xi) into p(Xi) if needed (in BNs it is not needed, but in MRFs it would be).
6 Send µXi→fs(Xi) to all fs neighbors of Xi and propagate the messages from the root (Xi) to the leaves

using Eqs. (4.7) and (4.9).
7 All nodes Xj of the graph of the BN have the µfs→Xj

(Xj) of all fs connected to them, so, every node Xj

can compute its p̃(Xj) and its p(Xj), by applying steps 4 and 5 to the desired Xj .

There is a famous algorithm called belief propagation [55], which is simply a special case of the presented

sum-product algorithm.

If, instead of finding the joint probability distribution, one wants to determine the setting of variables with the

highest probability and find that probability, there is the max-sum algorithm [50], which is an algorithm similar to

Algorithm 4.1, but changing Eqs. (4.6) to (4.9) of the sum-product algorithm to reach the new desired goal.

Approximate inference in BNs

In situations where the structure of the graph of the BNs is not simplified, as inference is NP-hard, there must be

used approximate methods. One of the most used algorithms is the expectation-maximization (EM) algorithm [15].

The idea of the EM algorithm is to perform a two-step iteration until convergence. In the expectation step, given

the current parameters θ and the observed values, there are computed expected sufficient statistics (ESS). In the

maximization step, the ESS are treated as if they were actually observed and, using the maximum likelihood (see

Section 4.2.3), there is derived a new set of parameters θ.

4.2.3 Structure and parameter learning in BNs

The problem of learning a BN B can be stated as, having a set of data S, finding the graphG and the parameters θ

that produce the BN that best describes S. One way of evaluating how well a certain BNB describes certain data S

is using a scoring function φ(B,S) [56], being φ(B1, S) > φ(B2, S) if B1 describes the data S better than B2.

Therefore, given a search-space Bn with possible BNs, learning a BN B that best describes S can be put as the

optimization problem given by

BBest fit = argmaxBi∈Bn
φ(Bi, S). (4.10)
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From the structure learning problem stated in Eq. (4.10), two questions immediately arise: (i) How is a proper

scoring function φ defined? (ii) How should the search for BNs in Eq. (4.10) be done and what should the search-

space Bn be? These two questions are answered in the next paragraphs.

Scoring functions

• Decomposability and score-equivalence

Before specifying several scoring functions, it is important to mention two properties, presented in Defini-

tions 4.3 and 4.4. Decomposability is essential because it allows knowing that local changes in a variable Xi only

affect a certain component of the scoring function, making sure there are no indirect effects. Score-equivalence is

an interesting property that allows having simple algorithms.

Definition 4.3 (Decomposability). A scoring function of a BN B is decomposable iff

φ(B,S) =

n∑
i=1

φi((Xi | pa(Xi)), S). (4.11)

Definition 4.4 (Score-equivalence). A scoring function of a BN B is score-equivalent if it assigns the same score

to DAGs that are represented by the same essential graph (see Section 4.2.1).

Scoring functions are usually divided into two groups, which are presented next.

1. Bayesian scoring functions

The rationale of the Bayesian scoring functions is that the best BN B is the one that maximizes the probability

of, given the data S, B having been the BN that generated it. Therefore, the best BN B is the one that maximizes

P (B | S). As P (S) is the same for all networks, maximizing P (B | S) is the same as maximizing P (B,S), which

in turn is equal to maximizing log(P (B,S)). The latter option is normally preferred, as it is easier to maximize

log(P (B,S)), because the values are usually small.

The following scoring functions are among the most used Bayesian scoring functions:

• Bayesian Dirichlet (BD) score [56]. This score makes certain assumptions on P (B,S) and depends on

multiple hyperparameters, which makes it unfeasible in practice.

• K2 scoring function [57], which is a specific case of the BD score where there are no hyperparameters, not

using a priori information.

• Likelihood-equivalence Bayesian Dirichlet (BDe) score [56]. This score reduces the number of hyperparam-

eters needed in the BD score, by imposing constraints on the model.

• Likelihood-equivalence uniform joint distribution Bayesian Dirichlet (BDeu) score [58], which is a specific

case of the BDe score, where all distributions are assumed to be uniform a priori.
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2. Information-theoretic scoring functions

This class of scoring functions is based on compression, which means that BNs that can represent the data S

using simpler models are preferred.

• Log-likelihood (LL) score

The information content of S by B can be seen as the size of an optimal code induced by B when encoding S,

being given by

L(S | B) = −logP (S | B) = −
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog(θijk), (4.12)

where n is the number of nodes of the BN, ri is the number of possible states ofXi and qi is the number of possible

configurations of the parents of Xi. Nijk is the number of times in S where Xi takes its k-th value xik and the

variables in pa(Xi) take their j-th configuration wij (see Eq. (4.2)).

The goal of BN structure learning can be seen as minimizing L(S | B), as simpler models are preferred.

Therefore, the simplest model that generates the data S is the one that directly maximizes logP (S | B), as that is

equivalent to minimizing L(S | B), according to Eq. (4.12). By applying Gibbs’ inequality, it can be shown that

θijk =
Nijk

Nij
minimizes L(S | B), beingNijk as stated in the previous paragraph andNij the number of times in S

where pa(Xi) take their j-th configuration wij . This originates the LL score [56], which is given by

φLL(B,S) = LL(S | B) =

n∑
i=1

qi∑
j=1

ri∑
k=1

Nijklog

(
Nijk
Nij

)
. (4.13)

• Scores that directly penalize the complexity of the BNs

The two major problems of the LL score are that it overfits the data S and that it favours BNs with complete

network structures. Therefore, there is the need to explicitly penalize the complexity of the BNs in the LL scoring

function, which is usually done using scoring functions that take the structure of

φ(B,S) = LL(S | B)− f(N)× |B|, (4.14)

where f(N) is a penalty function, with N being the total number of observations in S, whereas |B| repre-

sents the complexity of the proposed BN B [59], determined using the number of parameters of B, given by

|B| =
∑n
i=1(ri − 1)qi, being ri and qi as defined in Eq. (4.2). The minimum description length (MDL) [60] and

the Bayesian information criterion (BIC) [61] scoring functions use f(N) = 1
2 log(N). The Akaike information

criterion (AIC) scoring function [62] uses f(N) = 1.

Search procedure for BNs

In Eq. (4.10), if the search-space Bn is composed by all possible BNs with n nodes, searching all BNs in Bn is

NP-hard. There are two solutions: to reduce the search-space or to apply approximate algorithms.

• Search-space reduction

When reducing the search-space, a common approach is, as in inference, to reduce the search-space to trees,

where the Chow & Liu algorithm [63], presented in Algorithm 4.2, can find a tree-BN that maximizes the LL score.
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Algorithm 4.2: Chow & Liu algorithm.
Input : Input data S.
Output: A tree Bayesian network that maximizes the LL score.

1 Compute I(Xi, Xj) between each pair (i, j), with i 6= j, being I(Xi, Xj) the mutual information
between Xi and Xj , which expresses how much information Xj gives about Xi and is given by

I(Xi, Xj) =
∑

xi∈Xi,xj∈Xj

P (xi, xj)log
P (xi, xj)

P (xi)P (xj)
.

2 Build a complete undirected graph with vertices being the variablesX and an edge between Xi and Xj

having weight I(Xi, Xj) = I(Xj , Xi).
3 Build an undirected maximum weighted spanning tree on the previously created undirected graph.
4 Transform the undirected spanning tree into a directed tree by choosing any node as root and giving

directions to the arrows in the direction outwards the root, until reaching the leaves.

The Chow & Liu algorithm has polynomial-time complexity in the number of nodes of the BN and can be

adapted to maximize any other decomposable scoring function φ (different from LL). If the scoring function is de-

composable and score-equivalent, the adaptation consists in, at steps 1 and 2 of Algorithm 4.2, replacing I(Xi, Xj)

for the computation of φj(Xi, S) − φj(∅, S), which is the same as φi(Xj , S) − φi(∅, S). If the scoring function

used is decomposable, but not score-equivalent, there must be created a directed graph having edges fromXi toXj

with weight φj(Xi, S) − φj(∅, S) and edges from Xj to Xi with weight φi(Xj , S)− φi(∅, S). Then, Edmonds’

algorithm [64] can be used to compute a directed maximum spanning tree from the created directed graph.

• Approximate search algorithms

If the BN structure cannot be simplified, the only efficient option is resorting to heuristics. One of the simplest

yet most effective techniques is the greedy hill-climbing (GHC). Starting at some initial BN and using a decompos-

able scoring function φ, GHC tries several local changes to the BN structure and applies the changes that increase

the score of φ. The algorithm stops after a defined number of iterations, or when it reaches a local maximum (when

each change it tries to do only worsens the score of the BN). There are several ways to, using GHC, be “smart” in

the initial BN chosen and in the changes that are tried.

Another often used technique is the structural expectation-maximization (SEM) algorithm [17, 65]. As ex-

plained in Section 4.2.2, the EM algorithm is used to make inference in BNs. The SEM algorithm applies the same

principles of the EM algorithm, but changes the maximization step, so that it uses expected counts according to

the current BN structure. SEM allows finding BNs with high score, according to scores like the BDe score.

Parameter learning in BNs

Parameter learning in BNs is usually done assuming that the structure of the BN is already known/learned. With

known structure, the simplest and most common way of learning the parameters of a BN is through the observed

frequency estimates (OFE). Given a BNB, with known structure, and a dataset S, OFE determines each parameter

θijk of Eq. (4.2) by doing

θ̂ijk =
Nijk
Nij

, (4.15)

where Nijk is the number of times in S where the node Xi of B takes its k-th value xik and the nodes in pa(Xi)

of B take their j-th configuration wij , while Nij is the total number of times in the dataset S where the nodes
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in pa(Xi) of B take their j-th configuration wij (see Eq. (4.2)). OFE is a particular case of the more general

parameter learning method described by

θ̂ijk =
N ′ijk +Nijk

N ′ij +Nij
, (4.16)

whereN ′ijk andN ′ij are Dirichlet parameters that express prior information about the probability distributions [66].

Making N ′ijk = N ′ij = 0 leads to Eq. (4.15), where no prior knowledge is assumed.

4.2.4 Dynamic Bayesian networks

Section 4.2.1 presents BNs as a framework to represent the joint probability distribution over random variablesX .

However, it does not allow reasoning about the evolution of the state of the variables over time. In real-world

applications, variables are often presented as time-series, where values are given in different temporal moments

and there is the need to reason about how random variablesX = {X1, . . . , Xn} evolve over time.

Dynamic Bayesian networks (DBNs) offer a framework for working with variables expressed as time-series,

by extending the concepts of Section 4.2.1 in order to represent dynamic systems.

To represent the time associated to the random variables, Xi[t] is used to denote the random variable that, in

timestep t, is associated to the feature Xi. To use this notation, there is the assumption that the time-series is

discretized into intervals of time with the same length. It is also assumed that a model has T total timesteps/time-

slices and that the first timestep is zero. Therefore, Xi[0 : T ] denotes all random variables of the model that are

associated to the feature Xi. In general, Xi[a : b] denotes all random variables associated to Xi from timestep a to

timestep b, where there is one random variable associated to Xi in each intermediate timestep.

In temporal models, there is the notion of trajectory of a random variable Xi, which is an assignment of

values to Xi in each intermediate timestep from a certain initial to a certain final timestep. The joint probability

distribution of all possible trajectories of a variable Xi from timestep a to timestep b is denoted as P (Xi[a : b]).

Therefore, the joint probability distribution of all possible trajectories of all features of a DBN, from timestep a to

timestep b, is denoted as P (X[a : b]). DBNs allow having a probabilistic representation of the joint probability

distribution of all possible trajectories from timestep 0 to timestep T , that is, P (X[0 : T ]). Definition 4.5 presents

the rigorous definition of DBN [18].

Definition 4.5 (Dynamic Bayesian network). A dynamic Bayesian network (DBN) is a graphical model given by

a pair (B0 ,B→), where:

• B0 is a prior BN that, using the BN framework, defines a probability distribution over the variables in

timestep 0, that is, B0 = P (X[0]).

• B→ consists of the transition networks, where B→[0 : t] defines the distribution over the variables in

timestep t, given all the trajectories the variables may take from timestep 0 until timestep t− 1. Rigorously,

B→[0 : t] = P (X[t] |X[0 : t− 1]), (4.17)

and a DBN definesB→, which is the set of all B→[0 : t], for t ∈ {1, . . . , T}.
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• Using B0 and B→ and applying the chain rule, a DBN defines the joint probability distribution of all

possible trajectories of all features using the expression

P (X[0 : T ]) = B0

T∏
t=1

B→[0 : t] = P (X[0])

T∏
t=1

P (X[t] |X[0 : t− 1]). (4.18)

In a DBN, the relations between the nodes (random variables) are often distinguished into two types: the intra-

slice connectivity, regarding dependencies between random variables from the same timestep, and the inter-slice

connectivity, regarding the effects that random variables from previous timesteps have in future time-slices.

From Definition 4.5, it can be concluded that, given B0 and B→, a DBN can be represented as a BN, using

for DBNs the same graphical representation of BNs. Fig. 4.3 presents an example of a DBN composed by three

time-slices and unrolled to be shown graphically as a BN.
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Figure 4.3: DBN with three timesteps unrolled as a BN.

In Fig. 4.3, the orange, pink and blue arrows show the intra-slice connectivity of timesteps 0, 1 and 2, respec-

tively, while the green and purple arrows show the inter-slice connectivity between timesteps 0 and 1 and between

timesteps 1 and 2, respectively. The grey arrows show the inter-slice connectivity between timesteps 0 and 2. In

Fig. 4.3, if the proper CPTs were given, then: (i) the orange arrows would define B0; (ii) the orange, green and

pink arrows would define B→[0 : 1]; (iii) B→[0 : 2] would be defined by all arrows of Fig. 4.3.

In long time-series with a high number of features, specifying all B→[0 : t] of B→ from Definition 4.5 is

unfeasible, as the number of possibilities is exponential in the number of variables and in the number of timesteps

(one can see that for the simple example of Fig. 4.3 there are already several arrows). Therefore, often two

assumptions, Markov and stationary, are imposed to DBNs, to make the representation a treatable problem.
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Markov assumption

The mth-order Markov assumption, presented in Definition 4.6, simplifies the problem of finding all B→[0 : t] by

assuming that the distribution of X in a certain timestep t, instead of being dependent on the values of X from

timestep 0 until timestep t− 1, only depends on the values ofX from m timesteps before timestep t.

Definition 4.6 (mth-order Markov assumption). A dynamic system satisfies the mth-order Markov assumption,

where m is called the Markov lag, iff, for all t ∈ {1, . . . , T},

X[t] |=X[0 : t− 1−m] |X[t−m : t− 1]. (4.19)

The Markov assumption is very useful, as the conditional independence property of Eq. (4.19) allows simpli-

fying the expression of each B→[0 : t] of Eq. (4.17), getting the simplified expression given by

B→[0 : t] = P (X[t] |X[t−m : t− 1]). (4.20)

Eq. (4.20) allows simplifying Eq. (4.18), defining P (X[0 : T ]) as

P (X[0 : T ]) = B0

T∏
t=1

B→[0 : t] = P (X[0])

T∏
t=1

P (X[t] |X[t−m : t− 1]). (4.21)

If, in Definition 4.6, m = 1, there is the very often used 1st-order Markov assumption, that can be stated as the

future being conditionally independent of the past given the present [15].

In terms of the graphical representation of DBNs, making an mth-order Markov assumption affects the range

that the grey arrows of Fig. 4.3 can take. For example, if there was a 1st-order Markov assumption on the DBN of

Fig. 4.3, the grey arrows could not exist.

Stationary assumption

While the Markov assumption simplifies the expressions ofB→[0 : t] by assuming conditional independence prop-

erties, the stationary assumption, presented in Definition 4.7, allows simplification by assuming that the transition

networks in a dynamic system satisfying an mth-order Markov assumption are all the same.

Definition 4.7 (Stationary assumption). A dynamic system satisfying the mth-order Markov assumption is said to

be stationary if P (X[t] |X[t−m : t− 1]) is the same for all t.

Assuming that all transition probabilities are equal is a huge simplification that is often not theoretically ap-

propriate. For example, in the medical domain, the transition probabilities are usually not the same for a patient in

different stages of a certain disease. However, comparing to modeling stationary DBNs, modeling non-stationary

DBNs is much more difficult as, even if making a Markov assumption, Eq. (4.21) results in the necessity of getting

several different expressions for the transition probabilities.

In terms of the graphical representation of DBNs, making a stationary assumption implies restricting the pos-

sible configurations of the green and purple arrows of Fig. 4.3. For example, if there were made a stationary and
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a 1st-order Markov assumptions on the DBN of Fig. 4.3, besides the grey arrows not being allowed, the config-

uration of the green and purple arrows would have to be the same (in that situation, the parent-children relations

between the nodes of two consecutive timesteps should always be the same).

4.2.5 Inference in DBNs

As in BNs, the goals of making inference in DBNs are also determining both the values of certain unobserved

nodes and the reasons for certain observations. The concept from Section 4.2.2 regarding observed and hidden

variables remains valid in the study of inference in DBNs, as does Eq. (4.4). However, in DBNs, there is the added

dimension of having features in different timesteps. When having certain nodes observed from timestep 0 until

a certain timestep t0, being these observations denoted as e[0 : t0], there are mainly four operations that may be

done regarding inference in DBNs [16]:

1. Filtering: if inference is done to, given the evidences from timesteps t ≤ t0, determine the probability

distributions of hidden nodes in timestep t0, that is, P (X[t0] | e[0 : t0]).

2. Prediction: if inference is done to, given the evidences from timesteps t ≤ t0, determine the probability

distributions of hidden nodes in a timestep t > t0, that is, P (X[t0 + k] | e[0 : t0]), with k > 0.

3. Smoothing: if inference is done to, given the evidences from timesteps t ≤ t0, determine the probability

distributions of hidden nodes in a timestep t < t0, that is, P (X[t0 − k] | e[0 : t0]), with k > 0.

4. Compute the most likely explanation (MLE): if the goal is to, given the evidences from timesteps t ≤ t0,

determine the most probable sequence of values, of the random variables X between timesteps 0 and t0, to

have generated the observed evidences, that is, the goal is to determine argmaxX[0:t0]{P (e[0 : t0])}. It is

important to emphasize that computing the MLE is usually not the same as performing smoothing for each

timestep separately, as just aggregating values that individually maximize the probabilities in each timestep

may not result in the sequence that maximizes the overall probability.

Exact inference in DBNs

If exact inference in BNs is already an NP-hard problem, adding the temporal component of DBNs the problem

becomes even more difficult. The main ideas for exact inference in DBNs consist in generalizing to the dynamic

domain the concepts of exact inference in BNs, only being the algorithms efficient when imposing restrictions in

the graph structure.

To perform filtering, prediction and smoothing, one of the most used algorithms is the forward-backward

algorithm [15, 16]. The idea of the algorithm is to generalize the sum-product algorithm (see Algorithm 4.1) to the

temporal domain. The forward pass performs filtering and predictions, followed by a backward pass that performs

smoothings.

To compute the MLE, there is the Viterbi algorithm [16], which is identical to the forward pass of the forward-

backward algorithm, but changing some summations for maximums, just as when changing the sum-product algo-

rithm to get the max-sum algorithm (see Section 4.2.2).
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Approximate inference in DBNs

To perform approximate inference in DBNs, one algorithm often used is the particle filtering [15–17]. The idea

of the algorithm is to, starting from a population of γ samples randomly taken from the probability distribu-

tion of X[0], apply approximate filterings by repeating the following three steps when going from timestep t to

timestep t + 1: (i) propagate each sample from timestep t to timestep t + 1 using the known transition probabil-

ities; (ii) weight each sample by the probability of the evidence observed given the known model; (iii) resample

the population of particles according to the weights previously produced, in order to obtain a new estimation of

P (X[t + 1] | e[0 : t + 1]). Repeating the three previous steps in each timestep transition and performing the

procedure for a considerable number of particles, the algorithm is consistent (converges to the correct probabilities

as γ → ∞). It is usually also efficient, in the sense that, generally, there is not needed an extremely high number

of particles to get relatively good estimates of the desired probability distributions.

4.2.6 Structure and parameter learning in DBNs

Regarding structure learning in DBNs, as happens in inference, the same principles of BNs apply to DBNs. The

problem in DBNs can also be seen as an optimization problem described by Eq. (4.10), and the scoring functions

presented in Section 4.2.3 still apply.

However, comparing to BNs, DBNs have, in the search-space of possible structures, the influence of the inter-

slice connectivity, which BNs do not have. Regarding the intra-slice connectivity, the learning procedures used are

essentially the same of BNs, as each time-slice can be seen as a BN. Regarding the inter-slice connectivity, the fact

that only lower timesteps affect future ones, and not the other way around, avoids needing to confirm if the graph

is acyclic, which can lead to simple and fast algorithms, especially in small datasets [67].

A commonly used set of assumptions resides in considering the 1st-order Markov assumption and that the

intra-slice connectivity is fixed (it is usual to only determine the intra-slice connectivity of timestep 0). This allows

stating structure learning of DBNs as a feature-selection problem, where, for each t ∈ {1, . . . , T}, the goal is to

determine which nodes from timestep t−1 are the parents of each node in timestep t. If also making the stationary

assumption, the complexity of the problem may reduce even more.

Most literature on structure learning of DBNs [17, 18] divides the learning problem into two groups, according

to all random variables being observed in data or not. The two groups are presented next.

1. Learning fully observed DBNs / learning from complete data

These situations concern the cases where eachXi of each timestep of a DBN is directly observed in the dataset,

with no hidden variables nor missing data. In these cases, the learning methods are essentially extensions of the

methods used in BNs. There must be some care in trying to take advantage of the existing constraints of the

DBNs when applying the methods showed in Section 4.2.3, instead of just unrolling a DBN into a large BN and

then learning the unrolled BN. Due to the fact that DBNs usually have a high number of nodes, greedy search

procedures (where there are techniques to fasten the processes, such as searching for B0 independently fromB→,

as they may not be correlated) or the MCMC algorithm are very often used. Another approach is to consider the

intra-slice connectivity as trees and use the Chow & Liu algorithm for intra-slice structure learning, also adding

parents from preceding time-slices to each node, creating a tree-augmented DBN (tDBN) [25].
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2. Learning partially observed DBNs / learning from incomplete data

These situations are the most common ones, as they may arise, for example, from the model itself not be-

ing fully observable, from having missing data (that can be seen as hidden nodes) or even from the necessity of

creating hidden nodes to properly make the assumption of having a stationary mth-order Markov process, but

according to those hidden nodes and not to the actual observations. In these circumstances, generalizing to DBNs

the scoring functions used in BNs may not be straightforward and must be done carefully, according to the learn-

ing algorithms. One of the most common approaches in these situations is to use an extension of the structural

expectation-maximization (SEM) algorithm (see Section 4.2.3) to dynamic systems [18, 68].

Parameter learning in DBNs

To perform parameter learning in DBNs, it is important to define how the parameters of a DBN are represented.

The parameters θijk from the BN framework (see Definition 4.1) can be extended to the parameters θijk[t] of the

DBN framework, by, given a DBN Bd with known structure, designating θijk[t] as

θijk[t] = PBd
(Xi[t] = xik | pa(Xi[t]) = wij [t]). (4.22)

In Eq. (4.22), pa(Xi[t]) denotes the parents of Xi[t] in Bd, which can be in timesteps t′ ≤ t. The terms xik

and wij [t] are the several values that Xi[t] and the parents of Xi[t] may take, respectively (see Eq. (4.2)). The xik

terms are not indexed by t, because the values that a node Xi[t] can take are independent of the timestep t. The

wij [t] terms are indexed by t, as the possible values that the parents of Xi[t] can take vary according to the parents

of Xi[t], which depend on the timestep t. In particular, j ∈ {1, . . . , qi[t]}, with qi[t] =
∏
Xl∈pa(Xi[t])

rl, where a

certain rl is the maximum number of states of the respective node Xl (see Eq. (4.2)).

Parameter learning in DBNs is an extension of parameter learning in BNs to the temporal domain. As in BNs,

the structure is normally assumed to be known, and parameter learning is usually done using the OFE.

In non-stationary DBNs, given a DBN Bd, with known structure, and a dataset D with observations of the

nodes of Bd, the OFE method used in BNs can be applied to DBNs by extending Eq. (4.15) to use the θijk[t]

parameters defined in Eq. (4.22), obtaining the expression

θ̂ijk[t] =
Nijk[t]

Nij [t]
, (4.23)

where Nijk[t] is the number of times in D where the node Xi[t] of Bd takes its k-th value xik and the nodes in

pa(Xi[t]) of Bd take their j-th configuration wij [t], while Nij [t] is the total number of times in the dataset D

where the nodes in pa(Xi[t]) of Bd take their j-th configuration wij [t] (see Eq. (4.22)).

In stationary DBNs, as the transition networks are the same for all timesteps, the θijk[t] parameters should be

the same for all t, representing the global OFE of a certain dataset. This can be done by changing Eq. (4.23) to

θ̂ijk =

∑
tNijk[t]∑
tNij [t]

, (4.24)

where Nijk[t] and Nij [t] are as defined in Eq. (4.23), and θ̂ijk[t] = θ̂ijk,∀t.
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Chapter 5

Contributions on DBNs state-of-the-art

methods

5.1 Learning DBNs with static attributes (sdtDBNs)

When starting the study of ALS disease progression from patients’ data, it can be noticed that, although the

ALS dataset has both static and dynamic features/attributes, the standard DBN framework only allows including

dynamic attributes in the study of the disease progression. This issue is of enormous importance in the generality of

situations where machine learning techniques are applied to study the temporal progression of medical indicators,

as usually there are static attributes of patients that may not be taken into account if applying machine learning

methods that only allow considering dynamic attributes. Therefore, the first main concern of the Thesis is to

develop a mechanism to include static attributes in the analysis of the disease progression using DBNs.

5.1.1 sdtDBNs as extensions of tDBNs

As already explained, this Thesis uses as basis to the proposed DBN learning methodology the tDBN framework,

developed by a previous student [25, 69] (see Section 1.4 for more details). The tDBN algorithm optimally learns

the intra and inter time-slice relations of a DBN, restricting the search-space of the intra-slice connectivity to tree

structures and considering, for each node of each timestep, a maximum number of parents from the preceding

timesteps, being the preceding timesteps considered for each node defined by a certain Markov lag.

In this work, the proposal is to include static attributes in the tDBN framework by considering these static

attributes as nodes in a “meta-timestep” whose nodes can always influence any dynamic node of any timestep,

independently of the specified Markov lag. The proposed optimal DBN structure learning algorithm produces

tDBNs with both static and dynamic attributes, being named sdtDBN (“sd” stands for static and dynamic). The

learning procedure, described next, follows closely the learning procedure of tDBNs [25, 69].
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Notation

To represent the static and dynamic nodes of the DBNs, Y denotes the static attributes and X[t] represents the

dynamic attributes in timestep t. It is assumed that exist nstatic static attributes and n dynamic attributes in each

timestep, with a maximum of T timesteps. Therefore, Yk, with k ∈ {0, . . . , nstatic − 1}, denotes each possible

static attribute, while Xi[t], with i ∈ {0, . . . , n − 1} and t ∈ {0, . . . , T − 1}, designates each possible dynamic

attribute Xi in each possible timestep t. All attributes are assumed to be discrete, with a finite number of states.

The DBNs to be created can be stationary or non-stationary and it is assumed that the DBNs have a certain

Markov lag m. From the tDBN definition [25, 69], each node Xi[t] has one parent from timestep t (except for the

root of the intra-slice tree of each timestep). It is also assumed that each node Xi[t] has a maximum of p dynamic

parents from the m previous timesteps and a maximum of b static parents.

The dataset with observations of static attributes is denoted as S, whereas the dataset with observations of

dynamic attributes is represented by D, with Dt+j
t being the observations of dynamic attributes between timesteps

t and t + j (including both t and t + j). The possible nodes’ configurations of the DBNs are evaluated using a

decomposable scoring function φ, with local terms given by φi, for each node Xi[t] of a DBN.

Learning algorithm

As in the tDBN algorithm, the sdtDBN algorithm starts by determining the best possible set of parents for each

node, excluding connections among nodes in the same timestep. To do that, P≤γ(A) is used to represent all

possible subsets, with cardinality at most γ, of a certain set A. Therefore, P≤b(Y ) denotes all possible sets of

static parents of each dynamic node, whereas P≤p(X[t + 1 −m] ∪ · · · ∪X[t]) denotes, for a node Xi[t + 1], in

timestep t+ 1, all possible sets of dynamic parents from the m preceding timesteps. Given the previous subsets, it

is possible to rigorously obtain, for each node Xi[t+1], the set of static and dynamic parents that achieves the best

possible score when not considering any connections among nodes in timestep t+ 1, being that score given by

si = max
Xdp∈P≤p(X[t+1−m]∪···∪X[t]),Y sp∈P≤b(Y )

φi(Xdp ∪ Y sp, D
t+1
t+1−m ∪ S), (5.1)

where the Y sp and Xdp that maximize Eq. (5.1) for each value of i are the optimal sets of static and dynamic

parents of each node Xi[t+ 1], when not considering any connections in timestep t+ 1.

When also considering the connections in timestep t + 1, as each node Xi[t + 1] may have one parent from

timestep t + 1, it should be found the set of static and dynamic (from previous timesteps) parents that, for each

node Xi[t + 1], achieves the best possible score, considering that each of the possible Xj [t + 1] → Xi[t + 1]

connections in timestep t+ 1 is in the DBN structure, being the maximum score obtained for each pair ij given by

sij = max
Xdp∈P≤p(X[t+1−m]∪···∪X[t]),Y sp∈P≤b(Y )

φi(Xdp ∪ Y sp ∪Xj [t+ 1], Dt+1
t+1−m ∪ S), (5.2)

where the Y sp and Xdp that maximize Eq. (5.2) are the optimal sets of static and dynamic parents of each node

Xi[t+ 1], considering that the connection Xj [t+ 1]→ Xi[t+ 1] is in the DBN structure.

The general idea for optimally and globally choosing the best sdtDBN structure is to assess, for each pair of

nodes (Xi[t+ 1], Xj [t+ 1]), the benefit eij of including Xj [t+ 1] as a parent of Xi[t+ 1] in the network structure,

30



instead of just having Xi[t + 1] with the optimal static parents from Y and the optimal dynamic parents from

X[t+ 1−m] ∪ · · · ∪X[t]. The aforementioned benefit can be obtained from the relation between Eqs. (5.1) and

(5.2), getting the benefit terms eij defined as

eij = sij − si. (5.3)

After determining all eij terms with Eq. (5.3), which uses the si and sij terms from Eqs. (5.1) and (5.2),

where the static attributes influence the optimal sets of parents of each node, the procedure to determine an optimal

sdtDBN structure using the eij terms is the same procedure used in tDBNs structure learning [25, 69] (although in

tDBNs the calculation of the eij terms does not have the influence of the static attributes).

In order to get the proper static and dynamic parents of the nodes in a timestep t+ 1, first, a complete directed

graph with the nodes from X[t + 1] should be computed, being the weight of each edge Xj [t+ 1] → Xi[t+ 1]

the respective eij term. Then, a maximum spanning tree must be computed in the directed graph created. As

explained in the tDBN work [25, 69], in general eij 6= eji, so, Edmonds’ maximum branching algorithm [64]

should be used to find the desired spanning tree.

After finding the mentioned spanning tree, its edges compose the intra-slice connectivity of timestep t+ 1. For

each edge Xj [t + 1] → Xi[t + 1], the proper static parents of Xi[t + 1] and dynamic parents of Xi[t + 1] from

the previous timesteps are the Y sp andXdp that maximize Eq. (5.2) for the respective pair ij. Regarding the root

node of the spanning tree, denoted as Xr[t+ 1], its static parents and dynamic parents from the previous timesteps

are the Y sp and Xdp that maximize Eq. (5.1) for i = r. By applying the described procedure to all timesteps, an

optimal sdtDBN structure can be found. Algorithm 5.1 presents an overview of the sdtDBN learning methodology,

using Algorithm 5.2 to determine the optimal sets of parents and the terms eij .

Algorithm 5.1: Structure learning of mth-order Markov non-stationary sdtDBNs.
Input :
• X: the n dynamic attributes of the DBN.
• Y : the nstatic static attributes of the DBN.
• T : the total number of timesteps of the DBN.
• D: dataset with observations for each dynamic node of the DBN.
• S: dataset with observations for each static node of the DBN.
• φ: a decomposable scoring function.

Output :
• A non-stationary tree-augmented DBN structure with both static and dynamic attributes (sdtDBN).

1 for each timestep t+ 1 between m and T do
2 Construct a complete directed graph with verticesX[t+ 1].
3 Determine the weights of all edges Xj [t+ 1]→ Xi[t+ 1], i 6= j, using Algorithm 5.2, also extracting

the optimal sets of static and dynamic parents of each node Xi[t+ 1].
4 Apply a maximum branching algorithm in the graph of line 2 using the weights determined in line 3,

in order to have a maximum spanning tree considering the weights of line 3.
5 Extract the static and dynamic parents of each node Xi[t+ 1] from the spanning tree determined in

line 4 and the sets of parents determined in line 3.
6 Join all transitions determined in the for loop, to get the complete description of the determined sdtDBN.
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Algorithm 5.2: Edge weights and optimal parents for mth-order Markov non-stationary sdtDBNs.
Input :
• t+ 1: the current timestep.
• m: the Markov lag of the DBN.
• X[t+1−m]∪· · ·∪X[t+1]: sets of nodes from the current timestep and them previous timesteps,

each timestep having n nodes.
• Y : set of nstatic static nodes.
• p: upper-bound on the number of dynamic parents from the m previous timesteps.
• b: upper-bound on the number of static parents.
• Dt+1

t+1−m: dataset with observations for each dynamic node, from timesteps t+ 1−m to t+ 1.
• S: dataset with observations for each static node.
• φi(parentNodes, dataset): local terms of the decomposable scoring function φ, for each Xi[t+ 1].

Output :
• E[n×n]: matrix with edge weights eij .
• dynamicParentsPast[n]: for each node Xi[t+ 1], the optimal set of dynamic parents from the m

previous timesteps, when not considering connections in timestep t+ 1.
• staticParentsPast[n]: for each node Xi[t+ 1], the optimal set of static parents, when not considering

connections in timestep t+ 1.
• dynamicParents[n×n]: for each node Xi[t+ 1], the optimal set of dynamic parents from the m pre-

vious timesteps, when considering each possible connection Xj [t+ 1]→ Xi[t+ 1] in the sdtDBN.
• staticParents[n×n]: for each node Xi[t+ 1], the optimal set of static parents, when considering each

possible connection Xj [t+ 1]→ Xi[t+ 1] in the sdtDBN.

1 allDynamicParentSets← P≤p(X[t+ 1−m] ∪ · · · ∪X[t])
2 allStaticParentSets← P≤b(Y )
3 for Xi[t+ 1] inX[t+ 1] do
4 bestScore←−∞
5 forXdp in allDynamicParentSets do
6 for Y sp in allStaticParentSets do
7 currentScore← φi(Xdp ∪ Y sp, D

t+1
t+1−m ∪ S)

8 if currentScore > bestScore then
9 bestScore← currentScore

10 dynamicParentsPasti←Xdp

11 staticParentsPasti← Y sp

12 for Xj [t+ 1] inX[t+ 1] do
13 Eij ←−bestScore

14 for Xi[t+ 1] inX[t+ 1] do
15 for Xj [t+ 1] inX[t+ 1] do
16 bestScore←−∞
17 forXdp in allDynamicParentSets do
18 for Y sp in allStaticParentSets do
19 currentScore← φi(Xdp ∪ Y sp ∪Xj [t+ 1], Dt+1

t+1−m ∪ S)
20 if currentScore > bestScore then
21 bestScore← currentScore
22 dynamicParentsij ←Xdp

23 staticParentsij ← Y sp

24 Eij ← Eij + bestScore

Stationary version of the learning algorithm

In order to learn stationary sdtDBNs, only one transition network should be learned, using all timesteps. All aspects

mentioned in this Section, namely Eqs. (5.1), (5.2) and (5.3), are still valid, as the same notions of optimality apply
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and the inclusion of static attributes in the tDBN framework can be done in the same way. Therefore, the stationary

version of the sdtDBN learning mechanism is given by Algorithms 5.1 and 5.2, with some small changes.

In Algorithm 5.1, the for loop of line 1 should not exist (it should be just one iteration, instead of a loop), as

only one transition network is being computed. There is not the need of having line 6 either.

In line 3 of Algorithm 5.1, where Algorithm 5.2 is used, instead of determining the score for each possible

parents’ configuration using only the sub-dataset Dt+1
t+1−m, relative to timestep t + 1, all occurrences in D should

be analyzed, to compute a solution that represents the maximum score considering all timesteps. Therefore, in

lines 7 and 19 of Algorithm 5.2, D should be used instead of Dt+1
t+1−m.

5.1.2 Correctness of the sdtDBN learning algorithm

As explained in Section 5.1.1, the computation of the si, sij and eij terms of the sdtDBN framework generalizes

the computation of the same terms in the tDBN framework, so that static attributes also influence the values and

parents obtained. However, after determining si, sij and eij , both algorithms follow the same steps. Therefore, the

optimality of the sdtDBN learning algorithm is proven by the optimality of the tDBN algorithm. Another rationale

for this statement is that static nodes can be seen as “special” nodes that only exist in the initial timestep of a DBN

and can influence any node in any timestep, which allows considering sdtDBNs as tDBNs having in the initial

timestep these “special” nodes. Theorems 5.1 and 5.2 show the correctness of the sdtDBN learning algorithm.

Theorem 5.1 (sdtDBN optimality per timestep). At each timestep t + 1, Algorithm 5.1 finds an optimal tDBN

structure also with static features in the framework (sdtDBN).

Proof of Theorem 5.1 (by contradiction). Considering B∗ as an optimal sdtDBN at timestep t + 1, with an intra-

slice structure I∗, as in Eqs. (5.1) and (5.2) all possible combinations of static and dynamic parents are analyzed

and maximized, it comes directly from Eqs. (5.1) and (5.2) that the total score of B∗ is given by

sr∗ +
∑

ij : Xj [t+1]→Xi[t+1]∈I∗
sij , (5.4)

where Xr∗ is the root node of the intra-slice tree I∗.

Considering Bs as the output of Algorithm 5.1 for timestep t+ 1, with an intra-slice structure Is having a root

node Xrs , if Bs is considered sub-optimal, then

srs +
∑

ij : Xj [t+1]→Xi[t+1]∈Is
sij < sr∗ +

∑
ij : Xj [t+1]→Xi[t+1]∈I∗

sij , (5.5)

which is equivalent to

srs +
∑

ij : Xj [t+1]→Xi[t+1]∈Is
sij −

∑
i∈n

si < sr∗ +
∑

ij : Xj [t+1]→Xi[t+1]∈I∗
sij −

∑
i∈n

si. (5.6)

Applying Eq. (5.3) to Eq. (5.6), it follows that∑
ij : Xj [t+1]→Xi[t+1]∈Is

eij <
∑

ij : Xj [t+1]→Xi[t+1]∈I∗
eij . (5.7)
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However, from the correctness of Edmonds’ maximum branching algorithm used in line 4 of Algorithm 5.1,

the sum of the edges in Is at the left side of Eq. (5.7) must be maximum. Therefore, Eq. (5.7) stands false, which

makes false the supposition that the output Bs of Algorithm 5.1 for timestep t + 1 is sub-optimal, which proves

that the output Bs of Algorithm 5.1 for timestep t+ 1 is optimal.

Theorem 5.2 (sdtDBN global optimality). Algorithm 5.1 finds a globally optimal tDBN structure also with static

features in the framework (sdtDBN).

Proof. In the structure of the created sdtDBNs, each node in a timestep t can only be a parent of nodes in a certain

timestep t + k, k ≥ 0. Regarding static nodes, only static nodes can be parents of dynamic nodes, and not the

other way around. Therefore, for a certain iteration of the for loop of Algorithm 5.1 regarding a timestep t+ 1, it is

assured that the posterior iterations of the loop do not affect the parents found for nodes in timestep t+ 1. Hence,

as Theorem 5.1 proves optimality for each timestep, Algorithm 5.1 is globally optimal.

5.1.3 Complexity analysis of the sdtDBN learning algorithm

As the sdtDBN algorithm is a generalization of the tDBN algorithm to include static attributes, the complexity over

the components related to the dynamic attributes remains equal. However, there is extra computational complexity,

for the new components related to the static attributes, namely the nstatic static attributes, the b maximum possible

static parents of each node and the usage of the dataset S, with static observations. Theorem 5.3 provides the

computational complexity of the sdtDBN learning algorithm.

Theorem 5.3. (Computational complexity of the sdtDBN learning algorithm) The worst-case complexity of Al-

gorithm 5.1 is: polynomial in the number of dynamic attributes n and in the number of static attributes nstatic;

exponential in the number of dynamic parents p and in the number of static parents b; linear in the number of

dynamic observations Ndynamic and in the number of static observations Nstatic.

Analyzing Algorithm 5.1, the bottleneck is step 3, where Algorithm 5.2 is used. Regarding Algorithm 5.2, the

bottleneck is the for loop starting at line 14, whose complexity is analyzed next.

Regarding the for loops of lines 14 and 15, each of them has complexity O(n), as they iterate over the n

dynamic attributes of a timestep.

Regarding the for loops of lines 17 and 18, it is first needed to find an upper-bound on the number of possible

dynamic parents sets from the m previous timesteps, P≤p(X[t + 1 − m] ∪ · · · ∪X[t]), and on the number of

possible static parents sets, P≤b(Y ). The total number of possible dynamic parents sets from the m previous

timesteps, with a maximum of p parents per set and a Markov lag m, is given by

|P≤p(X[t+ 1−m] ∪ · · · ∪X[t])| =
p∑
i=0

(
nm

i

)
<

p∑
i=0

(nm)i ∈ O((nm)p). (5.8)

The total number of possible static parents sets, with a maximum of b parents per set, is given by

|P≤b(Y )| =
b∑
i=0

(
nstatic
i

)
<

b∑
i=0

nistatic ∈ O(nbstatic). (5.9)
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Given Eqs. (5.8) and (5.9), the computational complexities of the for loops of lines 17 and 18 are, respectively,

O((nm)p) and O(nbstatic).

Regarding the complexity of determining the value of φi at line 19 in each iteration of the loop, in the worst-

case scenario, each node has b + p + 1 parents (b static, p dynamic from previous timesteps and 1 dynamic from

the same timestep). Assuming each attribute can take at most λ different values, there are, in each conditional

probability distribution, λb+p+1 × λ = λb+p+2 different configurations. Therefore, the conditional distributions

have O(λb+p+2) complexity. Every different configuration must be analyzed in each possible observation of the

datasets needed to evaluate φi, which are Dt+1
t+1−m and S. The space needed to store the dynamic dataset is

|Dt+1
t+1−m| × (m + 1) × n, while the space needed to store the static dataset is |S| × nstatic. Therefore, there

are needed a total of O(|Dt+1
t+1−m| × (m + 1) × n × |S| × nstatic) comparisons. As each comparison should

be made for each configuration of parents and proper child node, line 19 of Algorithm 5.2 has a complexity of

O(|Dt+1
t+1−m| × (m+ 1)× n× |S| × nstatic × λb+p+2).

Putting together all the aforementioned complexities of each component of the for loop starting at line 14 of

Algorithm 5.2, the total complexity of Algorithm 5.2 is given by

O(n)×O(n)×O((nm)p)×O(nbstatic)×O(|Dt+1
t+1−m| × (m+ 1)× n× |S| × nstatic × λb+p+2), (5.10)

which can be put succinctly as

O(np+3 × nb+1
static ×m

p+1 × λb+p+2 × |Dt+1
t+1−m| × |S|). (5.11)

Regarding the total complexity of Algorithm 5.1, it is needed to account for the fact that Algorithm 5.2, with

complexity described in Eq. (5.11), is done O(T ) times in the for loop of Algorithm 5.1, where T is the total

number of timesteps. Therefore, defining Ndynamic =
∑T−1
t=0 |D

t+1
t+1−m| as the total dimension of the dynamic

dataset and Nstatic = |S| as the total dimension of the static dataset, the total complexity of Algorithm 5.1 can be

obtained by applying Ndynamic and Nstatic to Eq. (5.11), being the total complexity of Algorithm 5.1 given by

O(np+3 × nb+1
static ×m

p+1 × λb+p+2 ×Ndynamic ×Nstatic). (5.12)

5.2 Learning sdtDBNs with restrictions in the network structure

When learning a DBN that represents the relations between data (see Section 5.1), there may be some prior knowl-

edge regarding the relations the model should learn. As DBNs are graphical models that intuitively represent the

relations between variables, introducing prior knowledge in DBNs can be stated as forcing some relations between

nodes either to exist or not to exist.

Incorporating prior knowledge in statistical models is of particular importance when working with medical

data, as the developed models are presented to doctors, who validate the relations found between the several

variables, because medical experts, having real-life experience, can intuitively expect the model to reflect some

relations and not to reflect some other.
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5.2.1 Learning algorithm with restrictions

The addition of restrictions to the sdtDBN framework is done by applying the restrictions to the learning algo-

rithm presented in Section 5.1 (see Algorithms 5.1 and 5.2). Therefore, the notation used in this Section and in

Sections 5.2.2 and 5.2.3 is the same notation introduced in Section 5.1.1.

Regarding sdtDBNs, there must be considered three types of relations between nodes: (i) relations between

dynamic nodes in different timesteps; (ii) relations between dynamic nodes in the same timestep; (iii) relations

between dynamic nodes and static nodes. For each of the previous types of relations, the restrictions may force

certain relations either to or not to exist.

The inclusion of restrictions in relations between dynamic nodes in different timesteps and between dynamic

and static nodes can be done directly in Algorithm 5.2, where, for each node, the best set of parents from previous

timesteps and the best set of static parents are found by always evaluating all combinations of parents, choosing

the combinations with the best score for each node. The restrictions can be inserted by considering, for each node,

only the combinations of parents from previous timesteps and combinations of static parents that each node can

actually have, according to the restrictions, instead of always testing all combinations of parents. By adjusting the

search-spaces, Algorithm 5.2 can remain almost unchanged, while also satisfying the desired restrictions.

The restrictions in relations between dynamic nodes in the same timestep can be included by biasing the proper

weights eij , as relations of this type are included in the DBN at step 4 of Algorithm 5.1 by applying a maximum

branching algorithm using the weights eij . As each weight eij refers to the relation Xj [t + 1] → Xi[t + 1],

being t + 1 the timestep of the iteration of Algorithm 5.1 being analyzed, the maximum branching algorithm

inserts Xj [t+ 1]→ Xi[t+ 1] in the DBN if eij → +∞ and does not insert Xj [t+ 1]→ Xi[t+ 1] in the DBN if

eij → −∞. Therefore, ifXj [t+1]→ Xi[t+1] is mandatory, eij should be biased with a big positive value (several

orders of magnitude higher than the values of the weights eij), whereas, if Xj [t + 1] → Xi[t + 1] is forbidden,

eij should be biased with a big negative value. The bias in each eij should only be introduced after Algorithm 5.2

has done all calculations involving the respective eij , so that Algorithm 5.2 remains practically unchanged. The

bias should also be done by adding (or subtracting) a big number, but not actually +∞ (or −∞), so that the

biased relations remain distinguishable among themselves. In the algorithm’s implementation, the big number

used is +1010 (or −1010), as 1010 is larger than any weight obtained in a real-world situation, and, using 1010, the

program can distinguish two equally biased weights whose values differ at least 10−5, which is sufficient in any

real-world scenario. With this approach, if not all restrictions regarding intra-slice relations can be met (which may

happen, because the intra-slice connectivity must be a tree, see Section 5.1), the maximum branching algorithm

selects the relations that maximize the global score, while respecting the largest possible number of restrictions.

Given the previously described changes to include restrictions in the network, the sdtDBN learning procedure

including restrictions in the network consists in using Algorithm 5.1, but changing line 3 of Algorithm 5.1 so that

Algorithm 5.3 is used, instead of Algorithm 5.2.

5.2.2 Correctness of the learning algorithm with restrictions

As the learning algorithm of sdtDBNs with restrictions is an extension of the learning algorithm of the sdtDBNs

presented in Section 5.1, the proof of correctness of Algorithm 5.1 using Algorithm 5.3 instead of Algorithm 5.2
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Algorithm 5.3: Edge weights and optimal parents for mth-order Markov non-stationary sdtDBNs with
restrictions in the structure of the network.

Input :
• t+ 1, m,X[t+ 1−m] ∪ · · · ∪X[t+ 1], Y , p, b, Dt+1

t+1−m, S, φi(parentNodes, dataset): as defined
in Algorithm 5.2.

• MPT[n]: for each Xi[t+ 1], the set of mandatory dynamic parents from the m previous timesteps.
• FPT[n]: for each Xi[t+ 1], the set of forbidden dynamic parents from the m previous timesteps.
• MST[n]: for each Xi[t+ 1], the set of mandatory dynamic parents from the same timestep.
• FST[n]: for each Xi[t+ 1], the set of forbidden dynamic parents from the same timestep.
• MS[n]: for each Xi[t+ 1], the set of mandatory static parents.
• FS[n]: for each Xi[t+ 1], the set of forbidden static parents.

Output :
• E[n×n], dynamicParentsPast[n], staticParentsPast[n], dynamicParents[n×n], staticParents[n×n]: as de-

fined in Algorithm 5.2.

1 for Xi[t+ 1] inX[t+ 1] do
2 allDynamicParentSetsi ←

{Ω ⊆ P≤p(X[t+ 1−m] ∪ · · · ∪X[t]) | Ω ∩MPTi = MPTi ∧ Ω ∩ FPTi = ∅}
3 allStaticParentSetsi← {Ω ⊆ P≤b(Y ) | Ω ∩MSi = MSi ∧ Ω ∩ FSi = ∅}
4 bigNumber← Positive number with a much higher order of magnitude than the values of the scores
5 for Xi[t+ 1] inX[t+ 1] do
6 bestScore←−∞
7 forXdp in allDynamicParentSetsi do
8 for Y sp in allStaticParentSetsi do
9 currentScore← φi(Xdp ∪ Y sp, D

t+1
t+1−m ∪ S)

10 if currentScore > bestScore then
11 bestScore← currentScore
12 dynamicParentsPasti←Xdp

13 staticParentsPasti← Y sp

14 for Xj [t+ 1] inX[t+ 1] do
15 Eij ←−bestScore

16 for Xi[t+ 1] inX[t+ 1] do
17 for Xj [t+ 1] inX[t+ 1] do
18 bestScore←−∞
19 forXdp in allDynamicParentSetsi do
20 for Y sp in allStaticParentSetsi do
21 currentScore← φi(Xdp ∪ Y sp ∪Xj [t+ 1], Dt+1

t+1−m ∪ S)
22 if currentScore > bestScore then
23 bestScore← currentScore
24 dynamicParentsij ←Xdp

25 staticParentsij ← Y sp

26 if Xj [t+ 1] ∈MSTi then
27 Eij ← Eij + bestScore + bigNumber
28 else if Xj [t+ 1] ∈ FSTi then
29 Eij ← Eij + bestScore - bigNumber
30 else
31 Eij ← Eij + bestScore

closely follows Theorems 5.1 and 5.2. It is presented in Theorems 5.4 and 5.5 the correctness of the sdtDBN

learning algorithm including restrictions in the network.
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Theorem 5.4 (Optimality per timestep of sdtDBNs with restrictions). At each timestep t+ 1, Algorithm 5.1, using

Algorithm 5.3 instead of Algorithm 5.2, finds an optimal sdtDBN, given all desired restrictions.

Proof of Theorem 5.4. The proof of Theorem 5.4 must be divided into two parts: (i) proving that all restrictions

are represented in the learned sdtDBNs; (ii) proving that, given the restrictions, the sdtDBNs are optimal.

A node in timestep t + 1 cannot possibly have dynamic parents from previous timesteps not following the

restrictions, nor static parents that do not follow the restrictions, because Algorithm 5.3 evaluates, for each dynamic

node in timestep t+ 1, only sets of dynamic parents from previous timesteps and sets of static parents that respect

the restrictions imposed in the network. Regarding relations between nodes in timestep t+ 1, when comparing to

relations that are neither mandatory nor forbidden, all mandatory relations are given a much higher weight and all

forbidden relations are given a much lower weight. Therefore, it comes from the soundness of Edmonds’ maximum

branching algorithm (used in line 4 of Algorithm 5.1) that, in the relations among nodes in timestep t+ 1, all

mandatory relations are introduced and none of the forbidden relations are introduced. The previous explanations

show that all restrictions must always be respected by the learned sdtDBNs.

To prove the optimality of the learned sdtDBNs, a proof by contradiction can be used. As all possible com-

binations of static and dynamic parents respecting the restrictions are analyzed and maximized in Algorithm 5.3,

then, considering M as the set with the mandatory relations between nodes in timestep t+ 1, and B∗ as an optimal

sdtDBN at timestep t+ 1, with an intra-slice structure I∗, the total score of B∗ is given by

sr∗ +
∑

ij : Xj [t+1]→Xi[t+1]∈I∗\M

sij +
∑

ij : Xj [t+1]→Xi[t+1]∈M

sij , (5.13)

where Xr∗ is the root node of the intra-slice tree I∗, and I∗ ∩M = M .

In the optimal intra-slice structure I∗, all restrictions must be respected. It was also already shown that, in

each timestep t+ 1, all restrictions are satisfied by the output of Algorithm 5.1 (using Algorithm 5.3 instead of

Algorithm 5.2). Therefore, beingBs the output of Algorithm 5.1 (using Algorithm 5.3 instead of Algorithm 5.2) in

timestep t+1, with an intra-slice structure Is having a root nodeXrs , ifBs is considered sub-optimal, then, apply-

ing the same reasoning as in Eqs. (5.5) and (5.6) of Theorem 5.1, together with Eq. (5.13), it can be concluded that

∑
ij :

Xj [t+1]→Xi[t+1]∈Is\M

eij +
∑
ij :

Xj [t+1]→Xi[t+1]∈M

eij <
∑
ij :

Xj [t+1]→Xi[t+1]∈I∗\M

eij +
∑
ij :

Xj [t+1]→Xi[t+1]∈M

eij , (5.14)

which can be written as

∑
ij : Xj [t+1]→Xi[t+1]∈Is\M

eij <
∑

ij : Xj [t+1]→Xi[t+1]∈I∗\M

eij , (5.15)

where Is ∩M = M and I∗ ∩M = M .

However, as the same edges are removed from Is and from I∗ when doing Is \M and I∗ \M , respectively,

the correctness of Edmonds’ maximum branching algorithm, used in line 4 of Algorithm 5.1, allows concluding

that Eq. (5.15) stands incorrect, which shows that Bs cannot be sub-optimal, thus proving the optimality, in each

timestep t+ 1, of the sdtDBN learning algorithm, given the desired restrictions.
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Theorem 5.5 (Global optimality of sdtDBNs with restrictions). Algorithm 5.1, using Algorithm 5.3 instead of

Algorithm 5.2, finds a globally optimal sdtDBN including all desired restrictions.

Proof. The proof of Theorem 5.5 comes from showing that Theorem 5.2 remains valid when including restrictions.

Theorem 5.2 is proven by demonstrating that the parents found for nodes in a timestep t + 1 are not changed by

posterior iterations of Algorithm 5.1. Both Algorithms 5.2 and 5.3 provide, as output, the optimal sets of parents of

nodes in a certain timestep t+ 1, being the only difference that Algorithm 5.3 includes restrictions in the network.

Therefore, when applying Algorithm 5.1 using Algorithm 5.3 instead of Algorithm 5.2, the parents of nodes in a

timestep t + 1 remain unaffected by posterior iterations of Algorithm 5.1. Hence, as Theorem 5.4 already states

the optimality per timestep, Theorem 5.2 remains valid in the learning procedure with restrictions, thus proving

the global optimality of Algorithm 5.1 when using Algorithm 5.3 instead of Algorithm 5.2.

5.2.3 Complexity analysis of the learning algorithm with restrictions

Regarding the complexity analysis of the learning algorithm with restrictions, Theorem 5.3 still holds, because the

worst-case complexity scenario consists of a network without restrictions, in which case the learning algorithms

with and without restrictions have the same computational complexity.

To assess the influence of the restrictions in the complexity of Algorithm 5.3, as Algorithm 5.3 evaluates all

sets of parents of nodes in timestep t + 1 that respect the restrictions, it can be defined Zprev as the maximum

number of possible (respecting the restrictions) sets of dynamic parents from previous timesteps of the nodes in

timestep t+ 1, and Zstatic as the maximum number of possible (respecting the restrictions) sets of static par-

ents of the nodes in timestep t + 1. Relating Zprev and Zstatic with the given pseudocode of Algorithm 5.3,

Zprev = maxi{|allDynamicParentSetsi|}, whereas Zstatic = maxi{|allStaticParentSetsi|}.

The remaining elements of the computational complexity of Algorithm 5.3 remain equal to the ones described

in Section 5.1.3. In particular, the restrictions in the intra-slice connectivity do not reduce the complexity, as those

restrictions are introduced by biasing the weights eij , being all combinations of intra-slice relations analyzed in

Algorithm 5.3 (as happens in Algorithm 5.2). Therefore, if, in the analysis of Section 5.1.3, the complexities of

Eqs. (5.8) and (5.9) are replaced by, respectively, Zprev and Zstatic, Eq. (5.10) can be changed to

O(n)×O(n)×O(Zprev)×O(Zstatic)×O(|Dt+1
t+1−m| × (m+ 1)× n× |S| × nstatic × λb+p+2), (5.16)

which reflects the computational complexity of Algorithm 5.3 and can be succinctly written as

O(n3 × nstatic × Zprev × Zstatic ×m× λb+p+2 × |Dt+1
t+1−m| × |S|). (5.17)

To get the computational complexity of Algorithm 5.1 using Algorithm 5.3 instead of Algorithm 5.2, the same

reasoning explained in the transition from Eq. (5.11) to Eq. (5.12), in Section 5.1.3, can be applied. Defin-

ing Ndynamic and Nstatic as in Section 5.1.3, and defining Zprev and Zstatic as the upper-bounds on the values

that Zprev and Zstatic may take considering all timesteps of the for loop of Algorithm 5.1, the complexity of

Algorithm 5.1, using Algorithm 5.3 instead of Algorithm 5.2, can be described by

O(n3 × nstatic × Zprev × Zstatic ×m× λb+p+2 ×Ndynamic ×Nstatic). (5.18)
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As stated in the beginning of this Section, the worst-case complexity of the learning algorithm with restric-

tions and the learning algorithm without restrictions is the same. If there are no restrictions in the network, the

sets of parents evaluated in Algorithm 5.3 are the same as the ones tested in Algorithm 5.2. In this situation,

O(Zprev) = O((nm)p) and O(Zstatic) = O(nbstatic), which makes Eq. (5.18) the same as Eq. (5.12).

5.3 Inference in learned sdtDBNs

After generalizing tDBNs to sdtDBNs by introducing static attributes in the tDBN framework (as explained in

Section 5.1) and incorporating restrictions in the networks when learning the sdtDBNs (as presented in Section 5.2),

another main concern of the Thesis is to allow a user to make inference in a learned sdtDBN, so that a user can

employ the predictive mechanisms of the created sdtDBNs. Inference mechanisms are extremely useful in contexts,

such as this Thesis, of studying a disease progression, as they allow a user to predict the values of certain medical

indicators, based on a developed statistical model.

5.3.1 Inference algorithm

When making inference, the goal is to, given certain observations and the probability distributions of the learned

sdtDBN, estimate the probability distribution of a certain attribute in a certain timestep. Naturally, in this scenario,

the implicit independence assumptions of BNs and DBNs are used, in order for inference to be a feasible problem

and for the sdtDBN structure to actually be useful.

Notation and assumptions

To perform inference, an sdtDBN must be learned. Therefore, it is assumed that an sdtDBN was previously learned

from user data (see Sections 5.1 and 5.2). It is also assumed that there is a specific node, Xi[t], whose distribution

should be found (at the end of the Section, there is presented a generalization for when it is desired to learn the

distributions of multiple nodes). Finally, to perform inference, there are needed observations to address the several

CPTs. The static observations are denoted as staticObs, while the dynamic observations are represented as dynObs.

It is assumed that only a single subject is analyzed, which means that staticObs and dynObs only have a maximum

of one measurement per node. At the end of the Section, there is presented a generalization for situations where

there are given observations for several subjects, each one having its observations for each node.

Algorithm

According to the conditional independence assumptions of the DBN framework, there is only needed to know the

values of the parents of Xi[t] in the sdtDBN to determine the distribution of Xi[t]. Therefore, the first step of

the inference algorithm is to, from the sdtDBN structure, get the static and dynamic parents of Xi[t]. Given these

parents, there are three possible scenarios regarding the provided observations:

1. All static parents are given in staticObs and all dynamic parents are given in dynObs. In this situation,

all that is needed is to get the CPT of Xi[t] and address it with the values of the parents in staticObs and

dynObs, to get the proper distribution of Xi[t].
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2. Some static parents are not given in staticObs. In this situation, inference is not possible, because, in the

sdtDBN framework, static nodes do not have parents, so, an sdtDBN cannot provide CPTs with conditional

distributions of static nodes, thus not being possible to estimate the values of static nodes.

3. All static parents are given in staticObs, but some dynamic parents are not given in dynObs. In this

situation, the values of the parents not given in dynObs should be estimated using the sdtDBN structure. If

the estimation of at least one of the unknown parents is not possible, inference is not possible as in scenario 2.

If all parents can be estimated, the estimated values should be written in dynObs, leading to scenario 1.

The estimation of the value of a certain node Xj [t] using a provided sdtDBN and given observations is done

using a depth-first search (DFS) approach. For a nodeXj [t], all values of its parents should be checked in staticObs

and dynObs. If some dynamic parent Xk[t] does not have a value in dynObs, the parents of Xk[t] should be

checked to estimate Xk[t], recursively leading to a DFS approach. Therefore, when a certain node does not have

an observation, its parents are recursively checked, until there is a node for which all parents have values in

staticObs and dynObs, making it possible to estimate that node’s value. If, at an iteration of this process, some

attribute has static parents with unknown values, or the process would need to estimate the values of a node in one

of the initial m timesteps of the sdtDBN (for which there are no CPTs, because the sdtDBN is assumed to be an

mth-order Markov process), the algorithm concludes that there is no possible way of estimating the value of Xj [t],

as at least one needed node cannot be estimated.

Algorithm 5.4 presents an overview of the inference algorithm described, using Algorithm 5.5 to estimate

the values of the parents of node Xi[t] whose values are not provided in the given observations. Algorithm 5.5

implements the DFS approach previously explained using a stack data structure to store the nodes whose values

must be estimated. In a stack, PUSH means inserting a node at the top of the stack, POP means removing the node

from the top of the stack and PEEK means only checking which node is at the top of the stack, without removing it.

Inference given static and dynamic observations of several subjects

The previously given explanations of the inference algorithm are provided considering that inference is desired,

for a node Xi[t], given static and dynamic observations of a single subject/entity. In a more general situation, it

may be desired to make inference for several subjects, each having its own static and dynamic observations. In

that circumstance, instead of having staticObs and dynObs with a single dimension (for each node of the sdtDBN,

there is only given an observation of a single subject), staticObs and dynObs have M dimensions, being M the

total number of subjects for which inference in node Xi[t] should be made. The generalization of the inference

algorithm consists in applying Algorithm 5.4 for a total of M times, creating a loop where, in each iteration,

Algorithm 5.4 is applied using the staticObs and dynObs of a different subject, in order to cover all M subjects.

Inference for several nodes

The inference algorithm is presented assuming that it is only desired to make inference for a single node Xi[t].

In a more general context, it can be useful to make inference for each node among a certain set of nodes Xinf .

Assuming thatXinf has a cardinality of L nodes, the generalization of the inference algorithm is done by applying

Algorithm 5.4 for a total of L times, creating a loop where, in each iteration, Algorithm 5.4 is applied using a

different node Xi[t] ∈Xinf , in order to make inference for all nodes ofXinf .
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Algorithm 5.4: Distribution of node Xi[t] according to an sdtDBN structure and given observations.
Input :
• sdtDBN: sdtDBN structure and parameters learned from data (see Sections 5.1 and 5.2).
• Xi[t]: sdtDBN node whose distribution should be estimated.
• staticObs: static observations of the subject in which inference is being made.
• dynObs: dynamic observations of the subject in which inference is being made.

Output :
• distribution: estimated distribution of node Xi[t], according to the structure of the given sdtDBN

and the observations from staticObs and dynObs.

1 cpt← get CPT of node Xi[t] from sdtDBN structure
2 dynParents← get dynamic parents of node Xi[t] from sdtDBN structure
3 staticParents← get static parents of node Xi[t] from sdtDBN structure
4 for sParent in staticParents do
5 if sParent not in staticObs then
6 end inference as it is not possible
7 else
8 staticConfig(sParent)← staticObs(sParent)

9 for dParent in dynParents do
10 if dParent not in dynObs then
11 use Algorithm 5.5 to try to determine the value of dynObs(dParent) according to sdtDBN structure

12 if dParent not in dynObs then
13 end inference as it is not possible
14 else
15 dynConfig(dParent)← dynObs(dParent)

16 distribution← cpt(staticConfig, dynConfig)

Prediction of the trajectory of all nodes until a certain timestep

The generalization of the algorithm to make inference for every node Xi[t] ∈ Xinf can be put together with the

generalization to make inference given observations of M subjects. In that case, it is necessary a nested loop,

where the outer loop evaluates each of the L nodes of Xinf , while the inner loop evaluates each staticObs and

dynObs of the several M subjects.

If the goal is to predict the trajectory of all nodes Xi until a certain timestep T ′, it is necessary to add another

outer loop to the previously described nested loop, so that this added outer loop selects, in each iteration,Xinf as

the subset of all nodes of a certain timestep whose value is not yet estimated, starting at timestep T ′ and ending

at the timestep corresponding to the Markov lag, because only for timesteps bigger or equal than the Markov lag

there are transition networks (and corresponding conditional distributions) determined by the sdtDBN framework.

The procedure is illustrated in Algorithm 5.6.

5.3.2 Complexity analysis of the inference algorithm

Theorem 5.6 presents the computational complexity of the inference algorithm.

Theorem 5.6 (Computational complexity of inference in sdtDBNs). When making inference for a nodeXi[t] of an

sdtDBN with a maximum of p dynamic parents from previous timesteps and b static parents per node, Algorithm 5.4

has a worst-case complexity which is linear in b, polynomial in p and exponential in the timestep t.
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Algorithm 5.5: Estimation of the value ofXj [t] according to an sdtDBN structure and given observations.
Input :
• sdtDBN: sdtDBN structure and parameters learned from data (see Sections 5.1 and 5.2).
• Xj [t]: sdtDBN node whose value should be estimated.
• staticObs: static observations of the subject in which inference is being made.
• dynObs: dynamic observations of the subject in which inference is being made.

Output :
• Modified dynObs: if possible, the value of Xj [t] is estimated and written in dynObs and every value

needed to estimate Xj [t] is also estimated and written in dynObs.

1 stack← initialize an empty stack to store the sdtDBN nodes whose values must be estimated
2 stack.PUSH(Xj [t])
3 while stack is not empty do
4 currNode← stack.PEEK(top of stack)
5 if currNode does not have parents in the sdtDBN then
6 end algorithm because inference is not possible

7 if currNode already has value determined in dynObs then
8 stack.POP()
9 continue

10 currDynParents← get dynamic parents of node currNode from sdtDBN structure
11 currStaticParents← get static parents of node currNode from sdtDBN structure
12 for sParent in currStaticParents do
13 if sParent not in staticObs then
14 end algorithm because inference is not possible

15 allParentsSpecified = true
16 for dParent in currDynParents do
17 if dParent not in dynObs then
18 stack.PUSH(dParent)
19 allParentsSpecified = false

20 if allParentsSpecified == false then
21 continue
22 stack.POP()
23 for sParent in currStaticParents do
24 staticConfig(sParent)← staticObs(sParent)

25 for dParent in currDynParents do
26 dynConfig(dParent)← dynObs(dParent)

27 cpt← get CPT of node currNode from sdtDBN structure
28 distribution← cpt(staticConfig, dynConfig)
29 dynObs(currNode)← randomly estimate a value for currNode using the probabilities of distribution

Proof of Theorem 5.6. In the worst-case scenario, every node of the sdtDBN has p dynamic parents from the

timestep immediately before, b static parents and one parent from the same timestep (except for the root node of

each timestep), and only the dynamic nodes in the first m timesteps have observations, being m the Markov lag of

the sdtDBN (these nodes must have observations for inference to be assured). All static attributes must also have

the proper observations, for inference to always be possible.

Starting with node Xi[t] in Algorithm 5.4, it has p dynamic parents from the previous timestep that need to

be estimated. When calling Algorithm 5.5 for a parent of Xi[t], that parent will have p dynamic parents from the

previous timestep to be estimated, each one also having p parents from the previous timestep to be estimated. This

situation is repeated until reaching timestepm, where all nodes have all their parents with observations. Therefore,
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Algorithm 5.6: Prediction of the trajectory of all nodes until a certain timestep of an sdtDBN.
Input :
• sdtDBN: sdtDBN structure and parameters learned from data (see Sections 5.1 and 5.2), with Markov

lag m.
• T ′: the timestep until which all nodes’ values should be estimated.
• staticObs[M ]: static observations of the M subjects in which inference is being made.
• dynObs[M ]: dynamic observations of the M subjects in which inference is being made.

Output :
• Modified dynObs: all nodes’ values are estimated and the estimations are written in dynObs.

1 currTimestep← T ′

2 while currTimestep ≥ m do
3 Xinf ← all Xi[currTimestep] that do not have a value specified in at least one subject of dynObs
4 for currNode inXinf do
5 for dObs in dynObs do
6 if dObs(currNode) does not have a value specified then
7 sObs← observations of staticObs corresponding to the same subject of dObs
8 distribution← call Algorithm 5.4 with (sdtDBN, currNode, sObs, dObs)
9 dObs(currNode)← estimate dObs(currNode) using the probabilities of distribution

10 currTimestep← currTimestep −1;

a maximum of
∑t−1−m
k=0 pk nodes can be put in the stack of Algorithm 5.5. In this counting, the fact that nodes

have one parent from the same timestep can be discarded from the analysis, considering that, for every node, its

parents from previous timesteps are given in a topological ordering, as, in that case, the parent of each node from

the same timestep is certainly already determined, according to Algorithms 5.4 and 5.5.

As Algorithm 5.5 is called p times by Algorithm 5.4, the number of parents put in all stacks created by calling

Algorithm 5.5 a total of p times has complexity

O(p)×O

(
t−1−m∑
k=0

pk

)
= O(p)×O

(
1− pt−m

1− p

)
≈ O(pt−m). (5.19)

For each node analyzed in Eq. (5.19), all p dynamic parents, b static parents and the dynamic parent from the

same timestep should be checked to address the proper CPT, leading the overall complexity of Algorithm 5.4 to be

O(pt−m)×O(p+ b+ 1) ≈ O(pt−m+1 + bpt−m). (5.20)

Although it is only presented Theorem 5.6 for the computational complexity of Algorithm 5.4, the complexity

expressed by Eq. (5.20) can be extended to the generalizations provided in Section 5.3.1. These extensions are

straightforward, as the generalizations consist in applying Algorithm 5.4 in loops. Therefore, the complexity of

the generalization of Algorithm 5.4 to the situation where there are given observations of M subjects is

O(M)×O(pt−m+1 + bpt−m) = O(Mpt−m+1 +Mbpt−m), (5.21)

while the complexity of the generalization where there are L nodes in which inference should be made is

O(L)×O(pt−m+1 + bpt−m) = O(Lpt−m+1 + Lbpt−m). (5.22)
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Regarding the prediction of the trajectory of all nodes until a certain timestep T ′, the computational complexity

can be determined from Algorithm 5.6 using the complexity of Algorithm 5.4, given by Eq. (5.20), leading to an

overall complexity represented as

O(T ′ −m+ 1)×O(n)×O(M)×O(pT
′−m+1 + bpT

′−m), (5.23)

which can also be written as

O((T ′ −m+ 1)nMpT
′−m+1 + (T ′ −m+ 1)nMbpT

′−m), (5.24)

where n is the number of attributes per timestep of the sdtDBN and the remaining parameters are as already

previously defined in this Section.

5.4 Available implementations

The sdtDBN framework, presented in Section 5.1.1, the inclusion of restrictions in the networks, explained in Sec-

tion 5.2.1 and the inference capabilities, detailed in Section 5.3.1, are implemented in Java, being the source code

available at https://github.com/ttlion/sdtDBN_code. The provided implementation is an extension

of the tDBN framework, with several classes and methods redefined and new classes and methods created to in-

troduce static attributes in the sdtDBNs. It allows learning DBNs with static and dynamic attributes (sdtDBNs) or

only with dynamic attributes (tDBNs), inserting restrictions when learning the networks if desired, and performing

inference for several nodes, given observations of multiple subjects.

The sdtDBN program is released under the Apache License 2.0. It is possible to obtain the latest executable

version of the program (provided as a JAR file) at https://ttlion.github.io/sdtDBN, where there are

also given examples detailing how to insert the inputs of the program and interpret the several outputs.
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Chapter 6

Intuitive graphical interface

6.1 Importance of a graphical interface in this Thesis’ context

As explained in Chapter 1, this Thesis concerns the employment of data mining techniques to study medical data

(in particular, ALS data, see Chapters 1 and 2). Therefore, after developing the sdtDBNs (see Chapter 5), there

is the need of making the usage of the sdtDBNs available, in an intuitive manner, to general users that, like most

clinicians, may not be computer science or data mining experts.

Providing doctors with a tool for them to use the sdtDBNs themselves is of extreme importance, as it gives

doctors the possibility of having a statistical indicator to help them make decisions regarding current patients,

instead of only performing posterior analyses with the help of data mining experts.

One of the most intuitive ways of providing a user with the ability to manage a program is through a graphical

interface, so that the end user does not need to learn any programming language, nor to work with the command

line, to use the created program. This Chapter details the developed graphical user interface (GUI), for a user to be

able to exploit all capabilities of sdtDBNs only through graphical interactions.

6.2 Overview of the developed GUI

The developed GUI is composed by seven tabs, which give the user the ability to employ the several potentialities

of the sdtDBN framework, presented in Chapter 5. Fig. 6.1 shows the graphical display of the first tab of the GUI.

Throughout the explanations of this Chapter, the tabs of the GUI are identified by their position in the selection

menu at the top of the GUI, being this selection menu always displayed as presented at the top of Fig. 6.1. The tab

Learn DBN from data is denoted as the first tab, the tab Predictions for many IDs is identified as the seventh

tab and the intermediate tabs are represented accordingly.

All tabs of the GUI have a display similar to Fig. 6.1, having each tab its specific options, to perform the proper

actions. The general workflow of the GUI is as follows:

1. The user must employ either the first tab or the second tab to learn an sdtDBN. The first tab learns an sdtDBN

from observations, whereas the second tab retrieves an already learned sdtDBN, stored in a file. The sdtDBN

learned in one of these tabs is the one used in the remaining tabs of the GUI.
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Figure 6.1: Screenshot of the first tab of the GUI.

2. The third tab allows a user to get the graphical representation of a learned sdtDBN.

3. In the fourth tab, the user must introduce the observations that should be used for making inference, which

can then be made in the fifth tab, the sixth tab or the seventh tab, in the following way:

(a) The fifth tab allows a user to estimate the probability distribution of a specific attribute in a particular

timestep, given the data of a certain subject.

(b) In the sixth tab, a user can predict the progression of either all attributes or a particular attribute until a

defined timestep, given the data of a certain subject.

(c) Predictions for several subjects can be made using the seventh tab.

Section 6.3 presents a detailed explanation of each tab’s functioning, relating each tab with the proper Section

of Chapter 5.

6.3 Details on each tab of the GUI

In this Section it is explained the functioning of each tab of the GUI. As the general display of the GUI is already

given in Fig. 6.1, there is only provided a textual overview regarding each tab’s functioning. The reader may check

https://ttlion.github.io/sdtDBNsGUI for examples that show the display and usage of the several

tabs of the GUI, together with the format of the multiple input files.
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First tab: learning an sdtDBN from observations

The first tab (see Fig. 6.1) learns an sdtDBN from input observations, using the learning algorithm of the sdtDBNs,

explained in Section 5.1.1, and also providing the user with the capability of inserting restrictions in the learned

network, as presented in Section 5.2.1. Therefore, this tab uses Algorithm 5.1, which also employs either Algo-

rithm 5.2 (if no restrictions are given) or Algorithm 5.3 (if there are given restrictions). Table 6.1 illustrates how

each input of Algorithms 5.1, 5.2 and 5.3 is extracted from the user’s input in the first tab.

Table 6.1: Relation between the inputs of Algorithms 5.1, 5.2 and 5.3 and the inputs of the first tab of the GUI.

Input of Algorithms
5.1, 5.2 or 5.3 User’s input in the first tab of the GUI

D File inserted by the user in the GUI, having the dataset with dynamic observations
X Attributes retrieved from the input dataset with dynamic observations
T Maximum timestep of the input dataset with dynamic observations
S File inserted by the user in the GUI, having the dataset with static observations
Y Attributes retrieved from the input dataset with static observations

MPT,FPT,MST,
FST,MS,FS

Each type of restriction has its respective input file in the GUI, for the user to select
to which nodes of the sdtDBN each type of restriction should be applied

φ

Directly selected by the user in the GUIm

p

b

If the user chooses to only introduce dynamic observations, the GUI will learn a tDBN [25, 69], only with

dynamic attributes. If the user does not introduce any restriction in the network, Algorithm 5.2 is used in each

iteration of Algorithm 5.1, otherwise, it is Algorithm 5.3 the one used in each iteration of Algorithm 5.1 (see

Sections 5.1 and 5.2 for more details). The first tab also allows the user to select whether to learn a stationary or

a non-stationary sdtDBN (see the stationary version of the learning algorithm, presented in Section 5.1.1). The

learned sdtDBN is stored in a file for future use and is provided to the remaining tabs of the GUI.

Second tab: retrieving an sdtDBN stored in a file

As stated in the first tab’s explanation, a learned sdtDBN is stored in a file. In this second tab, the user can select a

file with a stored sdtDBN, so that it can be used in the remaining tabs of the GUI.

Third tab: getting the graphical representation of an sdtDBN

The third tab simply provides the graphical representation of the sdtDBN learned in the first tab or the second tab.

Fourth tab: inserting the observations that will be used for making inference in an sdtDBN

In the fourth tab, the user should introduce two input files: (i) the first file should be a dataset with dynamic

observations, for several subjects; (ii) the second file should be a dataset with static observations, for the same

subjects for which there are dynamic observations in the first file.

The dynamic and static observations should be given for the attributes of the sdtDBN learned in either the first

tab or the second tab. The introduced datasets will be used for making inference in the fifth tab, the sixth tab and

the seventh tab, in particular to get the staticObs and dynObs of Algorithms 5.4, 5.5 and 5.6, from Section 5.3.1.
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Fifth tab: estimating the distribution of a selected attribute in a certain timestep, for a defined subject

The fifth tab uses the ability presented in Algorithms 5.4 and 5.5 of Section 5.3.1, which allows estimating the

distribution of an attribute of an sdtDBN in a certain timestep, given the observations of a subject. Table 6.2

illustrates how each input of Algorithms 5.4 and 5.5 is extracted from the user’s input in the fifth tab.

Table 6.2: Relation between the inputs of Algorithms 5.4 and 5.5 and the inputs of the fifth tab of the GUI.

Input of Algorithms
5.4 or 5.5 User’s input in the fifth tab of the GUI

sdtDBN File with the sdtDBN already learned in either the first tab or the second tab
Xi[t] Xi and t are both directly selected by the user in the GUI

staticObs User selects the desired subject in the GUI. The program automatically gets the
proper staticObs and dynObs, from the observations inserted in the fourth tabdynObs

The fifth tab only allows a user to select subjects whose observations are in the files inserted in the fourth tab. To

change some subject’s observations or add observations for a new subject, the user should submit new observation

files in the fourth tab. This approach allows the fifth tab to be intuitive, presenting to the user all subjects in which

inference can be made, instead of forcing the user to remember exactly how each subject is identified.

For every subject a user can choose in the fifth tab, there may be estimated the distributions of several attributes

in different timesteps, by using multiple times the fifth tab. As the learned sdtDBN is stored in a file, the compu-

tational complexity in this situation is the complexity of applying Algorithm 5.4 several times, as the sdtDBN is

only learned once. To change the sdtDBN being used, the user must return to either the first tab or the second tab.

Sixth tab: predicting the progression of one or all attributes, for a defined subject

The sixth tab uses the generalization of Algorithm 5.4 for several nodes, which consists in applying Algorithm 5.4

multiple times, for each desired node (see Section 5.3.1). According to the user’s input, there are selected the proper

nodes needed to estimate the desired progression, given a certain subject’s observations. Regarding the possible

subjects and the sdtDBN used in this tab, it is valid the same reasoning presented in the explanation of the fifth tab.

The user should specify a maximum timestep T and a dynamic attributeXj of the sdtDBN. Then, Algorithm 5.4

is applied for all timesteps until T . The inputs of Algorithms 5.4 and 5.5 are obtained from the GUI as described in

Table 6.2, being the only difference in the Xi[t] input, which in the sixth tab is always the Xj attribute previously

mentioned, with the timestep t varying from 0 to T (in the sixth tab, the user selects the Xj and T , instead of

selecting the Xi and t presented in Table 6.2). The user can also choose to determine the progression of all

attributes until a specified timestep T . In that case, the previous process is done for all dynamic attributes of the

sdtDBN, instead of just for a particular attribute Xj .

In both situations previously described, the user can select if the GUI should provide an estimation of the

probability distribution or an estimation of the value of each node. When estimating the values of the several

nodes, the user can choose whether to always present the most probable value given a node’s distribution or to

randomly determine each node’s value using its probability distribution.
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Seventh tab: making predictions for several subjects

The seventh tab allows a user to apply the generalizations, for multiple subjects, of the inference algorithm pre-

sented in Section 5.3.1. The seventh tab is composed by the attribute inference and the progression until timestep

modes.

In the attribute inference mode, the user can exploit the generalization of Algorithm 5.4 for several nodes and

several subjects (presented in Section 5.3.1). This is done by using a similar reasoning for the tab’s inputs as the

one expressed in Table 6.2. The two differences in the seventh tab are the following: (i) instead of specifying a

node Xi[t] as in Table 6.2, the user should give, in this seventh tab, a file specifying the multiple nodes in which

inference must be made; (ii) regarding the staticObs and dynObs, the user does not select a specific subject as

presented in Table 6.2, being inference made for all subjects in the observation files inserted in the fourth tab.

In the progression until timestep mode, the user can employ the generalization given by Algorithm 5.6 regarding

the inference procedure (see Section 5.3.1). Table 6.3 illustrates how each input of Algorithm 5.6 is extracted from

the user’s input in the seventh tab.

Table 6.3: Relation between the inputs of Algorithm 5.6 and the inputs of the seventh tab of the GUI.

Input of
Algorithm 5.6 User’s input in the seventh tab of the GUI

sdtDBN File with the sdtDBN already learned in either the first tab or the second tab
T ′ Directly selected by the user in the GUI

staticObs[M ] Files with dynamic and static observations introduced in the fourth tab.
The value of M is inferred by the number of subjects in these filesdynObs[M ]

6.4 Available implementations

The developed GUI, presented in Sections 6.2 and 6.3, is implemented in Python, being the source code available

at https://github.com/ttlion/sdtDBNsGUI_code. The implementation of the GUI is done using

Python’s tkinter package to generate the graphical display.

The latest version of the sdtDBNs GUI is available at https://ttlion.github.io/sdtDBNsGUI,

where there are provided examples explaining the inputs and outputs of each tab, together with the proper display of

the GUI in each situation. There are also available, in the aforementioned website, executable standalone versions

of the GUI, for Windows and for Linux, so that a user does not need to install Python to use the GUI (most users

may not be computer science experts). The standalone versions of the GUI were created using PyInstaller.

As the GUI uses the sdtDBN framework presented in Chapter 5, the executable version of the sdtDBNs (see

Section 5.4) is always provided with all distributions of the GUI, for the GUI to work properly.
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Chapter 7

Assessment of Portuguese ALS Dataset

7.1 Data preprocessing

As already stated in Chapter 2, the sdtDBNs created to study ALS disease progression are obtained using data

from a pretreated version of the March 2020 update of the Portuguese ALS dataset. For simplicity, this pretreated

version is referred as the “ALS dataset” throughout the whole Chapter 7. Although already pretreated, the dataset

used still needed some preprocessing, to be in the proper format for learning the sdtDBNs. The preprocessing done

to the dataset is explained in this Section. The static and dynamic features of the ALS dataset must be preprocessed

in a distinct way, because the dynamic data has the additional temporal component and should be separated into

several sub-datasets, to learn sdtDBNs in interesting contexts.

The preprocessing of the static variables of the ALS dataset consists in selecting the proper features and dis-

cretizing them. The selection is done by eliminating the features with high percentage of missing values. The

discretization is done by grouping the values of each feature into several classes, proposed by clinical experts. The

static features selected from the ALS dataset and their discretization are presented in Table 7.1.

Table 7.1: Selection and discretization of the static features of the dataset. The missing values are measured over
the 1214 patients of the dataset.

Feature Missing
values (%) Selected? Discretization (displayed as label: respective elements)

Gender 0,00 Yes 1: male; 2: female
BMI 23,06 Yes 1: [0,20[; 2: [20,25[; 3: [25,30[; 4: [30,+∞[

Familiar history
MND 7,91 Yes 1: yes; 2: no; 3: unknown

Age at onset
(years) 0,25 Yes 1: [0,30[; 2: [30,50[; 3: [50,70[; 4: [70,+∞[

Disease duration
(months) 0,99 Yes 1: [0,6]; 2: ]6,12]; 3: ]12,18]; 4: ]18,36]; 5: ]36,+∞[

El Escorial
reviewed criteria 11,45 Yes 1: definitive; 2: probable;

3: possible; 4: progressive muscular atrophy
UMN vs LMN 52,55 No Variable not selected due to the high number of missing values

Onset form 0,08 Yes 1: spinal; 2: bulbar; 3: respiratory/axial;
4: mixed; 5: frontotemporal degeneration

C9orf72 0,00 Yes 1: yes; 2: no; 3: unknown
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The preprocessing of the dynamic variables of the ALS dataset has multiple steps, to generate several sub-

datasets, useful for learning sdtDBNs in different scenarios. An overview of the preprocessing steps applied to the

dynamic variables is presented in Fig. 7.1, being each step described in the following paragraphs.

Dynamic
data	of	the
ALS	dataset

Data	
before	NIV

Data	with
questions

Data	with
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Data	filled
using	
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Data	filled
using	linear
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Preprocessing	steps	included:
			1.	Division	of	the	data	of	each	patient	according	to	the	consultation	date	and	the	NIV	date.

			2.	Creation	of	time-series,	from	patients'	snapshots.
			3.	Feature	selection.
			4.	Fill	of	missing	data.

			5.	Removal	of	any	patient	still	with	missing	data.
			6.	Discretization.

			7.	Split	using	a	5-fold	cross-validation	approach.

1

Figure 7.1: Overview of the preprocessing of the dynamic features of the ALS dataset.

Step 1: dataset division into data before and after NIV

As the application of non-invasive ventilation (NIV) to a certain patient has an important influence in his evolution,

clinicians completely distinguish the progression of a patient before and after NIV being applied. Therefore, the

dynamic data must be divided, in order to obtain the datasets before NIV and after NIV.

Splitting the data into before and after NIV is simple, because the dataset stores the date of the consultation

where each measurement was done, and also stores the date when NIV was applied to each patient. Patients to

which NIV has not been applied (without NIV date in the dataset) have all their data in the dataset before NIV.

Step 2: from patients’ snapshots to time-series

The ALS dataset contains patients’ snapshots, which provide the measurements of each consultation of every pa-

tient (the consultations’ dates are also given). These patients’ snapshots must be converted to time-series, because

the interval between two consecutive consultations of a certain patient is not always the same, but the sdtDBN
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framework describes data provided as time-series, with a constant interval between two consecutive timesteps.

The snapshots of each patient are converted to time-series by assuming that the interval between any two

consecutive consultations is always three months (this value was obtained with the help of ALS doctors). The

conversion is done as follows. For a certain patient, timestep 0 has the data of his first consultation, timestep 1

has the data of his consultation three months after the first consultation, timestep 2 has the data of his consultation

six months after the first consultation, and the remaining timesteps of that patient are determined with the same

reasoning, until the data of the last consultation of the patient is used. If the patient does not have a consultation in

the month corresponding to a certain timestep, the data from the nearest consultation is used in that timestep. The

previous procedure is done for all patients, to convert the whole dataset from patients’ snapshots to time-series.

Step 3: feature selection

The ALS dataset provides the questions of the ALS-FRS-R scale and the sub-scores of this scale, which are sums

of specific questions (see Chapter 2). If all these variables were used for learning a unique DBN, the DBN would

learn the relations between a certain sub-score and the questions that compose it, which is not useful. To avoid this

phenomenon, the dynamic features are separated into a sub-dataset containing only the sub-scores and a sub-dataset

containing only the questions. The remaining dynamic features (see Table 2.1) are used in both sub-datasets.

Some features must be removed from the dataset, due to having an excessive number of missing values, or not

being useful for a specific reason. This selection was done with the help of clinical experts. Table 7.2 presents

the feature selection performed, also showing the discretization of each dynamic feature (the discretization is only

done in step 6, for the reason mentioned in the explanation of step 6).

Steps 4 and 5: fill of missing data and posterior removal of patients

Having each dataset with the proper features, the missing values must be filled. To improve the reliability of the

results, there are generated two datasets from each of the four datasets obtained until step 4 (see Fig. 7.1), one

filling data using LOCF (see Section 4.1.1) and the other using linear interpolation.

When using LOCF, two iterations are performed. The first iteration is the usual LOCF, filling an unknown value

with the respective value from the previous timestep of the proper patient. The second is a backwards iteration,

where a value still unknown is filled with the respective value from the immediately posterior timestep. This

backwards iteration follows the same temporal idea as the usual LOCF (see Section 4.1.1), and guarantees that the

data of a feature is also filled in situations where the initial timesteps are unknown, but the remaining are known.

After filling a dataset, either with LOCF or with interpolation, a patient only has a variable with missing values

if there is not any measurement for that variable in all timesteps of the time-series of that patient. As the sdtDBN

framework cannot properly learn an sdtDBN using a time-series where a variable does not have any observation,

the patients still with any missing value in any variable after filling a certain dataset are removed from that dataset.

The removal of patients can be significant, because the number of missing values of some variables is relatively

high (see Table 7.2). The number of patients in each of the first nine timesteps of the datasets obtained after step 3

and after step 5 is provided in Table 7.3, which only presents counts for the datasets before and after NIV, as the

division into sub-scores and questions (done in step 3) does not change the number of patients of a dataset, and the

number of patients eliminated from a dataset is the same when filling with LOCF or interpolation.
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Table 7.2: Selection and discretization of the dynamic features of the dataset. The missing values are measured
over the 5919 and the 3353 patients’ consultations (converted to time-series) of, respectively, the datasets before
and after NIV. In the “Selected?” column, A and B denote the datasets before NIV using, respectively, sub-scores
and questions, while C and D denote the datasets after NIV using, respectively, sub-scores and questions.

Feature
Missing values (%)

Selected? Discretization
(displayed as label: respective elements)Before NIV After NIV

ALS-FRS 9,34 4,06 Yes, A and C 1: {0,1,. . . ,11}; 2: {12,13,. . . ,23};
3: {24,25,. . . ,35}; 4: {36,37,. . . ,40}

ALS-FRS-R 12,72 5,58 No Variable not selected because it is the sum
of all sub-scores (unnecessary)

ALS-FRSb 9,43 4,15 Yes, A and C 1: {0,1,2,3}; 2: {4,5,6,7};
3: {8,9,10,11}; 4: {12}

ALS-FRSsUL 10,66 4,21 Yes, A and C 1: {0,1,2,3}; 2: {4,5,6,7};
3: {8,9,10,11}; 4: {12}

ALS-FRSsLL 10,66 4,41 Yes, A and C 1: {0,1,2,3}; 2: {4,5,6,7};
3: {8,9,10,11}; 4: {12}

ALS-FRSr 10,64 4,35 No Variable not selected because P10 has the
same information

R 11,67 5,85 Yes, A and C 1: {0,1,2,3}; 2: {4,5,6,7};
3: {8,9,10,11}; 4: {12}

Each question of
ALS-FRS

(P1, . . . , P10)
∼ 10,50 ∼ 4,00 Yes, B and D 1: {0}; 2: {1}; 3: {2}; 4: {3}; 5:{4}

Each question of
R (R1, R2, R3) ∼ 13,00 ∼ 6,00 Yes, B and D 1: {0}; 2: {1}; 3: {2}; 4: {3}; 5:{4}

VC 56,39 86,04 No Variable not selected because FVC has
similar information

FVC 54,57 85,71 Yes, A and B 1: [0,40[; 2: [40,60[;
3: [60,80[; 4: [80,100]

MIP 59,35 86,67 Yes, A and B 1: [0,40[; 2: [40,60[; 3: [60,100]

MEP 59,50 86,76 Yes, A and B 1: [0,40[; 2: [40,60[;
3: [60,80[; 4: [80,100]

P0.1 73,81 88,52 No Variable not selected due to the high
number of missing values

SNIP 87,62 98,99 No Variable not selected due to the high
number of missing values

PhrenMeanLat 61,19 91,56 No Variable not selected because
PhrenMeanAmpl has similar information

PhrenMeanAmpl 61,14 91,56 Yes, A and B 1: [0; 0,4[; 2: [0,4;+∞[

CervicalFlex 89,44 98,90 No Variable not selected due to the high
number of missing values

CervicalExt 89,46 98,90 No Variable not selected due to the high
number of missing values

Table 7.3: Number of patients per timestep, for each dataset obtained after steps 3 and 5 of Fig. 7.1.

Dataset Timestep
0 1 2 3 4 5 6 7 8

Before NIV After step 3 of Fig. 7.1 1177 794 608 471 392 310 241 203 164
After step 5 of Fig. 7.1 685 581 463 374 313 250 194 162 128

After NIV After step 3 of Fig. 7.1 598 442 368 305 239 191 160 135 111
After step 5 of Fig. 7.1 567 428 359 299 234 187 156 131 110
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Step 6: discretization

After filling all variables (step 4) and removing the proper patients from each dataset (step 5), the dynamic features

should be discretized. The discretization is only done after filling the missing data, because, in the datasets where

the data is linearly interpolated, the interpolation should be done using the real data, instead of the labels of the

discretization. The several dynamic features of the ALS dataset are discretized as already presented in Table 7.2.

Step 7: generation of training and testing sets using stratified 5-fold cross-validation

The last preprocessing step consists in generating training and testing sets. For every dataset obtained until step 7,

five training sets (and proper testing sets) are obtained, using 5-fold cross-validation. This cross-validation is

stratified for each dataset, using as stratification class the length of the several time-series of the respective dataset.

Therefore, the training sets obtained from each dataset have a similar number of time-series of each length.

The stratification class is the length of the time-series because, in the datasets before NIV, it indicates the kind

of progression of a patient until needing NIV, whereas, in the datasets after NIV, it is an indicator of a patient’s

survival time after NIV being applied. As these indicators can distinguish the several kinds of patients, using the

length of the time-series as stratification class allows learning each sdtDBN using different kinds of patients.

After generating the training and testing sets with dynamic data as previously explained, the respective training

and testing sets with static data must be obtained. For a certain training/testing setD with dynamic data, the proper

set with static data is obtained by selecting, from the whole static dataset (with the features selected and discretized

as shown in Table 7.1), only the static data of the patients whose dynamic data is in the set D.

7.2 Study of the whole ALS dataset

After preprocessing the dataset and obtaining the proper training sets (see Section 7.1), there are learned sdtDBNs

to study the progression of ALS patients. As the sdtDBNs are probabilistic models, the first analysis, presented

in Section 7.2.1, consists in learning sdtDBNs with the training data and evaluating the performance of the model

when predicting the values of certain variables, using the learned sdtDBNs and the testing data.

However, a major advantage of sdtDBNs is their graphical representation of the conditional dependencies

among variables, which is not considered when only making predictions of the values of variables. To exploit this

graphical representation of sdtDBNs, the second analysis, presented in Section 7.2.2, graphically determines the

influence each variable has in each timestep, whereas the third analysis, presented in Section 7.2.3, graphically

assesses the correlations among variables throughout the disease progression.

Two general considerations must be presented regarding Sections 7.2.1, 7.2.2 and 7.2.3.

The first consideration is that, in all assessments, there are learned sdtDBNs in the four scenarios presented in

Fig. 7.1, being the learned sdtDBNs denoted as: (i) sdtDBNs before NIV with questions; (ii) sdtDBNs before NIV

with sub-scores; (iii) sdtDBNs after NIV with questions; (iv) sdtDBNs after NIV with sub-scores. As shown in

Fig. 7.1, each scenario is composed by 10 training sets (and respective testing sets), five filled using LOCF and

five filled using linear interpolation. As Section 7.1 already addresses the creation of the training and testing sets,

the remaining of Chapter 7 focuses on the four mentioned scenarios, only mentioning if, in each situation, all 10

training and testing sets are used, or only a subset of these training and testing sets is used.
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The second consideration is that all learned sdtDBNs have nine timesteps, from timestep 0 to 8. As the interval

between consecutive timesteps is three months (see Section 7.1), the sdtDBNs before NIV allow studying the

progression of ALS patients during two years before NIV being applied, whereas the sdtDBNs after NIV allow

studying the progression of ALS patients during two years after NIV being applied.

7.2.1 Prediction of the variables’ values

To assess the predictive capabilities of sdtDBNs, there are learned sdtDBNs using training data in the four scenarios

presented in Section 7.2, being the models’ performance evaluated with the respective testing data. Each scenario

has 10 training sets and the respective testing sets. In the following explanations, a training set with dynamic data

(see Fig. 7.1) is denoted as Dtrain, the respective testing set with dynamic data is denoted as Dtest, the static data

of the patients in Dtrain is denoted as Strain, and the static data of the patients in Dtest is denoted as Stest.

As the goal is to make predictions, there are learned stationary sdtDBNs, to get reliable parameters, consid-

ering that the quantity of training data is relatively low (see Table 7.3). As stated in Section 7.2, the maximum

timestep of the sdtDBNs is 8. To avoid overfitting the training data and for the learning procedure to be done in

reasonable time, the sdtDBNs have, using the notation of Chapter 5, m = 1, p = 2 and b = 1. The previous

combination of parameters is used to learn sdtDBNs that maximize the LL score or the MDL score. Therefore,

each {Dtrain, Strain} is used to learn two sdtDBNs, being all learned sdtDBNs presented in Table 7.4.

Table 7.4: Number of sdtDBNs learned to make predictions in each scenario. Each set of 10 sdtDBNs concerns
the 10 training sets of each scenario (five filled using LOCF and five filled using linear interpolation).

Structure of the learned
stationary sdtDBNs

Scenario
Before NIV After NIV

Sub-scores Questions Sub-scores Questions
{m = 1, p = 2, b = 1, T = 8} + LL 10 10 10 10
{m = 1, p = 2, b = 1, T = 8} + MDL 10 10 10 10

To assess the performance of an sdtDBN learned using a certain {Dtrain, Strain}, there are predicted values

of variables using the learned sdtDBN and the respective {Dtest, Stest}, being these predictions done for every

variable in every timestep. As an important goal in ALS is to study the functional decline of patients, in the

scenarios with sub-scores the predicted variables are the sub-scores, while in the scenarios with questions the

predicted variables are the questions. To evaluate the predictions made using the learned sdtDBNs, the three used

metrics are the accuracy, the sensitivity and the area under the curve (AUC), which are calculated for the predictions

of every variable in every timestep, using the sdtDBNs determined in each scenario (see Table 7.4).

Considering all sdtDBNs learned in a certain scenario W , and considering some variable A in a timestep t, the

accuracy of the predictions of A[t] done by all sdtDBNs learned in scenario W is determined as follows. For a

certain sdtDBN learned in scenario W from training data {Dtrain, Strain}, the value of A[t] is estimated for each

patient of the respective {Dtest, Stest}, being the estimation either correct or incorrect. This procedure is done for

every sdtDBN learned in scenario W , being the accuracy of the predictions of A[t] using all sdtDBNs learned in

scenario W given by

accuracy =
Number of correct predictions of A[t] using all sdtDBNs learned in scenario W
Total number of predictions of A[t] using all sdtDBNs learned in scenario W

. (7.1)
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Considering again all sdtDBNs learned in a scenarioW (see Table 7.4), and a certain variableA in a timestep t,

the sensitivity and the AUC of the predictions of A[t] done by all sdtDBNs learned in scenario W are determined

as follows. First, Q1 is determined, which is the first quartile of the values of A[t], considering the values of

all patients in all testing sets in scenario W . Then, for a certain sdtDBN learned in scenario W from training

data {Dtrain, Strain}, the value of A[t] is estimated for each patient of the respective {Dtest, Stest}, being each

estimation of A[t] classified according to Table 7.5.

Table 7.5: Classification of an estimation, done using an sdtDBN learned from training data {Dtrain, Strain} in a
scenario W , of the value of a variable A[t], for a certain patient in the corresponding testing data {Dtest, Stest}.
Q1 is the first quartile of the values of A[t], considering the values of all patients in all testing sets of scenario W .

Estimation of A[t] ≤ Q1 Estimation of A[t] > Q1

Correct value of A[t] in Dtest ≤ Q1 True positive (TP) False negative (FN)
Correct value of A[t] in Dtest > Q1 False positive (FP) True negative (TN)

The previous procedure is done for every sdtDBN learned in scenario W , classifying each estimation of A[t]

according to Table 7.5. Having the total number of TP, FN, FP and TN for predictions of A[t] done with sdtDBNs

learned in scenarioW , the sensitivity of the predictions ofA[t] using all sdtDBNs learned in scenarioW is given by

sensitivity =
Total number of TP in the predictions of A[t] using all sdtDBNs learned in scenario W

Total number of TP+FN in the predictions of A[t] using all sdtDBNs learned in scenario W
. (7.2)

With the total number of TP, FN, FP and TN determined, it is also possible to obtain the AUC, which is the

area under the receiver operating characteristic (ROC) curve. The ROC curve is a plot which takes into account

the true positive rate and the false positive rate.

The motivation for using the sensitivity and the AUC should be addressed. As can be seen in the discretiza-

tion presented in Table 7.2, the labels of the sub-scores and the labels of the questions are ordered by functional

capability: for every sub-score, the lowest label contains the lowest functional capabilities, the highest label con-

tains the highest functional capabilities and the intermediate labels are ordered accordingly. The same is valid for

the ALS-FRS-R questions. The reasoning for using the sensitivity and the AUC is based on the clinical goal of

correctly determining when the functional capabilities of a patient will get bellow a certain threshold. Using the

ordering of the labels,Q1 (which is determined as already explained) can be used to represent this threshold (adapt-

ing the threshold to each variable in each timestep), and the mentioned clinical goal can be achieved by assessing

the sensitivity using Eq. (7.2), with the classes defined as explained in Table 7.5. The AUC is also determined, as

it gives an overview of the performance of the predictions regarding the classes defined in Table 7.5.

Tables 7.6 and 7.7 present the results of predicting the values of each sub-score in each timestep, using, respec-

tively, the sdtDBNs before and after NIV with sub-scores. The results of predicting the questions (with the proper

sdtDBNs before and after NIV) are given in Appendix A.1.1. The provided results are obtained with sdtDBNs

learned using the MDL score, as these sdtDBNs have a better performance than the sdtDBNs using the LL score.

In Tables 7.6 and 7.7, the number of evaluated patients may not be the same for all variables in the same

timestep, because the variables may have distinct static parents in the sdtDBNs. As the static datasets may have

missing values, if two variables have distinct static parents, the number of patients for which it is possible to predict

the value of each variable may vary, according to the missing data.
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Table 7.6: Results of the predictions, for every sub-score in every timestep, of the sdtDBNs before NIV with
sub-scores, using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

Variable Metric
Timestep

1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 81,20 76,51 77,54 83,10 74,67 80,51 80,64 83,63
Sensitivity (%) 86,91 85,07 90,42 75,92 64,24 72,68 73,87 72,82

AUC (%) 89,81 87,84 92,03 86,55 81,31 84,86 86,42 83,72
Evaluated patients 1090 864 690 568 446 354 284 226

ALS-FRSb

Accuracy (%) 88,20 81,46 79,88 81,70 78,80 79,48 87,68 87,73
Sensitivity (%) 91,41 86,11 83,14 86,65 82,18 87,87 89,47 88,51

AUC (%) 95,03 91,57 89,71 91,51 89,62 90,47 94,04 91,25
Evaluated patients 1042 836 666 552 434 346 276 220

ALS-FRSsUL

Accuracy (%) 81,06 73,99 78,85 78,10 74,37 80,53 81,13 84,17
Sensitivity (%) 71,87 68,72 79,10 77,60 76,66 90,91 83,70 86,56

AUC (%) 84,95 83,24 88,00 86,79 85,92 93,50 89,98 93,28
Evaluated patients 1098 892 714 598 476 380 302 240

ALS-FRSsLL

Accuracy (%) 82,55 76,30 74,12 79,97 78,08 78,10 79,03 80,08
Sensitivity (%) 80,68 82,43 77,98 84,96 91,09 88,06 94,41 88,97

AUC (%) 89,40 88,31 85,34 89,09 92,94 89,09 92,63 91,51
Evaluated patients 1146 920 738 614 488 388 310 246

R

Accuracy (%) 86,18 80,86 83,33 82,07 81,11 84,97 83,70 85,45
Sensitivity (%) 70,31 59,13 62,44 61,05 58,61 63,83 57,14 58,03

AUC (%) 82,23 75,03 77,91 76,71 75,15 79,74 75,66 77,75
Evaluated patients 1042 836 666 552 434 346 276 220

Table 7.7: Results of the predictions, for every sub-score in every timestep, of the sdtDBNs after NIV with sub-
scores, using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

Variable Metric
Timestep

1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 81,19 77,18 79,03 85,45 82,04 82,01 79,49 82,83
Sensitivity (%) 83,52 82,63 86,77 84,76 71,43 69,77 73,43 78,95

AUC (%) 90,26 89,71 92,75 92,38 85,31 84,88 84,78 87,83
Evaluated patients 760 644 534 426 334 278 234 198

ALS-FRSb

Accuracy (%) 84,74 83,85 79,03 79,11 83,83 80,22 79,49 87,38
Sensitivity (%) 87,14 81,95 82,11 90,53 93,94 90,91 90,33 95,12

AUC (%) 92,95 90,18 90,71 93,99 96,47 95,45 93,75 97,56
Evaluated patients 760 644 534 426 334 278 234 198

ALS-FRSsUL

Accuracy (%) 82,08 75,64 78,87 79,22 81,50 84,44 84,53 85,72
Sensitivity (%) 85,26 77,17 82,11 83,49 83,33 87,36 85,81 92,09

AUC (%) 92,11 87,68 89,87 89,55 89,61 92,12 87,35 94,64
Evaluated patients 826 698 582 462 362 302 252 210

ALS-FRSsLL

Accuracy (%) 83,31 77,17 78,38 79,29 80,89 83,10 82,94 91,72
Sensitivity (%) 83,14 77,29 79,38 80,26 82,80 84,36 87,10 91,99

AUC (%) 91,10 88,19 88,18 89,48 89,59 90,06 91,40 95,99
Evaluated patients 809 684 569 454 356 296 246 205

R

Accuracy (%) 82,90 80,13 79,96 80,05 80,24 83,81 82,48 79,80
Sensitivity (%) 72,13 65,95 72,73 74,59 74,69 80,00 83,61 83,33

AUC (%) 83,16 80,43 83,34 83,82 82,70 86,09 86,45 83,82
Evaluated patients 760 644 534 426 334 278 234 198
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The results provided in Tables 7.6 and 7.7 demonstrate that the sdtDBNs can accurately predict the progression

of ALS patients, both before and after NIV being applied, as the accuracy and the AUC have extremely high values

in most timesteps of all sub-scores before and after NIV. Some results are above 90% and almost all results are

above 75%, which are extremely positive indicators.

The sensitivity does not have such high values, in particular in the R sub-score before NIV (see Table 7.6). The

low sensitivity results in the R score before NIV happen because, when the respiratory functionalities (assessed

with the R score) decline, the patient gets NIV, thus moving from the series before NIV to the series after NIV.

Therefore, the training data before NIV in which R does not have the highest possible value is in extremely low

quantity, which causes the sdtDBNs before NIV not to learn properly the transition of the R score from the highest

value to lower values. This phenomenon happens in sdtDBNs (and DBNs in general), because they find the

conditional dependencies among variables, but if some value of a parent is not often observed, the corresponding

distribution when addressing the CPT is not properly determined. This also happens in some timesteps of other

variables in Tables 7.6 and 7.7, but the R score before NIV is the most noticeable case, due to the explained reason.

The results presented in Tables 7.6 and 7.7 are competitive with state-of-the-art works applying machine learn-

ing techniques to study the progression of ALS patients [27, 29, 70, 71]. Although some of these works provide

a slightly better performance, most works focus on a specific goal, for example, NIV prediction [27, 29], instead

of predicting the values of all variables in all timesteps/consultations, as shown in Tables 7.6 and 7.7. This crucial

difference must be taken into account when comparing Tables 7.6 and 7.7 with most results in literature.

Several results are slightly better in the last two timesteps of Tables 7.6 and 7.7 than in the initial timesteps. As

in the initial timesteps there are patients with all kinds of progressions, but in the last timesteps there only patients

with a slow progression, this slightly better performance in the last timesteps may indicate that a proper division

of patients according to their kind of progression and a study of each progression group would be beneficial, thus

providing a motivation for Section 7.3.

7.2.2 Influence of each variable in every timestep

The prediction of variables (see Section 7.2.1) does not exploit the graphical display provided by sdtDBNs, which

is one of the main characteristics that distinguishes sdtDBNs from other machine learning models. In this Section,

the graphical display of sdtDBNs is used to assess the influence each variable has in the variables of every timestep.

As in Section 7.2.1, the sdtDBNs used in this Section are learned in the four scenarios presented in Section 7.2,

being a certain training data used to learn an sdtDBN denoted as {Dtrain, Strain}, as defined in Section 7.2.1. The

training data is obtained as explained in Section 7.1, being only used the data filled with LOCF, as the results when

applying LOCF and interpolation are identical. This Section does not use the testing data, because the goal is to as-

sess the graphical display of the learned sdtDBNs (the models’ performance was already tackled in Section 7.2.1).

To assess the relations among variables in each timestep, there are learned non-stationary sdtDBNs. As stated in

Section 7.2, the maximum timestep of the sdtDBNs is 8. To get multiple relations between variables, the sdtDBNs

are learned using the LL score. The remaining parameters are tuned to get several relations among variables, while

learning the sdtDBNs in reasonable time. Using the notation of Chapter 5, the sdtDBNs with sub-scores are learned

with {m = 1, p = 2, b = 1} and {m = 1, p = 2, b = 2}, while the sdtDBNs with questions are only learned with

{m = 1, p = 2, b = 1}, because the combination of parameters using b = 2 does not allow learning sdtDBNs with
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questions in reasonable time, due to the high number of questions.

All previously specified sdtDBNs are learned with the restriction that each variable can never be a parent of

itself. Therefore, all edges A[t]→ A[t+ 1], where A is any variable of an sdtDBN and t is any timestep, are

defined as forbidden (see Section 5.2), when learning each sdtDBN. If the sdtDBNs were not restricted, each

dynamic variable in a certain timestep would almost always be a parent of itself in the following timestep (in

general, the better predictor of a variable in timestep t + 1 is the same variable in timestep t), which would harm

the results of this Section, because the goal is to find the influence each variable has in other variables (the influence

a variable has in itself is already intuitively known). All learned sdtDBNs are presented in Table 7.8.

Table 7.8: Number of sdtDBNs learned to assess the influence each variable has in the variables of every timestep.
Each set of five sdtDBNs concerns the five training sets of each scenario filled using LOCF (see Fig. 7.1). As
notation, t represents any timestep of a learned sdtDBN.

Structure of the learned non-stationary
sdtDBNs, where each variable in a timestep t
cannot be a parent of itself in timestep t + 1

Scenario
Before NIV After NIV

Sub-scores Questions Sub-scores Questions
{m = 1, p = 2, b = 1, T = 8} + LL 5 5 5 5
{m = 1, p = 2, b = 2, T = 8} + LL 5 Not learned 5 Not learned

The influence each variable has in every timestep is determined using the following graphical reasoning. As the

edges of an sdtDBN denote the conditional dependencies among variables, given any two variables X and Y of an

sdtDBN, ifX is a parent of more variables in timestep t than Y , it can be concluded thatX has more influence than

Y in the variables of timestep t of the mentioned sdtDBN. Given this reasoning, if creating a 2D table where each

row designates a timestep, each column represents a variable, and each element contains the number of children

a certain variable has in a certain timestep, each row of this table provides an ordering of the influence that the

variables have in the respective timestep. Timestep 0 is never considered in this analysis, because variables in

timestep 0 of sdtDBNs do not have parents. Providing an example, for an sdtDBN with three timesteps (1, 2 and 3)

having three variables (X , Y and Z), the explained table has the format presented in Table 7.9.

Table 7.9: Example of the table used to assess the influence each variable of an sdtDBN has in each timestep. It is
used an sdtDBN with three timesteps and with variables X , Y and Z. As notation, # means “number of”.

Variable
X Y Z

Timestep
1 #(children of X in t = 1) #(children of Y in t = 1) #(children of Z in t = 1)
2 #(children of X in t = 2) #(children of Y in t = 2) #(children of Z in t = 2)
3 #(children of X in t = 3) #(children of Y in t = 3) #(children of Z in t = 3)

Table 7.9 provides an ordering of the influence of the variables in each timestep, according to the values

associated to the counts of each row. To assess the influence of the variables of the ALS dataset in every timestep

of the disease progression, it is determined, for each scenario analyzed (see Section 7.2 and Table 7.8), a table

using the same reasoning of Table 7.9. In each of these tables, the timesteps go from 1 to 8 and the variables are

either the ALS sub-scores (in the scenarios with sub-scores) or the ALS questions (in the scenarios with questions).

For a certain scenario W , the corresponding table similar to Table 7.9 is obtained as follows. First, there

are obtained several tables similar to Table 7.9, using the sdtDBNs learned from every possible training data

{Dtrain, Strain} in scenario W (see Fig. 7.1 and Table 7.8). Then, it is done an element-wise sum of all these

tables, obtaining one table similar to Table 7.9 that includes the counts of all sdtDBNs created in scenario W .
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Having the mentioned tables learned for all four scenarios, it is possible to uniformize all results by normalizing

each row of each table, so that all elements are between 0 and 1 (the normalization is done by dividing each element

by the sum of the elements of its respective row). To provide an intuitive overview of the obtained results, these

normalized tables are presented in stacked bar charts, where the sizes of the stacked bars in a certain timestep t

allow comparing the influence that the several variables have in the variables of that timestep t (larger bars mean

higher influence in the corresponding timestep t).

The influence each variable has in the variables of each timestep of the sdtDBNs with questions before and

after NIV is presented, respectively, in Figs. 7.2 and 7.3. The influence each variable has in each timestep of the

sdtDBNs with sub-scores (before and after NIV) is presented in Appendix A.1.2.
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Figure 7.2: Influence of each variable in every timestep of the sdtDBNs before NIV with questions. The learned
sdtDBNs are detailed in Table 7.8.
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Figure 7.3: Influence of each variable in every timestep of the sdtDBNs after NIV with questions. The learned
sdtDBNs are detailed in Table 7.8.
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To keep the following analysis intuitive, it is presented a qualitative assessment of Figs. 7.2 and 7.3. However,

a quantitative analysis could be done, by checking the values of the tables that originate Figs. 7.2 and 7.3.

Regarding the ALS-FRS-R questions, Fig. 7.2 shows that P5 and P9 are the most important ALS-FRS-R

questions in the disease progression before NIV, while Fig. 7.3 presents P1 and R1 as the most influential questions

in the progression after NIV. In the results after NIV (Fig. 7.3), it can also be noticed that P5 has a large influence

in the initial timesteps, P8 has a large influence in the intermediate timesteps, and P3 and P7 have a large influence

in the final timesteps. The questions with the highest influence before and after NIV belong to different sub-scores

of the ALS-FRS-R scale, which validates the division of the ALS-FRS-R scale into sub-scores, as all sub-scores

are represented when analyzing the datasets with questions. On the other hand, the differences found between the

relevant questions before and after NIV may suggest that the questions of the ALS-FRS-R scale can be adapted to

a patient’s clinical situation, by focusing on the relevant questions according to NIV having been applied or not.

The respiratory questions of ALS-FRS-R (R1, R2 and R3) do not have a large influence in the disease progres-

sion before NIV, which can be counter-intuitive, as respiratory problems are the main cause of death among ALS

patients. To explain this phenomenon, the influence of the respiratory tests (FVC, MIP, MEP and PhrenMeanAmpl)

must be tackled, which can only be done in Fig. 7.2, as the respiratory tests are only used in the sdtDBNs before

NIV (see Table 7.2). Fig. 7.2 shows that MEP is the most influential respiratory test before NIV, which suggests

that MEP is a better prognostic indicator than the remaining respiratory tests. The influence of MEP is also signif-

icant when comparing all variables of Fig. 7.2. In particular, MEP has more influence in the disease progression

than all respiratory questions of ALS-FRS-R before NIV, which suggests that MEP is a better prognostic indicator

than the respiratory questions of ALS-FRS-R. After NIV (see Fig. 7.3), the influence of the R1 question in the

disease progression is larger than before NIV, which can be justified by the fact that the respiratory tests are not

used in the sdtDBNs after NIV.

The influence of the static variables in the disease progression can also be assessed using Figs. 7.2 and 7.3,

which show that the disease duration is the most influential static variable, both before and after NIV. This finding

is extremely relevant, as it supports the importance of an early diagnosis (the diagnosis of the disease is a major

area of research in ALS).

7.2.3 Correlations among variables throughout the disease progression

In Section 7.2.2, it is used the graphical display of sdtDBNs to determine the influence of each variable in every

timestep of the sdtDBNs learned in each of the four scenarios presented in Fig. 7.1 (see Section 7.2 for an explana-

tion of these scenarios). Although the analysis of Section 7.2.2 allows checking the most important variables in the

disease progression, it does not allow evaluating which variables are the most correlated in the learned sdtDBNs.

This Section assesses the correlations among variables, by graphically inspecting the learned sdtDBNs.

As the goal is to inspect the graphical display of the sdtDBNs, the reasoning for learning sdtDBNs in this

Section is the same as in Section 7.2.2. Therefore, the sdtDBNs learned in this Section are the ones presented

in Table 7.8, and all considerations done in Section 7.2.2 to obtain Table 7.8 are still valid in the current Sec-

tion. In particular, there are also learned sdtDBNs in the four scenarios of Table 7.8, it is also used the notation

{Dtrain, Strain} to represent a certain training data used to learn an sdtDBN, and the sdtDBNs are also learned by

making the restriction that each variable can never be a parent of itself (see Section 7.2.2).
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The correlations between variables throughout all timesteps of an sdtDBN are determined using the following

graphical reasoning. As an edge of an sdtDBN represents a conditional dependency relation among two vari-

ables, given any three variables X , Y and Z of an sdtDBN, if, throughout all timesteps of the sdtDBN, there are

more edges between X and Y than between X and Z, it can be concluded that X and Y are more correlated

than X and Z. Given this reasoning, a 2D table can be created, where each dimension has all variables of an

sdtDBN, and a certain element of the table contains the number of edges between the two respective variables,

considering all timesteps of the sdtDBN. The values of the elements of this table provide an ordering of the corre-

lations among the variables of the sdtDBN, because the higher the value of an element of the table, the higher the

correlation between the respective variables, according to the graphical reasoning previously explained.

The aforementioned table is always symmetric, because, when counting the number of edges between two

variables, it is not distinguished which variable is the parent and which is the child (in general, given any two

variables A and B, both A → B and B → A indicate a correlation between A and B). As the table is always

created using sdtDBNs where a variable can never be a parent of itself, the diagonal of the explained table is never

considered, as it always has zeros, due to the imposed restriction. Providing an example, for an sdtDBN having

three variables (X , Y and Z), the explained table has the format presented in Table 7.10.

Table 7.10: Example of the table used to assess the correlations between variables, considering all timesteps of an
sdtDBN. It is used an sdtDBN with variables X , Y and Z. As notation, # means “number of”. The counts of the
numbers of edges are done considering all timesteps of the sdtDBN. The diagonal of the table is not considered,
because the sdtDBNs learned in this context are restricted so that each variable can never be a parent of itself.

X Y Z

X — #(edges from X to Y )
+ #(edges from Y to X)

#(edges from X to Z)
+ #(edges from Z to X)

Y
#(edges from X to Y )

+ #(edges from Y to X) — #(edges from Y to Z)
+ #(edges from Z to Y )

Z
#(edges from X to Z)

+ #(edges from Z to X)
#(edges from Y to Z)

+ #(edges from Z to Y ) —

Table 7.10 provides an ordering of the correlations among variables in all timesteps of an sdtDBN, according

to the values associated to the counts of each element of the table. To evaluate the correlations among variables of

the ALS dataset, it is determined, for each scenario analyzed (see Section 7.2 and Table 7.8), a table with the same

reasoning of Table 7.10, using as variables either the ALS sub-scores (in the scenarios with sub-scores) or the ALS

questions (in the scenarios with questions).

For a certain scenario W , the corresponding table similar to Table 7.10 is obtained as follows. First, there

are obtained several tables similar to Table 7.10, using the sdtDBNs learned from every possible training data

{Dtrain, Strain} in scenario W (see Fig. 7.1 and Table 7.8). Then, it is done an element-wise sum of all these

tables, obtaining one table similar to Table 7.10 that includes the counts of all sdtDBNs created in scenario W .

With the four tables similar to Table 7.10 determined (one for each scenario, using the proper sdtDBNs, pre-

sented in Table 7.8), the results can, as in Section 7.2.2, be uniformized, by normalizing each table. The normaliza-

tion is done per column, dividing each value of each table by the sum of all values in the same column. For each of

these normalized tables, a certain column, associated to some variable X , provides an overview of the correlations

between that variable X and every variable of the dataset, considering all relations in which X is involved (in the

sdtDBNs of the respective scenario).
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The correlations among the variables of the sdtDBNs with sub-scores before and after NIV are presented,

respectively, in Tables 7.11 and 7.12, using the explained tables normalized per column. The correlations between

the variables of the sdtDBNs with questions before and after NIV are presented in Appendix A.1.3. To ease the

interpretation of the mentioned tables, a color scheme is used, which evolves from red (the lowest values) to green

(the highest values).

Table 7.11: Correlations between variables of the sdtDBNs before NIV with sub-scores. The table is normalized
per column. The learned sdtDBNs are detailed in Table 7.8.

ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R FVC MIP MEP PhrenMeanAmpl
ALS-FRS — 7,24% 16,36% 14,78% 5,23% 0,63% 1,28% 7,08% 5,30%

ALS-FRSb 10,98% — 15,64% 12,93% 16,00% 15,31% 12,98% 13,42% 15,56%
ALS-FRSsUL 32,22% 20,31% — 19,40% 16,62% 19,06% 16,27% 16,13% 11,26%
ALS-FRSsLL 30,55% 17,64% 20,36% — 20,00% 19,69% 18,46% 16,44% 23,51%

R 4,06% 8,19% 6,55% 7,51% — 6,25% 6,40% 7,80% 2,32%
FVC 0,48% 7,72% 7,39% 7,27% 6,15% — 3,29% 10,30% 2,65%
MIP 1,67% 11,18% 10,79% 11,66% 10,77% 5,63% — 19,98% 11,26%
MEP 16,23% 20,31% 18,79% 18,24% 23,08% 30,94% 35,10% — 28,15%

PhrenMeanAmpl 3,82% 7,40% 4,12% 8,20% 2,15% 2,50% 6,22% 8,84% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 7.12: Correlations between variables of the sdtDBNs after NIV with sub-scores. The table is normalized per
column. The learned sdtDBNs are detailed in Table 7.8.

ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R
ALS-FRS — 27,21% 23,88% 21,08% 7,38%

ALS-FRSb 39,38% — 30,18% 28,83% 37,81%
ALS-FRSsUL 29,69% 25,93% — 27,93% 27,29%
ALS-FRSsLL 24,12% 22,79% 25,70% — 27,52%

R 6,80% 24,07% 20,23% 22,16% —
Sum per column: 100% 100% 100% 100% 100%

The ALS-FRS columns of Tables 7.11 and 7.12 show that ALS-FRSsUL and ALS-FRSsLL are the sub-scores

most correlated with ALS-FRS before NIV, while ALS-FRSb is the sub-score most correlated with ALS-FRS after

NIV. This difference suggests that ALS-FRSsUL and ALS-FRSsLL are the sub-scores most correlated with the

several variables before NIV and ALS-FRSb is the sub-score most correlated with the several variables after NIV,

which is confirmed by checking the ALS-FRSb, ALS-FRSsUL and ALS-FRSsLL rows of Tables 7.11 and 7.12.

These conclusions match the results of Section 7.2.2, where P5 and P9 (from ALS-FRSsUL and ALS-FRSsLL)

have more influence before NIV, whereas P1 (from ALS-FRSb) has more influence after NIV.

The R columns of Tables 7.11 and 7.12 show that R is similarly correlated with all sub-scores before NIV (ALS-

FRSb, ALS-FRSsUL and ALS-FRSsLL), while, after NIV, the respiratory indicator R is clearly more correlated

with ALS-FRSb than with the other sub-scores. It should also be noticed that ALS-FRSsUL and ALS-FRSsLL are

correlated with each other before and after NIV (as shown in the respective columns of Tables 7.11 and 7.12).

It must be highlighted the low correlation that R has with the remaining variables, which can be seen in the R

rows of Tables 7.11 and 7.12. The low values in the R row of Table 7.11 can be justified by the presence of MEP,

which also provides information regarding the respiratory capabilities of a patient, as explained in Section 7.2.2.

The ALS-FRS rows of Tables 7.11 and 7.12 show that the correlation of ALS-FRS with other variables is, in

general, low. This can be explained by ALS-FRS being a global score (sum of 10 questions), while the remaining

scores are sub-scores (sums of three questions). Therefore, the values of ALS-FRS are not as specific as the values

of the sub-scores, which makes the values of ALS-FRS less useful than the values of the sub-scores, when indexing

the conditional probability distributions.
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Regarding the respiratory tests (FVC, MIP, MEP and PhrenMeanAmpl), they are only included in Table 7.11,

because only the sdtDBNs before NIV have the respiratory tests (see Table 7.2). The MEP row of Table 7.11

shows that MEP is the respiratory test most correlated with all variables before NIV, which matches the results of

Section 7.2.2, where MEP is the most influential respiratory test before NIV. In the MEP column of Table 7.11,

it is shown that MEP is highly correlated with MIP, which is logical. Finally, it is interesting to notice, in the

PhrenMeanAmpl column of Table 7.11, that PhrenMeanAmpl is highly correlated with ALS-FRSsLL.

7.3 Division into progression groups

The preprocessing and results presented, respectively, in Sections 7.1 and 7.2 use all patients of the ALS dataset

(the pretreated version, as explained in Section 7.1). However, as distinct patients may have different functional

declines, it should be made an analysis considering the diversity of ALS patients, which can be done by splitting

patients into progression groups and analyzing the data of the patients of each group.

In this work, patients are divided into three progression groups, slow, average and fast, according to an estima-

tion of their progression rate. For a certain patient, his progression rate is determined by

progression rate =
48− ALS-FRS-RFirst consultation

Number of months between the initial symptoms and the first consultation
, (7.3)

where 48 is used because it is the maximum value of ALS-FRS-R (it is the value assumed at the month in which

the initial symptoms appear), ALS-FRS-RFirst consultation is the value of ALS-FRS-R in the first consultation, and the

number of months between the initial symptoms and the first consultation is determined by checking the respective

dates of the corresponding patient, for which the complete ALS dataset is checked, because the date of the initial

symptoms of a certain patient is not in the pretreated version used throughout Chapter 7 (see Section 7.1).

After determining the progression rate of every patient, the patients with the lowest 25% progression rates

compose the slow progression group, while the patients with the highest 25% progression rates compose the fast

progression group. The patients with the remaining 50% progression rates compose the average progression group.

After splitting patients into progression groups as explained, each group can be treated as an individual dataset.

Therefore, the preprocessing of each group is done by applying Section 7.1 to each progression group. The

selection and discretization of static features remain the ones presented in Table 7.1. The dynamic features are

preprocessed by applying the methods described in Fig. 7.1 to the data of each progression group, with the selection

and discretization of dynamic features remaining the ones presented in Table 7.2. In Table 7.13, there are presented

the counts of Table 7.3 for each progression group.

After preprocessing each progression group, the analysis performed (for the whole dataset) in Section 7.2 must

be done for each group. Sections 7.3.1, 7.3.2 and 7.3.3 present the application of, respectively, Sections 7.2.1,

7.2.2 and 7.2.3 to each progression group. The considerations done in the beginning of Section 7.2 remain valid in

Sections 7.3.1, 7.3.2 and 7.3.3. In particular, for each progression group, there are considered the four scenarios of

Fig. 7.1 (before NIV with questions, before NIV with sub-scores, after NIV with questions and after NIV with sub-

scores), each with its proper training (and testing) sets, in the corresponding progression group, and the sdtDBNs

learned in Sections 7.3.1, 7.3.2 and 7.3.3 always have nine timesteps, from 0 to 8.
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Table 7.13: Number of patients per timestep, for each dataset obtained after steps 3 and 5 of Fig. 7.1, in each
progression group (slow, average and fast). This table is the application of Table 7.3 to each progression group.

Group Dataset Timestep
0 1 2 3 4 5 6 7 8

Slow

Before
NIV

After step 3 of Fig. 7.1 269 204 183 163 151 135 116 104 89
After step 5 of Fig. 7.1 171 157 142 132 121 108 94 84 70

After
NIV

After step 3 of Fig. 7.1 109 94 88 73 63 52 42 37 34
After step 5 of Fig. 7.1 107 92 86 71 61 51 41 36 33

Average

Before
NIV

After step 3 of Fig. 7.1 540 376 287 223 178 127 87 67 52
After step 5 of Fig. 7.1 355 299 233 187 149 109 73 56 42

After
NIV

After step 3 of Fig. 7.1 326 242 204 177 137 106 94 75 60
After step 5 of Fig. 7.1 320 241 203 176 136 105 93 74 60

Fast

Before
NIV

After step 3 of Fig. 7.1 257 144 89 51 37 26 19 16 10
After step 5 of Fig. 7.1 138 104 71 43 32 23 17 14 8

After
NIV

After step 3 of Fig. 7.1 115 71 53 40 27 21 13 13 11
After step 5 of Fig. 7.1 113 71 53 40 27 21 13 13 11

7.3.1 Prediction of the variables’ values

The detailed results of applying Section 7.2.1 to every progression group are provided in Appendix A.2.1. An

overview of the results of the predictions of all sdtDBNs learned before and after NIV with sub-scores, for the

whole dataset and for every progression group, is presented in Table 7.14, where each value is the average of the

values of the respective indicator in all timesteps.

Table 7.14: Overview of the results of the predictions of the sdtDBNs before and after NIV with sub-scores, for
the whole dataset and for each progression group. All sdtDBNs that contribute for the results are learned using
{m = 1, p = 2, b = 1, T = 8} and the MDL score (see Section 7.2.1). Each presented value is the average of the
values of all timesteps, for the respective variable, in the respective scenario, in the respective progression group.

Metric Accuracy (%) Sensitivity (%) AUC (%)
Group None Slow Average Fast None Slow Average Fast None Slow Average Fast

Before
NIV

ALS-FRS 79,72 82,40 77,43 76,61 77,74 84,50 71,04 70,10 86,57 89,16 82,82 84,87
ALS-FRSb 83,12 88,15 79,59 78,33 86,92 83,39 83,23 74,07 91,65 90,09 90,75 86,54

ALS-FRSsUL 79,02 80,04 76,54 71,87 79,39 78,70 71,54 70,58 88,21 87,39 84,51 83,46
ALS-FRSsLL 78,53 80,89 73,99 68,33 86,07 78,60 71,12 64,14 89,79 87,55 84,57 80,47

R 83,46 87,29 79,30 78,46 61,32 x 53,49 70,82 77,52 x 72,55 79,17

After
NIV

ALS-FRS 81,15 78,34 79,50 82,82 78,91 79,70 75,42 74,91 88,49 87,31 86,82 86,89
ALS-FRSb 82,20 81,90 82,28 81,14 89,00 86,53 81,24 88,22 93,88 92,24 89,87 93,89

ALS-FRSsUL 81,50 81,22 80,30 81,00 84,58 80,73 80,20 85,59 90,36 88,52 88,91 90,19
ALS-FRSsLL 82,10 82,52 81,32 75,58 83,29 82,03 81,49 80,99 90,50 90,76 89,80 89,38

R 81,17 80,10 82,03 78,03 75,88 72,26 76,80 79,96 83,72 81,96 84,03 86,11

The sensitivity and the AUC of Table 7.14 are not presented when the first quartile of the respective values is

the highest possible value (in that case, Table 7.5 cannot be used to define the labels). Table 7.14 shows that the

results do not improve significantly when splitting the patients into progression groups (comparing to the results

using the whole dataset). This is mainly due to the low quantity of observations of each progression group (see

Table 7.13), which makes the sdtDBNs overfit the training data. For the slow progression group, the accuracies of

ALS-FRSb and R before NIV are much higher than after NIV, while the other results are similar before and after

NIV. For the fast progression group, the best results are obtained after NIV, which can be justified by NIV being

applied early to these patients, so, after NIV, they still have data useful for learning the sdtDBNs.
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7.3.2 Influence of each variable in every timestep

The influence of each variable in every timestep of the learned sdtDBNs is obtained by applying Section 7.2.2 to

each progression group, being the results of the sdtDBNs before NIV with questions presented in Fig. 7.4.
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(a) Slow progression group.
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(b) Average progression group.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8

R
el

a
ti

v
e 

in
fl
u
en

ce

Timestep

(c) Fast progression group.

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 R1 R2

R3 FVC MIP MEP

PhrenMeanAmpl Gender BMI Familiar History MND

Age at onset Disease duration El Escorial criteria Onset form

C9orf72

Figure 7.4: Influence of each variable in every timestep of the sdtDBNs before NIV with questions, for each
progression group. The sdtDBNs detailed in Table 7.8 are learned for every progression group.
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Fig. 7.4 presents the influence of each variable in every timestep of the learned sdtDBNs before NIV with ques-

tions, for each progression group. The results of the remaining scenarios (see Section 7.3), for each progression

group, are provided in Appendix A.2.2.

The results of Fig. 7.4 confirm the relevance of dividing the ALS patients into progression groups, as the most

influential variables throughout the disease progression vary according to the progression group of a patient. P9 has

high influence in slow progressors and P1 has high influence in fast progressors, while in average progressors both

P1 and P9 have significant influence. Regarding the respiratory tests, both MIP and MEP influence the evolution of

slow progressors and MEP has high influence in average progressors, whereas, in fast progressors, no respiratory

test has a substantial influence (only MEP has a small influence in the initial timesteps). Concerning the static

variables, the slow progressors are mostly influenced by the disease duration, the average progressors by the BMI

and the disease duration, while the fast progressors are mainly influenced by the BMI and the age at onset.

7.3.3 Correlations among variables throughout the disease progression

The correlations among variables throughout all timesteps of the learned sdtDBNs are obtained by applying Sec-

tion 7.2.3 to each progression group. The results obtained using the sdtDBNs with sub-scores before and after

NIV, for every progression group, are presented, respectively, in Tables 7.15 and 7.16. The results for the sdtDBNs

using questions (before and after NIV), for each progression group, are provided in Appendix A.2.3.

Table 7.15: Correlations between variables of the sdtDBNs before NIV with sub-scores, for each progression
group. Each table is normalized per column. The sdtDBNs of Table 7.8 are learned for every progression group.

(a) Slow progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R FVC MIP MEP PhrenMeanAmpl

ALS-FRS — 9,75% 18,32% 18,34% 11,78% 9,20% 4,87% 9,50% 5,72%
ALS-FRSb 9,19% — 11,32% 12,84% 8,46% 6,44% 9,06% 12,74% 17,51%

ALS-FRSsUL 26,47% 17,35% — 20,90% 22,05% 17,18% 17,95% 14,53% 5,39%
ALS-FRSsLL 27,57% 20,47% 21,76% — 16,01% 18,10% 15,77% 16,98% 11,45%

R 7,17% 5,46% 9,29% 6,48% — 10,43% 7,89% 6,15% 0,67%
FVC 5,51% 4,09% 7,12% 7,21% 10,27% — 2,18% 11,28% 4,04%
MIP 5,33% 10,53% 13,61% 11,49% 14,20% 3,99% — 19,33% 26,60%
MEP 15,63% 22,22% 16,54% 18,58% 16,62% 30,98% 29,03% — 28,62%

PhrenMeanAmpl 3,13% 10,14% 2,04% 4,16% 0,60% 3,68% 13,26% 9,50% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100%

(b) Average progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R FVC MIP MEP PhrenMeanAmpl

ALS-FRS — 11,13% 17,44% 15,56% 9,63% 7,33% 8,26% 7,87% 13,74%
ALS-FRSb 15,09% — 16,64% 16,60% 23,26% 17,00% 20,54% 15,62% 11,45%

ALS-FRSsUL 25,34% 17,83% — 17,25% 14,29% 18,00% 16,07% 19,07% 14,50%
ALS-FRSsLL 23,21% 18,26% 17,71% — 16,61% 18,67% 14,96% 19,56% 22,14%

R 5,61% 9,99% 5,73% 6,49% — 2,67% 6,25% 7,01% 6,11%
FVC 4,26% 7,28% 7,19% 7,26% 2,66% — 3,13% 9,35% 7,25%
MIP 7,16% 13,12% 9,59% 8,69% 9,30% 4,67% — 15,25% 5,34%
MEP 12,38% 18,12% 20,64% 20,62% 18,94% 25,33% 27,68% — 19,47%

PhrenMeanAmpl 6,96% 4,28% 5,06% 7,52% 5,32% 6,33% 3,13% 6,27% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100%

(c) Fast progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R FVC MIP MEP PhrenMeanAmpl

ALS-FRS — 31,76% 33,05% 32,82% 37,31% 32,13% 26,09% 18,42% 40,94%
ALS-FRSb 20,56% — 15,80% 21,78% 17,10% 16,06% 12,04% 20,10% 8,19%

ALS-FRSsUL 15,25% 11,27% — 15,34% 6,74% 9,24% 9,03% 12,92% 6,43%
ALS-FRSsLL 14,19% 14,55% 14,37% — 9,33% 3,21% 11,71% 5,50% 8,19%

R 9,55% 6,76% 3,74% 5,52% — 5,22% 4,68% 6,22% 2,34%
FVC 10,61% 8,20% 6,61% 2,45% 6,74% — 9,70% 10,29% 7,60%
MIP 10,34% 7,38% 7,76% 10,74% 7,25% 11,65% — 17,46% 4,09%
MEP 10,21% 17,21% 15,52% 7,06% 13,47% 17,27% 24,41% — 22,22%

PhrenMeanAmpl 9,28% 2,87% 3,16% 4,29% 2,07% 5,22% 2,34% 9,09% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Table 7.16: Correlations between variables of the sdtDBNs after NIV with sub-scores, for each progression group.
Each table is normalized per column. The sdtDBNs of Table 7.8 are learned for every progression group.

(a) Slow progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 27,96% 25,27% 25,00% 17,70%
ALS-FRSb 36,88% — 34,34% 36,18% 33,43%

ALS-FRSsUL 24,38% 25,12% — 20,73% 23,88%
ALS-FRSsLL 25,63% 28,12% 22,03% — 25,00%

R 13,13% 18,80% 18,36% 18,09% —
Sum per column: 100% 100% 100% 100% 100%

(b) Average progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 28,26% 26,90% 14,96% 12,27%
ALS-FRSb 39,79% — 28,71% 29,92% 37,96%

ALS-FRSsUL 33,61% 25,48% — 32,87% 23,61%
ALS-FRSsLL 15,67% 22,25% 27,56% — 26,16%

R 10,93% 24,01% 16,83% 22,24% —
Sum per column: 100% 100% 100% 100% 100%

(c) Fast progression group.
ALS-FRS ALS-FRSb ALS-FRSsUL ALS-FRSsLL R

ALS-FRS — 40,90% 48,73% 43,77% 25,91%
ALS-FRSb 38,74% — 27,97% 27,76% 53,44%

ALS-FRSsUL 23,33% 14,13% — 14,95% 5,26%
ALS-FRSsLL 24,95% 16,70% 17,80% — 15,38%

R 12,98% 28,27% 5,51% 13,52% —
Sum per column: 100% 100% 100% 100% 100%

Tables 7.15 and 7.16 demonstrate that the variables are differently correlated in the several progression groups.

Before NIV, the R columns of Table 7.15 show that the R score is mostly correlated with ALS-FRSsUL in slow

progressors, with ALS-FRSb in average progressors and with ALS-FRS in fast progressors. This diversity of

correlations of the respiratory sub-score can help distinguish the several kinds of patients. Also before NIV, the

MEP rows of Table 7.15 display that the correlation of the several variables with MEP is higher in slow and average

progressors than in fast progressors, which matches the conclusions of Section 7.3.2. After NIV, the ALS-FRSb

rows of Table 7.16 show that ALS-FRSb has great correlation with all variables in every progression group. In

particular, ALS-FRSb is the variable most correlated with the R score after NIV in all progression groups.

7.4 Analysis of some clinically relevant questions

The results obtained in Sections 7.2 and 7.3 (with the preprocessing from Section 7.1) are extremely interesting

from a statistical perspective. Since the results can be easily understood by non-experts in data mining, they

were presented to ALS doctors, who confirmed that several relations found by the sdtDBNs were expected from

a clinical standpoint. The ALS doctors were also interested in knowing the rationale behind some other relations

found by the sdtDBNs, which they did not expect the sdtDBNs to learn.

However, for the results to be useful from a clinical perspective, they must answer some well-defined clinical

questions. Therefore, a study using sdtDBNs was done, with the goal of answering three clinical questions, pro-

posed by ALS experts. The questions and their respective answers, obtained using sdtDBNs, are presented in the

next paragraphs. In the answers of all questions, patients are divided into three progression groups (slow, average

and fast), as explained in Section 7.3.
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Question 1: which variables are the most associated to a patient needing NIV?

To answer the first question proposed by doctors, there are learned sdtDBNs to find which variables from the ALS

dataset are the most correlated with non-invasive ventilation (NIV). As notation, the moment in which a patient

gets NIV is associated to a certain year of that patient’s progression, since the first consultation. For example, if

the first consultation of a patient is in January 2000, that patient has NIV in the first year if NIV is given in the year

2000, has NIV in the second year if NIV is given in the year 2001, and other moments are represented accordingly.

Using the previous notation, patients are divided into the following six subsets (discussed with the ALS doc-

tors): (i) slow progressors with NIV in any moment; (ii) average progressors with NIV in any moment; (iii) average

progressors with NIV in the second year; (iv) average progressors with NIV after the second year; (v) fast progres-

sors with NIV in the first year; (vi) fast progressors with NIV in the second year.

To determine how the variables of the ALS dataset are associated to NIV, it is added to the dataset a dynamic

variable named NIV. In each consultation of a certain patient, this variable is 1 if the patient already has NIV, and

is 0 otherwise. The dataset is then split into six sub-datasets, each one with data of one of the six aforementioned

subsets of patients. For each sub-dataset, it is done a preprocessing similar to the one from Section 7.1, with two

changes. First, only the data before NIV is used, as the goal is to study the patients’ progression until NIV being

applied. Second, it is only used the filling with LOCF, as the results with LOCF and with interpolation are similar.

For each subset of patients, the learned sdtDBNs are the ones from Table 7.8, with two differences. First, only

the scenarios before NIV exist. Second, the sdtDBNs are learned using T = 10, as some subsets have patients

with NIV only after the second year, and consecutive timesteps are separated by three months (see Section 7.1).

Having the sdtDBNs learned, an ordering of the influence of the variables in a patient’s need of getting NIV

can be obtained, by counting the number of edges that each variable has with the NIV variable (see the graphical

reasoning used in Section 7.2.3). These counts are only done in the timesteps where the patients of the proper

subsets may have NIV (for example, if a subset only has patients with NIV in the second year, only the timesteps

in the second year contribute to the counts). The top 5 variables associated to NIV in the datasets with sub-scores

are presented in Table 7.17, while the results of the datasets with questions are provided in Appendix A.3.

Table 7.17: Top 5 variables associated to NIV, in the datasets with sub-scores, for each subset of patients.

Progression group Slow Average Fast
NIV application Any time Any time 2nd year After 2nd year 1st year 2nd year

Timesteps considered for
correlations with NIV variable

{0,...,10} {0,...,10} {4,...,8} {8,9,10} {0,...,4} {4,...,8}

1st MEP BMI ALS-FRS ALS-FRS ALS-FRS ALS-FRS

2nd Disease
duration

ALS-FRSb ALS-FRSb
Disease
duration

BMI Age at onset

3rd BMI MEP BMI ALS-FRSsUL MIP BMI
4th ALS-FRS ALS-FRSsLL

Top 5 variables
correlated with
NIV variable

5th ALS-FRSb Disease
duration

MEP
ALS-FRSsUL

Disease
duration

Gender
ALS-FRSb

BMI

MEP
Age at onset

ALS-FRSsUL
Gender

Table 7.17 shows that ALS-FRS and BMI influence NIV in most considered subsets of patients (in Table 7.17,

ALS-FRS only does not appear in average progressors with NIV any time). The influence of ALS-FRS was

expected, as it is the global functional score. In slow and average progressors, NIV is also strongly influenced by

ALS-FRSb, MEP and disease duration (except in average progressors with NIV only after the second year, where

NIV is not strongly influenced by MEP). In fast progressors, NIV is also greatly influenced by the age at onset.
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Question 2: which variables are the most important in each year of the patients’ progression?

The years of a certain patient’s progression start being counted in the first consultation of that patient. Using the

progression groups explained in Section 7.3, doctors are interested in determining the most influential variables in

the first and second years of the progression of slow, average and fast progressors, and the most influential variables

after the second year of the progression of slow and average progressors.

To answer the second clinical question, Sections 7.2.2 and 7.3.2 are employed, with some changes. For every

progression group, the preprocessing is done as in Section 7.1. However, only the data before NIV is used (the goal

is to study the patients’ progression until NIV being applied), and data is only filled with LOCF (as in Sections 7.2.2

and 7.3.2). Then, the sdtDBNs from Table 7.8 are learned, with two differences. First, only the scenarios before

NIV exist. Second, the sdtDBNs are learned using T = 10, as some results regard the influence of the variables

after the second year of progression, and consecutive timesteps are separated by three months (see Section 7.1).

With the sdtDBNs learned, the influence of each variable in each year is determined by extending the graphical

reasoning explained in Section 7.2.2 in the following way. Given any two variables X and Y of an sdtDBN, if X

is a parent of more variables in timesteps of year t′ than Y , it can be concluded that X has more influence than

Y in year t′ of the progression of the ALS patients that the sdtDBN describes. Given this reasoning, Table 7.9 is

changed so that the rows have years instead of timesteps, which is done by summing element-wise the rows of the

timesteps respective to each year. As consecutive timesteps are separated by three months, timesteps 1 to 4 refer to

the first year, timesteps 5 to 8 refer to the second year, and timesteps 9 and 10 refer to years after the second year.

The influence of the several variables in each year is obtained, for each progression group, as detailed in

Section 7.2.2, but creating tables similar to the changed table previously explained, instead of similar to Table 7.9.

The top 10 most important variables in each year of each progression group using the sdtDBNs with sub-scores

are presented in Table 7.18, while the results of the sdtDBNs with questions are provided in Appendix A.3.

Table 7.18: Top 10 most important variables in each year of the patients’ progression, using the sdtDBNs with
sub-scores. Patients are divided into slow, average and fast progressors (see Section 7.3).

Year 1st year 2nd year After 2nd year
Progression group Slow Average Fast Slow Average Fast Slow Average

1st Disease
duration

MEP BMI
Disease
duration

Disease
duration

ALS-FRS
Disease
duration

ALS-FRS

2nd MEP MEP MEP ALS-FRSsUL BMI ALS-FRSsUL
Disease
duration

3rd ALS-FRSsUL

ALS-FRSsLL
BMI

ALS-FRS ALS-FRSsLL ALS-FRSb Gender ALS-FRSsLL ALS-FRSb
4th ALS-FRSsLL ALS-FRSsUL ALS-FRSb ALS-FRSsUL ALS-FRSsLL ALS-FRSb ALS-FRS ALS-FRSsUL

5th MIP
Disease
duration

ALS-FRSsUL ALS-FRSb MEP
Disease
duration

El Escorial
criteria

6th BMI ALS-FRSb Age at onset BMI BMI Age at onset

ALS-FRSb
MEP

ALS-FRSsLL

7th ALS-FRS
El Escorial

criteria
ALS-FRSsLL MIP ALS-FRS

El Escorial
criteria

BMI MEP

8th El Escorial
criteria

MIP MIP ALS-FRS MIP MEP MIP BMI

9th ALS-FRSb ALS-FRS FVC
El Escorial

criteria
El Escorial

criteria
ALS-FRSsUL

El Escorial
criteria

MIP

Top 10
influential
variables

10th Age at onset FVC
El Escorial

criteria
Age at onset C9orf72 Onset form Age at onset C9orf72

Table 7.18 allows extracting the major differences between the most influential variables in each progression

group. In slow and average progressors, the ALS-FRSsUL and ALS-FRSsLL sub-scores have great influence,

while in fast progressors it is ALS-FRSb the sub-score with the highest influence. MEP is the most important

respiratory test in the several progression groups. Regarding the static variables, the disease duration has great

influence in slow and average progressors, while in fast progressors the age at onset is a relevant indicator.
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Question 3: considering the sub-score of ALS-FRS with the lowest value in the first consultation of a patient,

how are its relations with the remaining variables, throughout that patient’s progression?

The ALS-FRS sub-score with the lowest value in the first consultation of a patient reveals the major functional

limitations of that patient at the start of the progression, being doctors interested in learning how those limitations

affect the patient’s progression. To achieve this goal, nine sub-datasets are created, by dividing patients into three

progression groups (see Section 7.3) and, in each group, diving patients into three sub-groups, according to the

sub-score with the lowest value in the first consultation being ALS-FRSb, ALS-FRSsUL or ALS-FRSsLL.

After getting all nine aforementioned sub-datasets, each one is preprocessed as explained in Section 7.1. How-

ever, only the datasets before NIV with sub-scores are obtained, because the goal is to study the relations of certain

sub-scores in the patients’ progression before NIV being applied. The data is also filled only using LOCF, as

the results using LOCF and using interpolation are similar. Finally, the ALS-FRS variable is removed from the

datasets, because correlations with the global score are not interesting in the context of this clinical question.

With the preprocessing completed, Section 7.2.3 is applied to every sub-dataset, only considering the scenario

before NIV with sub-scores. From the analysis of a certain sub-dataset, a table similar to Table 7.11 is obtained,

from which it is extracted only the column of the sub-score with the lowest value in the first consultation (this

sub-score varies according to the sub-dataset). Considering all sub-datasets, nine columns are obtained (one per

sub-dataset), which answer the third clinical question. Fig. 7.5 graphically presents (in a stacked bar chart) the nine

mentioned columns, grouping the columns by progression group. In Appendix A.3, the same nine columns are

presented, but the columns are grouped according to each sub-score with the lowest value in the first consultation.
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Figure 7.5: Correlations of the sub-score with the lowest value in the first consultation with the remaining variables
throughout the patients’ progression, grouping the columns by progression group.

Some relevant observations regarding Fig. 7.5 are given next. ALS-FRSb has high correlation with FVC, in all

progression groups, and with the age at onset, in slow and fast progressors. ALS-FRSsUL is highly correlated with

the El Escorial criteria, in slow progressors. ALS-FRSsLL has high correlation with MIP, in all groups. ALS-FRSb

and ALS-FRSsLL are highly correlated with C9orf72, in fast progressors. ALS-FRSsUL and ALS-FRSsLL have

high correlation with MEP, in slow and average progressors, and with the disease duration, in slow progressors.
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Chapter 8

Conclusions and future work

8.1 Achievements and conclusions

This Thesis tackles ALS disease progression using data mining techniques. For this purpose, it is essential to have

a machine learning model that can include static variables and the temporal evolution of dynamic variables.

The sdtDBN framework is proposed (see Chapter 5), as it optimally learns the structure and parameters of

DBNs with dynamic and static variables. The learning algorithm has polynomial-time complexity in the number of

dynamic and static variables. The sdtDBNs can also include prior knowledge in the relations among variables and

estimate the distributions of unobserved variables. All capabilities of the sdtDBNs are implemented and publicly

available. The inclusion of static variables in the sdtDBNs is a huge improvement on standard DBNs, which only

have dynamic variables. This is particularly relevant when studying medical data, as most medical datasets have

static information (such as the gender of the patients). The inclusion of prior knowledge is also essential when

using sdtDBNs in the medical field, to properly incorporate clinicians’ domain knowledge in the models.

A graphical interface for the sdtDBN framework is also presented (see Chapter 6), being implemented and pub-

licly available. Having a graphical interface is extremely important, as it narrows the gap between machine learning

models and clinical practice, by making the sdtDBNs easily available to any non-expert in machine learning.

A study of the Portuguese ALS dataset is done using sdtDBNs (see Chapter 7). The whole ALS dataset is tack-

led (see Section 7.2) with three approaches. The first approach predicts the values of the ALS-FRS-R sub-scores

and questions, being the results competitive with state-of-the-art works. The second and third approaches use the

graphical display of sdtDBNs to get the importance and correlations of the variables in the disease progression,

providing relevant statistical insights regarding the ALS data. These graphical approaches are particularly relevant

in the medical field, where presenting statistical information in a way doctors can understand (and use as a tool

when treating current and future patients) is often more useful than creating a model with an extremely complex

background (which doctors cannot understand), even if that model can accurately predict multiple outcomes.

After studying the whole dataset, the ALS patients are divided into three progression groups and each group is

analyzed with the same three approaches used for the whole dataset (see Section 7.3). This study determines the

main characteristics of each progression group, in particular with the approaches that use the graphical display of

sdtDBNs. However, the reduced quantity of patients may lead the sdtDBNs to overfit the data in certain situations.
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The last assessment of the ALS dataset using sdtDBNs consists of answering three specific clinical questions

using sdtDBNs (see Section 7.4). This analysis allows the study using sdtDBNs to have real clinical impact.

The work of this Thesis resulted in three papers. The first paper, submitted in the Journal of Biomedical

Informatics, focuses on the sdtDBN learning methodology, providing a case-study in ALS (in which some results

of Section 7.2 are used). The second paper, finished and waiting for the supervisors’ review in order to be submitted

in the journal BMC Medical Informatics and Decision Making, emphasizes the study of the several progression

groups of ALS patients using sdtDBNs (presenting the results of Section 7.3, with more detailed conclusions). The

third paper is being written by the medical team that maintains the Portuguese ALS dataset, and focuses on the

clinical relevance of the study done with sdtDBNs (addressing the three questions answered in Section 7.4).

8.2 Future work

Although the sdtDBN framework restricts the intra-slice connectivity to tree structures, this restriction may not

fit some datasets. Other restrictions could be tried, creating a global framework that would test several intra-slice

restrictions and choose the best. The maximization of scores different from LL and MDL could also be considered.

Regarding the implementation of sdtDBNs, most loops of the learning procedure (see Algorithms 5.1, 5.2 and 5.3)

could be parallelized. This is also suggested in the tDBN work [69], which the sdtDBN framework generalizes.

The sdtDBN framework cannot be employed to estimate the values of static variables, as they never have par-

ents in learned sdtDBNs. It would be extremely beneficial to extend the sdtDBN framework, for sdtDBNs to learn

the optimal parents of static variables. However, this is a difficult task, as considering all possible combinations of

dynamic nodes from all timesteps is unfeasible, and keeping the acyclicity of the graph may not be easy.

The graphical interface of sdtDBNs is a program that runs locally in the user’s machine. Other approaches are

possible, such as developing a web-based interface that learns the sdtDBNs in a remote machine.

In the analysis of the ALS dataset, data is filled using LOCF and linear interpolation. It would be interesting to

use sdtDBNs to fill missing data, by learning sdtDBNs from data before the filling process, and estimating missing

values according to the respective (estimated) probability distributions, obtained using the mentioned sdtDBNs.

The division of patients into progression groups is done using their progression rates, determined with Eq. (7.3).

An alternative approach would be to consider the progression group of a patient as a static variable, which could be

predicted using sdtDBNs (if implementing the aforementioned extension to sdtDBNs, for static variables to have

parents). These sdtDBNs could be learned from patients whose time-series are already ended, determining their

progression groups, for example, by defining thresholds regarding the lengths of the time-series.

To get the correlations between the variables of the ALS dataset, the sdtDBNs are restricted, so that a variable

cannot be a parent of itself. As, in the obtained results, an ALS-FRS-R question often has high correlation with

questions from the same sub-score, it would be interesting to also prevent a question from being a parent of

questions from the same sub-score, to assess the correlations among questions from different sub-scores.

Finally, there are interesting outcomes not covered in this work. For example, the learned sdtDBNs could be

restricted, forcing the C9orf72 variable to always be a parent of every variable, in order to check how helpful the

C9orf72 hexanucleotide repeat expansion can be to predict the disease progression. The sdtDBNs could also be

used to predict a patient’s necessity of getting NIV, and to predict a patient’s survival time after NIV being applied.
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Appendix A

Some more results of the analysis of the

ALS dataset using sdtDBNs

A.1 Whole dataset

A.1.1 Prediction of the variables’ values
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Table A.1: Results of the predictions, for every question in every timestep, of the sdtDBNs before NIV with
questions (see Section 7.2 in Chapter 7), using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 87,98 80,32 77,76 85,76 80,13 84,49 88,51 88,03
Sensitivity (%) 93,16 89,90 80,91 87,92 76,23 91,49 78,95 90,36

AUC (%) 95,89 94,74 89,61 93,96 87,83 95,74 89,47 94,52
Evaluated patients 1090 884 706 590 468 374 296 234

P2

Accuracy (%) 83,78 78,47 80,93 81,34 78,11 75,43 81,88 84,10
Sensitivity (%) 80,80 79,24 74,78 79,81 77,16 80,65 83,33 76,27

AUC (%) 88,96 87,15 85,69 88,76 87,11 85,82 91,67 84,72
Evaluated patients 1042 836 666 552 434 346 276 220

P3

Accuracy (%) 87,52 84,28 82,44 84,58 83,12 81,28 86,49 93,16
Sensitivity (%) 90,40 83,83 81,63 85,96 75,60 90,61 88,35 85,91

AUC (%) 93,72 90,84 89,00 91,01 87,41 92,64 92,62 92,96
Evaluated patients 1090 884 706 590 468 374 296 234

P4

Accuracy (%) 82,87 76,32 76,72 78,72 76,46 78,27 76,65 82,92
Sensitivity (%) 86,07 85,24 87,61 75,48 70,55 81,00 78,41 73,68

AUC (%) 90,95 89,79 90,49 86,64 84,38 89,73 87,35 86,23
Evaluated patients 1138 912 730 606 480 382 304 240

P5

Accuracy (%) 78,03 71,60 74,16 71,96 70,25 76,14 73,39 80,15
Sensitivity (%) 69,58 71,20 71,27 70,47 72,68 82,18 71,74 82,58

AUC (%) 83,78 84,40 84,65 84,37 85,50 90,03 84,23 89,87
Evaluated patients 1066 860 686 571 451 360 286 227

P6

Accuracy (%) 76,15 68,44 67,29 70,68 65,81 67,65 74,32 75,64
Sensitivity (%) 76,24 71,44 73,02 69,21 74,29 71,64 75,47 74,42

AUC (%) 86,41 83,04 83,83 83,44 86,53 84,99 86,16 85,18
Evaluated patients 1090 884 706 590 468 374 296 234

P7

Accuracy (%) 77,74 68,18 67,57 71,38 66,36 72,83 70,65 65,91
Sensitivity (%) 83,39 61,15 69,86 70,65 68,16 80,13 80,30 80,39

AUC (%) 89,54 79,64 83,59 84,19 82,32 89,54 89,46 87,65
Evaluated patients 1042 836 666 552 434 346 276 220

P8

Accuracy (%) 82,99 82,94 77,65 80,78 77,46 76,81 76,45 71,55
Sensitivity (%) 86,44 89,39 89,08 91,75 94,05 93,12 97,11 94,33

AUC (%) 90,53 91,71 90,66 92,34 91,94 92,44 93,09 92,41
Evaluated patients 1146 920 738 614 488 388 310 246

P9

Accuracy (%) 74,09 66,87 65,32 72,47 67,97 70,23 71,38 75,00
Sensitivity (%) 62,17 63,81 64,46 73,40 77,83 61,22 75,00 79,39

AUC (%) 80,82 80,44 80,70 85,50 88,12 80,61 86,48 89,69
Evaluated patients 1042 836 666 552 434 346 276 220

P10

Accuracy (%) 92,23 92,38 93,22 90,87 89,94 89,41 91,91 95,92
Sensitivity (%) 93,60 91,38 x x x x x x

AUC (%) 94,15 93,95 x x x x x x
Evaluated patients 1145 919 737 613 487 387 309 245

R1

Accuracy (%) 85,11 79,64 81,51 81,49 82,45 83,48 84,00 87,67
Sensitivity (%) 71,60 55,79 59,52 x x x x x

AUC (%) 83,14 73,95 76,75 x x x x x
Evaluated patients 1041 835 665 551 433 345 275 219

R2

Accuracy (%) 92,13 92,35 92,04 92,57 91,71 92,49 94,20 94,55
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 1042 836 666 552 434 346 276 220

R3

Accuracy (%) 97,45 97,04 96,85 94,06 94,79 95,29 94,41 97,09
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 1138 912 730 606 480 382 304 240
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Table A.2: Results of the predictions, for every question in every timestep, of the sdtDBNs after NIV with questions
(see Section 7.2 in Chapter 7), using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 81,06 79,40 77,70 82,06 83,43 82,42 82,09 82,00
Sensitivity (%) 83,81 78,85 76,39 81,54 83,67 84,35 75,72 79,31

AUC (%) 91,56 89,21 87,47 90,45 91,04 90,24 85,51 86,84
Evaluated patients 792 670 556 446 350 290 240 200

P2

Accuracy (%) 77,63 70,66 70,41 75,36 75,15 71,22 71,79 77,78
Sensitivity (%) 82,72 75,00 77,55 83,12 89,58 73,81 78,95 79,41

AUC (%) 88,84 84,38 85,82 88,25 92,69 84,84 87,57 87,40
Evaluated patients 760 644 534 426 334 278 234 198

P3

Accuracy (%) 82,33 78,37 78,87 74,03 79,84 81,46 83,34 83,81
Sensitivity (%) 84,69 74,26 82,47 81,65 84,25 90,98 86,56 90,66

AUC (%) 90,42 85,86 89,96 87,96 89,33 94,31 92,53 95,33
Evaluated patients 826 698 582 462 362 302 252 210

P4

Accuracy (%) 78,52 72,26 68,99 74,34 71,19 75,34 65,07 85,17
Sensitivity (%) 83,54 77,32 75,60 84,17 80,00 83,18 78,15 88,57

AUC (%) 91,60 88,10 87,55 91,45 88,29 90,00 88,31 92,37
Evaluated patients 810 685 571 452 354 296 249 209

P5

Accuracy (%) 76,45 65,38 71,54 71,13 70,96 78,78 78,63 83,34
Sensitivity (%) 83,00 60,49 75,32 74,29 77,05 80,77 80,85 78,26

AUC (%) 90,39 78,90 87,14 85,74 87,11 89,24 88,28 89,13
Evaluated patients 760 644 534 426 334 278 234 198

P6

Accuracy (%) 78,29 68,94 70,04 69,95 74,25 79,50 76,07 84,35
Sensitivity (%) 77,34 69,61 73,08 75,26 81,71 81,58 84,62 85,25

AUC (%) 88,32 84,01 85,62 86,77 89,68 90,79 89,42 92,62
Evaluated patients 760 644 534 426 334 278 234 198

P7

Accuracy (%) 76,71 70,97 69,10 67,85 66,17 72,30 76,92 81,82
Sensitivity (%) 80,85 76,89 76,05 58,57 72,41 67,80 82,35 85,11

AUC (%) 89,80 87,81 86,67 79,29 83,91 82,02 89,66 91,59
Evaluated patients 760 644 534 426 334 278 234 198

P8

Accuracy (%) 80,87 75,65 77,49 69,48 72,38 76,49 74,21 78,10
Sensitivity (%) 80,89 71,98 73,53 70,97 71,43 75,00 70,37 86,96

AUC (%) 90,11 85,59 86,50 84,89 84,91 86,45 81,02 90,94
Evaluated patients 826 698 582 462 362 302 252 210

P9

Accuracy (%) 74,61 70,32 72,11 69,96 76,03 79,23 80,19 89,95
Sensitivity (%) 77,14 72,98 75,51 77,30 78,91 84,24 87,28 95,42

AUC (%) 87,97 85,73 86,09 87,69 88,06 91,12 91,14 96,24
Evaluated patients 776 657 545 436 342 284 237 199

P10

Accuracy (%) 82,49 80,71 79,16 80,88 81,77 84,50 72,48 84,74
Sensitivity (%) 84,77 87,15 89,47 86,82 90,54 94,34 86,28 90,66

AUC (%) 87,13 84,67 79,63 83,73 82,77 84,67 78,53 89,67
Evaluated patients 777 658 547 434 340 284 240 203

R1

Accuracy (%) 73,95 71,90 71,72 64,09 67,37 75,54 68,38 69,70
Sensitivity (%) 78,65 75,54 78,14 76,07 82,20 73,68 61,76 87,71

AUC (%) 84,46 82,25 84,17 82,57 83,76 85,85 78,47 80,04
Evaluated patients 760 644 534 426 334 278 234 198

R2

Accuracy (%) 77,02 73,73 73,04 70,14 64,74 80,00 72,77 79,81
Sensitivity (%) 82,59 80,75 82,80 76,76 78,63 75,00 81,87 88,97

AUC (%) 85,85 84,46 82,46 83,95 78,60 84,17 81,60 86,55
Evaluated patients 792 670 560 442 346 290 246 208

R3

Accuracy (%) 81,36 76,64 80,90 80,09 80,92 86,56 84,96 87,02
Sensitivity (%) 83,84 79,36 88,61 84,11 89,52 92,96 92,70 90,33

AUC (%) 87,76 83,27 87,31 86,34 87,62 91,29 89,00 89,50
Evaluated patients 794 672 560 442 346 290 246 208
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A.1.2 Influence of each variable in every timestep
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Figure A.1: Influence of each variable in every timestep of the sdtDBNs before NIV with sub-scores. The learned
sdtDBNs are detailed in Table 7.8 of Chapter 7.
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Figure A.2: Influence of each variable in every timestep of the sdtDBNs after NIV with sub-scores. The learned
sdtDBNs are detailed in Table 7.8 of Chapter 7.
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A.1.3 Correlations among variables throughout the disease progression

Table A.3: Correlations between variables of the sdtDBNs before NIV with questions. The table is normalized per
column. The learned sdtDBNs are detailed in Table 7.8 of Chapter 7.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3 FVC MIP MEP PhrenMeanAmpl
P1 — 34,85% 45,71% 5,73% 4,57% 4,36% 0,90% 7,81% 4,78% 5,69% 3,33% 13,73% 10,49% 7,69% 6,45% 5,39% 10,53%
P2 17,65% — 5,14% 2,87% 2,67% 3,81% 0,90% 3,35% 3,59% 1,42% 0,83% 6,54% 2,10% 4,49% 0,92% 2,94% 2,63%
P3 20,46% 4,55% — 1,79% 4,57% 2,18% 2,69% 0,37% 1,20% 2,37% 0,83% 3,27% 2,80% 1,28% 0,46% 2,12% 1,32%
P4 4,09% 4,04% 2,86% — 15,05% 1,36% 8,07% 5,20% 6,58% 3,79% 1,25% 7,84% 4,90% 4,49% 5,53% 6,05% 2,63%
P5 6,14% 7,07% 13,71% 28,32% — 21,53% 5,38% 7,81% 9,42% 6,64% 10,00% 15,69% 6,99% 19,23% 6,45% 11,11% 16,45%
P6 4,09% 7,07% 4,57% 1,79% 15,05% — 20,18% 7,06% 10,16% 4,74% 2,08% 5,23% 4,20% 6,41% 7,37% 8,33% 4,61%
P7 0,51% 1,01% 3,43% 6,45% 2,29% 12,26% — 3,72% 6,73% 3,79% 3,75% 1,96% 3,50% 2,56% 3,23% 7,19% 1,97%
P8 5,37% 4,55% 0,57% 5,02% 4,00% 5,18% 4,48% — 14,80% 1,42% 3,33% 4,58% 3,50% 4,49% 5,07% 5,07% 1,97%
P9 8,18% 12,12% 4,57% 15,77% 12,00% 18,53% 20,18% 36,80% — 10,90% 14,17% 16,99% 5,59% 18,59% 18,89% 14,38% 24,34%
P10 3,07% 1,52% 2,86% 2,87% 2,67% 2,72% 3,59% 1,12% 3,44% — 26,67% 3,27% 20,98% 1,28% 0,46% 3,59% 0,66%
R1 2,05% 1,01% 1,14% 1,08% 4,57% 1,36% 4,04% 2,97% 5,08% 30,33% — 5,88% 22,38% 1,28% 1,38% 5,07% 2,63%
R2 5,37% 5,05% 2,86% 4,30% 4,57% 2,18% 1,35% 2,60% 3,89% 2,37% 3,75% — 2,10% 0,00% 0,46% 3,10% 0,00%
R3 3,84% 1,52% 2,29% 2,51% 1,90% 1,63% 2,24% 1,86% 1,20% 14,22% 13,33% 1,96% — 1,28% 2,30% 1,14% 0,66%

FVC 3,07% 3,54% 1,14% 2,51% 5,71% 2,72% 1,79% 2,60% 4,33% 0,95% 0,83% 0,00% 1,40% — 0,46% 6,54% 0,66%
MIP 3,58% 1,01% 0,57% 4,30% 2,67% 4,36% 3,14% 4,09% 6,13% 0,47% 1,25% 0,65% 3,50% 0,64% — 12,58% 7,24%
MEP 8,44% 9,09% 7,43% 13,26% 12,95% 13,90% 19,73% 11,52% 13,15% 10,43% 12,92% 12,42% 4,90% 25,64% 35,48% — 21,71%

PhrenMeanAmpl 4,09% 2,02% 1,14% 1,43% 4,76% 1,91% 1,35% 1,12% 5,53% 0,47% 1,67% 0,00% 0,70% 0,64% 5,07% 5,39% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table A.4: Correlations between variables of the sdtDBNs after NIV with questions. The table is normalized per
column. The learned sdtDBNs are detailed in Table 7.8 of Chapter 7.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3
P1 — 17,51% 28,32% 13,35% 10,64% 10,48% 12,84% 11,78% 10,04% 5,88% 10,60% 10,95% 13,09%
P2 10,04% — 10,03% 6,21% 3,55% 3,81% 2,75% 9,04% 5,24% 6,95% 8,76% 5,97% 12,04%
P3 21,43% 13,23% — 5,90% 6,74% 4,76% 7,03% 5,48% 3,93% 9,09% 12,21% 13,93% 5,76%
P4 9,60% 7,78% 5,60% — 24,11% 10,95% 13,76% 6,58% 9,17% 6,42% 5,76% 6,97% 4,19%
P5 6,70% 3,89% 5,60% 21,12% — 20,95% 6,42% 4,93% 6,11% 5,35% 7,60% 5,97% 1,57%
P6 4,91% 3,11% 2,95% 7,14% 15,60% — 13,15% 2,19% 11,79% 1,60% 3,92% 1,99% 0,52%
P7 9,38% 3,50% 6,78% 13,98% 7,45% 20,48% — 13,70% 10,48% 6,95% 5,99% 7,46% 8,38%
P8 9,60% 12,84% 5,90% 7,45% 6,38% 3,81% 15,29% — 31,44% 5,88% 11,75% 8,96% 8,90%
P9 5,13% 4,67% 2,65% 6,52% 4,96% 12,86% 7,34% 19,73% — 3,21% 3,92% 1,49% 0,52%

P10 2,46% 5,06% 5,01% 3,73% 3,55% 1,43% 3,98% 3,01% 2,62% — 8,06% 3,48% 25,65%
R1 10,27% 14,79% 15,63% 7,76% 11,70% 8,10% 7,95% 13,97% 7,42% 18,72% — 30,35% 16,75%
R2 4,91% 4,67% 8,26% 4,35% 4,26% 1,90% 4,59% 4,93% 1,31% 3,74% 14,06% — 2,62%
R3 5,58% 8,95% 3,24% 2,48% 1,06% 0,48% 4,89% 4,66% 0,44% 26,20% 7,37% 2,49% —

Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

85



A.2 Progression groups

A.2.1 Prediction of the variables’ values

Table A.5: Results of the predictions of the sdtDBNs before NIV with sub-scores, for the several progression
groups (see Section 7.3.1 in Chapter 7), using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

(a) Slow progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 84,23 75,55 81,60 86,87 74,07 82,26 82,72 91,92
Sensitivity (%) 72,28 67,11 77,99 88,70 88,16 89,86 91,94 100,00

AUC (%) 83,76 79,46 86,80 94,35 83,14 94,93 93,34 97,50
Evaluated patients 298 274 250 236 216 186 162 136

ALS-FRSb

Accuracy (%) 91,62 89,42 87,20 90,26 82,41 82,80 88,89 92,65
Sensitivity (%) 83,33 84,52 74,65 81,95 68,29 83,78 90,62 100,00

AUC (%) 90,03 89,80 86,21 90,37 81,91 90,11 95,31 97,00
Evaluated patients 298 274 250 236 216 186 162 136

ALS-FRSsUL

Accuracy (%) 80,88 77,37 76,40 83,90 71,76 82,80 79,01 88,24
Sensitivity (%) 82,58 85,56 87,30 91,54 54,81 82,76 64,29 80,77

AUC (%) 86,71 89,59 92,20 93,64 76,01 90,60 81,20 89,19
Evaluated patients 298 274 250 236 216 186 162 136

ALS-FRSsLL

Accuracy (%) 88,28 82,76 74,30 80,20 80,22 79,22 78,79 83,33
Sensitivity (%) 92,13 90,11 42,27 76,00 82,86 78,79 86,67 80,00

AUC (%) 95,43 91,05 70,43 85,64 90,54 87,12 91,94 88,28
Evaluated patients 256 232 214 202 182 154 132 108

R

Accuracy (%) 88,59 83,58 90,00 86,02 87,04 88,18 85,19 89,71
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 298 274 250 236 216 186 162 136

(b) Average progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 81,50 75,45 78,09 81,16 76,77 76,76 76,00 73,68
Sensitivity (%) 89,34 86,33 68,37 55,85 65,80 66,13 75,00 61,54

AUC (%) 86,63 86,04 82,21 77,92 82,90 80,57 87,50 78,77
Evaluated patients 562 444 356 276 198 142 100 76

ALS-FRSb

Accuracy (%) 87,19 78,38 77,53 75,00 71,72 75,36 86,00 85,53
Sensitivity (%) 92,83 86,87 74,47 80,00 62,86 90,91 93,33 84,61

AUC (%) 95,63 92,90 86,85 88,47 81,43 94,43 96,67 89,60
Evaluated patients 562 444 356 276 198 142 100 76

ALS-FRSsUL

Accuracy (%) 80,79 71,17 79,78 72,10 77,78 76,06 81,00 73,68
Sensitivity (%) 59,72 62,35 79,77 73,61 86,95 52,38 84,24 73,32

AUC (%) 79,14 80,11 89,89 85,29 92,27 76,19 89,79 83,43
Evaluated patients 562 444 356 276 198 142 100 76

ALS-FRSsLL

Accuracy (%) 79,00 71,17 75,00 73,55 68,69 72,54 77,00 75,00
Sensitivity (%) 68,28 65,65 79,36 76,70 81,41 59,09 68,75 69,70

AUC (%) 83,88 81,62 87,94 86,58 89,26 79,55 82,90 84,85
Evaluated patients 562 444 356 276 198 142 100 76

R

Accuracy (%) 85,45 76,56 80,61 75,99 71,67 80,47 82,22 81,43
Sensitivity (%) 71,88 54,90 58,77 57,18 48,00 47,06 x 36,67

AUC (%) 82,74 71,31 76,15 72,70 66,31 70,34 x 68,34
Evaluated patients 536 418 330 254 180 128 90 70
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(c) Fast progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 78,37 69,45 67,39 81,82 72,73 73,53 82,14 87,50
Sensitivity (%) 45,71 54,81 70,00 72,22 75,00 76,37 83,34 83,33

AUC (%) 72,86 76,00 85,00 86,11 87,50 88,18 91,67 91,67
Evaluated patients 208 144 92 66 44 34 28 16

ALS-FRSb

Accuracy (%) 83,18 75,00 71,74 68,19 86,36 82,35 78,57 81,25
Sensitivity (%) 61,33 83,33 71,04 76,67 81,82 60,00 75,00 83,34

AUC (%) 80,67 87,75 85,53 88,34 90,91 80,00 87,50 91,67
Evaluated patients 208 144 92 66 44 34 28 16

ALS-FRSsUL

Accuracy (%) 66,35 61,81 68,48 68,19 81,82 67,65 85,71 75,00
Sensitivity (%) 73,68 40,74 57,14 91,67 73,89 65,00 87,50 75,00

AUC (%) 84,71 70,37 78,57 95,83 86,95 82,50 93,75 75,00
Evaluated patients 208 144 92 66 44 34 28 16

ALS-FRSsLL

Accuracy (%) 59,62 58,34 41,31 72,73 72,73 79,41 75,00 87,50
Sensitivity (%) 64,61 29,29 30,79 90,00 55,56 71,43 71,43 100,00

AUC (%) 76,68 64,65 65,40 95,00 77,78 85,71 78,57 100,00
Evaluated patients 208 144 92 66 44 34 28 16

R

Accuracy (%) 78,85 83,33 76,09 78,79 81,82 82,36 71,43 75,00
Sensitivity (%) 65,91 70,97 65,00 62,50 75,53 80,00 66,67 80,00

AUC (%) 77,12 81,83 76,73 78,31 82,71 90,00 73,33 73,33
Evaluated patients 208 144 92 66 44 34 28 16

Table A.6: Results of the predictions of the sdtDBNs after NIV with sub-scores, for the several progression groups
(see Section 7.3.1 in Chapter 7), using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

(a) Slow progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 87,08 80,49 78,26 85,25 74,00 78,05 68,57 75,00
Sensitivity (%) 88,05 83,33 87,80 82,93 81,08 86,67 50,00 77,78

AUC (%) 94,03 90,20 92,12 91,46 86,69 84,24 73,00 86,71
Evaluated patients 178 164 138 122 100 82 70 64

ALS-FRSb

Accuracy (%) 87,08 84,76 76,81 85,25 74,00 82,93 80,00 84,38
Sensitivity (%) 88,00 77,78 77,78 91,67 94,44 93,33 84,62 84,62

AUC (%) 93,22 87,98 88,89 93,13 95,66 96,67 90,03 92,31
Evaluated patients 178 164 138 122 100 82 70 64

ALS-FRSsUL

Accuracy (%) 89,33 82,32 82,61 80,33 78,00 82,93 71,43 82,82
Sensitivity (%) 89,92 73,08 86,96 86,36 76,19 77,78 70,59 84,93

AUC (%) 93,51 86,54 93,48 93,18 86,37 88,89 76,96 89,23
Evaluated patients 178 164 138 122 100 82 70 64

ALS-FRSsLL

Accuracy (%) 85,39 82,93 84,06 74,59 88,00 79,27 80,00 85,94
Sensitivity (%) 85,19 82,14 82,61 72,00 81,82 88,89 81,25 82,35

AUC (%) 92,59 90,15 90,22 86,00 90,91 94,44 90,62 91,18
Evaluated patients 178 164 138 122 100 82 70 64

R

Accuracy (%) 84,83 78,05 85,51 77,05 78,00 87,80 71,43 78,12
Sensitivity (%) 70,83 60,71 73,08 70,83 68,18 84,21 73,33 76,92

AUC (%) 83,88 78,51 85,38 77,31 78,73 92,11 79,17 80,57
Evaluated patients 178 164 138 122 100 82 70 64
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(b) Average progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 82,51 74,61 76,36 82,18 78,35 80,23 81,43 80,36
Sensitivity (%) 84,11 78,97 85,59 83,18 64,00 61,29 73,50 72,73

AUC (%) 90,46 87,62 92,80 91,59 82,00 80,65 84,56 84,89
Evaluated patients 446 386 330 258 194 172 140 112

ALS-FRSb

Accuracy (%) 86,16 83,68 77,91 74,81 87,82 80,57 81,56 85,71
Sensitivity (%) 90,69 81,17 80,60 67,90 89,99 86,93 70,32 82,35

AUC (%) 94,64 90,14 89,71 83,95 95,00 91,14 83,24 91,18
Evaluated patients 455 392 335 262 197 175 141 112

ALS-FRSsUL

Accuracy (%) 79,49 75,71 77,80 72,91 81,38 86,24 83,74 85,17
Sensitivity (%) 79,98 77,78 71,85 79,29 76,46 86,27 83,17 86,84

AUC (%) 89,67 87,50 84,63 87,50 88,23 93,14 87,23 93,42
Evaluated patients 434 375 320 251 188 167 135 108

ALS-FRSsLL

Accuracy (%) 84,53 74,10 73,33 79,07 78,35 80,82 85,71 94,64
Sensitivity (%) 80,13 72,92 76,71 77,27 80,00 80,01 87,37 97,50

AUC (%) 89,73 86,05 87,27 88,64 90,00 86,49 91,46 98,75
Evaluated patients 446 386 330 258 194 172 140 112

R

Accuracy (%) 80,72 78,50 77,58 81,01 82,47 84,88 87,14 83,93
Sensitivity (%) 68,42 67,38 72,46 71,93 79,59 80,00 87,50 87,10

AUC (%) 81,15 79,40 81,81 83,19 84,59 85,83 88,75 87,55
Evaluated patients 446 386 330 258 194 172 140 112

(c) Fast progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

ALS-FRS

Accuracy (%) 65,67 82,00 82,50 81,48 85,71 91,67 91,67 81,82
Sensitivity (%) 78,57 57,14 66,67 78,57 80,00 80,00 83,33 75,00

AUC (%) 84,74 78,57 83,33 89,29 90,00 90,00 91,67 87,50
Evaluated patients 134 100 80 54 42 24 24 22

ALS-FRSb

Accuracy (%) 82,35 80,39 82,50 74,07 80,95 79,17 83,33 86,37
Sensitivity (%) 83,87 91,30 88,89 75,00 100,00 66,67 100,00 100,00

AUC (%) 91,94 93,87 94,44 87,50 100,00 83,33 100,00 100,00
Evaluated patients 136 102 80 54 42 24 24 22

ALS-FRSsUL

Accuracy (%) 75,00 78,43 75,00 74,07 66,67 91,67 91,67 95,46
Sensitivity (%) 85,19 74,07 76,92 76,19 82,35 100,00 90,00 100,00

AUC (%) 92,59 87,04 88,46 79,76 78,68 100,00 95,00 100,00
Evaluated patients 136 102 80 54 42 24 24 22

ALS-FRSsLL

Accuracy (%) 71,64 74,00 72,50 74,07 80,95 70,84 83,33 77,28
Sensitivity (%) 79,31 76,19 71,43 88,24 78,57 70,84 100,00 83,34

AUC (%) 88,34 88,10 83,08 89,12 89,29 85,42 100,00 91,67
Evaluated patients 134 100 80 54 42 24 24 22

R

Accuracy (%) 82,35 83,33 75,00 77,78 76,19 75,00 100,00 54,55
Sensitivity (%) 84,00 73,22 65,00 80,00 75,00 87,50 100,00 75,00

AUC (%) 87,35 84,97 80,00 90,00 81,94 93,75 100,00 70,83
Evaluated patients 136 102 80 54 42 24 24 22
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Table A.7: Results of the predictions of the sdtDBNs before NIV with questions, for the several progression groups
(see Section 7.3.1 in Chapter 7), using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

(a) Slow progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 93,75 91,30 84,92 92,37 81,48 88,17 88,89 95,59
Sensitivity (%) 92,11 85,71 74,29 82,86 73,68 87,88 96,15 x

AUC (%) 95,18 92,86 85,49 91,43 84,70 92,27 98,08 x
Evaluated patients 304 276 252 236 216 186 162 136

P2

Accuracy (%) 91,45 87,32 91,27 91,53 87,04 82,80 85,19 87,50
Sensitivity (%) x x x x 82,14 84,62 86,96 x

AUC (%) x x x x 90,45 90,07 93,48 x
Evaluated patients 304 276 252 236 216 186 162 136

P3

Accuracy (%) 92,11 93,48 85,71 90,26 83,80 89,25 90,74 92,65
Sensitivity (%) x x x x 62,13 92,59 x x

AUC (%) x x x x 80,40 95,54 x x
Evaluated patients 304 276 252 236 216 186 162 136

P4

Accuracy (%) 88,59 81,39 83,20 81,36 80,09 80,65 80,25 82,35
Sensitivity (%) 76,42 76,27 83,64 81,90 86,84 86,00 85,11 58,82

AUC (%) 87,17 85,57 88,25 87,20 91,95 91,84 91,08 78,43
Evaluated patients 298 274 250 236 216 186 162 136

P5

Accuracy (%) 85,91 77,01 78,80 78,39 69,91 79,57 77,78 81,62
Sensitivity (%) 84,92 79,41 87,50 71,67 67,57 84,38 72,41 68,42

AUC (%) 91,88 87,53 90,47 85,27 83,08 91,37 85,25 83,19
Evaluated patients 298 274 250 236 216 186 162 136

P6

Accuracy (%) 79,20 71,53 76,80 71,61 62,50 78,49 78,40 80,88
Sensitivity (%) 78,56 82,93 62,50 69,44 58,54 87,50 70,97 93,66

AUC (%) 84,66 85,10 80,17 81,67 75,54 92,11 83,48 95,71
Evaluated patients 298 274 250 236 216 186 162 136

P7

Accuracy (%) 84,90 74,09 72,40 76,27 67,60 75,27 71,61 75,00
Sensitivity (%) 79,78 70,34 74,60 82,22 51,72 64,29 65,52 73,91

AUC (%) 87,06 81,01 84,08 87,65 74,60 80,99 81,80 84,74
Evaluated patients 298 274 250 236 216 186 162 136

P8

Accuracy (%) 84,90 84,31 82,80 89,83 76,39 79,57 74,07 81,62
Sensitivity (%) 76,91 82,06 65,31 89,36 81,23 84,84 86,84 88,71

AUC (%) 86,64 90,01 82,00 93,98 87,57 90,55 93,42 93,01
Evaluated patients 298 274 250 236 216 186 162 136

P9

Accuracy (%) 82,55 74,09 73,20 76,70 71,76 76,34 66,67 83,82
Sensitivity (%) 81,18 79,44 72,65 71,88 82,76 79,31 70,00 86,96

AUC (%) 89,07 87,93 84,07 85,36 90,75 89,66 82,06 92,37
Evaluated patients 298 274 250 236 216 186 162 136

P10

Accuracy (%) 95,07 94,57 94,84 94,49 93,06 91,40 93,21 95,59
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 304 276 252 236 216 186 162 136

R1

Accuracy (%) 88,93 85,40 90,80 84,33 87,50 89,25 85,19 91,18
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 298 274 250 236 216 186 162 136

R2

Accuracy (%) 97,70 93,84 94,05 95,76 93,52 95,70 98,77 95,59
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 304 276 252 236 216 186 162 136

R3

Accuracy (%) 98,62 99,24 99,16 98,20 95,05 95,98 97,33 100,00
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 290 262 238 222 202 174 150 124
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(b) Average progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 86,52 77,18 77,33 82,04 76,24 79,45 88,24 73,68
Sensitivity (%) 92,33 70,00 74,14 91,49 75,00 76,19 100,00 70,00

AUC (%) 95,80 84,71 87,07 95,74 87,50 87,13 100,00 81,43
Evaluated patients 586 460 366 284 202 146 102 76

P2

Accuracy (%) 81,57 75,22 76,78 77,82 71,79 69,86 74,51 84,21
Sensitivity (%) 82,31 76,92 79,17 75,00 62,96 78,95 92,31 85,71

AUC (%) 88,73 87,14 86,66 86,08 79,45 85,77 96,15 88,69
Evaluated patients 586 460 366 284 202 146 102 76

P3

Accuracy (%) 86,18 81,30 83,06 82,39 78,22 73,29 76,47 97,37
Sensitivity (%) 91,20 86,51 86,47 71,05 68,75 83,33 81,25 100,00

AUC (%) 93,85 91,42 91,20 85,05 83,65 90,65 90,62 100,00
Evaluated patients 586 460 366 284 202 146 102 76

P4

Accuracy (%) 84,35 74,10 73,60 74,28 73,24 71,83 66,00 80,27
Sensitivity (%) 87,25 80,74 69,60 69,86 69,86 57,89 76,47 69,23

AUC (%) 92,11 89,22 84,42 82,86 83,33 78,95 86,72 84,62
Evaluated patients 562 444 356 276 198 142 100 76

P5

Accuracy (%) 76,34 70,95 71,91 62,68 70,21 75,36 60,00 75,00
Sensitivity (%) 63,32 68,80 68,28 60,00 70,34 89,06 65,22 81,25

AUC (%) 80,39 83,66 83,74 78,86 83,30 94,53 78,90 88,35
Evaluated patients 562 444 356 276 198 142 100 76

P6

Accuracy (%) 74,56 70,27 63,77 65,95 62,63 59,86 66,00 69,74
Sensitivity (%) 69,51 72,38 67,35 65,16 63,51 44,44 70,83 76,47

AUC (%) 82,89 84,29 82,12 81,00 81,76 72,22 83,49 88,24
Evaluated patients 562 444 356 276 198 142 100 76

P7

Accuracy (%) 78,11 67,35 70,51 63,77 62,63 71,13 68,00 53,95
Sensitivity (%) 79,34 56,47 66,41 63,63 67,60 60,00 53,33 60,00

AUC (%) 88,52 77,77 81,89 81,18 81,58 80,00 76,67 80,00
Evaluated patients 562 444 356 276 198 142 100 76

P8

Accuracy (%) 80,30 75,41 75,89 67,84 76,01 76,40 70,30 64,48
Sensitivity (%) 73,71 72,26 84,05 75,33 89,26 87,68 61,25 78,18

AUC (%) 85,97 84,07 89,49 86,07 94,63 93,84 79,20 89,09
Evaluated patients 574 452 361 280 200 144 101 76

P9

Accuracy (%) 73,49 64,19 68,54 67,03 60,11 62,68 81,00 67,11
Sensitivity (%) 75,48 59,86 70,93 68,00 56,63 57,69 83,33 69,05

AUC (%) 86,74 78,94 83,60 82,02 77,62 78,85 91,67 84,52
Evaluated patients 562 444 356 276 198 142 100 76

P10

Accuracy (%) 91,82 84,81 86,91 84,20 84,73 85,55 91,16 90,68
Sensitivity (%) 84,46 73,21 77,98 68,50 76,92 x x x

AUC (%) 90,56 83,53 86,32 82,02 87,82 x x x
Evaluated patients 588 462 368 286 204 146 102 76

R1

Accuracy (%) 87,12 82,10 81,80 80,84 79,13 84,70 90,08 93,42
Sensitivity (%) 81,69 70,64 70,78 70,95 x x x x

AUC (%) 89,08 82,41 83,84 82,75 x x x x
Evaluated patients 576 454 363 282 202 144 101 76

R2

Accuracy (%) 90,67 92,34 91,52 90,55 87,78 89,06 91,11 94,29
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 536 418 330 254 180 128 90 70

R3

Accuracy (%) 97,64 98,07 97,04 92,76 94,71 96,63 94,23 100,00
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 592 466 372 290 208 148 104 78
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(c) Fast progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 77,89 70,14 66,31 77,28 86,37 85,30 82,14 81,25
Sensitivity (%) 75,38 72,22 75,00 88,89 85,71 80,00 75,00 100,00

AUC (%) 87,69 83,80 86,72 94,44 92,86 90,00 87,50 95,00
Evaluated patients 208 144 92 66 44 34 28 16

P2

Accuracy (%) 78,85 74,31 64,13 60,61 70,46 70,59 71,43 62,50
Sensitivity (%) 74,83 86,84 54,10 44,44 71,43 80,00 60,00 100,00

AUC (%) 85,16 90,60 77,05 70,14 85,71 90,00 80,00 100,00
Evaluated patients 208 144 92 66 44 34 28 16

P3

Accuracy (%) 78,37 77,09 73,91 72,73 90,91 67,65 75,00 87,50
Sensitivity (%) 55,56 69,23 77,78 75,00 100,00 70,84 81,25 100,00

AUC (%) 76,48 83,53 87,10 87,50 100,00 85,42 90,63 100,00
Evaluated patients 208 144 92 66 44 34 28 16

P4

Accuracy (%) 64,91 59,03 76,09 72,73 68,19 61,77 75,00 75,00
Sensitivity (%) 61,85 27,78 84,62 77,78 87,50 83,33 100,00 100,00

AUC (%) 79,41 59,26 90,79 84,72 93,75 91,67 94,44 90,00
Evaluated patients 208 144 92 66 44 34 28 16

P5

Accuracy (%) 67,31 56,25 68,48 78,79 65,91 76,47 78,57 87,50
Sensitivity (%) 64,29 27,78 51,47 88,89 55,56 85,71 80,00 66,67

AUC (%) 81,34 63,89 75,74 94,44 77,78 92,86 90,00 83,33
Evaluated patients 208 144 92 66 44 34 28 16

P6

Accuracy (%) 64,42 56,25 67,39 69,70 68,19 67,65 78,57 87,50
Sensitivity (%) 62,86 37,50 50,00 90,00 50,00 75,00 83,33 75,00

AUC (%) 79,98 68,75 75,00 92,83 75,00 87,50 91,67 87,50
Evaluated patients 208 144 92 66 44 34 28 16

P7

Accuracy (%) 63,94 56,95 51,09 80,31 75,00 61,77 75,00 62,50
Sensitivity (%) 67,82 44,83 22,26 92,86 66,67 73,22 80,00 40,00

AUC (%) 83,91 71,25 61,13 96,43 80,21 86,61 81,67 70,00
Evaluated patients 208 144 92 66 44 34 28 16

P8

Accuracy (%) 66,35 57,64 47,83 66,67 61,37 44,12 35,71 25,00
Sensitivity (%) 70,09 73,49 53,33 66,67 75,00 66,67 83,33 50,00

AUC (%) 82,08 81,83 73,44 81,25 87,50 78,79 85,42 66,67
Evaluated patients 208 144 92 66 44 34 28 16

P9

Accuracy (%) 62,02 59,72 38,05 84,85 70,46 76,47 71,43 87,50
Sensitivity (%) 60,82 41,06 31,58 100,00 62,50 71,43 71,43 100,00

AUC (%) 80,41 70,53 65,79 100,00 81,25 85,71 78,57 100,00
Evaluated patients 208 144 92 66 44 34 28 16

P10

Accuracy (%) 77,40 79,87 78,26 75,76 84,09 76,47 64,29 75,00
Sensitivity (%) 57,89 64,29 68,42 61,54 80,36 56,25 50,00 100,00

AUC (%) 75,16 78,73 80,51 75,77 86,73 78,13 66,67 90,00
Evaluated patients 208 144 92 66 44 34 28 16

R1

Accuracy (%) 75,00 80,56 80,43 81,82 93,18 73,53 64,29 75,00
Sensitivity (%) 82,14 100,00 94,44 84,62 x 87,50 0,00 50,00

AUC (%) 90,27 100,00 97,22 92,31 x 93,75 45,00 75,00
Evaluated patients 208 144 92 66 44 34 28 16

R2

Accuracy (%) 83,65 84,03 86,96 90,91 90,91 88,24 85,71 87,50
Sensitivity (%) x 46,19 x x 71,43 83,33 83,33 66,67

AUC (%) x 72,14 x x 85,71 91,67 91,67 83,33
Evaluated patients 208 144 92 66 44 34 28 16

R3

Accuracy (%) 97,12 97,22 97,83 93,94 90,91 88,24 92,86 100,00
Sensitivity (%) x x x x x x x x

AUC (%) x x x x x x x x
Evaluated patients 208 144 92 66 44 34 28 16
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Table A.8: Results of the predictions of the sdtDBNs after NIV with questions, for the several progression groups
(see Section 7.3.1 in Chapter 7), using {m = 1, p = 2, b = 1, T = 8} and the MDL score.

(a) Slow progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 86,52 75,61 76,81 81,97 80,00 85,37 85,71 84,38
Sensitivity (%) 79,31 76,67 73,68 78,95 61,54 92,31 100,00 87,50

AUC (%) 89,66 85,45 86,84 88,28 80,77 96,15 98,08 93,75
Evaluated patients 178 164 138 122 100 82 70 64

P2

Accuracy (%) 79,78 78,05 65,22 81,15 69,00 78,05 71,43 71,88
Sensitivity (%) 86,84 71,43 71,43 88,89 72,92 90,00 78,95 44,44

AUC (%) 91,46 84,07 85,71 92,12 82,61 90,24 86,35 70,05
Evaluated patients 178 164 138 122 100 82 70 64

P3

Accuracy (%) 89,89 79,27 78,26 68,85 67,00 82,93 74,29 84,38
Sensitivity (%) 86,96 63,33 72,41 76,00 72,08 93,94 87,09 81,80

AUC (%) 93,48 80,71 83,71 81,06 79,92 94,93 90,98 90,90
Evaluated patients 178 164 138 122 100 82 70 64

P4

Accuracy (%) 83,15 76,83 73,19 81,15 75,00 75,61 62,86 82,82
Sensitivity (%) 88,00 75,86 68,42 93,75 85,71 83,33 81,82 83,33

AUC (%) 94,00 87,93 84,21 96,88 91,47 91,67 88,83 91,67
Evaluated patients 178 164 138 122 100 82 70 64

P5

Accuracy (%) 82,03 71,95 77,54 72,13 68,00 80,49 77,14 89,06
Sensitivity (%) 90,91 83,72 84,62 86,11 78,57 89,29 70,00 80,00

AUC (%) 94,34 86,73 92,31 89,06 89,29 90,80 83,00 90,00
Evaluated patients 178 164 138 122 100 82 70 64

P6

Accuracy (%) 84,83 71,95 76,09 66,39 73,00 82,93 65,71 70,32
Sensitivity (%) 97,14 61,90 71,43 78,26 88,89 84,62 75,00 71,43

AUC (%) 97,65 80,95 84,67 89,13 92,88 92,31 85,33 85,71
Evaluated patients 178 164 138 122 100 82 70 64

P7

Accuracy (%) 83,71 80,49 69,57 68,03 66,00 76,83 74,29 81,25
Sensitivity (%) 85,19 85,71 80,00 83,33 66,67 84,21 81,25 87,50

AUC (%) 92,59 92,86 90,00 91,67 80,48 92,11 85,36 93,75
Evaluated patients 178 164 138 122 100 82 70 64

P8

Accuracy (%) 87,08 76,83 79,71 73,77 72,00 85,37 74,29 75,00
Sensitivity (%) 80,89 80,44 72,73 77,27 69,23 94,12 72,73 100,00

AUC (%) 90,44 88,53 86,36 87,35 84,62 97,06 84,28 97,83
Evaluated patients 178 164 138 122 100 82 70 64

P9

Accuracy (%) 80,34 79,27 81,16 63,12 79,00 80,49 68,57 81,25
Sensitivity (%) 84,38 81,25 95,65 73,08 76,00 90,48 78,95 94,44

AUC (%) 90,43 89,62 96,74 86,54 88,00 95,24 86,35 97,22
Evaluated patients 178 164 138 122 100 82 70 64

P10

Accuracy (%) 79,22 81,71 82,61 82,79 78,00 82,93 81,43 90,62
Sensitivity (%) 80,53 83,05 93,69 91,01 88,57 92,86 91,30 86,96

AUC (%) 84,89 88,27 84,07 86,41 79,29 88,74 83,15 93,48
Evaluated patients 178 164 138 122 100 82 70 64

R1

Accuracy (%) 78,65 70,73 76,09 62,30 62,00 80,49 77,14 79,69
Sensitivity (%) 84,62 80,56 77,42 72,73 71,43 83,33 85,00 82,11

AUC (%) 86,31 84,84 86,08 81,01 72,08 82,84 85,83 83,04
Evaluated patients 178 164 138 122 100 82 70 64

R2

Accuracy (%) 82,02 78,05 75,36 73,77 66,00 81,71 71,43 84,38
Sensitivity (%) 85,00 74,42 80,00 82,35 75,86 89,84 75,50 91,11

AUC (%) 89,44 84,65 82,65 83,77 78,41 94,92 82,98 90,28
Evaluated patients 178 164 138 122 100 82 70 64

R3

Accuracy (%) 82,02 75,61 75,36 73,77 76,00 85,37 85,71 89,06
Sensitivity (%) 78,22 79,80 86,59 78,05 82,35 89,66 88,00 93,38

AUC (%) 87,81 82,21 82,58 79,02 75,55 90,66 89,00 86,14
Evaluated patients 178 164 138 122 100 82 70 64
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(b) Average progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 82,98 79,70 77,46 86,76 85,44 84,24 85,62 82,76
Sensitivity (%) 90,14 81,43 72,00 81,82 84,38 82,56 81,25 84,21

AUC (%) 95,07 90,71 85,59 90,91 91,48 90,46 88,59 90,82
Evaluated patients 470 404 346 272 206 184 146 116

P2

Accuracy (%) 78,70 70,21 68,48 68,99 78,35 70,93 74,29 76,79
Sensitivity (%) 86,21 73,58 73,44 79,25 91,18 73,53 92,31 85,71

AUC (%) 90,12 83,54 82,76 85,68 94,79 84,84 92,74 91,43
Evaluated patients 446 386 330 258 194 172 140 112

P3

Accuracy (%) 75,22 76,87 79,94 74,07 83,33 79,12 82,64 82,46
Sensitivity (%) 85,40 76,22 86,15 86,15 87,23 74,37 83,33 75,00

AUC (%) 89,52 87,19 91,95 90,93 92,71 86,45 91,67 87,50
Evaluated patients 468 402 344 270 204 182 144 114

P4

Accuracy (%) 78,02 71,36 66,77 68,42 72,00 74,72 61,27 85,71
Sensitivity (%) 78,86 77,42 71,88 76,32 74,19 86,21 73,53 89,29

AUC (%) 89,14 88,16 84,52 87,11 84,92 91,44 86,76 92,86
Evaluated patients 464 398 340 266 200 178 142 112

P5

Accuracy (%) 76,68 65,29 69,40 67,06 71,65 77,33 74,29 78,57
Sensitivity (%) 79,82 77,89 71,43 65,00 78,12 72,73 75,86 74,07

AUC (%) 88,81 84,73 84,90 80,81 87,52 85,42 85,49 87,04
Evaluated patients 446 386 330 258 194 172 140 112

P6

Accuracy (%) 75,35 69,83 68,74 67,74 72,87 78,43 80,00 88,88
Sensitivity (%) 75,87 71,35 69,32 73,40 71,47 79,03 82,97 89,32

AUC (%) 87,32 84,34 83,91 85,29 85,73 88,74 87,23 94,66
Evaluated patients 434 375 320 251 188 167 135 108

P7

Accuracy (%) 77,13 71,25 66,97 64,34 64,44 68,60 77,14 78,57
Sensitivity (%) 76,61 79,47 75,00 53,49 76,67 60,00 81,82 83,33

AUC (%) 87,58 88,67 86,35 76,74 86,09 78,91 89,56 89,74
Evaluated patients 446 386 330 258 194 172 140 112

P8

Accuracy (%) 80,66 68,62 70,15 67,18 76,15 75,99 77,32 78,57
Sensitivity (%) 81,35 70,28 71,18 64,55 81,99 76,81 73,04 80,00

AUC (%) 90,68 84,79 84,67 82,01 90,26 87,46 82,67 90,00
Evaluated patients 455 392 335 262 197 175 141 112

P9

Accuracy (%) 74,07 66,57 67,77 71,38 74,60 80,01 84,41 91,07
Sensitivity (%) 76,92 68,39 75,32 76,39 81,20 82,80 88,90 97,44

AUC (%) 88,46 83,35 86,00 88,20 89,35 89,51 92,07 95,78
Evaluated patients 455 392 335 262 197 175 141 112

P10

Accuracy (%) 84,05 80,65 76,47 81,20 84,00 87,64 69,01 80,36
Sensitivity (%) 84,85 86,90 86,72 84,26 93,67 95,65 86,79 93,02

AUC (%) 89,44 83,26 79,07 84,13 84,93 85,33 73,95 88,82
Evaluated patients 464 398 340 266 200 178 142 112

R1

Accuracy (%) 71,80 72,81 69,04 61,48 67,03 75,31 69,23 69,23
Sensitivity (%) 73,66 74,47 80,63 74,63 83,18 70,37 66,67 70,59

AUC (%) 82,22 80,70 83,98 80,95 84,26 84,26 81,06 82,44
Evaluated patients 422 364 310 244 182 162 130 104

R2

Accuracy (%) 74,65 71,16 76,45 68,85 68,13 80,87 70,00 76,92
Sensitivity (%) 80,43 80,95 86,36 74,39 52,17 70,83 76,47 80,00

AUC (%) 84,87 84,31 84,97 83,45 72,41 82,79 84,07 88,65
Evaluated patients 422 364 310 244 182 162 130 104

R3

Accuracy (%) 81,90 75,88 80,89 83,46 83,00 82,59 82,40 85,71
Sensitivity (%) 84,68 76,80 87,18 89,13 94,37 90,38 95,19 90,91

AUC (%) 87,71 82,32 86,99 89,69 92,01 88,21 87,07 91,29
Evaluated patients 464 398 340 266 200 178 142 112
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(c) Fast progression group.

Variable Metric Timestep
1 2 3 4 5 6 7 8

P1

Accuracy (%) 77,94 88,24 85,00 70,37 80,95 91,67 83,33 81,82
Sensitivity (%) 71,43 80,00 100,00 90,00 100,00 100,00 80,00 100,00

AUC (%) 85,71 88,61 100,00 92,06 96,43 100,00 90,00 92,86
Evaluated patients 136 102 80 54 42 24 24 22

P2

Accuracy (%) 72,06 68,63 77,50 77,78 52,38 66,67 75,00 90,91
Sensitivity (%) 87,50 64,29 66,67 70,00 85,71 60,00 100,00 100,00

AUC (%) 89,20 80,79 83,33 82,06 85,71 80,00 100,00 92,86
Evaluated patients 136 102 80 54 42 24 24 22

P3

Accuracy (%) 85,29 70,59 77,50 77,78 80,95 75,00 91,67 63,64
Sensitivity (%) 86,21 75,00 78,95 71,43 90,91 66,67 100,00 100,00

AUC (%) 91,82 83,80 89,47 85,71 90,45 83,33 100,00 100,00
Evaluated patients 136 102 80 54 42 24 24 22

P4

Accuracy (%) 64,71 68,63 65,00 66,67 66,67 75,00 100,00 90,91
Sensitivity (%) 71,43 80,00 85,00 92,86 100,00 77,78 100,00 88,89

AUC (%) 81,46 86,77 90,00 84,89 100,00 88,89 100,00 94,44
Evaluated patients 136 102 80 54 42 24 24 22

P5

Accuracy (%) 69,12 54,90 80,00 66,67 71,43 75,00 91,67 90,91
Sensitivity (%) 69,57 60,87 80,00 72,22 78,57 87,50 88,89 88,89

AUC (%) 81,45 71,51 87,50 80,56 82,14 81,25 94,44 94,44
Evaluated patients 136 102 80 54 42 24 24 22

P6

Accuracy (%) 72,06 68,63 65,00 77,78 71,43 83,33 91,67 90,91
Sensitivity (%) 72,41 84,00 83,33 80,95 100,00 100,00 100,00 88,89

AUC (%) 81,08 86,23 82,29 82,14 83,33 83,33 100,00 94,44
Evaluated patients 136 102 80 54 42 24 24 22

P7

Accuracy (%) 63,24 68,63 75,00 59,26 66,67 66,67 83,33 100,00
Sensitivity (%) 85,00 88,24 87,50 85,71 83,33 85,71 100,00 100,00

AUC (%) 82,08 91,18 85,42 85,16 80,56 82,86 87,50 100,00
Evaluated patients 136 102 80 54 42 24 24 22

P8

Accuracy (%) 66,18 69,61 82,50 70,37 66,67 66,67 75,00 72,73
Sensitivity (%) 81,82 69,23 90,91 80,00 60,00 71,43 75,00 100,00

AUC (%) 88,74 84,62 95,45 90,00 80,00 85,71 75,00 83,33
Evaluated patients 136 102 80 54 42 24 24 22

P9

Accuracy (%) 70,59 64,71 65,00 77,78 66,67 83,33 91,67 81,82
Sensitivity (%) 86,67 78,26 69,23 88,89 78,57 88,89 100,00 88,89

AUC (%) 90,70 81,99 63,19 83,33 60,71 94,44 83,33 69,44
Evaluated patients 136 102 80 54 42 24 24 22

P10

Accuracy (%) 77,21 79,41 71,25 74,07 83,33 66,67 87,50 68,19
Sensitivity (%) 90,91 95,35 93,55 93,18 97,37 88,89 100,00 100,00

AUC (%) 68,54 63,30 49,55 61,59 48,69 61,11 75,00 68,75
Evaluated patients 136 102 80 54 42 24 24 22

R1

Accuracy (%) 69,12 74,51 67,50 70,37 71,43 75,00 75,00 40,91
Sensitivity (%) 75,68 70,97 69,23 70,00 83,33 75,00 50,00 66,67

AUC (%) 83,00 82,98 84,62 79,12 85,00 87,50 68,75 77,08
Evaluated patients 136 102 80 54 42 24 24 22

R2

Accuracy (%) 70,15 73,00 60,00 55,56 42,86 66,67 91,67 63,64
Sensitivity (%) 80,95 84,38 45,45 50,00 62,50 100,00 100,00 66,67

AUC (%) 78,48 81,08 69,28 66,18 73,56 93,75 94,44 77,08
Evaluated patients 134 100 80 54 42 24 24 22

R3

Accuracy (%) 79,41 82,35 85,00 66,67 61,90 91,67 91,67 90,91
Sensitivity (%) 86,84 84,62 90,48 64,71 78,57 100,00 87,50 87,50

AUC (%) 88,42 86,31 92,61 82,35 75,00 100,00 93,75 93,75
Evaluated patients 136 102 80 54 42 24 24 22
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A.2.2 Influence of each variable in every timestep
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Figure A.3: Influence of each variable in every timestep of the sdtDBNs before NIV with sub-scores, for each
progression group. The sdtDBNs detailed in Table 7.8 (see Chapter 7) are learned for every progression group.
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Figure A.4: Influence of each variable in every timestep of the sdtDBNs after NIV with sub-scores, for each
progression group. The sdtDBNs detailed in Table 7.8 (see Chapter 7) are learned for every progression group.
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Figure A.5: Influence of each variable in every timestep of the sdtDBNs after NIV with questions, for each pro-
gression group. The sdtDBNs detailed in Table 7.8 (see Chapter 7) are learned for every progression group.
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A.2.3 Correlations among variables throughout the disease progression

Table A.9: Correlations between variables of the sdtDBNs before NIV with questions, for each progression group.
Each table is normalized per column. The sdtDBNs of Table 7.8 (see Chapter 7) are learned for every progression
group.

(a) Slow progression group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3 FVC MIP MEP PhrenMeanAmpl
P1 — 32,00% 36,41% 3,66% 7,77% 3,51% 2,99% 4,97% 3,70% 14,04% 10,44% 23,88% 37,50% 7,98% 7,24% 3,63% 11,19%
P2 15,65% — 13,59% 2,74% 1,70% 2,01% 0,37% 3,64% 1,94% 2,34% 0,55% 6,72% 4,55% 3,07% 2,07% 6,25% 2,80%
P3 16,38% 12,50% — 1,22% 1,46% 1,75% 2,61% 1,32% 3,70% 2,34% 2,75% 2,99% 3,41% 1,23% 1,38% 3,63% 2,10%
P4 2,93% 4,50% 2,17% — 19,90% 7,52% 10,07% 10,26% 3,53% 9,94% 6,59% 12,69% 18,18% 9,20% 3,10% 4,84% 2,10%
P5 7,82% 3,50% 3,26% 25,00% — 15,04% 5,22% 5,30% 10,05% 8,19% 11,54% 7,46% 7,95% 9,82% 4,48% 8,87% 9,09%
P6 3,42% 4,00% 3,80% 9,15% 14,56% — 22,76% 7,95% 11,11% 4,68% 5,49% 8,96% 4,55% 11,04% 9,66% 9,27% 4,20%
P7 1,96% 0,50% 3,80% 8,23% 3,40% 15,29% — 4,30% 8,47% 5,85% 6,59% 4,48% 1,14% 1,23% 7,24% 6,45% 3,50%
P8 3,67% 5,50% 2,17% 9,45% 3,88% 6,02% 4,85% — 17,28% 1,17% 6,59% 5,97% 6,82% 6,13% 3,79% 6,65% 5,59%
P9 5,13% 5,50% 11,41% 6,10% 13,83% 15,79% 17,91% 32,45% — 7,60% 12,09% 8,21% 0,00% 18,40% 18,97% 15,12% 15,38%
P10 5,87% 2,00% 2,17% 5,18% 3,40% 2,01% 3,73% 0,66% 2,29% — 19,23% 3,73% 6,82% 3,68% 2,41% 2,82% 1,40%
R1 4,65% 0,50% 2,72% 3,66% 5,10% 2,51% 4,48% 3,97% 3,88% 20,47% — 3,73% 1,14% 4,29% 2,41% 2,62% 0,00%
R2 7,82% 4,50% 2,17% 5,18% 2,43% 3,01% 2,24% 2,65% 1,94% 2,92% 2,75% — 3,41% 0,00% 1,03% 1,81% 0,00%
R3 8,07% 2,00% 1,63% 4,88% 1,70% 1,00% 0,37% 1,99% 0,00% 3,51% 0,55% 2,24% — 0,00% 1,03% 0,00% 0,70%

FVC 3,18% 2,50% 1,09% 4,57% 3,88% 4,51% 0,75% 3,31% 5,29% 3,51% 3,85% 0,00% 0,00% — 0,34% 7,46% 0,70%
MIP 5,13% 3,00% 2,17% 2,74% 3,16% 7,02% 7,84% 3,64% 9,70% 4,09% 3,85% 2,24% 3,41% 0,61% — 14,52% 20,28%
MEP 4,40% 15,50% 9,78% 7,32% 10,68% 11,53% 11,94% 10,93% 13,23% 8,19% 7,14% 6,72% 0,00% 22,70% 24,83% — 20,98%

PhrenMeanAmpl 3,91% 2,00% 1,63% 0,91% 3,16% 1,50% 1,87% 2,65% 3,88% 1,17% 0,00% 0,00% 1,14% 0,61% 10,00% 6,05% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(b) Average progression group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3 FVC MIP MEP PhrenMeanAmpl
P1 — 30,70% 38,80% 10,68% 6,86% 6,63% 8,76% 12,55% 8,91% 15,15% 17,11% 20,77% 24,30% 18,75% 14,44% 10,80% 22,56%
P2 11,74% — 12,57% 4,66% 2,52% 2,21% 2,30% 2,35% 4,82% 1,82% 1,32% 6,15% 5,61% 4,86% 3,33% 3,76% 3,76%
P3 12,63% 10,70% — 3,01% 2,97% 2,49% 2,30% 1,18% 0,93% 4,24% 1,97% 3,08% 8,41% 1,39% 0,56% 3,76% 0,75%
P4 6,94% 7,91% 6,01% — 18,54% 8,01% 6,91% 7,06% 7,24% 7,27% 7,24% 7,69% 13,08% 11,11% 7,78% 5,40% 12,03%
P5 5,34% 5,12% 7,10% 22,19% — 17,40% 12,44% 8,63% 8,16% 5,45% 7,89% 6,92% 3,74% 11,11% 15,56% 11,74% 13,53%
P6 4,27% 3,72% 4,92% 7,95% 14,42% — 11,06% 9,02% 11,32% 6,67% 9,21% 8,46% 1,87% 8,33% 12,22% 9,15% 7,52%
P7 3,38% 2,33% 2,73% 4,11% 6,18% 6,63% — 3,92% 7,79% 1,82% 1,97% 7,69% 5,61% 4,86% 0,56% 7,28% 6,77%
P8 5,69% 2,79% 1,64% 4,93% 5,03% 6,35% 4,61% — 14,66% 3,64% 3,29% 3,08% 5,61% 2,08% 4,44% 6,10% 3,01%
P9 8,54% 12,09% 2,73% 10,68% 10,07% 16,85% 19,35% 30,98% — 12,12% 13,16% 14,62% 2,80% 17,36% 13,89% 13,38% 19,55%
P10 4,45% 1,40% 3,83% 3,29% 2,06% 3,04% 1,38% 2,35% 3,71% — 21,71% 0,77% 15,89% 0,69% 0,00% 3,52% 1,50%
R1 4,63% 0,93% 1,64% 3,01% 2,75% 3,87% 1,38% 1,96% 3,71% 20,00% — 5,38% 0,00% 0,00% 1,67% 3,05% 0,00%
R2 4,80% 3,72% 2,19% 2,74% 2,06% 3,04% 4,61% 1,57% 3,53% 0,61% 4,61% — 3,74% 0,69% 1,67% 2,82% 0,00%
R3 4,63% 2,79% 4,92% 3,84% 0,92% 0,55% 2,76% 2,35% 0,56% 10,30% 0,00% 3,08% — 2,78% 0,00% 1,41% 0,00%

FVC 4,80% 3,26% 1,09% 4,38% 3,66% 3,31% 3,23% 1,18% 4,64% 0,61% 0,00% 0,77% 3,74% — 0,56% 5,16% 0,00%
MIP 4,63% 2,79% 0,55% 3,84% 6,41% 6,08% 0,46% 3,14% 4,64% 0,00% 1,97% 2,31% 0,00% 0,69% — 9,86% 0,00%
MEP 8,19% 7,44% 8,74% 6,30% 11,44% 10,77% 14,29% 10,20% 10,58% 9,09% 8,55% 9,23% 5,61% 15,28% 23,33% — 9,02%

PhrenMeanAmpl 5,34% 2,33% 0,55% 4,38% 4,12% 2,76% 4,15% 1,57% 4,82% 1,21% 0,00% 0,00% 0,00% 0,00% 0,00% 2,82% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(c) Fast progression group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3 FVC MIP MEP PhrenMeanAmpl
P1 — 40,43% 40,51% 15,69% 17,99% 25,70% 25,82% 35,25% 21,61% 38,24% 32,32% 50,00% 56,92% 36,89% 26,89% 29,03% 42,17%
P2 10,58% — 5,70% 5,88% 5,02% 2,79% 7,14% 2,16% 4,02% 3,92% 5,05% 6,98% 1,54% 8,74% 5,04% 6,99% 3,61%
P3 8,91% 4,79% — 4,71% 6,28% 3,35% 3,85% 2,16% 4,02% 6,86% 4,04% 2,33% 4,62% 3,88% 3,36% 4,84% 1,20%
P4 5,57% 7,98% 7,59% — 17,57% 12,29% 10,99% 9,35% 9,05% 6,86% 7,07% 8,14% 4,62% 7,77% 10,92% 10,22% 10,84%
P5 5,99% 6,38% 9,49% 16,47% — 13,41% 7,14% 7,19% 7,04% 11,76% 5,05% 1,16% 9,23% 8,74% 11,76% 7,53% 6,02%
P6 6,41% 2,66% 3,80% 8,63% 10,04% — 8,79% 4,32% 5,53% 1,96% 4,04% 5,81% 3,08% 6,80% 5,88% 7,53% 2,41%
P7 6,55% 6,91% 4,43% 7,84% 5,44% 8,94% — 6,47% 11,06% 3,92% 11,11% 4,65% 1,54% 2,91% 1,68% 3,23% 4,82%
P8 6,82% 1,60% 1,90% 5,10% 4,18% 3,35% 4,95% — 10,55% 2,94% 6,06% 0,00% 1,54% 2,91% 5,88% 1,61% 2,41%
P9 5,99% 4,26% 5,06% 7,06% 5,86% 6,15% 12,09% 15,11% — 0,98% 3,03% 6,98% 0,00% 7,77% 13,45% 6,99% 8,43%
P10 5,43% 2,13% 4,43% 2,75% 5,02% 1,12% 2,20% 2,16% 0,50% — 10,10% 3,49% 9,23% 1,94% 0,84% 0,54% 0,00%
R1 4,46% 2,66% 2,53% 2,75% 2,09% 2,23% 6,04% 4,32% 1,51% 9,80% — 1,16% 1,54% 1,94% 0,84% 3,76% 0,00%
R2 5,99% 3,19% 1,27% 2,75% 0,42% 2,79% 2,20% 0,00% 3,02% 2,94% 1,01% — 4,62% 0,00% 0,00% 2,15% 1,20%
R3 5,15% 0,53% 1,90% 1,18% 2,51% 1,12% 0,55% 0,72% 0,00% 5,88% 1,01% 3,49% — 0,00% 0,00% 0,54% 0,00%

FVC 5,29% 4,79% 2,53% 3,14% 3,77% 3,91% 1,65% 2,16% 4,02% 1,96% 2,02% 0,00% 0,00% — 2,52% 3,76% 0,00%
MIP 4,46% 3,19% 2,53% 5,10% 5,86% 3,91% 1,10% 5,04% 8,04% 0,98% 1,01% 0,00% 0,00% 2,91% — 5,38% 3,61%
MEP 7,52% 6,91% 5,70% 7,45% 5,86% 7,82% 3,30% 2,16% 6,53% 0,98% 7,07% 4,65% 1,54% 6,80% 8,40% — 13,25%

PhrenMeanAmpl 4,87% 1,60% 0,63% 3,53% 2,09% 1,12% 2,20% 1,44% 3,52% 0,00% 0,00% 1,16% 0,00% 0,00% 2,52% 5,91% —
Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Table A.10: Correlations between variables of the sdtDBNs after NIV with questions, for each progression group.
Each table is normalized per column. The sdtDBNs of Table 7.8 (see Chapter 7) are learned for every progression
group.

(a) Slow progression group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3
P1 — 35,56% 38,16% 12,74% 20,34% 14,75% 20,10% 22,52% 18,31% 25,74% 21,95% 29,50% 29,14%
P2 13,36% — 7,73% 5,42% 2,12% 6,47% 10,29% 4,58% 6,10% 8,82% 6,34% 3,60% 6,62%
P3 13,19% 7,11% — 8,94% 4,66% 3,96% 6,37% 2,29% 1,88% 5,88% 6,83% 5,04% 3,31%
P4 7,85% 8,89% 15,94% — 20,34% 19,06% 10,78% 10,69% 13,15% 13,24% 8,29% 21,58% 16,56%
P5 8,01% 2,22% 5,31% 13,01% — 10,07% 9,31% 5,34% 8,92% 5,88% 9,27% 5,04% 6,62%
P6 6,84% 8,00% 5,31% 14,36% 11,86% — 12,25% 12,21% 10,80% 4,41% 12,68% 4,32% 5,96%
P7 6,84% 9,33% 6,28% 5,96% 8,05% 8,99% — 10,31% 3,29% 4,41% 4,39% 5,76% 3,97%
P8 9,85% 5,33% 2,90% 7,59% 5,93% 11,51% 13,24% — 20,19% 6,62% 6,83% 7,19% 5,30%
P9 6,51% 5,78% 1,93% 7,59% 8,05% 8,27% 3,43% 16,41% — 6,62% 7,80% 5,04% 3,31%

P10 5,84% 5,33% 3,86% 4,88% 3,39% 2,16% 2,94% 3,44% 4,23% — 3,41% 2,16% 9,93%
R1 7,51% 5,78% 6,76% 4,61% 8,05% 9,35% 4,41% 5,34% 7,51% 5,15% — 9,35% 7,95%
R2 6,84% 2,22% 3,38% 8,13% 2,97% 2,16% 3,92% 3,82% 3,29% 2,21% 6,34% — 1,32%
R3 7,35% 4,44% 2,42% 6,78% 4,24% 3,24% 2,94% 3,05% 2,35% 11,03% 5,85% 1,44% —

Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(b) Average progression group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3
P1 — 16,94% 22,26% 10,25% 14,50% 11,90% 8,71% 11,53% 10,59% 10,05% 10,46% 9,90% 16,57%
P2 12,41% — 14,24% 7,48% 6,11% 5,24% 7,32% 9,49% 5,08% 12,17% 8,16% 11,46% 8,57%
P3 17,90% 15,64% — 7,48% 7,25% 7,14% 8,36% 8,47% 4,66% 10,05% 9,18% 12,50% 8,00%
P4 8,83% 8,79% 8,01% — 21,76% 14,76% 15,68% 9,15% 8,05% 7,94% 11,22% 9,90% 7,43%
P5 9,07% 5,21% 5,64% 15,79% — 14,76% 6,62% 5,08% 8,47% 5,29% 5,87% 4,69% 2,86%
P6 5,97% 3,58% 4,45% 8,59% 11,83% — 11,50% 2,71% 11,44% 2,65% 3,32% 3,65% 2,29%
P7 5,97% 6,84% 7,12% 12,47% 7,25% 15,71% — 14,24% 12,71% 6,88% 4,34% 3,13% 6,86%
P8 8,11% 9,12% 7,42% 7,48% 5,73% 3,81% 14,63% — 23,73% 0,53% 9,44% 9,38% 2,29%
P9 5,97% 3,91% 3,26% 5,26% 7,63% 12,86% 10,45% 18,98% — 1,59% 5,61% 4,17% 1,71%

P10 4,53% 7,49% 5,64% 4,16% 3,82% 2,38% 4,53% 0,34% 1,27% — 9,44% 4,69% 20,00%
R1 9,79% 10,42% 10,68% 12,19% 8,78% 6,19% 5,92% 12,54% 9,32% 19,58% — 26,04% 22,86%
R2 4,53% 7,17% 7,12% 5,26% 3,44% 3,33% 2,09% 6,10% 3,39% 4,76% 12,76% — 0,57%
R3 6,92% 4,89% 4,15% 3,60% 1,91% 1,90% 4,18% 1,36% 1,27% 18,52% 10,20% 0,52% —

Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(c) Fast progression group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 R1 R2 R3
P1 — 29,18% 32,39% 25,27% 31,51% 32,20% 27,94% 31,82% 43,56% 32,63% 21,09% 20,51% 25,00%
P2 13,44% — 15,49% 9,14% 5,48% 5,08% 3,68% 13,64% 3,96% 15,79% 12,24% 18,80% 16,96%
P3 13,64% 14,16% — 4,30% 7,53% 4,24% 9,56% 7,58% 5,94% 8,42% 12,24% 11,97% 16,07%
P4 9,29% 7,30% 3,76% — 17,81% 14,41% 10,29% 12,88% 3,96% 8,42% 7,48% 10,26% 4,46%
P5 9,09% 3,43% 5,16% 13,98% — 12,71% 8,09% 4,55% 7,92% 3,16% 3,40% 2,56% 3,57%
P6 7,51% 2,58% 2,35% 9,14% 10,27% — 6,62% 1,52% 13,86% 3,16% 2,04% 4,27% 0,89%
P7 7,51% 2,15% 6,10% 7,53% 7,53% 7,63% — 11,36% 7,92% 3,16% 6,80% 2,56% 6,25%
P8 8,30% 7,73% 4,69% 9,14% 4,11% 1,69% 11,03% — 1,98% 4,21% 4,08% 5,98% 2,68%
P9 8,70% 1,72% 2,82% 2,15% 5,48% 11,86% 5,88% 1,52% — 0,00% 5,44% 0,85% 1,79%

P10 6,13% 6,44% 3,76% 4,30% 2,05% 2,54% 2,21% 3,03% 0,00% — 7,48% 5,13% 2,68%
R1 6,13% 7,73% 8,45% 5,91% 3,42% 2,54% 7,35% 4,55% 7,92% 11,58% — 10,26% 12,50%
R2 4,74% 9,44% 6,57% 6,45% 2,05% 4,24% 2,21% 5,30% 0,99% 6,32% 8,16% — 7,14%
R3 5,53% 8,15% 8,45% 2,69% 2,74% 0,85% 5,15% 2,27% 1,98% 3,16% 9,52% 6,84% —

Sum per column: 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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A.3 Clinically relevant outcomes

Table A.11: Top 5 variables associated to NIV, in the datasets with questions, for each subset of patients.

Progression group Slow Average Fast
NIV application Any time Any time 2nd year After 2nd year 1st year 2nd year

Timesteps considered for
correlations with NIV variable {0,...,10} {0,...,10} {4,...,8} {8,9,10} {0,...,4} {4,...,8}

1st P1 BMI P1 P1 P1 P1

2nd P6 BMI BMI BMI

3rd

P9
MEP P4 Disease

duration Age at onset

4th

BMI
Disease
duration P1 Disease

duration
El Escorial

criteria

Familiar
History MND

BMI
El Escorial

criteria

Top 5 variables
correlated with
NIV variable

5th P4 P6
P5

El Escorial
criteria

P4

P4
P9 P2

Gender

Table A.12: Top 10 most important variables in each year of the patients’ progression, using the sdtDBNs with
questions. Patients are divided into slow, average and fast progressors (see Section 7.3 of Chapter 7).

Year 1st year 2nd year After 2nd year
Progression group Slow Average Fast Slow Average Fast Slow Average

1st Disease
duration P9 P1 Disease

duration P1 P1 Disease
duration P1

2nd P9 MEP BMI P9 P9 Age at onset P1 P4

3rd MEP BMI P5 MEP BMI BMI P4 Disease
duration

4th P6 P5 P9 P5 P4 P4 P9 P6

5th Disease
duration P4 P1 P5 Disease

duration P5

6th

P5
MIP P6 MEP P6 Disease

duration P2

P5
P6

7th P1 P1 P6 P4 P6 Gender P8

BMI
Age at onset

8th BMI El Escorial
criteria P7 BMI P8 El Escorial

criteria BMI

9th P8 P8 C9orf72 P8 MEP P3 P7

P8
P9

Top 10
influential
variables

10th P4 P4 P2
Age at onset P7 El Escorial

criteria P5 P2 P2
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Disease duration El Escorial criteria Onset form C9orf72

Figure A.6: Correlations of the sub-score with the lowest value in the first consultation with the remaining variables
throughout the patients’ progression, grouping the columns according to each sub-score with the lowest value in
the first consultation.
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