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Abstract

Speech corpora collected via crowdsourcing typically require costly validation to verify certain character-

istics of speakers, or submission correctness. Moreover, this validation should also exclude recordings

corresponding to multiple speakers sharing the same account or multiple accounts for the same speaker.

This thesis focus on the use of speech pattern recognition techniques to perform this automatic valida-

tion. This is accomplished by training an x-vector based system in a large open-source corpus, and

enrolling the first utterance from each speaker in a crowdsourcing corpora collection job which is then

compared to subsequent task completions. The resulting speaker embeddings are also used to identify

gender. As a proof-of-concept, we used this approach to validate different datasets in 3 languages,

adopting score normalisation techniques. Results show an EER below the 4% mark on all experiments,

indicating the possibility to adopt the same threshold without substantial loss of performance. This en-

ables the validation of crowdsourced task completions immediately after submission.

This thesis also involved the participation in an international Computational Paralinguistics Chal-

lenge, where we studied the automatic prediction from conversational speech of breath signals obtained

from respiratory belts. We analysed both original and predicted signals and identified the subsets of

most irregular belt signals which yield the worst performance, and showed how they affect results. We

proposed several variants of an end-to-end baseline system, such as BiLSTM, and AM/FM decompo-

sition as input. We showed that these models can predict breathing patterns and clinically relevant

parameters, such as breathing rate, in simulated video-conferencing sessions.
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Resumo

Corpora de fala coletado usando crowdsourcing necessitam tipicamente de validações dispendiosas

para verificar as caracterı́sticas dos falantes, ou correta submissão. Adicionalmente, esta validação

também deverá excluir gravações correspondentes a vários falantes que partilham a mesma conta,

ou várias contas com o mesmo falante. Esta tese foca-se no uso de técnicas de reconhecimento de

padrões de fala para realizar esta validação automática. Isto é efetuado treinando um sistema baseado

no x-vector num corpus open-source e registando a primeira gravação de cada falante num trabalho

de coleção de corpora, que é depois comparado com gravações subsequentes. Os embeddings resul-

tantes são também utilizados para identificar género. Como teste, usou-se esta abordagem para validar

diferentes datasets em 3 lı́nguas, adotando técnicas de normalização de score. Os resultados mostram

um EER abaixo dos 4% em todas as experiências, indicando a possibilidade de adotar o mesmo limiar

sem perda substancial de performance. Isto permite a validação de tarefas de crowdsourcing imediata-

mente após submissão.

Esta tese também envolveu a participação num desafio internacional de computação paralinguı́stica,

onde foi estudado a predição automática através da fala de sinais de respiração obtidos através de

cintos respiratórios. Analisou-se os sinais originais e preditos e identificou-se um subset de sinais

irregulares que resultaram na pior performance, mostrando como estes afetam os resultados. Propôs-

se várias variantes do sistema base end-to-end, como o BiLSTM e a decomposição AM/FM como

input, mostrando que estes são capazes de predizer padrões respiratórios e parâmetros clinicamente

relevantes, como a taxa de respiração, em sessões simuladas de videoconferência.

Palavras Chave

Crowdsourcing; Paralinguı́stica; Verificação do Falante; Verificação de Género; Deteção da respiração.
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1.1 Motivation

Speech technology has significantly influenced the lives of everyday users, impacting the way people

find, consume, and act on information. Starting with the widespread adoption of mobile devices such

as smartphones, more recent technological advancements have led to a larger use of voice search and

Intelligent Virtual Assistants. Recent studies indicate that over 50% of web searches will be conducted

through voice by 2020, and that 55% of U.S. households will possess an intelligent virtual assistant [4].

Fuelling this sharp increase is the growing consumer demand for online self-service, self-reliance, and

rapid query resolution, while at the same time helping companies enhance operational efficiency and

reduce costs [5]. With speech technologies trending towards a more predominant use, the need for

efficient and effective interactions with users has become increasingly important. The large amount

of data collected resulting from the interaction with speech-based systems allows Artificial Intelligence

(AI) to adapt and improve over time. AI enables the continuous improvement of speech systems by

including collected speech data in the training of Machine Learning models that tackle common speech

applications such as Automatic Speech Recognition (ASR) or Speech Synthesis. However, more and

more use cases and industry applications that use speech to obtain interpretable speaker information

have surged.

The human voice conveys substantial amounts of information related to the speaker. For instance,

information including physical traits (age [6], gender [7]), language (nationality, nativeness) [8] [9], health

(speech affecting diseases) [10] and mood [11] can be obtained from voice. Such profile information can

be extracted directly from speech (using the raw-time waveform or the spectrum), or from speech derived

features (intensity, voice quality features, speech rate, breathing rate) [12]. The automatic detection of

profile features enables the development of smarter user interfaces and an enhanced user experience,

especially when using devices or applications where this information is required. Additionally, it can

assist in more sensitive applications such as identity verification, where speaker verification or facial

reconstructions from voice [13] may be of value.

The motivation previously identified exposes the impact of voice profile feature information and meta-

data from speakers in the development and use of speech datasets. In this work, we will investigate the

use of automatic detection of profile features and other metadata extracted from voice in two distinct

fields: in crowdsourcing, and in medicine.

1.2 Objectives

As previously mentioned, this Thesis will focus on how information extraction from speech signals can

assist in solving challenges in two different industry fields.

The first of those use cases is the collection of speech through the paradigm of crowdsourcing. In

3



crowdsourcing, existing quality control mechanisms in speech corpora are limited to situations where the

user profile is irrelevant to the task, that is, we are only interested in the product of the work and not the

user itself. In crowdsourcing in general, there has been extensive work and several metrics proposed to

classify the quality of the tasks being performed by the crowd. In speech data collections in particular,

validation tasks are typically set up after collection to validate certain characteristics of speakers (na-

tiveness, gender) or submission correctness, which adds to the cost of the dataset. Furthermore, these

validation techniques fail to detect users with malicious intentions, reducing the value of the datasets.

To address these issues we propose to develop (and test) a system that automatically creates a voice

profile from speech, to ensure that gender and other metadata information are accurate and consistent

throughout a collection. Considering the language/accent and channel rich environment of crowdsourc-

ing in particular, it is expected that the system works in a multi-lingual scenario and is robust to noise

and other channel conditions. That is, performance loss should not occur when language and channel

conditions change.

A voice profiling system, such as the one described above, will allow for the detection of low quality

work derived from profile variations of the same user or mismatch between the obtained user profile

during registration, and the actual profile obtained from speech. This will allow for the detection of fraud-

ulent behaviour, such as users attempting to share their account with multiple speakers. Additionally,

mismatches between predictions and the submitted profile would also be detected. While many auto-

matic systems that attempt to tackle the problem of low quality work in crowdsourcing exist, none take

advantage of speaker characteristics in their decisions. In this thesis, we propose a new approach for

user profile enforcement in speech data collections, combining speaker verification systems with gender

identification to identify mismatches in profiles.

The second challenge tackled in this thesis is the automatic prediction of health-related parame-

ters and features from speech, which are of substantial value in the field of medicine. Besides offering

medically-relevant information for the diagnosis of diseases (e.g. jitter and shimmer), it can also provide

cues regarding the intensity of physical activity (intensity, breathing rate) and stress. As such, the auto-

matic detection of this information can bring value when developing datasets and models that leverage

this information. For instance, these features can be used to enforce class distribution in health-related

speech data collections. In this second use case, we will explore techniques for the automatic prediction

of breathing patterns and other breathing-related extractable features from voice. It is expected that

the resulting prediction model is able to accurately reproduce breathing patterns when using speech

recorded under different conditions (such as video-calls) and be speaker-and-language independent.

4



1.3 Outline

This Thesis is organized as follows: in chapter 2, a review of the current state of the art on speech

systems is conducted, with special focus on tasks that predict speaker information through speech. Ad-

ditionally, fundamental concepts and terminologies related to speech pattern recognition are presented.

In chapter 3, we will address the first challenge mentioned above, namely, how the analysis of the speech

signal can help improve the process of collecting data through crowdsourcing. More specifically, the use

of voice pattern recognition techniques is explored in the context of fraud detection in a crowdsourced

speech data collection environment, such as speaker and gender verification. Furthermore, we compare

these automated systems with naive human annotators. Chapter 4 focuses on the second challenge of

the thesis, and provides an analysis of breathing pattern recognition from voice. Additionally, we propose

a system that automatically predicts these patterns and related metrics. Chapter 5 is the final chapter,

where conclusions pertaining this thesis are drawn, together with some topics for future work.
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Speech, besides being a vehicle for communication, also is also a reflection of the speaker’s anatom-

ical structure. The vocal production system of a human can be divided into two parts. The lungs and

the diaphragm are only responsible for the pressure production required for speech. The upper vocal

tract (which includes the nose, mouth, pharynx and larynx) is the one responsible for producing speech.

The brain, while not frequently considered in vocal production, is also an important participant in this

process. Most of the production of language functions lies in the area of the brain called Broca’s Area.

Consequently, the current research in speech pattern recognition is threefold: Speech recognition,

where the goal is to recognize and translate spoken language into text; Speaker Recognition, where the

objective is to identify/validate speakers; and Computational Paralinguistics, which deals with states and

traits of speakers as manifested in their speech signal’s properties.

Similar to other Machine Learning applications, speech pattern recognition tasks share a common

processing pipeline. The input signal, speech, is frequently subjected to external conditions such as

noise and recording methods. As such, the signal is subjected to pre-processing steps before informa-

tion extraction is conducted. Feature extraction techniques typically follow and range between frame-

level information such as the spectrum or more general features such as handcrafted parameters. More

recently, this feature extraction step has been replaced by end-to-end modelling using Deep Neural Net-

work (DNN)s. In this case, a speech representation that better suits the task at hand is automatically

learned by the network.

After feature extraction, a prediction (classification or regression) is calculated using a Machine

Learning algorithm. Some pattern recognition systems require training, where the model’s parame-

ters are adjusted to minimize a cost function associated with wrong predictions on a given dataset. The

model and its hyper-parameters can then be fine-tuned on a separate dataset, which is called the devel-

opment stage. The model is then evaluated in the test stage, by assessing its performance on unseen

data.

The focus of this thesis focuses on Speaker Recognition and Computational Paralinguistics. These

belong to a sub-field of Speech Pattern Recognition, where the scope of the problem is to predict iden-

tifiable patterns from a given voice. These can be biometric information such as age, gender or even

uniquely identifying a speaker, but also include other information such as breathing patterns, mood or

diseases.

To support this work, it is important to look into the current state-of-the-art of speech processing,

in general, and some of its sub-problems. First, in section 2.1, a small introduction to Artificial Neural

Networks is provided, as the de facto building blocks for current speech system architectures. In section

2.2, the concepts and terminology used in Speaker Recognition are introduced. A brief historical context

in Speaker and Gender Recognition is provided in section 2.3 1. Finally, a review of the state-of-the-art

1For readability, previous work on the topic of Automatic Prediction of Breathing Patterns is expanded in Chapter 4.

9



speaker embedding systems is presented in section 2.4. This section also includes an explanation of

the decision-making process using embeddings, including Gender and Speaker Recognition.

2.1 Artificial Neural Networks

An artificial neural network, usually simply called Neural Network (NN), consists of a collection of artificial

neurons that receive inputs and produce a single output. The resulting output can then be sent to

multiple other neurons, forming a directed, weighted graph. These neurons are conceptually derived

from biological neurons, with the link between them having a weight, which determines the strength of

one node’s influence on another. The output of a neuron, the activation, is the weighted sum of all of the

inputs which is also summed to a bias term.

Neurons that share the same depth from the input form a layer. The first layer receives the input

and is called the input layer, whereas the final layer outputs the prediction and is called the output layer.

Layers in between these are considered to be hidden and form a Deep Neural Network (DNN). Older

NN models were restricted to shallow architectures, however, with recent advancements both in terms

of data availability and computational power, deep neural architectures with larger amounts of hidden

layers are able to solve more complex problems and have become more common.

Several functions can be added to perform additional, known operations to the outputs of previous

layers or networks. The activation function determines the output of the layer and can help the network

during the training phase. These are typically non-linear, as a linear activation function would act as layer

of the network by itself. Some examples of linear activations include the Rectified Linear Unit (ReLU),

also known as a ramp function, and Softmax, which ”squashes” a K-dimensional vector of arbitrary real

values to a K-dimensional vector of real values that sum to 1. This property is useful in multi-class

predictions, as they can be interpreted as probabilities.

Several types of NNs exist, and attempt to model the different behaviours and abilities that biological

neurons possess.

Feed-forward In Feed-forward NNs, the information flows unidirectionally, from the input to the output.

Several sub-types exists, with some examples enumerated below:

• Multi-layer Perceptron (MLP): consists of at least three layers of neurons: an input layer, a hidden

layer and an output layer. The MLP is a universal function approximator, which means that given

enough data, it is able to model any process.

• Convolutional Neural Network (CNN): is a regularized version of an MLP, with its hidden layers

performing convolutions with a set of learnable filters in a restricted subarea of the previous layer.
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This convolutional stage is paired with a dimensionality reduction stage, using pooling layers, which

select an area of the input signal and perform a reduction operation (e.g. max() ). CNNs are

frequently used in Image Processing, as neurons respond to stimuli in a restricted region of space

known as the receptive field, similar to the organization of the visual cortex.

• Time Delay Neural Network (TDNN) [14]: each layer receives as input a segment of the input

layer and its delays, achieving time-shift invariance. This is especially useful in speech, as it allows

the network to learn temporal relationships of acoustic and phonetic features.

Recurrent Neural Network (RNN): Unlike feed-forward networks, that only propagate information for-

ward, RNNs also propagate information backwards, making them able to exhibit temporal dynamic be-

havior. This is done by having an internal state that processes variable length sequences of inputs.

Additionally, bi-directional versions of RNNs exist, and perform predictions using both the past and fu-

ture context of the input, by adding the outputs of two RNNs: one processing the input from left to right,

the other one from right to left [15].

• Long Short Term Memory (LSTM) [16]: is a widely used version of RNNs, and consists of a cell

and three gates: input, output and forget gate. The cell acts as the internal memory state of the

network, with the gates regulating the flow of information.

Learning on NNs is conducted using mathematical optimization and involves adjusting the param-

eters (weights) of the networks using back-propagation algorithms. Back-propagation computes the

gradient of a loss function with respect to the weights of the network. Gradient methods are then used

to update the weights and minimize loss.

One of the main issues when using gradient-based learning methods and back-propagation during

training is the vanishing gradient problem. During computation, it can be the case that the gradient

will become vanishingly small, preventing weights from updating. Conversely, in the exploding gradient

problem, large error gradients accumulate and result in large weight updates. In both cases, it hinders

the training of the NNs. Typical solutions include gradient clipping and weight regularization.

Whilst the power of NNs was recognized since their initial application references in the 70s [17], it was

only with the surge of computational power and the ease of access to large amounts of data of recent

years that led to DNNs becoming the state-of-the-art in Machine Learning. However, memory constraints

may still occur, specially on larger datasets and more complex models. In these cases, smaller batches

of data are fed to the NN, called mini-batches, and gradients can be directly calculated from them. A

problem that arises from calculating gradients for each mini-batch is the internal covariate shift, where

there is a change in the distribution of network activations due to the change in network parameters

during training [18]. This can be resolved by normalizing layer inputs using Batch Normalization, which

also acts as a regularizer.
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2.2 Speaker Recognition: Concepts

Speaker recognition consists in the identification of a speaker using its voice. Speaker recognition

encompasses two distinct tasks:

1. Speaker Identification: assigns a given utterance to one of a closed set of known speakers.

2. Speaker Verification: verifies whether the given utterance belongs to a specific, previously en-

rolled, speaker or not.

Both tasks share the same initial pipeline in the learning phase. In this phase, the users are enrolled,

that is, uniquely identifying information from a given user is stored in a database. In the case of speaker

identification, the unknown speaker is compared against the full database of enrolled speakers, and the

most similar enrolled speaker corresponds to the decision. In speaker verification, the unknown speaker

is compared against a single enrolled speaker and returns a same-or-different speaker decision. Figure

2.1 illustrates the typical pipeline of a Speaker Verification system.

Feature
Extraction

Feature
Extraction

Target Model
Training

Test

Feature
Extraction

Decision

Target

Test

Impostors

Figure 2.1: Speaker Verification system.

In the context of speaker recognition, additional considerations must be made about the architecture

of the system, given the different settings and constraints that might arise from each individual task,

which are enumerated below.

Open and Closed-set In closed-set speaker recognition, the speaker under test is known to belong to

an enrolled speaker. This facilitates the problem, as it removes the verification dimension of the problem,

as the best matching enrolled speaker is automatically chosen as prediction, regardless of how dissimilar

the speakers are. In open-set speaker recognition however, the speaker under test may not belong to

the pool of enrolled speakers. As such, a method similar to speaker verification must be included, where

the similarity between the test speaker and the best matching enrolled speaker is checked.
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Enrollment If the pool of speakers to be enrolled is known and does not change during the develop-

ment and deployment of the system, then the model can be tailored to identify this pool of speakers

alone. This can be done by manually adapting the system to the unique feature distribution of the en-

rolled speakers. However, such a model would be unfeasible when the enrolled speakers are unknown

or if the need for an expanded enrollment arises. This was a limitation of preliminary speaker recognition

systems that no longer exists with the introduction of automatically calculated feature sets capable of

uniquely identifying speakers.

Text and Gender Independence Additional constraints and prior knowledge may be added to speaker

recognition systems in order to increase its accuracy. A typical constraint is text-dependence, where

the prompt read by the speaker is known. This can assist in verification by automatically rejecting

speakers who provide the wrong prompt. Similarly, gender information can also be taken advantage

of, as automatic gender prediction systems are very accurate for adults. Information such as gender

can also be leveraged to increase speaker recognition performance, namely by modeling each gender

differently.

2.3 Historical Context

The process of identifying a subject’s feature from its voice is one of the basic capabilities a human

being can perform using its auditory senses. Indeed, part of the human brain is exclusively dedicated

to Auditory Perception, the auditory cortex. This cortex is tasked with processing the audio signal. The

Wernike’s area is known to perceive the output of the auditory cortex. However, the task of identifying

voice features is not restricted to these areas, involving both hemispheres of the brain, each of which

has different perception tasks such as rhythm or frequency detection [19]. The full process is not yet fully

understood, however some simpler building blocks of this system have been investigated and important

conclusions have been reached on how humans can identify different features from voice, to the point

they can identify someone from it.

Most of the characteristics one can extract from a voice originates from the upper vocal tract, as

indicated by the pioneering work of Gunnar Fant, in his acoustic theory of speech [20]. One of the

simplest methods of identifying speaker information or even differentiating speakers is using pitch. The

fundamental frequency of voice is a characteristic that contains rich information about the speaker,

including age [21], gender [22], health [23] [24], mood [25], among others. An important step a human

being performs while identifying speaker information is to use pitch values as part of the larger cognitive

system of uniquely identifying someone, or to perform simpler tasks such as differentiating speakers or

identifying someone’s age or gender. The fundamental frequency of voice is able to convey information

13



about a speaker because it is a reflection of the speaker’s own anatomical structure. Longer vocal folds

produce lower pitch values, which is why male speakers often have lower pitch when compared to female

speakers and children.

Consequently, the earliest speech systems took advantage of the statistical information held in the

frequency domain to characterize and identify speaker information. Simple decision systems for age

and gender were created using mean pitch values along utterances [26].

More complex systems can be traced back to the 1960s (US3466394A). These systems used fre-

quency domain information to parameterize the utterance and calculate vector distance of these param-

eters, thus taking advantage of the research conducted in the field in the early 1960s, namely the Fant

model [20] and Kersta’s ”Voiceprint Identification” [27]. It is important to note that early systems were all

text-dependent, meaning the same phrase had to be used for enrollment and verification. Later systems

were able to produce results in text-independent environments with the introduction of cepstral analysis

and Linear Predictive Coding [28].

Up until the early 90s, several models for pattern recognition existed, namely the Hidden Markov

Model (HMM) [29] or template matching, for speaker recognition. This changed when Gaussian Mixture

Model (GMM) and Support Vector Machine (SVM)-based systems were introduced. In 1996, Schmidt

applied SVM to the task of Speaker Recognition [30] (reporting 92% identification accuracy) after the

successful earlier works in other fields, such as hand-writing recognition. In 1993, Reynolds successfully

introduced a GMM approach for speaker verification, achieving results (96.8% identification accuracy)

similar to the much more computationally complex earlier models [31].

Several age and gender recognition systems based on this new speaker recognition technique soon

followed [32] [33]. Further developments in GMM, namely the introduction of Bayesian theory led to the

inclusion of the Universal Background Model (UBM) [34], thus being able to introduce the concept of

likelihood and its calculations for Speaker Verification/Identification tasks. This introduced the concept

of maximum a posteriori (MAP) estimation for the adaptation of the model: MAP adaptation is used to

adapt the UBMs to obtain class-specific GMMs. The GMMs are then used to calculate the likelihood of

utterances to assign class labels.

Generative models such as the GMM-UBM achieved gender identification error rates of under 4%

on the 2008 NIST SRE, a dataset originally intended for speaker recognition evaluation, containing

942 hours of multilingual telephone speech and English interview speech, together with speaker profile

metadata.

The GMM-UBM model remained the state-of-the-art until the introduction of Factor Analysis meth-

ods in the late 00s, namely Joint Factor Analysis [35], culminating in the introduction of i-vectors [36] in

2011. The i-vector represents speaker means (depending on total variability), and contains all speaker

and channel variability that can be used as a low-dimensional representation of it. This representa-
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tion coupled with Probabilistic Linear Discriminant Analysis (PLDA) scoring remained the standard in

Speaker Verification/Recognition until the late 2010s, with i-vectors also proving to be successful in

related tasks such as gender and age recognition [37] [38]. These systems have shown to slightly im-

prove the GMM-UBM system in distorted and multilingual datasets by an absolute gain of 25.69% in

identification accuracy.

Most recently, the advent of DNNs paved the way for the introduction of models that take advantage

of larger datasets. Most of these models follow a similar structure, where one part of the model is

dedicated to a frame-level information extraction, followed by a prediction network that either condenses

the information to produce a frame or utterance-level decision. The current de-facto state-of-the-art

speaker representation is the x-vector [39] [3]. In this approach, a DNN is trained to discriminate between

speakers and maps variable-length utterances to fixed-dimensional embeddings. Several end-to-end

systems were proposed for pattern recognition tasks such as gender classification [40] [41]. Similar to

the x-vector architecture, Convolutional Neural Networks were used to obtain speech information with

temporal context. A maxpool layer was then used to discriminate information in this temporal context,

which was fed to dense feed-forward layers before the last softmax layer outputs the probability per

gender. No significant improvements were detected by these authors when compared to the i-vector or

even GMM-UBM recognition systems when the full utterance is available.

2.4 Speaker Embeddings

2.4.1 Feature Extraction

An important step in most speech systems is feature extraction. In it, the original signal is transformed

to a new representation that better exposes the information required for an accurate modelling. A typical

example of a feature extraction step is to transform utterances from audio files to Mel-Frequency cepstral

coefficients (MFCCs) feature vectors, which are the primary features used in speaker recognition, as

they are known to represent speaker vocal tract characteristics.

MFCCs are a short-term representation of the sound spectrum, defined as the real cepstrum of the

window of the signal derived from the Discrete Fourier Transform using a non-linear frequency scale. By

using mel-filter banks, MFCCs mimic the perceptual scale of pitch judged by human listeners.

The MFCCs extraction of a signal, pictured in Figure 2.2, follows a short-time analysis, using sliding

frames analysis along the speech signal, typically using a Hamming Window. For each frame, the

signal is pre-emphasied and the Discrete Fourier Transform is calculated (using FFT, for example). The

spectrum is then warped along its frequency axis into the mel-frequency scale using the filter bank, thus

reflecting the human’s ear perception. The logarithm of the filter bank outputs is then calculated. The

MFCCs are the amplitudes of the resulting spectrum by taking the discrete cosine transform of the list
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Figure 2.2: MFCCs feature block diagram

of mel log powers.

Additionally, approximations of the first and second order derivatives (also known as deltas and

delta-deltas) are commonly appended to the feature vector in order to capture the dynamic temporal

characteristics of speech. The first order delta coefficients are defined as follows:

∆c(t) = c(t+ T )− c(t− T ) (2.1)

while the second order delta coefficients are calculated as:

∆∆c(t) = ∆c(t+ T )−∆c(t− T ) (2.2)

where T is the order of the delta computation, which is typically 2 for most applications. As such,

these feature vectors, which usually lie between 13 and 40 dimensions can reach up to 120 when taking

the time-differential information into account.

Cepstral Mean Subtraction (CMS) is also frequently used when utterances span on different envi-

ronments by assisting in removing convolutive channel effects. However, performance degrades signifi-

cantly if the training and testing is done on the same recording channel and conditions [42].

2.4.2 The Speaker Embedding

Current State-of-the-art models in pattern recognition, and speaker recognition in particular, base them-

selves on single fixed-dimension vectors, known as embeddings. Embeddings aim at reducing the

dimensionality of the information. Earlier systems utilized Join Factor Analysis (JFA) to disambiguate

between speaker and channel information modeled from a Gaussian Mixture Model (GMM). The re-

sulting speaker-dependent vector was called the i-vector, which is explained in Section 2.5.2.A . The

increased accessibility in training in deep learning allowed for the replacement of components of the

i-vector pipeline (typically the Universal Background Model (UBM)) or as a stand-alone model. More re-

cently, a embedding extraction DNN was proposed, called x-vectors, which is detailed in Section 2.5.2.B.
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2.4.2.A i-vector

The i-vector system is a direct result of previous work in the field of Factor Analysis applied to the

GMM model for speaker recognition. In the original model [34], a speaker’s mean supervector (typically

1024/2048-dimensional) is obtained by adapting the UBM mean supervector to the speaker’s frames

using MAP adaptation. This is then used for classification using SVM.

Considering the size of the mean supervector, a JFA approach is applied to the GMM-UBM model

[43]. The idea behind this approach is to decompose the mean supervector ~M into a speaker-dependent

supervector ~s and a channel-dependent supervector ~c :

~M = ~s+ ~c (2.3)

The supervector ~s can be considered normally distributed with zero mean and covariance ~U ~UT ,

therefore assuming no speaker information is retained in ~c.

~c = ~U~x (2.4)

This technique is referred to as eigenchannel adaptation, with the components of ~x called the channel

factors. The speaker supervector can be further decomposed [44] into a speaker and channel indepen-

dent supervector ~m, summed with independent vectors ~z (common factor) and ~y (speaker factor):

~s = ~m+ ~D~z + ~V ~y (2.5)

where ~D is a diagonal matrix and ~V is a rectangular matrix of low rank.

The authors in [45] showed, however, that loss of speaker information occurs when channel factors

are estimated. As a result, the i-vector system was proposed [36], using factor analysis as a feature ex-

tractor. This is done by defining a single space, called “total variability space”, which includes information

from both the channel and speaker. The GMM supervector is then rewritten as:

~M = ~m+ ~T ~w (2.6)

where ~m is the speaker-and-channel-independent supervector (which plays the role of the UBM

supervector), ~T is a rectangular matrix of low rank and ~w is a random vector having a standard normal

distribution.

The components of the vector ~w are the total factors henceforth identified as identity vectors, or

i-vectors. As before, ~M is assumed to be normally distributed with mean vector ~m and covariance

matrix ~T ~T t. The process of training the total variability matrix is the same as learning the eigenvoice

matrix [46], except that in the former, all utterances are assumed to be produced by different speakers.
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The complete extraction process of the i-vector is shown in Figure 2.3.

MFCCs

i-vectors

UBM training
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Components

C
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Figure 2.3: i-vector extraction process.

The total factor is a hidden variable, which can be defined by its posterior distribution conditioned to

the Baum–Welch statistics for a given utterance. This posterior distribution is a Gaussian distribution [46]

and it corresponds to ~w. The Baum–Welch statistics needed to estimate the i-vector for a given speech

utterance ~u are extracted using the UBM as follows:

Nc =

L∑
t=1

P (c|yt,Ω) (2.7)

Fc =

L∑
t=1

P (c|yt,Ω)yt (2.8)

F̃c =

L∑
t=1

P (c|yt,Ω)(yt −mc) (2.9)

calculated along L frames {y1, y2, .., yL}, where Ω = [wc,mc,Σc] is the UBM of C mixture compo-

nents with gaussian index c = 1, 2, ..., C, weights wc, mean mc and covariance Σc , defined in some

feature space of dimension F . P (c|yt,Ω) corresponds to the posterior probability of mixture component

generating the vector yt. The i-vector can then be calculated using the following equation:

~w = (~I + ~T t~Σ−1 ~N(u)~T )−1 · ~T t~Σ−1 ~̃F (u) (2.10)

with ~N(u) defined as a diagonal matrix of dimensions CF×CF with diagonal blocks NcI, and ~̃F (u) a

supervector with dimensions CF× 1 constructed by concatenating all first-order Baum–Welch statistics

F̃c for a given utterance u. The residual variability not captured by the total variability matrix ~T is modeled
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in ~Σ, which is a diagonal covariance matrix of dimension CF ×CF estimated during factor analysis

training.

Several improvements have been proposed to the baseline i-vector system. With DNN increas-

ing performance in ASR tasks, most contributions propose a hybrid approach to the i-vector extraction

pipeline by replacing the GMM-UBM by a DNN [47] [48]. In this framework, the sufficient statistics are

computed by projecting the front-end features onto senones (i.e., tied-states with context dependent

phones from an ASR decision tree) using the posterior probabilities estimated from a time-delay acous-

tic model with p-norm non-linearities. In [49], the authors proposed deriving a UBM from the Deep

Bottleneck network to calculate the posterior probabilities for back-end modeling in language identifica-

tion tasks (LID). Appending Bottleneck features with the spectral-based features (MFCCs ) has been

found to outperform the baseline MFCCs feature set in speaker identification (SID) tasks [50].

Nevertheless, the i-vector system performance deteriorates in short utterances and mismatched

utterance duration between training and testing in general [51]. This is important in speaker verification

systems, when it is typical to have a large utterance in the enrollment but shorter utterances in the

verification phase.

2.4.2.B x-vector

The x-vector system [3] [39] is an improvement of the i-vector system, where the i-vector embedding

is replaced by embeddings extracted from a feedforward DNN. Unlike the i-vector system, which uses

factor analysis, the x-vector extraction is a supervised method, requiring speaker labels in its training

data.

The block diagram of the x-vector approach is shown in Figure 2.4, with its configuration detailed in

Table 2.1. The network is a feed-forward DNN that computes speaker embeddings from variable-length

acoustic segments based on a previous end-to-end architecture [52]. This architecture can be divided

into two different levels:

• The frame level includes the first 5 layers of the network, using a time delay architecture (TDNN)

[14] that functions on speech frames, offering temporal context centered at the current frame t to

the next frame (1D convolution). The last 2 layers also operate on the frame level but do not offer

any added temporal context to the next frames. This architecture provides a learning method by

which the initial transforms are learnt on narrow contexts and the deeper layers process the hidden

activation from a wider temporal context, thus learning wider temporal relationships. During back-

propagation, the lower layers of the network are updated by a gradient accumulated over all the

time steps of the input temporal context, learning translation invariant feature transforms. These

layers can vary between 512 and 1536, depending on the context used.
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• The segment level is connected to the frame level using a statistics pooling layer. This pooling

layer calculates the mean and standard deviation from the aggregate output from the final frame

level, compiling information from the entire segment to subsequent layers. These are typically

1500 dimensional vectors, computed once for each input segment. This information is then feed-

forward propagated to the next layers, ending with the softmax output layer. The output vector has

as dimension K, with K being the number of speakers in the training data. The nonlinearities are

all rectified linear units (ReLUs).

Figure 2.4: DNN architecture for x-vector extraction. Adatped from [1].

The embedding is extracted from the first segment layer. However, the embedding could also be

extracted from the next segment layer: the embedding is required to contain speaker information from

the entire utterance, therefore all layers after the statistics pooling layer are a valid location to extract the

embedding from. The softmax output layer is not considered due to its large size and dependence on

the number of speakers.

Given that the architecture is guided towards Speaker Recognition, the training of the DNN is con-

ducted using multi-class cross entropy objective as follows:

E = −
N∑

n=1

K∑
k=1

dnkln(P (spkrk|~x(n)1:T )) (2.11)
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where K is the number of speakers present in N training segments and dnk a binary value that

indicates if utterance n is from speaker k. The DNN is trained for several epochs typically using a mini-

batch size of 32-64 and natural gradient stochastic gradient descent [53]. This choice of mini-batch size

takes into consideration GPU memory limitations. This forces a trade-off between mini-batch size and

maximum training example length. In natural-gradient SGD, the gradients are scaled by a symmetric

positive definite matrix that is an approximation to the inverse of the Fisher matrix, which is estimated

from all previous minibatches, using a forgetting factor to downweight minibatches that are distant in

time.

Layer Layer Context Total Context Input x Output
frame1 {t− 2, t+ 2} 5 120 x 512
frame2 {t− 2, t+ 2} 9 1536 x 512
frame3 {t− 3, t+ 3} 15 1536 x 512
frame4 {t} 15 512 x 512
frame5 {t} 15 512 x 1500

stats pooling [0, T ] T 1500T x 3000
segment6 {0} T 3000 x 512
segment7 {0} T 512 x 512
softmax {0} T 512 x K

Table 2.1: DNN architecture for x-vectors extraction [3].

Considering this system is data-hungry (requiring much more labeled data when compared to the

unsupervised i-vector), data augmentation techniques such as the use of additive music, speech and

noise are often employed to increase system performance [54]. Due to computational limitations, the

DNN is trained using short utterance sequence length. This, conversely to the i-vector system, will cause

duration mismatches with the test set, degrading performance. An extended version of the x-vector DNN

architecture [55] proposes to reduce this mismatch and achieves state-of-the-art results in the Speaker

In The Wild corpus [56]. In this architecture, additional dense-ReLU layers are added to the frame level

of the DNN.

2.4.3 Post-Processing

Several post-processing techniques are available for channel compensation. This is important because

embeddings contain speaker and channel variability information simultaneously in one space. There-

fore, this compensation allows for the removal of channel effects, minimising the within-speaker variabil-

ity while maximising the between-speaker discriminant information. This compensation is usually con-

ducted using Linear Discriminant Analysis (LDA) and Within-Class Covariance Normalization (WCCN)

[57] [45].

LDA offers dimensionality reduction by finding new orthogonal axes to better discriminate between

different classes, maximizing between class variance (between speakers) and minimizing within-class
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variance (within speakers, that is, channel effects).

The framework of the i-vector post-processing also includes WCCN [58], which is preceded by the

LDA. WCCN consists in computing the within class covariance matrix in the total factor space using a

set of back ground impostors:

W =
1

S

S∑
s=1

1

ns

ns∑
i=1

(ws
i − w̄s)(w

s
i − w̄s)

t (2.12)

where ws is the mean of the LDA projected total factor vector for each speaker s, S is the total number

of speakers, and ns is the number of utterances of each speaker s. The inverse ofW is used to normalize

the direction of the projected i-vector components. WCCN is combined with LDA by multiplying the LDA

projection matrix A before ws
i .

2.4.4 Decision Making

The main differentiator between the several pattern recognizers can be traced back to the decision mak-

ing phase. Depending on the problem statement, the decision making can be done using the embedding

directly as a prediction, or by making a decision based on a similarity score. The first case can be con-

sidered as classification, as we know predictions belong to a previously defined set of labels, which

were used in training, and as such are known by the model. An example of this is gender recogni-

tion and closed-set speaker identification with static enrolment. The second approach is useful when

we have an open-set problem. This is the case of open-set speaker recognition, namely verification,

where impostors do not belong to the pool of known speakers, or/and when we wish to enroll additional

speakers.

2.4.4.A Classification

When working with a classification task, predictions can be extracted directly from models. In models

based on neural networks, which is the case for the x-vector and other end to end models, these predic-

tions are available in the output layer. Conversely, extracted embeddings can become an input feature

to another classification system, such as a Multi-layer Perceptron (MLP) [59].

2.4.4.B Scoring

Using this decision process, the system attributes a score to the utterance under test when comparing

to the target class embedding previously enrolled, that is, a similarity metric is used to compare the

utterance to the class. In an identification system, the utterance under test is compared against all

enrolled speakers, with the highest scoring corresponding to the system’s decision. In the case of other
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paralinguistic tasks, the utterance embedding is compared against the mean-embedding of the given

class.

In the wake of the development of the JFA approach, several log-likelihood scoring methods were

proposed [60]. Initial state-of-the-art systems based on JFA, however, utilized cosine similarity [36]

between the speaker/class model and the test utterance in order to make a decision. This is due to the

fact this method was computationally less expensive. The magnitude of the cosine scoring is known to

degrade system performances, therefore only the angle is used for decision. This is mostly attributed to

within-speaker variabilities (channel and session).

The current state-of-the-art scoring is conducted using the Probabilistic Linear Discriminant Analysis

(PLDA) classifier [61], where the embeddings are centered and projected using LDA, followed by length

normalization and PLDA modelling. PLDA directly evaluates the log-likelihood ratio of the fixed-length

input vectors under test belonging to the same speaker, and can be seen as a special case of JFA:

~w = ~m+ ~V ~y + ~U~x+ ε (2.13)

where ~m is a global offset, the columns of the speaker subspace ~V are eigenvoices, ~y is a latent

vector having a standard normal prior, ~U is the channel subspace and ε is normally distributed with

zero mean and a full covariance matrix. Replacing Gaussian distributions in the standard PLDA with

Student’s t distributions, called Heavy-Tailored PLDA (HT-PLDA), has shown to outperform the standard

PLDA classifier [62]. Both PLDA approaches lead to a superior performance when compared to cosine

scoring, but with the cost of needing speaker-labeled background data. Additionally, both need several

samples for each background speaker spoken in different session conditions to work efficiently.

Score space normalization techniques are also used to reduce variability in the scores. This is

especially important in a production setting where a reliable threshold for speaker verification is required

for unseen, out-of-domain data. Furthermore, the use of score space normalization is known to improve

performance and calibration in such settings.

The Z-norm (zero score normalization) addresses the problem of speaker score variability [63] by

employing impostor score distribution for enrollment file. It uses a cohort list with N speakers which we

assume to be different from the speakers in utterance ue (enrollment) and ut (test). The cohort scores

Se are formed by scoring enrollment utterance ue with all files from the cohort. The normalized score is

calculated as follows:

s(ue, ut)z−norm =
s(ue, ut)− µ(Se)

σ(Se)
(2.14)

where µ(Se) and σ(Se) are the mean and standard deviation of the cohort scores Se.

The T-norm (test score normalization) [64] addresses the problem of session variability. It compen-
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sates for differences between the training and testing conditions. It is similar to Z-norm with the difference

that it normalizes the impostor score distribution for the test utterance (St). The T-norm is then:

s(ue, ut)t−norm =
s(ue, ut)− µ(St)

σ(St)
(2.15)

where µ(St) and σ(St) are the mean and standard deviation of the cohort scores St.

The combination of both norms is called ZT-normalization, and uses the Z- and T-norm in series.

Scores normalized using ZT-norm are therefore normalized with respect to the enrollment and test ut-

terances.

The S-norm (symmetric normalization) computes an average of normalized scores from Z-norm and

T-norm. Unlike the ZT-norm, S-norm is symmetrical as it does not depend on the order of ue and ut. The

S-norm can be expressed by:

s(ue, ut)s−norm =
1

2
· (s(ue, ut)z−norm + s(ue, ut)t−norm) (2.16)

More recently scores have been normalized using adaptive normalization techniques. The AT-norm

(adaptive T-norm) [65] is an evolution of T-norm, adjusting the speaker set to the target model, improving

performance. This is conducted by only using part of the cohort to compute the mean and variance for

normalization. The most common adaptive cohort selection proposed in the literature includes selecting

the N closest files to the enrollment/test file [66]. Others have also suggested a random selection of

utterances from the trial set [67].

The AS-Norm is derived from the AT-Norm, but preserves the symmetrical property of the S-Norm.

With AS-norm, the score is normalized as such:

s(ue, ut)as−norm =
1

2
·
[
s(ue, ut)− µ(Se(Γt))

σ(Γt))
+
s(ue, ut)− µ(St(Γe))

σ(St(Γe))

]
(2.17)

where Γe is the cohort selected from the enrollment set and Γt the cohort from the test set.
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3.1 Introduction

The advent of complex models such as Deep Neural Network (DNN)s raises the need for large amounts

of labelled data that is required to train these models [68]. The amount of data available is estimated to

exceed 175 zeta bytes by 2025 [69], however much of this data is unstructured and unlabeled. Chal-

lenges arise, therefore, when there is a need for large amounts of labeled data to create models for

specific tasks. For example, specific domain utterances are required to adapt ASR systems for automo-

tive or medical environments; large speech corpora are required to construct accurate speaker pattern

recognizers; image labels are required to train image recognition software. All of these can be easily

performed by humans to produce a gold standard (a ground truth) where computers lack aptitude to do

so. However, the construction of large datasets using expert annotators is both time-consuming and

financially costly.

Instead of using experts to label a dataset, crowdsourcing platforms enable a more scalable labelling

process by breaking down large datasets into small tasks. These well-defined micro-tasks are performed

by the crowd with similar quality results [70]. This technique is often used by companies and universities

by providing the required data to create accurate models at a lower cost. The required user base for

a given task is obtained by awarding users for each completed task. In one hand this invites a larger

pool of willing workers to complete these tasks. However, users may be encouraged to produce low

quality work as it often blends in with the crowd [71]. As a result, several methods to detect low quality

work have been developed, namely agreement across workers or with a gold standard [72], or more

complex behavioral capturing techniques to predict outcome measures such as work quality, errors, and

the likelihood of cheating [71].

Unlike other crowdsourced collections, the detection of low quality work in speech corpora collected

via crowdsourcing is less straightforward. Contributors’ submissions cannot be automatically probed for

low quality work using agreement across workers or a gold-standard, as each submission is inherently

unique. As a result, validation tasks are typically set up to verify certain characteristics of speakers

(nativeness, gender) or submission correctness (prompt matching, for example), as exemplified in Figure

3.1.

Human listeners are known to excel in the task of familiar speaker identification (meaning a close

acquaintance or someone famous) even in noisy conditions. Such a task can be considered pattern

recognition, as humans are capable of analyzing many different aspects of a voice to identify a speaker,

including spectral and prosody characteristics, gender, age range, language/accent, and speaking style

[73]. As such, humans are better at recognizing people who speak a language which they are familiar

with, as the phonology of the particular language is known. The findings in [74] show that familiar voice

recognition and unfamiliar voice discrimination (speaker verification) are known to be separate cognitive

abilities: voice discrimination involves analysis of speech features as well as the pattern-recognition
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Figure 3.1: Typical dual-stage speech data collection using crowdsourcing.

ability of the brain, which is used by the familiar speaker identification as well.

The main limitations of human listeners is twofold: they may erroneously identify someone from a

voice recording if they are expecting to hear that person; and are susceptible to bias such as similar

recording conditions and other contextual information [75]. This may raise some questions regarding

the performance of human annotators in the context of data collection validations for example, where

similar voices belonging to different speakers may be validated due to confirmation bias. Additionally,

uncertainty may be related to the difficulty of the task at hand or reflect the inherit ambiguity of the

submission and provide useful information. An example of this is the voice of a child, which presents

ambiguities in terms of gender [76]. These uncertainties may translate into diverging labels, requiring a

larger pool of contributors in order to obtain the ground-truth by measuring inter-annotator agreement.

As such, a validation process that relies on human listeners adds to the costs of the dataset as

multiple contributors are required for agreement. Additionally, the validation task setup for the detection

of contributors sharing accounts or contributing from different accounts is less obvious. This is important

because clients are not solely interested in the data, but also in the metadata that come with it, i.e., who

said what. As such, the use of automatic pattern recognizers for validation may be of value.

In this chapter we will focus on speech corpora collected via crowdsourcing, i.e. speech data col-

lections. The proposed approach in this chapter is to use speech to detect differences in extracted

features between the enrolment stage, the profile of the contributor and the detection stage, all of which

can be used in crowdsourcing task performance control. This is particularly relevant for DefinedCrowd,

an AI startup that offers a quality-focused data platform that combines machine learning and human

intelligence. For DefinedCrowd, the ability to detect mismatches in speaker profiles (e.g. gender) and

fraudulent behaviour (e.g. speakers using multiple accounts) by enforcing demographic distributions is

crucial, as it ensures the corpora demographic characteristics are according to clients’ requirements.

In this chapter, we start by describing the datasets used in the experiments in section 3.2, which

will be used for both gender and speaker verification. Section 3.3 proposes an end-to-end approach to

the gender verification task in the context of crowdsourcing. In section 3.4, we investigate how speaker
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verification methods can be adapted to a crowdsourcing validation setting. In particular, we explore the

use of score normalisation techniques for domain adaptation. In subsection 3.4.3 in particular, we draw

parallels between human speaker verification and automatic speaker verification and show how gender

plays an important role in human speaker verification. As a result of this analysis, in Section 3.5, we

study the use of speaker embeddings in the task of gender verification. Finally, in section 3.6, we discuss

the proposed approaches and their suitability as a real world application.

3.1.1 Crowdsourcing Terminology and Workflow

Industry terminology present in crowdsourcing is dissimilar to speech research terminology. In this

subsection, we present the terminology used in this field and associate it to the terminology typically

seen in research literature.

Contributors (speakers) are uniquely identified and can participate in multiple crowdsourcing speech-

data collections (henceforth called Jobs), being assigned a unique identifier for each Job (JobMem-

berID). Additionally, contributors’ self-reported biometric information such as age, gender and nationality

is appended to their profile. Each task within a Job, called Human Intelligence Task (HIT), indicates the

prompt to be read, if it is a prompt reading task, or indication regarding the topic to be discussed, if it is a

dialog or spontaneous speech. HITs can be performed by different JobMembers, and a JobMember can

perform several HITs. This results in a HIT Execution (utterance), where the result is stored. A simplified

database schema of a crowdsourcing environment is shown in Figure 3.2.

The typical workflow of a contributor in the context of speech data collections includes the following:

1. The contributor signs up in the crowdsourcing platform, filling out a profile form that includes age,

gender and language information;

2. HITs are allocated to the contributor. These tasks are in agreement with the submitted profile: a

language specific task is only given to contributors that have that language in their profile or when

there is a need for more executions from that age/gender group.

3. The contributor records the utterances and submits them.

4. The completed task suffers a quality control process that includes mechanisms that discard work

automatically (e.g. noise, short duration) and a screening process with additional validation tasks

that check for nativeness, correct spelling, and completeness.

5. The contributor is awarded a monetary compensation only after a given number of successfully

completed tasks.

29



data_collections

Job_Member

+ JobMemberID

+ CrowdMemberID

+ Profile

Crowd_Member

+ CrowdMemberID

Project

+ ProjectId

Job

+ JobID

+ ProjectID

Hit

+ HitID

+ JobID

Hit_Execution

+ HitExecutionID

+ HitID

+ JobMemberID
+ Result

1..*

1..*

1..* 1..*

Figure 3.2: Crowdsourced Database.

3.2 Datasets

To fulfill the aforementioned goals, we will look into two main types of datasets. We begin by presenting

DefinedCrowd data collections. After that, we present auxiliary datasets used in the development of this

thesis, including Voxceleb and the Common Voice datasets. Details of all datasets are aggregated in

Table 3.1 for convenience.

3.2.1 DefinedCrowd data collections

The speech data collections from DefinedCrowd are a multilingual collection of prompt reading tasks

recorded in an application environment using a mobile phone. The database is divided according to jobs,

with each job having different requirements, including language, nativeness and recording conditions.

Figure 3.3 shows an instance of a HIT to be performed by a contributor, in this case reading from a

prompt.

Submitted HIT executions undergo a processing step before being stored in the database. In the

available datasets in particular, wave files are downsampled to 16kHz, with a bit depth of 16, in a single

channel. An energy-based Voice Activity Detection (VAD) filters silence, leaving a leading silence of

duration 300ms and a trailing silence of 300ms.
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Figure 3.3: HIT Instance [2].

DefinedCrowd - US English (DC EN) This dataset is a scripted speech data collection of American

English in a silent environment. The prompts include wake-up calls of personal virtual assistants, fol-

lowed by a request. A total of 493 (271 female, 222 male) adult contributors were enrolled to this job,

resulting in a total of 4,188 executions. Submitted executions were validated by the crowd in a separate

job: 1,455 executions were either cancelled or refused due to low quality. As such, the final dataset

consists of 2,745 utterances belonging to 277 contributors. Average utterance duration is 4.98s, with a

minimum duration of 0.09s and a maximum of 10.71s.

DefinedCrowd - Hebrew (DC HE) This dataset is a scripted speech data collection of Hebrew. The

prompts amount to 30 HITs. The number of enrolled contributors for this job was 223 adults, of which

115 reported to be female (108 male), producing 2,460 executions. These executions were later verified

by creating a separate job, where other contributors validated the prompts. As a result of this validation,

and after removing cancelled executions, the dataset amounts to 2,144 utterances and 147 contributors.

The average utterance duration is 8.19s, with a minimum duration of 4.12s and a maximum duration of

18.40s.

DefinedCrowd - Mexican Spanish (DC ES) This dataset is a scripted speech data collection of Mexi-

can Spanish. The prompts, amounting to 9,990, consisted of wake-up calls of personal virtual assistants,

followed by a song request. A total of 152 (79 female, 73 male) registered adult contributors were en-

rolled to this job, resulting in a total of 10,500 executions. Submitted executions were matched against

the given prompt in a separate job by crowdworkers. Of these executions, 8,334 utterances belonging to

65 users form the dataset, the remainder being discarded due to user cancellations or validation failure.

Average utterance duration is 4.61s, with a minimum duration of 1.47s and a maximum of 10.65s.
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3.2.2 Auxiliary Datasets

3.2.2.A Voxceleb

VoxCeleb is a collection of videos from celebrities extracted from YouTube. The speakers span a wide

range of different ethnicities, accents, professions and ages. The nationality and gender of each speaker

(obtained from Wikipedia) are also provided. Videos included in the dataset are shot in a large number

of challenging multi-speaker acoustic environments. All are degraded with real world noise, consisting of

background chatter, laughter, overlapping speech, room acoustics, which is also paired with a variety of

different recording conditions adding channel noise. Voxceleb1 [77] contains over 100,000 utterances for

1,251 celebrities, with 55% of them males. Voxceleb2 [78] contains over a million utterances from over

6,000 speakers, with 61% of the speakers being male. Utterances on both datasets range from 4 to over

20 seconds. The dataset is also multilingual, with speech from speakers of 145 different nationalities,

covering a wide range of accents, ages, ethnicities and languages. Top five speaker nationalities include

U.S.A, U.K, Germany, India and France.

3.2.2.B Common Voice

The Common Voice project [79] is an open-source crowdsourced speech data collection envisaged to

assist in speech recognition software development. It includes almost seven thousand hours of validated

recorded speech from 56 languages and dialects. The collection is conducted by untrained volunteers

who read sentences from original contributions and public domain texts containing monologues from film

scripts. Besides having an ID being attributed to each volunteer, metadata information such as gender

and age can be disclosed by the volunteers.

The project offers several language-specific subsets for download. For this work, we used the two

largest subsets available, belonging to multi-accent English and German. Given that the data collection

process is similar to for-profit crowdsourcing, Common Voice (CV) datasets were also used to evalu-

ate the performance of our validation systems. However, since there is no gratification involved in the

execution of Common Voice tasks, we assumed volunteers did not submit low quality work, namely by

committing fraud.

Common Voice - English (CV EN) This corpus is a subset of the Common Voice corpus containing

prompt and digit reading from speakers with different accents. The dataset is the largest subset of

the Common Voice project with 1,469 validated hours of speech in .mp3 format and 61,528 speakers.

The subsets used in this work resulted from a combination of the development and test subsets, from

which the entries without gender information and part of the Singleword Benchmark were excluded,

which resulted in 5,848 utterances from 2,467 speakers. The average utterance duration is 6.00s, with
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a minimum duration of 1.22s and a maximum of 11.02s.

Common Voice - German (CV DE) This corpus is a subset of the Common Voice corpus containing

prompt reading from speakers with German and Austrian accent. The dataset is the second largest

subset of the Common Voice project with 692 validated hours of speech in .mp3 format and 11,731

speakers. The subsets used in this work resulted from a combination of the development and test

subsets, from which the entries without gender information were excluded. This resulted in 6,680 utter-

ances from 1,191 speakers. Average utterance duration is 5.73s, with a minimum duration of 1.22s and

a maximum duration of 11.02s.

Dataset # Utt # Spk
VoxCeleb1 4,878 40
VoxCeleb2 1,092,009 5,994

CV EN 5,848 2,467
CV DE 6,680 1,191
DC EN 2,745 277
DC HE 2,144 147
DC ES 8,334 65

Table 3.1: Dataset sizes.

3.3 Gender Verification

The ability to automatically identify gender from speech has many benefits for numerous applications.

Examples include enhancing Human-Computer Interaction, personalized advertising strategies and adap-

tive costumer service. In data collection tasks in particular, a dataset that does not follow a pre-

determined gender distribution, may that be due to an unbalanced gender representation or one that

does not reflect the typical distribution of the task at hand, may introduce biases in machine learning

classifiers. In this section, the challenge of guaranteeing gender demographics metadata correctness is

addressed, using automatic gender prediction models from speech.

3.3.1 Experiments

The network used for our experiments was based on the M5 network architecture [80] and is presented

in Figure 3.4. The model was implemented and trained in Python, using the PyTorch deep learning

framework. The Voxceleb2 dev subset was used for training, and the Voxceleb2 test for development.

Prior to training, utterances were converted to .wav format and downsampled to 8 kHz using sinc inter-
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polation. An energy-based Voice Activity Detection (VAD)1 was used to filter out non-speech frames.

Resulting utterances with less than 2s were padded with zeros at the end.

Input Convolution Convolution ConvolutionMax-
pooling

Max-
pooling

Max-
pooling

Avg-pooling Flatten FC SigmoidConvolution Max-pooling

Figure 3.4: Convolutional Neural Network Architecture

The network consists of four convolutional layers, each followed by a batch normalization layer and

a maxpooling layer. The first layer receptive field receives a time-domain 16000-length vector that rep-

resents a waveform of 2 seconds, at a sampling rate of 8 kHz. This layer possesses a receptive field

size of 80, with 256 filters with stride 4. This offers a receptive field that covers 10ms of speech, which

is comparable to window lengths of other feature extractors. The following convolutional layers have a

fixed receptive field of size 3, with increasing filter length of 128-258-512. The number of feature maps

doubles as temporal resolution decreases by a factor of 4 in the max pooling layers. Batch Normaliza-

tion is used on the output of each convolutional layer, before applying ReLU non-linearity. This alleviates

the problem of exploding and vanishing gradients. The classification step is conducted using an aver-

age pooling layer, paired with a fully connected layer of length 512, and a sigmoid layer for the output.

The output provides the gender classification, with values above 0.5 indicating the speech segment was

classified as ’Female’

The model was trained using the Adam [81] optimizer, with weight decay set to 0.0001. The loss

function chosen for this task was binary cross entropy. At first, the learning rate was set to 0.01 and later

on decreased to 0.001 during training, using a scheduler with step size of 20. The number of epochs

was fixed to 200, with early stopping indicating no further improvements were detected after 35 epochs.

3.3.2 Results

This section compiles the results obtained on DefinedCrowd and Common Voice data collections, in-

cluding Precision, F1-score and Recall, in Table 3.2.

The obtained results show significant performance variations in between datasets and genders.

In [41], the authors reported a Recall of 98.04 and 95.05 for ’Male’ and ’Female’, respectively, which is

similar to the performance detected on the DefinedCrowd datasets. Typically, ’Male’ recall outperforms

1https://pytorch.org/audio/ modules/torchaudio/transforms.html#Vad
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Male Female
Dataset Precision Recall F1 Score Precision Recall F1 Score
CV EN 0.97 0.94 0.95 0.71 0.83 0.76
CV DE 0.98 0.96 0.97 0.80 0.86 0.83
DC EN 0.90 0.97 0.93 0.97 0.92 0.95
DC HE 0.99 0.97 0.98 0.97 0.99 0.98

Table 3.2: Results obtained on Crowdsourced datasets

’Female’ recall, due to the fact that many speech corpora are unbalanced in terms of gender. This is

also the case of Voxceleb, to a smaller extent, but our results do not show a consistent out-performance

for ’Male’ labels on the DefinedCrowd datasets. We note, however, that for the Common Voice dataset,

performance metrics for ’Female’ are much lower than for ’Male’ (20% absolute difference in precison on

CV EN), which is beyond what is expected due to gender unbalance during training. Unlike the Defined-

Crowd datasets, which were manually validated, we presented results on Common Voice datasets under

the assumption that gender labels were correct. Considering these results, a manual validation step was

conducted by one annotator, obtaining the true gender label of the worst performing utterances. These

are characterized by having network outputs close to 0 or 1, indicating strong predictions. In CV EN, out

of the 5,847 utterances under test, 508 were miss classified, with 56 of these having strong predictions

. Meanwhile in CV DE, out of the 6,680 utterances under test, 376 were miss classified with 46 of these

having strong predictions.

As a result of this manual validation, we detected that a majority of the worst performing utterances

(over 80%) had in fact the wrong label. Furthermore, all of the erroneous labels were female and were

attributed to male speakers. While we have no concrete explanation for the reason why a substantial

amount of male speakers had ’Female’ labels, we believe this is due to error during profile registration,

as there is no incentive to provide ’Female’ labels other than the fact the datasets themselves lack female

representation.

3.4 Speaker Verification

Unlike typical speaker verification evaluation datasets, which have well defined and validated train, devel-

opment and test sets, datasets collected using crowdsourcing platforms may lack these partitions and/or

validated labels, making training and performance evaluation more difficult. In our experiments, we eval-

uate the system’s performance on a job-level, meaning we have no previous information regarding a

speaker, that is, there is no prior enrolment. As such, our trial setting differs from typical speaker verifi-

cation evaluations because a well established enrolment set does not exist. Our implemented automatic

speaker verification system takes the first completed task as enrollment, and iteratively complements
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the enrolled profile with N subsequent tasks that are verified by the system. This ensures additional

robustness by capturing additional intra-speaker variability not found in the first completed task.

3.4.1 Proposed Architecture

A brief overview of the speaker verification pipeline used in the experiments is represented in Figure 3.5.

Its front-end (A) consists of an embedding extraction network, which condenses information related to

the speaker to a fixed sized feature vector from a variable length audio signal. The back-end (B) consists

of a scoring procedure and is finalised by a decision step.

1

x-vector extraction

User Database

. . . . .

. . . . .. . . . .. . . . .. . . . .

PLDA scoring

.

.

.

.
. . . . . 13.75
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Figure 3.5: Speaker Verification pipeline.

The embedding corresponding to the first completed task of each user is computed and then enrolled

to the user database for future decisions (1). Embeddings belonging to subsequent completed tasks are

compared against the enrollment (2) and a same-or-different speaker decision is made. If the task is

verified, that is, if the decision resulting from the scoring of the two embeddings is positive, then the user

database is updated to include the new embedding (3).

Our embedding extraction and decision-making followed the Kaldi Speech Recognition Toolkit [82]

recipe of VoxCeleb. Training is conducted on the dev set of VoxCeleb2.

A – Embedding extraction The speaker verification pipeline is implemented using i-vectors and x-

vectors. The baseline is a traditional i-vector system. The front-end features consists of 24 MFCCs

calculated every 10ms with a frame-length of 25ms that are mean-normalized over a sliding window

of up to 3 seconds. Delta and delta-deltas are appended to create 72-dimension feature vectors. An

energy-based VAD selects features corresponding to speech frames. The UBM is a 2048 component

full-covariance GMM. The system uses a 600 dimension i-vector extractor which was trained on the 100

thousand longest utterances. This results in a reduced training time and improved performance. The

i-vectors are centered, dimensionality reduced to 200 using LDA, and length normalized.

Our system proposes using x-vectors for speaker embeddings. In the proposed system, the features

are 30 dimensional MFCCs obtained every 10ms with a frame-length of 25ms, mean-normalised over
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a sliding window of up to 3 seconds. An energy-based VAD module filters out non speech frames.

Short-term temporal context is handled by the TDNN architecture. The database was processed to

maximize performance prior to DNN training. VoxCeleb2 was augmented by combining the clean data

with reverberation, noise, music, and babble from the MUSAN corpus [83]. This doubles the size of the

original data. The augmented dataset is filtered by removing speakers with less than 8 utterances, and

utterances with less than 5 seconds of speech. Cepstral Mean and Variance Normalization (CMVN)

is applied to speech frames. Mini-batch size was set to 64. The DNN model was trained to classify

training speakers using a multi-class cross entropy objective function. The network was trained for

several epochs using natural gradient stochastic gradient descent. At first, the learning rate was set to

0.001, and later on decreased to 0.0001 during training using a dropout scheduler. The DNN outputs

512-dimensional embeddings which are centered, dimensionality reduced to 200 using LDA, and length

normalized.

B – Scoring and Decision A score is attributed to a pair of embeddings using Gaussian-PLDA

scoring [84]. An execution is considered to be verified if its embedding scores higher than a given

threshold, when evaluated against the enrolled embedding. In the context of crowdsourcing, False

Acceptances occur when the system validates fraudulent task completions from speakers other than the

enrolled one, while False Rejections erroneously flag tasks that were completed by the enrolled speaker.

Decision thresholds are a by-product of minimising speaker recognition performance metrics. In

Equal Error Rate, the threshold is chosen as to equate the False Rejection Rate (FRR) with the False

Acceptance Rate (FAR). Another typical metric is the minimum normalised Detection Cost Function

(minDCF), a weighted sum of False Rejection and False Acceptance probabilities, which can be used to

measure performance when taking into account system calibration.

When switching to a live production environment, trials are submitted ’on-the-fly’, meaning a decision

threshold must be decided beforehand. If the new trials belong to unseen, out-of-domain data (with dif-

ferent language and channel conditions), the previously computed threshold must be adapted in order

to achieve a similar performance [85]. Score space normalisation techniques can be used to tackle

this problem, by reducing variability in the scores. The Adapted Symmetric Scoring normalisation [67]

normalises scores according to the mean and standard deviation of impostor distributions. This normali-

sation subset, also called cohort, is formed by selecting the Nt closest files from the enrolment/test [86].

Other authors have also suggested a random selection of utterances [67]. Typical cohort lists have a

sample size (Nc) of thousands, making them able to experiment with Nt. For instance, in [86], the au-

thors reported a minDCF minimum by using an Nc set to between 200 and 500 comparisons, in a cohort

list with Nc over 2,000 files. In an online setting where there is no prior enrolment, the use of score

normalisation techniques requires a waiting period to allow for a number of utterances to be submitted
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and be used in the cohort list. In our experiments, we opted, for each dataset, to select a smaller cohort

list containing random utterances, and using the full list for normalisation calculation (i.e., Nt = Nc).

3.4.2 Experimental Set-up

The decision-making process follows a production setting that compares the initially completed tasks to

all subsequent tasks from a given user, which allows for the assessment of identity as early as possible.

This approach is more challenging than the iterative enrollment, however, as it reduces the enrollment

exposure to the inherit acoustic variabilities in speakers, but allows for a better understanding of the sys-

tem’s performance in these conditions. In order to evaluate impostor rejection, all utterances belonging

to other speakers are compared, generating the non-target trials (impostors).

Considering users are paid for each completed task, there is additional motivation to commit fraud,

either by enrolling additional speakers on the same account (in order to expedite completed tasks)

or by contributing with multiple accounts. Although several validation steps are applied to completed

tasks, none include a biometric evaluation step, meaning speaker labels are not validated. The main

reason for this is that the number of additional tasks required to perform speaker verification, and thus

detecting fraud, is O(N ·M) for intra-speaker fraud detection and O(N2) for inter-speaker fraud, where

N is the number of contributors and M the number of HITs allocated for each contributor. Additionally,

given the inherit difficulty of unknown-speaker verification tasks by humans, requiring the contributor

to listen to the same audio files multiple times to reach certainty, the resulting verification may contain

low-quality responses and require a larger pool of contributors in order to reach agreement. As such, a

comprehensive speaker verification job would add significant costs to the speech data collection.

In order to assess the probability of occurrence of this fraudulent behaviour, the datasets from De-

finedCrowd were selected for manual validation using a single annotator. Considering the size of the

datasets, only a subset of trials were selected for manual validation. This manual validation step con-

sisted of first running a speaker verification task using x-vectors on the full dataset in accordance to

the trial settings previously presented. For each contributor, all flagged utterances (that failed automatic

verification) were manually validated, together with the automatically verified utterance with the lowest

PLDA score. If the lowest verified utterance was a false acceptance, we proceeded to the next verified

utterance, up until the first true acceptance. Due to the size of the dataset, we assumed all utterances

with a higher score than the first true acceptance of each contributors were also valid. Inter-speaker

comparisons were used to check whether speakers were using multiple accounts. Only the utterances

with the lowest PLDA score were validated, as we assumed utterances with higher scoring were correctly

verified.

Although we assume tasks submitted to Common Voice are devoid of any fraud, we also conduct a,

albeit smaller, manual validation step to confirm the absence of fraud. This validation is similar to the one
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executed in DefinedCrowd datasets, with calculated PLDA scores filtering comparisons for subsequent

inspection. Unlike previous validations, however, we only manually validate the 50 worse performing

trial-comparisons of the full dataset.

3.4.2.A Results

In this subsection we present the results for the manual validation step of the crowdsourced speech data

collections presented in Section 3.2 and for speaker verification tasks using the proposed automated

system.

The results of the manual validation are reported in Table 3.3, where intra-speaker and inter-speaker

fraud is accounted for on each dataset. Additionally, we present the size of the reduced datasets in

terms of number of utterances and speakers that resulted from the removal of all fraud: all flagged

utterances belonging to the same contributor were individually removed, while all utterances belonging

to subsequent contributors found to have instances of inter-speaker fraud were removed, together with

the flagged contributor.

Size (reduced) Intra-Speaker Fraud Inter-Speaker Fraud
Dataset # Utt # Spk # Utt # User # Utt # User
CV EN 5,848 2,467 0 0 0 0
CV DE 6,680 1,191 0 0 0 0
DC EN 2,733 277 0 0 0 0
DC HE 2,144 147 13 5 0 0
DC ES 7,893 61 8 3 264 3

Table 3.3: Reduced dataset size and detected fraud.

As expected, we failed to detect any fraud on CV EN and CV DE. Additionally, no fraud was found

on DC EN. We note that while the amount of intra-speaker fraud detected on DC HE and DC ES can

be considered minor, inter-speaker fraud on DC ES in particular was substantial, considering each

contributor had a large amount of tasks attributed to him/her.

Results obtained on the different reduced crowdsourced datasets are summarised in Table 3.4. We

also present results for the ”baseline” VoxCeleb1 dataset. It is possible to observe that overall Equal Er-

ror Rate (EER) (%) results on the crowdsourced datasets, with the trial settings explained in Subsection

3.4.1, are comparable with the results on VoxCeleb1. This is a promising result, considering the enrol-

ment data is a single utterance per speaker. Furthermore, we note that the Decision Threshold (DT) that

result in the EER have different values for each dataset: we report a mean absolute difference of 2.62

using x-vectors, which confirms the need for a normalisation step in order to use the same threshold.

Results also show that scoring using x-vectors was able to outperform i-vectors on all datasets except

for DC ES. Better results on x-vectors were expected, especially considering the i-vector extractor was
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None AS-Norm
Dataset Method EER(%) DT EER(%) DT

Voxceleb1
i-vector 5.329 -1.00 - -
x-vector 3.128 -3.26 - -

CV EN
i-vector 3.337 4.31 2.998 0.97
x-vector 2.319 7.08 2.432 1.94

CV DE
i-vector 4.208 5.40 3.916 0.40
x-vector 2.915 7.67 2.860 0.83

DC EN
i-vector 2.737 5.10 2.982 0.86
x-vector 2.083 8.09 2.492 0.83

DC HE
i-vector 1.099 9.94 1.648 1.64
x-vector 0.599 14.74 1.549 1.93

DC ES
i-vector 3.527 7.51 2.222 -0.39
x-vector 4.082 11.40 3.676 -0.30

Table 3.4: Results obtained on different datasets.

trained on the largest utterances of Voxceleb2 and is therefore more susceptible to have its performance

degrade due to mismatches in duration [51].

We experimented with several values of Nc for the size of the cohort list, using the obtained results

without normalisation as a baseline. Considering the dataset size limitations, we opted to present aver-

age results obtained on five experiments using Nc = 50, which is the lowest value we obtained without

suffering substantial performance losses in terms of EER. As seen in 3.4, we note overall that the

EER increases slightly, except for DC HE, where an absolute increase of around 1% was noted using

x-vectors and 0.5% using i-vectors. Additionally, we noted decreases in EER on DC ES and CV DE.

Decision thresholds on all datasets shifted to an average value of 1.17 and a mean absolute difference

of 0.71, indicating a single decision threshold could be applied to these datasets in practice while main-

taining the performance using unnormalised scores. The resulting score distributions can be visualised

in Figure 3.6, for the DC EN dataset.

The Detection Error Trade-off (DET) curves in Figure 3.7 show relevant differences between the

AS-norm adapted and non-adapted curves, namely the progression of False Acceptance probabilities

when decreasing False Rejection probability. However, False Rejection probabilities are lower on the

adapted scores when minimising False Acceptance probabilities for the DC HE and DC EN datasets.

This can be explained by a normalisation that agglomerates scores to the opposite decision region,

instead of making them more separable. We hypothesise this is a consequence of the size of the cohort

list. Unlike the DET curves for DC HE and DC EN, the curves for the DC ES dataset do not show

substantial differences, with AS-norm achieving better performance near the EER point. We find this is

due to having 65 speakers in this dataset (contrasting with 147 and 277 speakers in DC HE and DC EN,

respectively), which leads to a normalisation that reflects the original score distributions.
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Figure 3.6: Score distributions (DC EN) for same and different speakers with and without score normalisation.

Fraud detection results for our system are presented in Table 3.5. We note that while the number

of False Acceptances (the system verified different speakers) is very low, it also presents a relatively

high number of False Rejections (the system did not verify the same speaker). A higher DT would

alleviate this, at the cost of a higher false acceptance rate. It is typically worthwhile to maintain a larger

percentage of False Rejections (and thus lower false acceptances) in the context of crowdsourcing

because the consequence of this decision is a higher number of rejected executions, but reduced fraud.

When attempting to minimize false rejections, the total number of rejected executions would be lower,

but it would also result in a higher presence of fraud in the dataset. Therefore, the size of the data

collection can be considered one of the main driving forces in this decision, as it may not be viable to

increase rejections in a small, niche, dataset, whereas in a larger dataset it may be worthwhile to reduce

false acceptances further, at a cost of more rejections.

Dataset FA(#) FR (#)

DC EN - 52

DC HE 8 8

DC ES 0 356

Table 3.5: Fraud detection result.
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Figure 3.7: DET curve for DefinedCrowd datasets using x-vectors.

3.4.3 Comparison with Human Speaker Verification

While we wish to present an automated system that can automatically validate submitted executions

with regards to speaker profile (including gender), the study of correlations (if they exist) between human

uncertainty/errors pertaining to speaker validation tasks and automatic speaker verification errors may

be worthwhile. This association could prove to be useful when calibrating the system, reducing its

errors by introducing an uncertainty range where submissions are flagged for validation using expert

annotators, for example.

In this subsection, we investigate human performance in the voice discrimination task and compare

it to the automatic speaker verification system. The main motivation behind this study was to understand

the correlation (if it exists) between speaker verification by humans and machines in same-or-different

speaker decisions.

Previous studies on this topic limit themselves to reporting overall performances of human listeners

when compared to speaker recognition systems and probing robustness to different channel conditions,

such as noise. In [87], the authors studied human and machine performance using the NIST 1998

speaker evaluation data. They found that human results (using mean combining of individual responses)

were similar to the best computer algorithms (at the time, GMM) in the same-handset condition and that
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human results outperformed machines when the signal was degraded by background noise. A similar

study was conducted in [88], where most results showed that humans outperformed machine algorithms

trained to match the noise environment.

3.4.3.A Experimental Set-up

In this experiment, a subset of the DC EN dataset was submitted for human validation using Defined-

Crowd’s crowdsourcing platform. The job contained 125 randomly selected trials (utterance pairs) from

the x-vector speaker verification system’s results (without score normalization). These profile labels

of these utterances (and subsequently the same-or-different-speaker decision labels) were manually

verified by the author. The PLDA scores followed a uniform distribution, translating into a balanced dis-

tribution of same and different speaker comparisons, reducing confirmation bias. Additionally, the job

description did not mention the profile validation nature of the experiment and stated that different noise

conditions may occur and should not be taken into account when making a decision. In this experiment,

all 8 annotators were DefinedCrowd employees, therefore guaranteeing the quality of the submitted

work. We also note that these annotators are considered to be naive listeners, as they lack the same

expertise as forensic experts.

For each HIT, 3 randomly selected contributors were asked to listen to two utterances and respond, in

a 1-5 Likert rating scale, whether they belonged to the same speaker or not. In it, choosing 1 represented

being absolutely sure they were different speakers while 5 represented being absolutely sure they were

the same speaker. The use of the Likert rating scale allowed for the introduction of human uncertainty.

Aggregation among annotators was used to produce the final label, which is then used to compare

against the profile labels and PLDA decisions. The decision follows the logic presented below:

• An audio pair is considered to have different speakers if the majority of responses were lower

than 3 (Not Sure) in the Likert Scale and there was no more than 1 response using 3 (Not sure) or

4 (Somewhat Agree).

• An audio pair is considered to belong to the same speaker if the majority of responses were higher

than 3 in the Likert Scale (Not Sure) and there was no more than 1 response using 2 (Somewhat

Disagree) or 3 (Not sure)

• An audio pair is considered to be ambiguous in terms of same-or-different-speaker decision if

there is more than 1 response with a Likert rating of 3, or if responses are strongly contradictory,

that is, single responses using 1 (Strongly Disagree) or 5 (Strongly Agree) with opposing majority.

The speaker verification decision logic follows the one presented in Section 3.4 with the added third

class ”Not Sure”, which models the system’s uncertainty. The uncertainty interval is centered on the de-
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cision threshold that results in a EER. The lower and upper bound are set to [3, 13] which approximately

ensures classifier confidence of 96% on the DC EN dataset.

Additionally, the achieved agreement among annotators was measured using Krippendorff’s alpha

coefficient [89]. The alpha coefficient can be calculated using the following formula:

α = 1− Do

De
(3.1)

where Do is the disagreement observed and De is the disagreement expected by chance. An alpha

value of α = 1 indicates perfect reliability while an α = 0 indicates the absence of reliability (statistically

unrelated). An alpha valued below zero indicates disagreements are systematic and exceed what can

be expected by chance.

3.4.3.B Results

We report for the ordinal data of the Likert scores submitted by the contributors an alpha value of α =

0.851, which indicates a high degree of agreement among annotators. The decision performance of

each system against the profile labels is presented in Table 3.6.

Decision Precision Recall F1 Score

Human Validation
Same-Speaker 0.95 0.97 0.96

Different-Speaker 0.93 1.00 0.96

PLDA Validation
Same-Speaker 0.76 1.00 0.87

Different-Speaker 1.00 0.86 0.92

Table 3.6: Performance results for same-or-different speaker decisions.

Overall, human validation results are similar to the automatic speaker verification system using PLDA

scoring. Human validation outperforms PLDA on same-speaker decisions, while the PLDA yields better

results on different-speaker decisions (100% precision for different-speaker decisions). However, overall,

human performance is more consistent, unlike the PLDA, which reports an absolute decrease of 24% in

precision on same-speaker decision when compared to different-speaker decision.

Additionally, we present a comparison of results obtained on the human validation versus speaker

labels and the proposed speaker verification system of Section 3.3. These results are presented in

the confusion matrix of Figure 3.8, where the top left matrix reports the confusion when comparing

the PLDA system decisions with the profile labels and the top right matrix reports the confusion when

comparing human decisions with the profile labels. The bottom confusion matrix reports the confusion

when comparing decisions by humans to the PLDA system.

By examining the results of the confusion matrices, we conclude that human uncertainty in same-or-

different speaker decisions does not match the uncertainty of the speaker verification system. We also
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Figure 3.8: Confusion matrices for Human and PLDA speaker verifiers

note some decision mismatch of annotators when compared to the profile labels.

Additionally we present in Figure 3.9 a violin plot of individual contributors’ answers versus the PLDA

score, discriminating same-or-different speaker-labels. Our hypothesis was that a correlation between

human and machine uncertainty in speaker verification tasks exist. This would present itself as an

increasing progression of distribution’s means for each Likert Score and a distribution of uncertainty

(Likert Score 3) roughly centered around the Decision Threshold (DT), which in this case is DT = 8.09.

Observing Figure 3.9, we note that while same-speaker comparison scores are limited to values

above the decision threshold, the same cannot be said about different-speaker comparisons, with PLDA

scores populating the full scale. As such, no direct correlation between the PLDA Scores and Likert

Scores is detected. Scores pertaining Likert Score 3 (uncertain) have mean value around 10.0, which is

close to the decision threshold, but with a PLDA score minimum and maximum well within the same or

different speaker score ranges. Additionally, in the cases where Likert Score responses were contrary
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Figure 3.9: Violin plot of human vs system same-or-different speaker decisions.

to the speaker label, their PLDA scores were not centered around the DT.

Another hypothesis under study is whether different-speaker trial comparisons with a different gender

would result in perfect predictions. Intuitively this would be the case, as speakers only have a single

gender. Figure 3.10 confirms these results, as annotators were able to take full advantage of gender

information, by accurately predicting that the trial comparison did not belong to the same speaker given

that their genders were different.
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3.5 Merging Speaker & Gender Verification

In [59], the authors explored the extracted i-vectors and x-vectors from a speaker-verification trained

system to probe additional information. This information included gender, speaking rate and session

related information such as word and phoneme recognition. The reported results for gender recognition

indicate performances similar to state-of-the-art gender recognition systems.

As identified in previous experiments, gender plays a major role in speaker verification tasks. Indeed,

as reported in Subsection 3.4.3, we found that humans were able to fully differentiate speakers given

different genders. The same was concluded about the automatic speaker verification system, with PLDA

score distributions for non-target trials with different genders having a much lower average score when

compared to trials within the same gender.

The motivation behind this section is to confirm speaker embeddings contain sufficient information

regarding gender and utilize embeddings to develop a gender validation system which could be used

for crowdsourcing. This is worthwhile in the context of speaker profiling, as a sole feature vector, the

embedding that is used for speaker verification, would be able to convey additional biometric informa-

tion relevant for the construction and verification of said profile. This allows for reduced computational

expenses, as a single feature extraction pipeline would suffice to extract all relevant information.
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3.5.1 Experiments

To compare the performance of the model that predicts the gender from the speaker-trained embedding

with the dedicated gender recognition model of section 3.3, experiments were conducted on several

crowdsourced databases. All models were implemented and trained in Python using the PyTorch deep

learning framework.

The gender extraction model from the embedding followed the architecture proposed in [59]. The

model is an MLP with a single hidden layer and a ReLU activation for the first layer and a sigmoid activa-

tion for the output layer. The hidden layer size was fixed at 500. Similar to the end-to-end architecture,

binary cross entropy loss was used together with Adam [81] as the optimizer, with a learning rate of

0.001. Two separate models were trained using extracted i-vectors and x-vectors using VoxCeleb2 dev

as the training dataset and Voxceleb2 test as the development set.

3.5.2 Results

This section reports the results obtained on DefinedCrowd and Common Voice speech data collections

and includes Precision, F1-score and Recall for the i-vector, x-vector and end-to-end models. The best

results for each metric and dataset is marked in bold, and are presented in Table 3.7.

Male Female
Dataset Architecure Precision Recall F1 Score Precision Recall F1 Score

CV EN
i-vector 0.98 0.91 0.95 0.66 0.89 0.76
x-vector 0.98 0.94 0.96 0.72 0.90 0.80

end-to-end 0.97 0.94 0.95 0.71 0.83 0.76

CV DE
i-vector 0.98 0.96 0.97 0.80 0.90 0.85
x-vector 0.98 0.94 0.96 0.72 0.90 0.80

end-to-end 0.98 0.96 0.97 0.80 0.86 0.83

DC EN
i-vector 0.93 0.96 0.94 0.97 0.94 0.95
x-vector 0.94 0.97 0.95 0.97 0.95 0.96

end-to-end 0.90 0.97 0.93 0.97 0.92 0.95

DC HE
i-vector 0.99 0.98 0.99 0.97 0.99 0.98
x-vector 0.99 0.98 0.98 0.98 0.99 0.98

end-to-end 0.99 0.97 0.98 0.97 0.99 0.98

Table 3.7: Results obtained on Crowdsourced datasets

It can be observed that the performance obtained using the speaker embeddings as input is com-

parable to the end-to-end model, with the added benefit that the model is much simpler, an MLP. In

fact, the end-to-end model failed to outperform the embedding-based models on the majority of metrics,

something we believe is due to the nature of the embedding extraction, which is able to convey informa-

tion related to the full embedding, unlike the end-to-end model, which is restricted to exactly 2 seconds
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of the utterance. This means utterances with duration lower than 2 seconds are padded with zeros be-

fore being fed to the network, and utterances longer than 2 seconds are cropped, possibly discarding

relevant information pertaining gender. As exposed in Section 3.3, the Common Voice gender labels are

not fully verified, which is why its results, namely on the female class are not comparable to the obtained

performance on DefinedCrowd datasets.

3.6 Discussion

In this chapter we presented a profile validation task in the context of crowdsourced speech data collec-

tions quality control. Our proposed profile validation system includes a speaker verification module and

a gender verification module, which are pretrained in out-of-domain open-source datasets.

A manual validation step was conducted prior to experiments in order to establish a test set that we

could extract performance metrics from. Besides that, it also provided an opportunity to quantify fraud in

DefinedCrowd crowdsourced speech data collections. While the percentage of fraud in our experiments

may be considered minor (we reported less than 1% of utterances being fradulent), it cannot be ignored

if we take into account the large volume of data generated using crowdsourcing methods. As such,

these results motivate the widespread use of automatic demographic control methods in this context.

Noting the various combinations of different languages and conditions that occur during data gather-

ing, our proposed speaker verification module is adapted to each collection automatically. This ensures

that the same threshold can be applied to all collections without significantly jeopardising the system’s

performance. Evaluation results for the speaker verification module on crowdsourced datasets indicate

an EER with or without score normalisation within the values of other speaker verification benchmarks

on similar settings. Additionally, thresholds on all datasets shift to a value which facilitates the deploy-

ment of our proposed speaker verification system to other unseen datasets. Whilst EER results on the

score normalised experiments do not show any significant changes, we note significant performance

variations on the Detection Error Tradeoff (DET) curve. Namely, we found that with score normalisation,

the DET curve suffers from large performance losses in terms of Miss probability when the False Alarm

probability is minimized. We believe this is due to having a very small cohort list which we also equate

to the number of comparisons (Nc = Nt = 50) when compared to typical cohort lists of sizes, which

can be larger than 1,000 utterances, using at least 200 comparisons. This means the resulting statistics

are calculated on a smaller set, that fails to represent all the variability of the target dataset. As such,

larger in-domain datasets must be obtained to improve results, especially if fine-tuning of the system is

needed, with regards to rejection and acceptance rates.

We also used the obtained scores from the speaker verification module to study the correlation

between calculated scores and human perception (using a Likert Scale) in these tasks. Although we
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confirmed humans take full advantage of gender when doing their predictions, being able to easily dis-

tinguish speakers if they had different genders, we failed to establish a correspondence between PLDA

scores and human responses. We believe this result is partially due to the statistical insignificance of the

sample size, making us unable to draw further conclusions regarding this subject. Another explanation

for these results is the inability, despite our best efforts, to fully remove bias from naive human speak-

ers. Human contextual and confirmation bias are known to degrade results, something that automatic

speaker verification systems do not possess, and as such are unable to model using scoring.

Our gender verification module takes advantage of the information stored inside the speaker-trained

embedding to also predict gender labels. With a simple MLP receiving as input the embedding, we

were able to obtain results comparable to a dedicated end-to-end model. The large mismatch between

the predictions and labels of the CommonVoice dataset indicated that this dataset contained incorrectly

labeled genders, which was confirmed with a manual validation step.
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4.1 Introduction

In Chapter 1, we discussed how the detection of speaker profile information can bring value to a myriad

of applications, including Human–computer interaction, identity verification, collection of speech data

and medicine. In this chapter, the second use case is addressed, medicine.

The production of speech is highly dependent on organs that are shared with the respiratory system:

the lungs and the diaphragm are responsible for the pressure production required for speech; the upper

vocal tract (which includes the nose, mouth, pharynx and larynx) is responsible for producing speech

[90]. As such, human respiratory and speech parameters provide important cues to physicians and

first-responders in determining a wide range of cardiac and respiratory diseases [91] [92] or to evaluate

cognitive and neurological health [93] [94]. Furthermore, information extracted from breathing patterns

during speech can be used to assist speech therapists in identifying speech impediments resulting from

unfavourable respiratory planning [95]. Breathing monitoring in this context is often conducted using

wearable sensors, namely, face masks and/or respiratory belts [96]. The installation of these sensors

requires the presence of trained medical assistants and is frequently time-consuming, negating their

usefulness in emergency situations, or when the patient cannot be physically reached. A typical example

of the latter scenario occurs during medical virtual online consultations, with the patient at home, where

breathing information could be of use for diagnosis or monitoring. As such, automated methods based

on recorded speech alone that are able to predict breathing events and parameters such as breathing

rate and tidal volume may be of substantial value.

Considering breathing patterns and related parameters provide important biomarkers regarding a

speaker’s health, its use may also be of value in the context of heath-related speech data collection

and speaker verification in general. For instance, speech can be probed for breathing information to

determine if a healthy speaker is attempting to impersonate a enrolled speaker with a medical condition,

or vice versa. This can complement the work conducted in Chapter 3, by providing an additional fraud

detection layer, and/or enforce class distribution in health-related speech data collections.

Previous studies on the topic of breathing detection from speech have focused mainly on automatic

recognition of breathing patterns and events directly from a processed signal (e.g. [97], [98]). In [99], the

authors studied the automatic detection of the breathing signal using Deep Neural Networks (DNNs).

They reported a correlation coefficient between the predicted signal and the original one of 0.47, with

error rates pertaining breathing rate of 4.3%.

In this chapter, the automatic prediction of breathing patterns from speech is explored in the con-

text of the INTERSPEECH 2020 Computational Paralinguistics Challenge (ComParE): Breathing Sub-

Challenge [100]. Additionally, applications in medicine, such the estimation of the breathing rate, are

explored. The chapter begins with an introduction to the topic, paired with a motivation and an overview

of previous methods (Section 4.1). In Section 4.3, the Amplitude Modulation (AM)/Frequency Modula-
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tion (FM) decomposition method of speech signals is presented, together with a brief explanation of its

use. Section 4.4 dives into the breathing pattern prediction problem, providing the experimental setup

and results. Similarly, in Section 4.5, the experimental setup and results are presented for the breathing

rate prediction problem. Finally, in Section 4.6, the results are discussed.

4.2 Dataset

The experiments for the Breathing Sub-challenge are conducted using a subset of the UCL Speech

Breath Monitoring (UCL-SBM) database. The dataset includes speech recorded from a head-mounted

condenser microphone and normalized linear voltage readings from two piezoelectric respiratory belts

that respond to changes to the thoracic circumference.

All speech recordings were spontaneous, as reading tasks may introduce some bias, forcing stops

that do not necessarily coincide with the breathing rhythm. The recordings were produced by native

English speakers of ages ranging from 18 to 55 years old. To the best of our knowledge, all speakers

were healthy. The data set contains 49 sessions, each 4 minutes in length. The corpus is split into

training, development and test sets (17, 16, and 16 sessions, respectively).

An analysis of the belt signals in these datasets shows considerable variability, as illustrated in Figure

4.1: while most of the signals in the training set have quite regular breath patterns, this was not observed

in almost half of the signals in the development set. This was the motivation for also experimenting with

a reduced development set, dev2, from which 7 sessions were excluded, since the training material did

not include sufficient examples of such irregular patterns (only 2 out of 17 sessions). The objective

exclusion criteria was based in experimental results, as explained in the next Section.

In order to emulate the video-call consultation with a physician, the provided challenge dataset was

augmented. The augmentation consists in passing the original, down-sampled speech signal by an

ITU-T G.723.1 dual rate speech coder and decoder [101]. The G.723.1 audio codec, part of the ITU-T

recommendation H.324, is a Code-Excited Linear Prediction Coder widely used in Voice over IP (VoIP)

applications. It compresses voice audio in 30 ms frames and operates with a sampling frequency of 8

kHz/16-bit. In this implementation in particular, MPC-MLQ (Multi-pulse Coding) mode is used, operating

at 6.3 kb/s. After the decoding, the signal is up-sampled back to 16 kHz and is used in training alongside

with the original data. This augmentation results in the doubling of the training and development data

(devaug).
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Figure 4.1: Segments of breath signals from sessions 00 and 04.

4.3 AM-FM decomposition

The rationale behind the AM-FM decomposition is that speech is generated by a source (FM compo-

nent containing speaker information), which is modulated by the vocal tract (AM component containing

the message) [102]. Previous work [103] conducting AM-FM decomposition has shown only a small

loss in ASR performance (4.8% WER absolute increase) when using the FM component in an HMM-

GMM system. This contrasted with the WER obtained using only the FM component (43.8% absolute

increase).

The spectrograms of Figure 4.2 illustrate the contents of the two components in the presence of a

breathing event. The FM carrier signal clearly shows a breath signal between two words whose voicing

patterns are visible. The AM signal containing the linguistic information exhibits longer pauses between

the corresponding words. This was the motivation for a set of experiments on predicting breath signals

from the raw time wave representation of the envelope, the carrier, or combinations of these with and

without the original signal.

The AM-FM decomposition is conducted using a frequency domain linear prediction (FDLP) ap-

proach. FDLP proposes to model the speech in critical bands as a modulated signal with the AM

component obtained using Hilbert envelope estimate and the FM component obtained from the Hilbert

carrier. In the implementation followed [104] 1, the input speech was decomposed into 32 conventional

quadrature mirror filter (QMF) bands with an analysis window of 1 second. FDLP was then applied on

1https://github.com/iiscleap/SignalAnalysisUsingAm-FM
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breathing event (inhalation)(restaurant) (I'd say)

Figure 4.2: Spectrograms of speech signal showing a breathing event in between two words.

each band to model the sub-band temporal envelopes (AM components). The LP residual represents

the FM in the sub-band signal. The reconstruction of the signal from the QMF bands was done by re-

versing the above-mentioned steps. The resulting envelope signal contains the re-synthesized signal

with the intact message, but with whispered speech. With the carrier information alone, the synthesized

signal sounds message-less, but with identifiable speaker cues, namely pitch and voice quality features,

such as creakiness.
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4.4 Breathing Pattern Prediction

4.4.1 Experimental Setup

The official baseline results indicate traditional methods such as feature extraction paired with SVM

failed to produce competitive results when compared to the End-to-End Deep Sequence Modelling. As

such, the official provided end-to-end baseline architecture was used as a base for experiments2. This

architecture follows typical sequence labelling models by combining a CNN for character-level represen-

tation with an RNN (in this case an LSTM) for obtaining context. The output of these layers is then fed

to a dense layer for final prediction.

Input data during training consists of 2 seconds of speech recordings sampled at 16 kHz, resulting in

32000-dimensional input vector. The network is composed of three one-dimensional convolutional layers

with number of filter 64-128-256 and with a kernel size of 8-6-6. Each convolutional layer is followed by

a max-pooling layer that undersamples at a stride of 10-8-8. The output is then fed to the recurrent

level of the network, which consists of two stacked LSTMs with 256 hidden units. This model provides

a sequence of hidden states, each of which is passed through a linear layer to provide the breath belt

signal prediction. The training loss used is the Pearson correlation coefficient r, calculated between the

true and predicted belt signals. For this, the true and predicted signals are flattened to calculate the

training loss. All experiments were conducted using TensorFLow with a learning rate of 0.002 for the

Adam optimiser, with models being trained for 100 epochs.

Several experiments were conducted replacing the self-learning character-level representation with

conventional extracted features. One of the motivations behind this replacement was to understand if

the low amount of training data was a limiting factor in the feature extraction step.

We trained a model using a 48-dimensional Constant-Q filter bank, calculated every 10ms with a

frame-length of 25ms. The Constant-Q transform logarithmically spaces in frequency its filters, which

mirrors the human auditory system, as the spectral resolution of the low frequencies is higher than the

high frequencies, and the temporal resolution at higher frequencies is better than at lower frequencies.

Additionally, MFCCs are extracted every 10ms with a frame-length of 25ms, mean-normalised over a

sliding window of up to 3 seconds. We present results using extracted 40-dimensional MFCCs as a

replacement to the CNN. We train models with the full MFCCs feature vector, and with the top and

bottom 24 coefficients. This allows us to understand where the most relevant information pertaining to

breath lies. Additional models are trained by replicating the frame-level of the x-vector DNN architecture,

and by adding 2 convolutional layers (kernel size of 32, with a stride of (8,4)) together with max-pooling

(pool filter and size of (1,3)) for obtaining contextual information from the MFCCs.

Speaker embeddings are known to encode information about the speaking rate [59]. As such, and

2https://github.com/glam-imperial/ComParE2020-Breathing-End2End
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in an attempt to model speaker dependence, frame-level x-vectors were extracted every 25ms using

Kaldi [82] and appended to the output of the last convolutional layer, before the context-level of the

network (LSTM).

We also experimented training models with different losses, namely Mean and Root Mean Squared

Error (MSE, RMSE) and Lin’s Concordance Correlation Coefficient, using the baseline end to end archi-

tecture.

Another approach we experimented was a Bidirectional LSTM. This allows us to model respiratory

planning, which by intuition takes into account not only how long was the last breath (past information),

but also when we plan to stop talking in order to breath in. In this variant, the depth-concatenated forward

and backward outputs are fed to the dense layer for prediction.

4.4.2 Results

Considering the fact that overall, our development set results were much lower when compared to those

obtained for the training set and those that were reported in the official baseline for the test set led us to

inspect the individual results of the Pearson correlation coefficient r for each session of the development

set as shown in Table 4.1.

Session 00 01 02 03 04 05 06 07
r .000 .610 .566 .768 .833 .668 .837 .781

raug .005 .613 .569 .777 .834 .655 .845 .770

Session 08 09 10 11 12 13 14 15
r .262 .753 .760 .820 .889 .291 .784 .321

raug .262 .788 .734 .822 .887 .263 .794 .327

Table 4.1: Pearson correlation coefficient using our best reported system on the original development set.

The top line of Table 4.1 shows results on this set and the bottom line on the augmented set. The

sessions showing less regular patterns corresponded to much lower values of r, and were therefore

excluded from the reduced development set, dev2 (marked in bold). As expected, average results are

considerably higher for this dataset (absolute improvement of .2). Additional models were also trained,

combining train with dev and dev2. We note that removing the 2 sessions that were reported to have

irregular breathing patterns from the train set did not change results. As such, all of the models for

which we present results have been trained on the full train set. Our best models were submitted to the

challenge’s platform, which contained unseen data, test.
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4.4.2.A Results with different feature sets

Table 4.2 presents experimental results for several feature sets and losses. We note that all approaches

failed to surpass the performance of the baseline on the development set. Results on the train set indi-

cate approaches using well-known handcrafted features such as the MFCCs benefit training by having

a simpler model. However, this result does not extend to the Constant Q Filter-bank. This is likely due

to the constant shifts in frequency as a result of variations in the spacing of the harmonics.

r

Architecture train dev dev2

End2End Baseline 0.89 0.507 0.769

Log Mel Energy 0.87 0.383 0.577

40-dim MFCC + LSTM 0.92 0.484 -

48-dim Constant-Q Filters + LSTM 0.49 0.161 -

24-dim MFCC + LSTM 0.91 0.495 0.736

Upper 24-dim MFCC + LSTM 0.99 0.315 -

24-dim MFCC + TDNN + LSTM 0.94 0.220 -

24-dim MFCC + 2x Conv + LSTM 0.89 0.483 0.764

x-Vector Baseline 0.89 0.495 0.757

RMSE Loss Baseline 0.73 0.480 -

MSE Loss Baseline 0.73 0.480 -

CCC Loss Baseline 0.95 0.500 0.768

Table 4.2: Experimental Results for different feature sets.

Looking at the results using MFCCs and Log Mel Energy, we note that the feature set containing

the full range of frequencies yielded a better performance than the approaches using only portions of

the frequency spectrum. Furthermore, the better results on the lower portion of the spectrum show that

more relevant information regarding breath is stored on this frequency range. Results for the TDNN

point out the lack of training data needed to train such a network.

The results using x-vectors report a minor performance degradation in dev2, indicating that the infor-

mation present in speaker embeddings does not assist in prediction.

Results using RMSE and MSE show that loss functions based on the difference between the esti-

mated values and the actual value do not improve performance. This was expected, as the performance

is evaluated using Pearson Correlation Coefficient r, which is why the CCC loss has comparable results

to the baseline on dev2.
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4.4.2.B Results with Augmentation

A summary of the results obtained for the model with the best development performance of the 100

epochs of training is presented in Table 4.3. Results on dev did not indicate any improvement of the

BiLSTM approach when compared to the baseline. The results on the augmented dataset do not show

consistent differences in performance when compared to the original dataset. The results on the VoIP-

modified sessions are presented in Table 4.1 (bottom row), showing no notable differences either, which

indicates that there is no information loss regarding breathing events when passing speech signals

through the G.723.1 audio codec.

r

dev dev2 test

Baseline Approaches - Challenge dataset

openSMILE [105] .244 - -

openXBOW [106] .226 - -

End2End .507 .769 .731

Proposed Approaches - Challenge Dataset

End2End FM .442 .657 -

End2End AM .490 .722 -

BiLSTM Original .507 .787 .720

BiLSTM FM .441 .696 -

BiLSTM AM .500 .742 -

End2End Org+AM+FM .476 .749 -

Proposed Approaches - Augmented Dataset

devaug dev2aug test

End2End Original .509 .784 -

End2End FM .424 .621 -

End2End AM .482 .740 -

BiLSTM Original .514 .767 .728

BiLSTM FM .432 .657 -

BiLSTM AM .515 .755 -

End2End Org+AM+FM .500 .742 -

BiLSTM Org+AM+FM .506 .765 -

BiLSTM AM+FM .488 .744 -

Table 4.3: Experimental Results for all systems on the Breathing Sub-challenge.

An example of the performance of the systems is illustrated in Figure 4.3, with the reference breath

signal in blue and predicted signal in orange. The bottom part of Figure 4.3 illustrates the system’s

ability to correctly predict breathing patterns in VoIP conditions. The true breathing signal is compared

with the one predicted from a signal obtained by passing a session of the UCL dataset through a real
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VoIP scenario. The audio recording is transmitted over-the-air using a mobile phone and recorded using

Skype platform, which uses the SILK [107] audio compression and codec. The resulting audio is down-

sampled and edited to conform with the original signal’s duration.
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Figure 4.3: Segments of breath signals from session devel 04.

We note that the prediction with the VoIP signal is able to detect the time-instances of all breathing

events correctly.

4.4.2.C Results with AM and FM components

Compared with the results of the original signal, as seen in Table 4.3, no improvements were detected

when using only the carrier or the envelope signal (the performance gain of the BiLSTM AM model when

compared to the BiLSTM Original is residual). Furthermore, all experiments indicate the performance

using only the AM signal yielded the best results when compared to the FM signal. The combination of

the AM and FM components, or even when including the original speech signal, failed to outperform the

BiLSTM system with the original audio, and the challenge’s baseline.

4.5 Breathing Rate Estimation

Breathing events are characterized in the breathing signal as a peak value (local maxima) indicating

maximum intake of air during inspiration, as shown in Figure 4.4. Previous attempts to detect these

events typically include the detection of zero-crossings and thresholding of the signal (using its first

and second derivatives) [97] [108]. In this work, we used a slightly different approach: Considering

breath is a quasi-periodic signal (the typical respiratory rate for a healthy adult at rest is 12–18 breaths
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per minute [109]), the resulting cyclic characteristics of the auto-correlation will be equal to the original

signal. As such, the peaks of the auto-correlation are found and the average time differences between

them report the short period of the signal, which roughly corresponds to the periodicity of breath. This

period will then be used as the stride of a window that will detect the local maxima of the original signal.
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Figure 4.4: Sample of a breathing signal.

4.5.1 Experimental Setup

The findpeaks detection algorithm of MATLAB ver. R2019a was used to detect both the peaks in the

auto-correlation and the breath signal. The obtained short period of the auto-correlation was then used

for minimum peak separation in the breath signal. A peak detection threshold of 0.1 mV was added to

filter out noise. The corresponding breathing rate is then calculated by dividing the number of detected

breath events by the duration of the signal in seconds. An example of this detection is illustrated in

Figure 4.4.

The behaviour of the breathing patterns of the AM and FM components was compared to a breathing

event detection algorithm based on an ASR system [110]. This system was trained on the English HUB-

4 dataset using Kaldi [82]. The acoustic model is a TDNN and the language model is trained on a mix of

broadcast transcriptions and web news corpora. An example of the output is shown in Figure 4.5, with

the ASR system in black. This segment was chosen in particular as it shows the limitations of the use of

the speaker noise event detection for breathing detection. We note that by using the generic labels the

system is unable to differentiate between voiced exhalation and voiced inhalation and that it does not

detect unvoiced inhalation. Furthermore, the system trained with the FM component is unable to detect

these voiced exhalations.
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Figure 4.5: Segments of true and predicted breath signals with breathing detection algorithm using ASR.

4.5.2 Results

The breathing rate estimation results are shown in Figure 4.6. Considering no actual breathing rates

were provided for each session, the results obtained using the predicted signals of our best model in

dev2aug are compared against the breathing rate estimations of the true (label) signals. The breathing

rates for the test set are also provided.

We note that the range of values of breathing rate for the labels is much higher than the ones esti-

mated using the predicted breath signal. The presence of outliers and the overall distributions of breath-

ing rates in the label signals indicate some of the sessions have noisy or otherwise disrupted breath

signals. Indeed, the identified outliers in the label breath signals belong to the same sessions identified

in Section 4.2 as having irregular breathing patterns. While this had already been shown for the devel-

opment set, the data presented here shows that some sessions of the training data also share the same

problem. After manually inspecting these sessions, we report similar breath patterns as the irregular

ones detected in the development set.

Rates of under 0.2 were reported in [99] [108], for conversational speech, which is in agreement

with the results obtained from the predicted signals. A Mean Absolute Error of 0.0664 and 0.1232 was

obtained on training and dev sets, respectively.
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Figure 4.6: Average breathing rates (breaths per second) for the different datasets.

4.6 Discussion

In this chapter we tackled the problem of predicting the breathing signal from speech signals and adapted

the original problem to also provide us with the breathing rate, which can provide a more interpretable

marker for health or body conditioning.

Our exploratory analysis of the dataset showed that several of the development signals were irreg-

ular. By removing these from the evaluation, performance results improved on all experiments and

exposed more promising approaches. Additionally, we augmented the challenge dataset by introducing

the same files passed through a VoIP emulator. The results on the augmented dataset showed improved

performance when compared to the systems trained on the challenge dataset alone. Our best approach

on the development set was the BiLSTM, showing that future and past information is relevant in the

context of breathing signal predictions.

The experiments conducted using the AM and FM signals show that AM signals present better results

when compared to the FM signals. This can be explained by the fact that the AM component retains

most of the information relevant for detecting breathing patterns, which is the message. The performance

degradation on the AM component, when compared to the original signal, can be explained by the fact

that relevant information is carried by the Hilbert FM carrier instead, such as voiced breathing events,
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that appear on the envelope as silence. The combination of the AM/FM signals failed to show any

improvements. This indicates that the availability of the various representations during training does not

improve results.
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5.1 Conclusions

In this thesis we explored how extracting voice profile metadata from the speech signal can assist in the

development of machine learning models. Namely, we explored two distinct use cases: one on metadata

validation in a crowdsourcing setting and another in the field of medicine. This thesis demonstrates that

the use of extracted speaker embeddings can provide the needed crowdsourcing submission control by

providing a single-dimensional vector capable of verifying speakers and their gender. Additionally, the

thesis also shows that voice pattern recognition techniques can be used to predict breathing patterns

and breathing-related parameters.

In Chapter 3, we presented a speaker verification task in the context of crowdsourced speech data

collections quality control. Noting the various combinations of different languages and conditions that

occur during data collection, our proposed speaker verification system is pretrained on an out-of-domain

dataset and adapted to each collection automatically. This ensures that the same threshold can be

applied to all collections without jeopardising the system’s performance. Evaluation results on crowd-

sourced datasets indicate an EER lower than 4% with or without score normalisation, which is on par

with other speaker verification benchmarks on similar settings. Additionally, thresholds on all datasets

change to values close to each other, which facilitates the deployment of our proposed speaker verifi-

cation system to other unseen datasets. Whilst EER results on the score normalised experiments do

not show any significant changes, we note a loss of performance when calibrating the system to re-

duce false rejections. When attempting to reduce false acceptances however, we noted an increase

in performance on two of the datasets. Additionally, we compared the performance of this system with

human same-or-different speaker decisions in a bid to understand if machine uncertainty is related to

human uncertainty. Results show that there is no direct correlation between the two systems in regards

to uncertainty and confusion-related errors.

Also in Chapter 3, we presented a gender recognition system based on speakers embeddings, show-

ing that the predictions obtained using a simple MLP yielded similar results to that of a dedicated DNN

gender recognizer. As such, we were able to re-utilize the pipeline already in place for speaker recogni-

tion to also provide gender-related information.

The conducted experiments on Chapter 3 showed that the proposed speaker and gender verification

system is able to detect fraud and incorrect speaker labels accurately in an online setting. This allows

for the the necessary corrective measures early on, reducing the costs of the dataset and flagging

crowdmembers with malicious intent. While speaker fraud detection using our proposed methodology

remains a proof-of-concept, our system has already been successfully used to validate gender labels in

multiple datasets.

In Chapter 4, we analyzed and automatically predicted breathing patterns from speech, using signals

extracted from respiratory belts as ground truth. Moreover, we studied the applicability of the AM-FM
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decomposition of speech to this same task. We found that while the decomposed components did not

surpass the performance of the original signal, our experiments support the hypothesis that the breathing

rate is dependent on the message, since, individually, the results obtained with the AM component were

able to outperform those obtained with just the FM component. In order to simulate the conditions

of medical consultations over the internet, the original dataset was augmented by passing it through

a VoIP coder-decoder. Overall, our experiments also indicate that future information modelled by the

Bidirectional LSTM improves results.

5.2 Publications

Part of the work developed in this thesis contributed to:

Analyzing Breath Signals for the Interspeech 2020 ComParE Challenge

Mendonça, J., Teixeira, F., Trancoso, I. and Abad, A. - Proceedings of Interspeech 2020, 2077-2081

Towards Online Fraud Detection for Speech Data Collections

Mendonça, J., Correia, R., Trancoso, I. and Freitas, J. - Submitted to ICASSP 2021

5.3 Future Work

One of the main limitations of this work in regards to performance evalutation on a crowdsourcing envi-

ronment was the lack of validated data. This was partially circumvented by manually validating a small

number of for-profit datasets from DefinedCrowd, and datasets from the open-source Common Voice

project. Our results suggest that performing a score normalisation step, on each dataset individually,

resulted in the convergence of the decision threshold to a smaller range of values. As a trade-off to this

threshold convergence, a perfomance loss in terms of minDCF was detected, as reported in the DET

curve. This is due to our proposed normalization step using a small sample of the evaluation data as

cohort set, set to 50, while typical cohort lists have sizes several times larger, something that may not be

available in the earlier stages of data collecting in a production setting. A solution to this would be to take

advantage of previously validated datasets and use them as cohorts for this validation. In [86], authors

reported an absolute improvement of .2 in terms of minDCF when using a cohort list which matches the

language and channel conditions of the evaluation data, when compared to a cohort list with different

languages and different channel conditions.

For future work, one could expand experiments to include more datasets with different languages,

channel conditions and task domains (e.g. free speech). Additionally, we plan on exploring additional

metrics than can give insight on the behaviour of users during tasks. Metadata such as time of day

can be a good indication that multiple users are sharing the same account. The use of unsupervised
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clustering [111], besides also solving the problem of detecting multiple speakers using a single account,

could also help detecting another unexplored fraud, which is a speaker using multiple accounts.

Another interesting future research direction is to probe additional information stored in speaker

embeddings. Speaker embeddings are known to store cues related to lexical content (such as key-

words present in the utterance) and meta information such as utterance length [59]. Additional biometric

parameters such as age (which was not explored), paired with the previously mentioned information

might add value to validation in crowdsourcing.

Our submission to the ComParE 2020 Breathing Sub-Challenge failed to surpass baseline results.

As such, the main goal is to experiment augmentation and decomposition using better performing mod-

els. As an example, the winning submission comprised of an ensemble of end-to-end Deep Models

using fusion of deep embeddings and decision level fusion schemes [112]. Furthermore, a future goal

pertaining the breathing pattern estimation problem is to explore additional parameters that can be ex-

tracted from breathing patterns such as volumetric information (e.g. tidal volume).

Additionally, given how breathing provides important markers to several medical conditions, such as

cardiac, respiratory and neurological diseases, we plan to explore speech derived breathing patterns for

assisting in the automatic detection of these conditions.
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[24] I. Guimarães and E. Abberton, “Health and voice quality in smokers: an exploratory investigation,”

Logopedics Phoniatrics Vocology, vol. 30, no. 3-4, pp. 185–191, 2005.

74



[25] G. Fairbanks and W. Pronovost, “An experimental study of the pitch characteristics of the voice

during the expression of emotion,” Speech Monographs, vol. 6, no. 1, pp. 87–104, 1939.

[26] E. D. Mysak, “Pitch and duration characteristics of older males,” Journal of Speech and Hearing

Research, vol. 2, no. 1, pp. 46–54, 1959.

[27] L. G. KERSTA, “Voiceprint identification,” Nature, vol. 196, no. 4861, pp. 1253–1257, 1962.

[28] M. Shridhar, N. Mohankrishnan, and M. Baraniecki, “Text-independent speaker recognition using

orthogonal linear prediction,” in ICASSP ’81. IEEE International Conference on Acoustics, Speech,

and Signal Processing, vol. 6, March 1981, pp. 197–200.

[29] N. Fakotakis, A. Tsopanoglou, and G. Kokkinakis, “Text-independent speaker recognition based

on vowel spotting,” in 1991 Sixth International Conference on Digital Processing of Signals in

Communications, Sep. 1991, pp. 272–277.

[30] M. S. Schmidt, “Identifying speakers with support vector networks,” in Proceedings of the 28th

Symposium on the Interface (INTERFACE-96), 1996.

[31] D. A. Reynolds, “A gaussian mixture modeling approach to text-independent speaker identifica-

tion.” Ph.D. dissertation, 1993.

[32] N. Minematsu, M. Sekiguchi, and K. Hirose, “Automatic estimation of one’s age with his/her

speech based upon acoustic modeling techniques of speakers,” in 2002 IEEE International Con-

ference on Acoustics, Speech, and Signal Processing, vol. 1. IEEE, 2002, pp. I–137.

[33] C. Müller and F. Burkhardt, “Combining short-term cepstral and long-term pitch features for au-

tomatic recognition of speaker age,” in Eighth Annual Conference of the International Speech

Communication Association, 2007.

[34] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted gaussian

mixture models,” Digit. Signal Process., vol. 10, no. 1, pp. 19–41, Jan. 2000.

[35] P. Kenny, “Joint factor analysis of speaker and session variability: Theory and algorithms,” 2006.

[36] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis for

speaker verification,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19,

no. 4, pp. 788–798, May 2011.

[37] S. Ranjan, G. Liu, and J. H. L. Hansen, “An i-vector plda based gender identification approach for

severely distorted and multilingual darpa rats data,” in 2015 IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU), 2015, pp. 331–337.

75



[38] M. H. Bahari, M. McLaren, H. V. hamme, and D. A. van Leeuwen, “Speaker age estimation using

i-vectors,” Engineering Applications of Artificial Intelligence, vol. 34, pp. 99 – 108, 2014.

[39] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep neural network embeddings for

text-independent speaker verification,” in Proc. Interspeech 2017, 2017, pp. 999–1003.

[40] S. H. Kabil, H. Muckenhirn, and M. Magimai.-Doss, “On learning to identify genders from raw

speech signal using cnns,” in Proc. Interspeech 2018, 2018, pp. 287–291.

[41] D. Doukhan, J. Carrive, F. Vallet, A. Larcher, and S. Meignier, “An open-source speaker gender

detection framework for monitoring gender equality,” in 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 5214–5218.

[42] R. Mammone, X. Zhang, and R. Ramachandran, “Robust speaker recognition: A feature-based

approach,” Signal Processing Magazine, IEEE, vol. 13, p. 58, 10 1996.

[43] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget, V. Hubeika, and F. Castaldo,

“Support vector machines and joint factor analysis for speaker verification,” in 2009 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, April 2009, pp. 4237–4240.

[44] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of interspeaker variability

in speaker verification,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 16,

pp. 980 – 988, 08 2008.

[45] N. Dehak, “Discriminative and generative approaches for long- and short-term speaker character-

istics modeling: application to speaker verification,” Ph.D. dissertation, 2009.

[46] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with sparse training data,” IEEE

Transactions on Speech and Audio Processing, vol. 13, no. 3, pp. 345–354, May 2005.

[47] P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet, and M. J. Alam, “Deep neural networks for extracting

baum-welch statistics for speaker recognition,” Proc. Odyssey Speaker Lang. Recognit, pp. 1–8,

01 2014.

[48] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for speaker recognition using

a phonetically-aware deep neural network,” in 2014 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May 2014, pp. 1695–1699.

[49] Y. Song, X. Hong, B. Jiang, R. Cui, I. V. McLoughlin, and L.-R. Dai, “Deep bottleneck network

based i-vector representation for language identification,” in INTERSPEECH, 2015.

76



[50] M. McLaren, Y. Lei, and L. Ferrer, “Advances in deep neural network approaches to speaker

recognition,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), April 2015, pp. 4814–4818.

[51] T. Hasan, R. Saeidi, J. H. Hansen, and D. A. Van Leeuwen, “Duration mismatch compensation for

i-vector based speaker recognition systems,” in 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing. IEEE, 2013, pp. 7663–7667.

[52] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel, and S. Khudanpur, “Deep

neural network-based speaker embeddings for end-to-end speaker verification,” in 2016 IEEE

Spoken Language Technology Workshop (SLT). IEEE, 2016, pp. 165–170.

[53] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of deep neural networks with natural

gradient and parameter averaging,” CoRR, vol. abs/1410.7455, 2014.

[54] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and noise corpus,” ArXiv, vol.

abs/1510.08484, 2015.

[55] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and S. Khudanpur, “Speaker recog-

nition for multi-speaker conversations using x-vectors,” in ICASSP 2019 - 2019 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 5796–5800.

[56] D. Garcia-Romero, D. Snyder, G. S. Sell, A. McCree, D. Povey, and S. Khudanpur, “x-vector dnn

refinement with full-length recordings for speaker recognition,” in INTERSPEECH 2019, 2019.

[57] N. Dehak, R. Dehak, J. R. Glass, D. A. Reynolds, and P. Kenny, “Cosine similarity scoring without

score normalization techniques,” in Odyssey, 2010.

[58] A. O. Hatch, S. S. Kajarekar, and A. Stolcke, “Within-class covariance normalization for svm-based

speaker recognition,” in INTERSPEECH, 2006.

[59] D. Raj, D. Snyder, D. Povey, and S. Khudanpur, “Probing the information encoded in x-vectors,”

in 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2019, pp.

726–733.

[60] O. Glembek, L. Burget, N. Dehak, N. Brummer, and P. Kenny, “Comparison of scoring methods

used in speaker recognition with joint factor analysis,” in 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing, April 2009, pp. 4057–4060.

[61] S. Ioffe, “Probabilistic linear discriminant analysis,” in European Conference on Computer Vision.

Springer, 2006, pp. 531–542.

[62] P. Kenny, “Bayesian speaker verification with, heavy tailed priors,” Proc. Odyssey 2010, 2010.

77



[63] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted gaussian

mixture models,” Digital Signal Processing, vol. 10, no. 1, pp. 19 – 41, 2000.

[64] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score normalization for text-independent

speaker verification systems,” Digital Signal Processing, vol. 10, no. 1, pp. 42 – 54, 2000.

[65] D. E. Sturim and D. A. Reynolds, “Speaker adaptive cohort selection for Tnorm in text-independent

speaker verification,” in Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics,

Speech, and Signal Processing, 2005., vol. 1, March 2005, pp. I/741–I/744 Vol. 1.
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of connected speech reveals early biomarkers of parkinson’s disease in patients with rapid eye

movement sleep behaviour disorder,” Scientific reports, vol. 7, no. 1, pp. 1–13, 2017.

[95] A. Rochet-Capellan and S. Fuchs, “The interplay of linguistic structure and breathing in German

spontaneous speech,” in 14th Annual Conference of the International Speech Communication

Association (Interspeech 2013), Lyon, France, Aug. 2013, p. 1228.

[96] K. Konno and J. Mead, “Measurement of the separate volume changes of rib cage and abdomen

during breathing,” Journal of applied physiology, vol. 22, no. 3, pp. 407–422, 1967.

[97] J. Korten and G. Haddad, “Respiratory waveform pattern recognition using digital techniques,”

Computers in biology and medicine, vol. 19, no. 4, pp. 207–217, 1989.

[98] Y. Cho, N. Bianchi-Berthouze, and S. J. Julier, “Deepbreath: Deep learning of breathing patterns

for automatic stress recognition using low-cost thermal imaging in unconstrained settings,” in 2017

80



Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE,

2017, pp. 456–463.
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