
FOREST: An Interactive Multi-tree Synthesizer
for Regular Expressions

Margarida de Almeida Cruz Ferreira

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisors: Professor Maria Inês Camarate de Campos Lynce de Faria
Doctor Miguel Ângelo da Terra Neves

Examination Committee

Chairperson: Professor Paolo Romano
Supervisor: Professor Maria Inês Camarate de Campos Lynce de Faria
Member of the Committee: Professor Alexandra Sofia Ferreira Mendes

December, 2020

ii

“DON’T PANIC”

– Douglas Adams,

The Hitchhiker’s Guide to the Galaxy

iii

iv

Acknowledgments

First, I want to extend my gratitude to Professor Inês Lynce for her unwavering support, for encouraging

me to pursue a career in research and for being an outstanding role model. Her invaluable advice has

helped me not only during the development of this dissertation, but continuously over the past few years.

I would like to thank Miguel Neves for his patient explanations, for his very thorough (and very col-

ourful!) text revisions, for always knowing a paper about mostly everything, and for offering me the first

“queijada da Graciosa” I ever tried.

I want to thank Miguel Ventura for welcoming me at OutSystems and for sharing his knowledge on

regular expressions. I hope when he has a problem and he decides to solve it with a regular expression,

he is left with n < 2 problems now!

I am very grateful to Ruben Martins for sharing his expertise in program synthesis and for his advice,

for always asking the questions to which I do not have the answers (yet!) and for helping me write

in-depth result sections.

I would also like to thank Professor Vasco Manquinho, for his remarkable ability to keep the SAT

group’s servers running, despite our continuous overusing them.

I would like to thank Ricardo and Catarina for facing this challenge with me. We often came across

similar troubles and I have to thank them, above all, for the many uncontrollable fits of laughter we

shared, which usually fix them all. I’m also grateful to Daniel, one of my oldest friends, and Pedro, one

of the newest, for sharing their experiences, troubles and successes. They strongly inspire my own.

I would like to thank Vik, Katla and Corisco, my feline companions, always willing to help me chase

away the bugs. I want to thank my parents and my sister, for encouraging me, for supporting me, and for

patiently waiting until I hand in this dissertation before I go back to continually fixing their email clients

and smartphone settings. They are heroes to everyone, but especially to me.

Finally, I want to thank Duarte for always being by my side.

This work was supported by OutSystems, by national funds through FCT, under project

UIDB/50021/2020, and project ANI 045917 funded by FEDER and FCT.

v

vi

Resumo

Os formulários digitais são um método popular para recolha de dados. O suporte para validações em

tempo real que filtram dados inválidos torna-os particularmente desejáveis. Validações baseadas em

expressões regulares são usadas frequentemente em formulários digitais para evitar que os utilizadores

introduzam dados no formato errado. No entanto, a escrita destas validações pode representar um

desafio para alguns utilizadores.

Neste documento, apresentamos o FOREST, um sintetizador de expressões regulares para validação

de formulários digitais. O FOREST produz uma expressão regular que corresponde ao padrão desejado

para os valores de input, um conjunto de grupos de captura que permitem extrair deles mais informação,

e um conjunto de condições sobre grupos de captura que garantem a validade de valores inteiros no in-

put. O nosso método de sı́ntese é baseado em procura enumerativa e usa um solver de Satisfazibilidade

Módulo Teorias (SMT) para explorar e podar o espaço de procura. Propomos uma nova representação

para a sı́ntese de expressões regulares, multi-árvore, que induz padrões nos exemplos e os usa para

dividir o problema através de uma abordagem dividir para conquistar. Apresentamos ainda uma nova

codificação SMT para sintetizar as condições sobre capturas para uma dada expressão regular. Para

aumentar a confiança na expressão regular sintetizada, implementamos um modelo de interação com

o utilizador com base em inputs distintivos.

Avaliámos o FOREST em instâncias de validação de formulários do mundo real com base em ex-

pressões regulares. Os resultados experimentais mostram que o FOREST retorna com sucesso a ex-

pressão regular desejada em 74% das instâncias e supera o REGEL, um sintetizador de expressões

regulares estado-da-arte.

Palavras-chave: Sı́ntese de programas, Programação-por-Exemplo, Satisfazibilidade Módulo

Teorias, Expressões Regulares, Validação de Formulários.

vii

viii

Abstract

Digital forms are a popular method for collecting data. The support for real-time validations that filter

invalid provided data makes them particularly desirable. Form validators based on regular expressions

are often used on digital forms to prevent users from inserting data in the wrong format. However, writing

these validators can pose a challenge to some users.

In this document, we present FOREST, a regular expression synthesizer for digital form validations.

FOREST produces a regular expression that matches the desired pattern for the input values, a set of

capturing groups that extract some information from them, and a set of conditions over capturing groups

that ensure the validity of integer values in the input. Our synthesis procedure is based on enumerative

search and uses a Satisfiability Modulo Theories (SMT) solver to explore and prune the search space.

We propose a novel representation for regular expressions synthesis, multi-tree, which induces patterns

in the examples and uses them to split the problem through a divide-and-conquer approach. We also

present a new SMT encoding to synthesise capture conditions for a given regular expression. To in-

crease confidence in the synthesised regular expression, we implement a user interaction model based

on distinguishing inputs.

We evaluated FOREST on real-world form-validation instances using regular expressions. Experi-

mental results show that FOREST successfully returns the desired regular expression in 74% of the

instances and outperforms REGEL, a state-of-the-art regular expression synthesizer.

Keywords: Program Synthesis, Programming by Example, Satisfiability Modulo Theories, Regular

Expressions, Form Validation.

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xiii

List of Tables . xv

List of Acronyms . xvii

1 Introduction 1

1.1 Motivating Example . 2

1.2 Contributions . 3

1.3 Document Structure . 5

2 Background 7

2.1 Regular Languages . 7

2.1.1 Regular Operations . 8

2.1.2 Regular Expressions . 9

2.1.3 Capturing Groups . 10

2.2 Constraint Solving . 11

2.2.1 Propositional Satisfiability . 11

2.2.2 Maximum Satisfiability . 12

2.2.3 Satisfiability Modulo Theories . 12

2.2.4 Maximum Satisfiability Modulo Theories . 13

2.3 Program Synthesis . 13

2.3.1 Desired Behaviour Specification . 14

2.3.2 Program Space . 15

2.3.3 Search Technique . 16

3 Program Synthesis 19

3.1 Sketch-based Enumeration . 19

3.2 Counterexample Guided Inductive Synthesis . 20

3.3 Oracle Guided Inductive Synthesis . 22

3.4 User Interaction . 23

xi

3.4.1 Conversational Clarification Model . 23

3.4.2 OPTIONS Model . 24

3.4.3 Y/N Model . 25

3.5 Regex Synthesizers . 26

3.5.1 ALPHAREGEX . 27

3.5.2 REGEL . 28

4 Regular Expression Synthesis 31

4.1 Domain Specific Language . 31

4.2 Enumeration . 33

4.2.1 K -tree Encoding . 34

4.2.2 Multi-tree Representation . 36

4.2.3 Pruning . 38

4.2.4 Sketch-based . 39

4.3 User Interaction . 42

4.3.1 Conversational Clarification . 42

4.3.2 Multi-distinguish . 43

5 Capturing Groups Synthesis 45

5.1 Enumeration . 45

5.2 Groups Synthesis . 46

5.3 Conditions Synthesis . 47

5.4 Conditions Disambiguation . 49

6 Experimental Results 53

6.1 Comparison with REGEL . 56

6.2 Pruning the Search Space and Splitting Examples . 58

6.3 Multi-tree versus k -tree and Line-based Encodings . 58

6.4 Fewer Examples . 59

6.5 Sketching and Multi-distinguish Interaction . 60

7 Conclusions and Future Work 63

Bibliography 69

xii

List of Figures

1.1 FOREST’s regex synthesis pipeline . 4

2.1 Program Synthesis . 13

2.2 Programming by Example (PBE): The desired behaviour specification is a set of N input-

output examples. 14

2.3 Enumerative search . 17

3.1 Sketch-based enumeration . 20

3.2 Counterexample Guided Inductive Synthesis (CEGIS) . 21

3.3 Oracle Guided Inductive Synthesis (OGIS) . 23

3.4 Conversational clarification . 24

3.5 REGEL’s synthesis pipeline . 28

4.1 Interactive enumeration-based synthesis . 32

4.2 Context-Free Grammar (CFG) that represents the Domain Specific Language (DSL) of

regular expressions for the motivating example in section 1.1. Re is the start symbol and

the representation of the regex type, RangeLit represents the possible values for the

argument of the range operator. 33

4.3 [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a k-tree. 34

4.4 [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a multi-tree, resulting from the concaten-

ation of 5 simpler regexes. 36

4.5 CFG that represents the sketch DSL of regular expressions for the motivating example in

section 1.1. 40

4.6 Sketch multi-tree whose completion results in [0-9]{2}/[0-9]{2}/[0-9]{4}. 40

6.1 Comparison of number of instances solved using different methods. 55

6.2 Comparison of synthesis time of REGEL and FOREST . 57

6.3 Comparison of synthesis time using different variations of FOREST’s multi-trees. 58

6.4 Comparison of synthesis time using different encodings. 59

xiii

xiv

List of Tables

2.1 Regular operations . 9

6.1 Comparison of time performance using different synthesis methods. 54

xv

xvi

List of Acronyms

SAT Propositional Satisfiability

CNF Conjunctive Normal Form

MaxSAT Maximum Satisfiability

SMT Satisfiability Modulo Theories

LIA Linear Integer Arithmetic

EUF Equality with Uninterpreted Functions

MaxSMT Maximum Satisfiability Modulo Theories

PBE Programming by Example

DSL Domain Specific Language

CFG Context-Free Grammar

CEGIS Counterexample Guided Inductive Synthesis

OGIS Oracle Guided Inductive Synthesis

DFS Depth-First Search

xvii

xviii

Chapter 1

Introduction

As computers steadily become vital tools in our day-to-day lives, the need arises to extend the ability

to develop computer applications to ampler audiences, including those who lack a programming back-

ground. OutSystems [48] is a low-code development platform that enables its users to build applications

through a graphical interface and integrate them with existing systems. It speeds up the development of

web and mobile applications, at the same time making the task more accessible to users from different

backgrounds.

Data analysis is a powerful resource with various applications that has flourished as a research field

over the years. Digital forms are increasingly popular tools for structured data collection. They can gather

large amounts of data from users all across the globe in a short amount of time. Furthermore, in digital

forms, we can perform real-time validations on the input fields. Well-written validations result in overall

cleaner and standardised data, free of invalid values, such as typographical mistakes (‘typos’) and format

inconsistencies, which requires less processing to ready for analysis.

Regular expressions (also known as regexes) are powerful mechanisms for describing patterns in

text with numerous applications. One notable use of regular expressions is precisely to perform form

validations on the input fields of digital forms. Aside from validating the format of form input strings,

regular expressions can be coupled with capturing groups. A capturing group is a sub-regex within a

regex that is indicated with parenthesis and captures the text matched by the sub-regex inside them.

Capturing groups are used to extract information from text and, in the domain of form validation, they

can be used to enforce conditions over values in the input string.

One of the many features offered by OutSystems is the automatic generation of forms based on a

high-level description of desired fields, to which users can subsequently add custom hand-written val-

idations that are checked before the form is submitted. Its usefulness notwithstanding, form validations

often rely on complex regular expressions which require programming skills that not all users possess.

Furthermore, hand-written validations are error-prone. Programmers often miss corner cases, admitting

less-than-obvious mistakes that more imaginative form-fillers may commit.

Program synthesis is the task of automatically generating a program that satisfies some desired

behaviour expressed as a high-level specification. Since low-code platforms have the ultimate vision

1

of making application development accessible to everyone, there is a lot of potential in the integration

of program synthesis in such platforms. Owing to its versatility and usefulness, program synthesis has

recently attracted interest from various research communities (e.g. constraint solving [1, 8, 30, 45, 54,

73], programming languages [15, 17, 70], machine learning [10, 14, 41], and deep learning [5, 8, 27, 49,

53]), leading to various promising proposals.

To help users write regular expressions, prior work has proposed to synthesise regular expressions

from natural language [8, 31, 34, 73, 74] or from positive and negative examples [8, 22, 32, 72]. Even

though these techniques assist users in writing regular expressions for search and replace operations,

they do not specifically target digital form validation and do not take advantage of the structured format

of the data.

1.1 Motivating Example

In this thesis, we propose FOREST, a new program synthesizer for regular expressions that targets digital

form validations. FOREST takes as input a set of examples and returns a regex validation that validates

them. FOREST accepts three types of examples:

1. valid examples: correct values for the input field. The valid examples can be accompanied by

captures, substrings of the examples that capture relevant information;

2. invalid examples: incorrect values for the input field due to their format, and

3. conditional invalid examples (optional): incorrect values for the input field due not to their format

but to their values.

FOREST outputs a regex validation, consisting of three components:

1. a regular expression that matches all valid and none of the invalid examples and

2. capturing groups that reflect the captures provided with the valid examples;

3. capture conditions that express integer conditions for values in the examples that are satisfied

by all valid but none of the conditional invalid examples.

Suppose a user is writing a form where one of the fields is a date that must respect the format

DD/MM/YYYY. The user wants to accept the input strings (valid examples):

19/08/1996

26/10/1998

22/09/2000

01/12/2001

29/09/2003

31/08/2015

But not (invalid examples):

19/08/96

26-10-1998

22.09.2000

1/12/2001

29/9/2003

2015/08/31

2

A regular expression can be used to enforce this format. However, if the user is not proficient in the usage

of this formalism, writing it can be a challenging task. Even if the user is familiar with regular expressions,

writing a large number of such validations for all the fields of a form can become monotonous and error-

prone. Instead, the user may simply use the two sets of examples as input to FOREST, who outputs the

regular expression [0-9]{2}/[0-9]{2}/[0-9]{4}.

Suppose the user wants to validate not only the format, but also the values in the date. We consider

as conditional invalid:

33/08/1996

26/00/1998

22/13/2000

00/12/2001

12/31/2003

52/03/2015

To ensure only valid values are inserted as the day and month, we can add capturing groups to

our regular expression. A capturing group is represented by a set of parenthesis. They capture the text

matched by the regex inside them, that can later be used with a numbered reference. In this document

we use the notation $i, i ∈ 0, 1, ... to reference the integer value captured by the (i + 1)th group. Then,

conditions can be applied to these values. In this situation, the desired validation (and the output of

FOREST) includes the same regular expression as before, now extended with two capturing groups and

four integer conditions over them:

regex︷ ︸︸ ︷
([0-9]{2})︸ ︷︷ ︸
capturing group

/ ([0-9]{2})︸ ︷︷ ︸
capturing group

/[0-9]{4}, $0 ≤ 31 ∧ $0 ≥ 1 ∧ $1 ≤ 12 ∧ $1 ≥ 1︸ ︷︷ ︸
capture conditions

Finally, suppose the user wishes not only to validate the input string but also to extract some inform-

ation from it. Still using the dates example, the user could wish to extract the year from each date, so it

could be used afterwards. Thus, the user could extend the valid example strings with captures:

19/08/1996, 1996

26/10/1998, 1998

22/09/2000, 2000

01/12/2001, 2001

29/09/2003, 2003

31/08/2015, 2015

Using a capture group, we can extract the year from each date. If the user provides these example

captures alongside the valid examples, FOREST outputs the regular expression complete with the cap-

ture group necessary to extract them: [0-9]{2}/[0-9]{2}/([0-9]{4}). The captured text corresponds

to the desired information.

1.2 Contributions

As we can see in the motivating example, data inserted into digital forms is usually structured and shares

a common pattern among the valid examples. In this example, the data has the shape dd/dd/dddd where

d corresponds to a digit. FOREST takes advantage of this structure by automatically detecting these

patterns and using a divide-and-conquer approach to split the expression into simpler sub-expressions,

3

Synthesis

Regular
expression

Capturing
groups

Capture
conditions

Input examples

Invalid Valid
Captures

Condition
invalid

Desired
regex

validation

Figure 1.1: FOREST’s regex synthesis pipeline

solving them independently, and then merging their information to obtain the final regular expression.

The obtained regular expression validates the form input field’s format. Additionally, FOREST computes

a set of capturing groups over the regular expression to extract information, and integer conditions over

captured values that further constrain the accepted inputs for that field.

Input-output examples do not require specialised knowledge and are accessible to users. However,

there is one downside to using examples as a specification: they are ambiguous. There can be solutions

that, despite matching the examples, do not produce the desired behaviour in situations not covered

in them. The ambiguity of input-output examples raises the necessity of selecting one among multiple

candidate solutions. To this end, we incorporate a user interaction model based on distinguishing inputs

for both the synthesis of the regular expression and the synthesis of the capture conditions.

Our synthesis procedure is split into three stages, each relative to an output component. First,

FOREST synthesises the regular expression, which is the basis for the synthesis of capturing groups.

Secondly, FOREST computes a set of capturing groups that match the captures provided by the used

alongside the valid examples. If it is impossible to compute correct capturing groups using the current

regular expression, FOREST reverts to the first stage to produce another regular expression. Finally,

FOREST synthesises the capture conditions, by first computing a new set of capturing groups and then

the conditions to be applied to the resulting captures. Again, if it is not possible to compute correct con-

ditions with the current regular expression, FOREST revers to the first stage to try to synthesise another

regular expression. Figure 1.1 shows the regex validation synthesis pipeline.

All three stages of our synthesis algorithm employ enumerative search, a common approach to solve

the problem of program synthesis [15, 17, 32, 45, 58]. To circumvent the ambiguity of input-output ex-

amples, FOREST implements an interaction model. A new component, the distinguisher, ascertains, for

any two given programs, whether they are equivalent. When FOREST finds two different validations that

satisfy all examples and are not equivalent, it creates a distinguishing input : a new input that has a dif-

ferent output for each solution. To disambiguate between two programs, FOREST shows the new input

to the user, who classifies it as valid or invalid, effectively choosing one program over the other. The new

input-output pair is added to the examples, and the enumeration process continues until there is only

one solution left.

4

In summary, this dissertation makes the following contributions:

• We propose a multi-tree SMT representation for regular expressions that leverages the structure

of the input examples to apply a divide-and-conquer approach.

• We propose several techniques to prune the search space, based on regex properties.

• We propose a new method to synthesise capturing groups for a given regular expression and

integer conditions over the resulting captures.

• We implemented our approach in a tool, FOREST, that interacts with the user to disambiguate

the provided specification. We evaluate FOREST on real-world form-validation instances that use

regular expressions. Experimental results show that FOREST can synthesise 74% of the regex

validations that match the user intent, and that FOREST outperforms REGEL, a general state-of-

the-art synthesizer for regular expressions.

1.3 Document Structure

This document is organised as follows.

We begin in Chapter 2 by introducing some background concepts used throughout the rest of the

document. We introduce the concepts of regular language and regular expression, the logic concepts

used throughout this document, and the main components that characterise a program synthesizer.

Chapter 3 presents a survey of program synthesis algorithms with emphasis on regular expression

synthesis. We look into AlphaRegex and REGEL, two regular expression synthesizers that propose

optimisations specific to that domain.

We proceed to Chapter 4, where we take a look into how FOREST synthesises the first part of its

regex validation: a regular expression. In Chapter 5 we show how FOREST synthesises the second and

third parts of the regex validation: a set of capturing groups that reflect the user-provided captures, and

a set of integer conditions over capturing groups that invalidate the conditional invalid examples

We move on to Chapter 6, where we present and discuss our experiments. We start by comparing

FOREST to REGEL, a state-of-the-art regular expression synthesizer. Next, we analyse the time perform-

ance of several techniques included in FOREST. Finally, we close up in Chapter 7, where we summarise

the main conclusions of this work, and discuss future directions within this topic.

5

6

Chapter 2

Background

This chapter offers an introduction to some key notions required to understand the rest of this docu-

ment. We start off by looking into formal languages and associated definitions in Section 2.1, where

we also define regular expressions and capturing groups, the main goals of our synthesis procedure1.

In Section 2.2 we introduce some well-known logic problems as well as the necessary definitions and

notation2. Finally, in Section 2.3, we present an overview of the basic concepts of program synthesis.

2.1 Regular Languages

Formal languages differ from the common meaning of the word language in that they are built from a set

of well-defined rules and thus stringently specified. Programming languages, such as C or Python, are

examples of formal languages. They have a strict syntax and no deviation is tolerated: if a string does

not comply with the syntax rules, it is not in the language.

To define a formal language, we must first define an alphabet. An alphabet is a nonempty finite set

whose elements are called the symbols, letters or tokens. Symbols of the alphabet can be, for example,

letters, digits, or punctuation marks. Alphabets are usually identified by capital Greek letters.

Definition 2.1.1 (Alphabet). An alphabet Σ is a nonempty finite set of symbols.

Example 2.1.1. The following are examples of alphabets:

• Σ1 = {0, 1}: the binary alphabet,

• Σ2 = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z}: the Latin lowercase alphabet.

Typically, the alphabets used in programming applications are larger than Σ1 or Σ2. The ASCII al-

phabet, for instance, contains 128 symbols which include all non-accentuated upper- and lower-case

1Definitions and examples in Section 2.1 were, in part, adapted from Chapter 3 of Compilers: Principles, Techniques, and Tools,
by Aho, Lam, Sethi, and Ullman [2] and Chapter 2 of Handbook of Formal Languages, Volume 1: Word, Language, Grammar, by
Rozenberg and Salomaa [59]

2Definitions and examples in Section 2.2 were, in part, adapted from Handbook of Satisfiability, by Biere, Heule, van Maaren,
and Walsh [7] and Miguel Neves’s MSc. Thesis: Distributed Solver for Maximum Satisfiability [68]

7

letters, digits, and most punctuation marks. Unicode characters, which include 154 modern and histor-

ical scripts, as well as multiple symbol sets, are more inclusive, and are the most commonly used in

practice. In its current version, Unicode 13.0, this alphabet contains close to 150 thousand characters3.

Given an alphabet, we can define strings (also called sentences or words) over it, which result from

the concatenation of a finite number of the alphabet’s symbols. Strings are usually identified by lower

case letters and written between single quotes. The length of a string s, denoted |s|, is the number of

symbols in it.

Definition 2.1.2 (String). A string s over an alphabet Σ is a finite sequence of symbols drawn from Σ.

Definition 2.1.3 (Length of a string). The length of a string s, |s|, is the number of symbols in s.

Example 2.1.2. The following are examples of strings:

• ε, the empty string, is the string of length zero,

• s1 = synthesis is a string over alphabet Σ2 and it has length |s1| = 9.

At last, a language is a (finite or infinite) countable set of strings over some alphabet. Languages are

usually identified by calligraphic capital letters.

Definition 2.1.4 (Language). A language L is a countable set of strings over some fixed alphabet Σ.

Example 2.1.3. The following are examples of languages:

• ∅, the empty set, is a language which contains no strings,

• {ε} is the language that contains only the empty string.

2.1.1 Regular Operations

Regular operations are a type of operation over languages, and regular languages are a subset of

languages that are closed under regular operations. The three most basic regular operations are union,

concatenation and closure.

The union of two languages L andM, denoted L ∪M, is the set of all strings in L and all strings in

M (including those that are in both). The concatenation of two languages L andM, denoted LM, is the

set all strings formed by taking any string from L and any string fromM and concatenating them. The

concatenation of the same language, L, n times is sometimes denoted as Ln. For example L3 = LLL.

The Kleene closure4 (also called Kleene star or simply star) of a language L, denoted L∗, is the set of

strings resulting from the concatenation of any string in L zero or more times. The Kleene closure of any

language always includes the empty string.

Definition 2.1.5 (Regular operations). There are 3 regular operations on languages, union, concatena-

tion and closure, which are defined as follows:
3https://www.unicode.org/charts. Accessed on 24th October, 2020
4Kleene closure owes its name to the American mathematician Stephen Cole Kleene, who first described the concepts of

regular language and regular expression in the 1950s.

8

https://www.unicode.org/charts

Name Operation on
regular expressions

Operation on
languages

Union r|q L(r) ∪ L(q)

Concatenation rq L(r)L(q)

Kleene closure r∗ L(r)∗

Table 2.1: Regular operations

• Union: L ∪M = {s : s ∈ L or s ∈M},

• Concatenation: LM = {st : s ∈ L and t ∈M},

• Kleene closure: L∗ =
⋃∞

i=0 Li.

2.1.2 Regular Expressions

Regular expressions (often shortened to regexes) are used to describe regular languages. The language

defined by a regular expression r is represented as L(r). Regular expressions are built recursively

out of smaller regular expressions connected by operators. The simplest regular expressions refer to

languages that contain just one symbol and are represented as that symbol in monospaced font.

Example 2.1.4. The regular expression a defines the language L(a) = {a}.

All regular operations have a counterpart operation on regular expressions. For example, the union

of two regular expressions r and q results in a regular expression that defines the regular language

L(r) ∪ L(q). Since regular languages are closed under regular operations, it is possible to apply these

operations to any regular expression. The operations in regular expressions are generally represented in

the same way as their regular-language counterparts, with the exception of union, which is represented

using a | instead of the usual set notation ∪. The operations on regular expressions and their equivalent

regular operations are defined in Table 2.1.

The unary operator * has highest precedence, concatenation has second highest precedence and

operator | has lowest precedence. All three operators are left associative. Parentheses can be used to

ensure a sub-expression takes precedence over the rest.

Example 2.1.5. a|b ∗ c is a regular expression that defines the language

L(a|b*c) = {a} ∪ {b}∗{c}

over the alphabet Σ = {a, b, c}. This language contains strings that are either a single a or zero or more

bs followed by one c.

If two regular expressions r and s denote the same regular language, we say they are equivalent and

write r = s. For instance, a|b = b|a.

Since the introduction of regular expressions with the basic operators for union, concatenation, and

Kleene closure, some new operators have been defined for regular expressions with the purpose of eas-

9

ing the specification of certain string patterns. Here we show some of those commonly used operators:

+, ?, {m}, {m,n}, and character classes.

The unary postfix operator + represents positive closure, which can be interpreted as ‘one or more

occurrences of’ (note the similarity to Kleene closure, ‘zero or more instances of’). It can be defined as

r+ = rr∗ = r∗r,

and gives rise to a new algebraic law:

r∗ = r+|ε.

The unary postfix operator ?, often called option, means ‘zero or one occurrences of’, and can be

defined as

r? = r|ε.

The range operators, {m} and {m,n}, specify how many occurrences of the preceding regular expres-

sion they match. {m} is interpreted as ‘exactly m copies of’, and {m,n} is interpreted as ‘at least m and

at most n copies of’. For example:

r{3} = rrr,

r{1, 3} = r|rr|rrr = rr?r?.

The operators +, ?, {m} and {m,n} have the same precedence and associativity as operator ∗.

Character classes are a form of regular expression shorthand notation. A regular expression

a1|a2|a3|...|an, where each ai is a symbol of the alphabet, can be replaced by the shorthand [a1a2...an].

When a1a2...an form a logical sequence, e.g., consecutive uppercase letters, lowercase letters, or digits,

we can replace them by a1-an, that is, just the first and last tokens separated by a hyphen.

Example 2.1.6. The following are examples of character classes:

• [abc] = a|b|c

• [a-z] = a|b|...|z

• [a-z0-9] = a|b|...|z|0|1|...|9

2.1.3 Capturing Groups

Regular expressions can be coupled with capturing groups. A capturing group is a sub-expression within

a regular expression, usually specified with parentheses. When a string is matched by a regular ex-

pression with capturing groups, the match operation returns the resulting captures, i.e., the text that is

matched by the regular expression inside each pair of parentheses. Capturing groups are used to ex-

tract information from text. Once extracted, that information can be used independently from the original

string. Besides producing a capturing group, the parentheses also cause the expression inside them to

take precedence over the remaining operators in the regular expression. For instance, if a quantifier is

placed after the parentheses, it applies to the regular expression inside as a whole.

10

Example 2.1.7. Consider the regular expression r1 = [0-9]{2}/[0-9]{2}/[0-9]{4} and the string s =

“19/08/1996”. The regex r1 matches the string s. Because r1 has no capturing groups, no captures are

produced. Consider now r2 = ([0-9]{2})/([0-9]{2})/([0-9]{4}). r2 also matches s (it has the same

base regular expression as r1) and it has 3 capturing groups. Thus, when matched to s, r2 produces the

captures “19”, “08”, and “1996”.

In the domain of form validations, we focus primarily on the capture of integer values in the input strings.

We use the notation $i, i ∈ {0, 1, ...}, to refer to the integer value of the text captured by the (i+1)th group.

Example 2.1.8. Recall the string s = “19/08/1996” and regex r2 = ([0-9]{2})/([0-9]{2})/([0-9]{4})

from Example 2.1.7. When matched to s, r2 produces the captures “19”, “08”, and “1996”. Thus, $0 = 19,

$1 = 08, and $2 = 1996.

2.2 Constraint Solving

Constraint solving techniques are used to solve problems where the space of solutions is restricted by

logical constraints. Throughout this document we make extensive use of Satisfiability Modulo Theor-

ies (SMT) and Maximum Satisfiability Modulo Theories (MaxSMT) to model problems in our synthesis

domain. The SMT problem can be seen as a generalisation of the Propositional Satisfiability (SAT) prob-

lem. Similarly, the MaxSMT problem is defined as a generalisation of Maximum Satisfiability (MaxSAT).

The next sections provide a brief introduction to each of these formalisms.

2.2.1 Propositional Satisfiability

In logic and computer science, SAT is the problem of, given a Boolean formula, determining if there exists

an assignment of its variables that satisfies it. In addition to its theoretical importance, SAT has many

practical applications in the field of Computer Science. In 1971, SAT was the first problem proven to be

NP-Complete [11]. This means that numerous decision problems can be reduced to the SAT problem,

and subsequently solved using an off-the-shelf SAT solver.

Definition 2.2.1 (Literal). A literal l is a Boolean variable (l = x) or its complement (l = ¬x).

Definition 2.2.2 (Clause). A clause c is a disjunction of literals: c = l1 ∨ l2 ∨ ... ∨ lk.

SAT formulas are usually represented in the Conjunctive Normal Form (CNF).

Definition 2.2.3 (CNF Formula). A formula φ in CNF is a conjunction of clauses: φ = c1 ∧ c2 ∧ ... ∧ cn.

Example 2.2.1. Consider the variables X = {x1, x2, x3}. Then, φ1 = (x1 ∨ x2) ∧ (¬x1 ∨ x3) is a CNF

formula over X.

Definition 2.2.4 (Assignment). Given a formula φ, an assignment is a mapping ν : X → {True,False},

where X is the set of variables in φ.

11

Given an assignment ν : X → {True,False} and a variable x ∈ X, the positive literal x is satisfied by ν

if and only if ν(x) = True and the negative literal ¬x is satisfied by ν if and only if ν(x) = False; a clause

is satisfied by ν if and only if at least one of its literals is satisfied by ν; a formula in CNF is satisfied by ν

if and only if all of its clauses are satisfied by ν.

Definition 2.2.5 (Model). Given a propositional formula φ and an assignment ν, ν is a model of φ if and

only if ν satisfies φ.

Example 2.2.2. Recall the CNF formula from Example 2.2.1: φ1 = (x1∨x2)∧(¬x1∨x3). The assignment

ν1 = {x1 7→ False, x2 7→ True, x3 7→ True} is a possible model of φ1.

2.2.2 Maximum Satisfiability

The problem of finding an assignment ν to the variables of a CNF formula that satisfies the maximum

number of clauses possible is known as MaxSAT. Unlike SAT, which is a decision problem, MaxSAT is an

optimisation problem. In computer science, many optimisation programs can be reduced into MaxSAT.

Moreover, MaxSAT can be used used to get insights about the unsatisfiable instances. A SAT solver tells

us that we cannot satisfy all clauses. A MaxSAT solver tells us how many can be satisfied at most.

Example 2.2.3. Consider the CNF formula φ2 = (x1 ∨x2)∧ (x1 ∨¬x2)∧¬x1. No assignment can satisfy

all clauses in this formula. However, there can be assignments that satisfy two of the clauses in φ2. For

example, ν2 = {x1 7→ True, x2 7→ True} satisfies all but the last clause in φ2: it is a MaxSAT model for φ2.

An important variation of the MaxSAT problem, known as partial MaxSAT, divides its clauses into two

types: hard clauses, φH , and soft clauses, φS . Partial MaxSAT is then the problem of finding an as-

signment ν to the variables of a CNF formula that satisfies all hard clauses and as many soft clauses

as possible.

Definition 2.2.6 (Model). Let (φH , φS) be an instance of partial MaxSAT. An assignment ν is a model

for (φH , φS) if and only if ν satisfies all clauses in φH and the maximum number possible in φS .

Example 2.2.4. Consider an instance of partial MaxSAT (φH , φS), with the hard clause φH = ¬x1 and

soft clauses φS = (x1∨x2)∧ (¬x1∨x2)∧¬x2. The assignment ν2 = {x1 7→ False, x2 7→ True} is a model

for (φH , φS), because it satisfies all hard clauses and as many soft clauses as possible.

2.2.3 Satisfiability Modulo Theories

Oftentimes, it is advantageous to express the problem at hand using more expressive logics. In this

thesis we make extensive use of an extension of SAT: Satisfiability Modulo Theories (SMT). SMT is

the problem of satisfiability of formulas with respect to some background theory T , which defines the

interpretations of certain function symbols. This allows us to incorporate fragments of first-order logic in

CNF formulas.

Definition 2.2.7 (T -atom). A T -atom t is a ground atomic formula in T .

12

Synthesizer Desired programSpecification

Figure 2.1: Program Synthesis

Definition 2.2.8 (T -literal). A T -literal is a T -atom (t) or its negation (¬t).

Definition 2.2.9 (T -formula). A T -formula is then analogous to a propositional formula but it is com-

posed of T -literals instead of propositional literals.

The values in an SMT assignment depend on the background theory T . Commonly used theories in-

clude the theory of Linear Integer Arithmetic (LIA), whose values are integer, the theory of strings, whose

values are strings, and the theory of Equality with Uninterpreted Functions (EUF), which assigns func-

tions with a valid interpretation. Given an SMT assignment, ν, and a T -atom t, the positive T -literal t is

satisfied by ν if and only if ν(t) is assigned True according to theory T and the negative T -literal ¬t is

satisfied by ν if and only if ν(t) is assigned False according to T ; a T -formula is satisfied by ν if and only

if all of its clauses are satisfied by ν.

SMT is then the problem of deciding, given an SMT formula φ, if there exists an assignment of the

variables and functions of φ that satisfies it.

Example 2.2.5. Let φ3 = (b − a = 1) ∧ ((b < 5) ∨ (a > 10)) be a SMT formula in the theory of LIA. A

possible model for φ3 is ν3 = {a 7→ 1, b 7→ 2}.

2.2.4 Maximum Satisfiability Modulo Theories

The same way MaxSAT finds the maximum number of clauses that can be satisfied in a CNF formula,

MaxSMT finds the maximum number of clauses that can be satisfied in an unsatisfiable T -formula. We

can also define partial MaxSMT with hard clauses, φH , and soft clauses, φS .

Example 2.2.6. Let (φH , φS) be a partial MaxSMT instance, with hard clauses φH = (b−a = 1)∧(b < 10)

and soft clauses φS = (b < 5) ∧ (a > 10). We can satisfy at most one of the soft clauses. Therefore

ν3 = {a 7→ 1, b 7→ 2} is an optimal model for this instance.

2.3 Program Synthesis

Program synthesis is the task of automatically generating a program that satisfies some desired be-

haviour expressed as a high-level specification (see Figure 2.1). This specification can range from a

complete formal definition, such as a first-order formula [20, 24], to more ambiguous descriptions of

the desired program’s behaviour, like a set of input-output examples [5, 17, 28, 38, 42, 56, 60, 67] or a

natural language sentence [8, 13, 27, 38, 56, 73].

According to Gulwani et al. [21, 25], a program synthesizer is typically characterised by three key

dimensions: (i) the way the user specifies the desired characteristics of the program, (ii) the space

of all possible programs the synthesizer can generate, and (iii) the search technique used to explore

that space.

13

Synthesizer Desired program
Specification:

{ 𝑥! ,𝑦! , 𝑖	 ∈ [1, 𝑁]}

Figure 2.2: PBE: The desired behaviour specification is a set of N input-output examples.

Desired behaviour specification is the most important characteristic of a synthesizer from the users’

point of view. It is the language in which they describe the behaviour of the program they intend to

generate. It must take into consideration the underlying task, the users’ technical background and which

material is available when using the synthesizer.

Program space is the set of all programs the synthesizer can possibly generate. In other words, it

is the space over which the synthesizer searches for a feasible program. It depends on the domain of

the problem the synthesizer is intended to solve. It must be expressive enough to ensure the desired

program is included, but also restricted enough lest the search problem become intractable.

Search technique refers to the method employed to find the desired program within the program

space. It can be based on enumerative search, deductive search, constraint solving, or some combina-

tion thereof.

The three dimensions are further described in sections 2.3.1, 2.3.2 and 2.3.3, respectively.

2.3.1 Desired Behaviour Specification

For the synthesis procedure to start, the user must first specify the program’s intended behaviour. The

desired behaviour can be described in many different ways, and is internally converted to some sort of

behavioural constraints, which the output program must satisfy.

Definition 2.3.1 (Desired Behaviour Specification). The desired behaviour specification is a predicate φ,

such that φ(~x, y) is True if and only if y is the desired output value for the input vector ~x.

The first approaches to automating the creation of programs, proposed in 1969 [20, 69], were based in

deductive synthesis. Such synthesizers work based on a complete formal specification of the desired

program’s behaviour. Then, they employ a theorem prover to construct a proof of the provided specific-

ation from which it is able to extract the executable program [20, 36, 37, 69].

Deductive synthesizers require the user to provide a complete formal description of the desired

behaviour, such as a first-order formula. Because it is a complete definition, the synthesizer always

returns a program with the exact desired behaviour, and it is always satisfactory to the user. However,

writing these kind of specifications can be as complex as writing the program itself, and might force the

user to learn a new formalism in any case.

Such difficulties motivated a new approach to program synthesis: inductive synthesis [15, 17, 32,

44, 45, 47, 53, 54, 60, 67]. The program is then built based on simpler (albeit ambiguous) specifica-

tions, easier for the user to devise. Programming by Example (PBE) is a branch of inductive synthesis

14

where the user intent is specified using input-output examples [18, 19, 42, 60, 67, 70, 71], as shown in

Figure 2.2.

Definition 2.3.2 (Input-Output Examples). Input-output examples are a type of incomplete specification

defined as a set of N tuples: X = {(~xi, yi), i ∈ {1, ..., N}} where each yi is the desired return value for

input ~xi.

Definition 2.3.3 (Programming by Example). Programming by example is the problem of synthesising

a program using input-output examples as a specification of the desired program behaviour. In program-

ming by example, the behavioural constraint is

∧
(xi,yi)∈X

P (xi) = yi,

which states that program P is correct if it yields the correct output for the inputs specified in the spe-

cification.

Input-output examples, although easier for the users to obtain and comprehend, are an incomplete

specification. In general, there are several programs consistent with the provided specification even

though not all of those correspond to the desired program and might not exhibit the behaviour expected

by the user for cases that are not covered by the specification.

The ambiguity of input-output examples raises the necessity of selecting one among multiple candid-

ate programs. One way to do this selection is by ranking the correct programs according to the measure

of some characteristic that is desirable in programs of the domain in question, and returning to the user

the program that ranks the highest [8, 14, 26, 51, 54, 61]. Common desirable characteristics used to

rank the programs include: execution speed (when we are looking for an efficient program), robustness

(how well it generalises to new input-output examples), and readability (favours common operations in

the underlying language, making it easy for the user to understand). Another approach is to enable the

synthesizer to interact with the user to try and disambiguate the underlying intent [23, 33, 40, 54, 70, 71].

Section 3.4 provides more details on this topic.

2.3.2 Program Space

The next step towards finding a program that satisfies the user’s needs is defining the space of pro-

grams over which the synthesizer performs the search: the program space. We cannot consider all the

programs that can be written using a full-featured programming language. Too many programs would

be taken into consideration, rendering the search space intractable. On that account, we need to restrict

the language in which the programs are written in order to enable an efficient search of the program

space. However, we must ensure it remains expressive enough to capture many real-world tasks within

the considered specialised domain. We call this language Domain Specific Language (DSL). The choice

of a synthesizer’s DSL is crucial: it must allow a good balance between expressiveness and efficiency.

Definition 2.3.4 (Domain Specific Language). Domain specific language is the restricted language in

15

which the synthesised programs are written. It includes information about both form (syntax) and mean-

ing (semantics).

We may impose restrictions on the allowed datatypes, as well as the operations over them so as to

include only those relevant for the considered domain. For example, one could allow only integers and

comparison operations, or arithmetic operations, or even only operations supported in some API expor-

ted by a given library. We can also restrict the program space by imposing constraints over the control

structure of the program: we may disallow looping structures in the program, or bound the number of

statements.

The constraints imposed on the language are named structural constraints, and they define the

search space the synthesiser must consider. A CFG is typically used to define the syntax of the DSL.

Definition 2.3.5 (Context-Free Grammar5). A CFG is defined by a 4-tuple (N,Σ, R, S), where:

• N is a set of non-terminal symbols,

• Σ is a set of terminal symbols (disjoint from N),

• R is a set of rules or productions, each of the form A→ β, where:

– A is a non-terminal,

– β is a string of symbols from the infinite set of strings (Σ ∪N)∗, and

• S is a designated start symbol and a member of N .

Then, a program on a DSL is a production of the corresponding CFG containing only terminal symbols,

which include all operators and literal values in the DSL.

Syntax-guided synthesis [4, 42] is the branch of program synthesis in which the user to supplies

the language syntax (in the form of a grammar) alongside the behaviour specification. This provides

structure to the program space, which may allow for a more efficient search method. Furthermore, the

generated programs are more interpretable to the user and better adapted to the domain at hand, since

they are derived from the given grammar. On the other hand, syntax-guided synthesis requires the user

to have a deeper technical knowledge not only on the specific domain on which he or she is working but

also on formal languages and how to define them.

2.3.3 Search Technique

Program synthesis can be seen as a search problem. It aims at finding a program in the search space

defined by structural constraints that satisfies the behavioural constraints.

Definition 2.3.6 (Program Synthesis). Given a specification of desired behaviour φ, program synthesis

is the problem of finding a program P that satisfies φ.

Several search techniques have been explored to solve program synthesis. In the remainder of this

section, some of these search techniques are briefly explained. Note that one synthesizer does not have

to apply only one of these techniques; more often, a combination of several techniques is applied.
5Adapted from Chapter 2 of Speech and Language Processing by Jurafsky and Martin [29].

16

Synthesizer

Enumerator

Desired programVerifierSpecification

DSL

IncorrectCandidate
program

Correct

Figure 2.3: Enumerative search

Enumerative Search [15, 17, 32, 45, 47, 58] is a common approach to solve the search problem of

program synthesis. In this technique, the synthesizer must include two key components: an enumerator

and a verifier. The enumerator successively enumerates programs from the program space in some

order. For each candidate program, the verifier subsequently checks whether it satisfies all behavioural

constraints, i.e., it is consistent with the user intent specification. If the verifier deems the program

consistent with the given specification, then the program is correct and it can be returned to the user. If,

on the other hand, the verifier decides that the given program does not satisfy the specification, then the

enumerator must pick a new program from the search space. This loop is described in Figure 2.3.

A naive implementation of enumerative search does not scale to complex programs; however, it

is a very effective strategy when coupled with some optimisation techniques. First off, the program

space must be structured according to some metrics, usually program size or complexity, such that

the enumerator yields simpler programs first and only when those are refuted by the verifier are more

complex programs considered. This concept contributes to solving the problem of user intent ambiguity

introduced in Section 2.3.1 by applying the Ockham’s Razor principle: choose the simplest program that

is consistent with the specification.

Another way to speed up enumerative search is by employing pruning techniques, such as discarding

equivalent programs from the search space. In addition, when the verifier rejects a program, it may

apprise the enumerator of the reason behind the program’s incorrectness, thus reducing the program

space and preventing the enumerator from generating programs that fail in the same way. This idea is

further discussed in Section 3.2.

Deductive Search [10, 35, 51] is based on a top-down propagation of constraints through the grammar

that defines the program space. It recursively reduces the problem of synthesising an expression that

satisfies a certain specification to simpler sub-problems, thereupon combining those results.

Suppose we want to synthesise an expression e of the form F (e1, e2) that complies with a specific-

ation φ. Deductive search would leverage the inverse semantics of F to push constraints on e down

17

through the grammar into constraints on e1 and e2. Finding e1 and e2 are then simpler sub-problems

whose solutions, once found, can be combined to produce the originally desired expression e.

Deductive search is very convenient when the underlying grammar allows for a rich set of constants.

In such cases, enumerative search is no longer viable: an enumeration step is required for each possible

constant in order to find the right one, resulting in too many iterations. On the other hand, the top-down

deductive technique can deduce constants based on the accumulated constraints as the last step in the

search process.

Constraint Solving [62, 66] consists on somehow generating a logical formula whose solution yields

the intended program, and then solving it.

Several approaches can be used to generate the formula. On one extreme, we have invariant-based

methods, which generate one formula that is satisfiable if and only if the program is consistent with the

specification. Upon solving such a formula, we have not only a correct program but also a inductive proof

of its correctness. However, these methods do not scale well with the complexity of the specification —

the resulting formula may be intractable, and much more complex than the program itself. To circum-

vent this drawback, we can instead make use of input-based methods. Then, the formula asserts the

correctness of the program only on a subset of all possible inputs, which leads to simpler constraints.

Once we have a logic formula, it must be solved. These formulas are of second-order logic, and need

to be first reduced to first-order quantifier-free constraints that can the be solved using an off-the-shelf

logic-based solver. Second-order reduction can be achieved using techniques such as CEGIS [1, 62],

which is described in Section 3.2.

18

Chapter 3

Program Synthesis

Program synthesis is a very wide field of research. It has been studied by several different research com-

munities and applied to diverse problems. As such, many approaches have been proposed to deal with

the specific challenges introduced by each application, resulting in a great variety of focused algorithms

that aim at finding a better program in less time. In this chapter, we take a more in-depth look into some

of these techniques.

In Section 3.1 we introduce sketch-based enumeration: an enumeration method that deals with partial

programs. In Section 3.2, we look at a method that steers the search in the right direction by using

information about wrong answers to avoid future similar mistakes. In Sections 3.3 and 3.4, we look at

ways to deal with the ambiguity of the desired behaviour specification in inductive synthesis. Finally,

in Section 3.5, we take an in-depth look at two existing regular expression synthesizers: ALPHAREGEX

and REGEL.

3.1 Sketch-based Enumeration

Some synthesizers perform enumerative search using partial programs [8, 15, 16, 53, 62–65, 70, 73].

Instead of completely defining a program, partial (or incomplete) programs contain holes alongside the

DSL components. For a partial program to become a syntactically correct complete program, all its holes

must be filled with syntactically consistent expressions. If we think in terms of the DSL’s representation

as a CFG, a complete program is a production of the grammar containing only terminal symbols, i.e, only

operators and literal values in the DSL. In contrast, a partial program is a production of the grammar that

may contain non-terminal symbols. Since each non-terminal symbol can correspond to many terminal

symbols, a partial program can represent many complete programs.

Sketch-based enumeration deals with a particular type of partial programs: sketches. A sketch is a

partial program where the holes cannot be filled with operators: all missing constructs are literal values

of the DSL. Instead of enumerating complete programs, a sketch-based synthesizer takes one of two

approaches: Either (i) a sketch is provided by the user, who already possesses a high-level description

of the desired program, in which case the synthesizer must complete it according to the specification,

19

Synthesizer

Enumeration

Desired programVerifierSpecification

DSL

Incorrect
Complete
candidate
program

Correct

Sketch
generation

Sketch
completion

Sketch

Figure 3.1: Sketch-based enumeration

or (ii) the synthesizer is responsible for both producing a suitable sketch and completing it. The enu-

meration process is then split in two steps: sketch generation and sketch completion. During sketch

generation, the synthesizer enumerates incomplete programs in some order. During sketch completion,

the synthesizer enumerates complete programs for each given sketch, by successively filling each hole

with a syntactically correct expression. Sketch-based enumeration is outlined in Figure 3.1.

In many synthesizers, two-step enumeration outperforms normal enumeration because there is a

very efficient way to fill the sketch holes, either because the few possible values exist for each hole, or

because they can be directly deduced from the specification (instead of enumerated).

3.2 Counterexample Guided Inductive Synthesis

Program synthesis is a search problem where the goal is to find a program P that satisfies a given

specification φ. φ(~x, y) is True if and only if y is the desired output value for input ~x. We can define the

program synthesis problem with the following logic formula:

∃P ∀~x, y : (P (~x) = y)⇒ φ(~x, y). (3.1)

Due to the existential quantifier over function P , (3.1) is a second-order formula and, as such, it is

generally undecidable. To work around this problem, we may note that even though finding a program

that satisfies a specification may be infeasible, verifying that a given program P satisfies a specification

is a first-order problem:

∀~x, y : (P (~x) = y)⇒ φ(~x, y). (3.2)

20

Synthesizer

Enumerator

Desired programVerifierSpecification

DSL

Counter-
example

Candidate
program

Correct

Figure 3.2: CEGIS

Formula (3.2) is a first-order formula and can be solved using an off-the-shelf first-order solver. Any

program P that satisfies (3.2) is a correct program, i.e., it complies with the specification φ. Instead of

proving (3.2), we can equivalently disprove its negation:

∃~x, y : (P (~x) = y) ∧ ¬φ(~x, y). (3.3)

Formula (3.3) is also a first-order formula. Formula (3.3) is unsatisfiable if and only if P is a correct

program. Therefore, to find a correct program, we search the program space for a program P such

that (3.3) is unsatisfiable. Once found, P can be returned to the user.

Whenever we encounter a program P for which formula (3.3) is satisfiable, the values of ~x and

y that satisfy the formula constitute a counterexample: an input ~x for which P does not satisfy the

specification φ; in other words, an input ~x to which our program returns the wrong output. If we take this

counterexample (~x, y) into account during our subsequent search, none of the new candidate programs

returns y on the input ~x. We have thus strengthened the specification, eliminating the previous incorrect

candidate program.

Definition 3.2.1 (Counterexample). A counterexample (~x, y) for an incorrect program P is an input-

output pair such that P (x) = y and ¬φ(~x, y), i.e., y is the output returned by P on input ~x even though

(~x, y) is not consistent with the specification.

This approach was proposed in 2008 by Solar-Lezama in his PhD Thesis [62] and it is represented

in Figure 3.2. In this figure, the verifier is a solver that tries to satisfy formula (3.3).

We can further improve this method by reformulating the verification formula in order to produce a

constructive counterexample:

∃~x, y : (P (~x) 6= y) ∧ φ(~x, y). (3.4)

Like before, (3.4) is a first-order formula and it is unsatisfiable if and only if P is a correct program. When

(3.4) is satisfiable P is not a correct program and the values of ~x and y that satisfy the formula are now a

constructive counterexample: y is the correct output for input ~x. While a model (~x, y) that satisfies (3.3)

21

is an input-output pair that the program must not satisfy, a model (~x, y) that satisfies (3.4) is a correct

input-output pair that the program must satisfy. Adding the constructive counterexample to our previous

specification results in a much stronger constraint and prunes the remaining search space even further.

Definition 3.2.2 (Constructive counterexample). A constructive counterexample (~x, y) for an incorrect

program P is an input-output pair such that P (x) 6= y and φ(~x, y), i.e., y is not the output returned by P

on input ~x even though (~x, y) is consistent with the specification.

3.3 Oracle Guided Inductive Synthesis

As discussed in Section 2.3.1, PBE comes with the drawback of incompleteness of the behaviour spe-

cification. Many programs are consistent with the provided specification, but not all these programs

exhibit the user’s intended behaviour.

In order to restore soundness of the solution, Jha et al. proposed in 2010 a new approach which

makes use of distinguishing inputs to disambiguate the input-output examples: Oracle Guided Inductive

Synthesis (OGIS) [28]. An I/O oracle maps any given input to the desired output and it is used as an

alternative to a complete specification. This means that whenever the I/O oracle is queried on any input

vector ~x, it always returns the correct output y.

We start with the same schema we had for CEGIS (Figure 3.2), with a verifier which, upon receiving

a program P , decides whether it is consistent with the behavioural constraints φ. However, in OGIS we

no longer return to the user the first correct program we find.

When a correct program P1 is found, it is stored, and the search continues for another correct pro-

gram. If no other correct program is found, then P1 is the unique correct program and it can be returned

to the user. If another correct program P2 is found, then we have two programs consistent with the

provided specification, i.e., P1 and P2 satisfy the following formulas:

∀~x, y : (P1(~x) = y)⇒ φ(~x, y), (3.5a)

∀~x, y : (P2(~x) = y)⇒ φ(~x, y). (3.5b)

Upon finding two correct programs, we want to find an input to which the two programs P1 and P2 return

different outputs: a distinguishing input. To produce a distinguishing input, we can try to solve:

∃~x : P1(~x) 6= P2(~x). (3.6)

If formula (3.6) is unsatisfiable then P1 and P2 are equivalent programs. In this case, either there are more

correct programs that can be taken into consideration, or P1 = P2 is the unique program that satisfies all

input-output examples and it is returned to the user. If (3.6) is satisfiable, the distinguishing input ~x can

be extracted from the model (~x, y1, y2) that satisfies it. Once found, we can query the I/O oracle on the

distinguishing input, who yields the correct output for it. The distinguishing input along with its correct

output forms a new correct input-output pair (~x, y) which can then be added to the specification φ, further

22

Synthesizer

Enumerator

Desired program

VerifierSpecification

DSL

Counter-
example

Candidate
program

Correct
program

I/O oracle Distinguisher

2 correct
program

New
example

Distinguishing
input

Figure 3.3: OGIS

constraining the search space.

In the end of this cycle, we have a set of input-output pairs that completely specify the generated

program, thus eliminating all ambiguity.

This method is illustrated in Figure 3.3. In this figure, the enumerator and verifier are identical to

those in CEGIS (Figure 3.2). The distinguisher is a new entity, which can be a solver that tries to satisfy

formula (3.6).

3.4 User Interaction

As mentioned before, PBE uses input-output examples as the desired behaviour specification, which can

be very ambiguous. When the synthesizer simply picks a correct program to return to the user, it may not

satisfy the desired behaviour in corner cases not covered by the examples provided. In order to increase

confidence in the synthesizer’s solution, a good way to disambiguate the specification is by explicitly

interacting with the user so he or she can provide further information about the intended program. In

this section we look at a few different user interaction models that allow the synthesizer to gather more

information about the intended program, thus resolving the ambiguity in the initially provided examples.

3.4.1 Conversational Clarification Model

Conversational clarification is an interaction method first described in 2015 by Mayer et al. [40] that

has since been successfully integrated in many synthesizers [33, 43, 70, 71]. During the synthesis

procedure, the synthesiser asks the user questions about certain inputs, and uses the answers to resolve

ambiguities in the desired behaviour specification.

23

Synthesizer

Enumerator

Desired
program

Verifier

DSL

Counter-
example

Candidate
program

Correct
program

Distinguisher

2 correct
programs

Distinguishing
input

I/O examples

Figure 3.4: Conversational clarification

After the synthesizer has generated several programs that are consistent with the user-provided

examples, it uses the distinguisher described in Section 3.3 to produce a distinguishing input: an input

for which two correct programs yield two different outputs. The synthesizer then queries the user on

what is the desired output for that specific input (it may be the output returned by one of the synthesised

programs, or a different one altogether). The distinguishing input along with the desired output form a

new input-output example, which is added to the specification, making it stronger. Each distinguishing

input splits the search space in a different way, so the number of necessary user interactions depends

on the chosen distinguishing input in each iteration. In the end, only one program remains. Since all

ambiguity in the original specification has been resolved, the remaining program is the desired program

and it can be returned to the user.

Conversational clarification is represented in Figure 3.4. It is no more than a variation of the OGIS

method, described in Section 3.3, where the user plays the part of the I/O oracle.

3.4.2 OPTIONS Model

Ramos et al. [54, 55] propose two interaction models: OPTIONS and Y/N. Both models have in common

with conversational clarification the fact that they interact with the user using distinguishing inputs, i.e.,

new inputs generated by the synthesizer whose output differs for different candidate programs. The main

difference is that, while conversational clarification distinguishes only between two programs, OPTIONS

and Y/N distinguish optimally between n > 2 candidate programs, P1, ..., Pn. In each interaction they

maximise the number of programs that are eliminated from the search space. Besides, unlike conversa-

tional clarification, with OPTIONS and Y/N, the program’s output is always shown to the user beforehand.

The user just has to select one among several or classify it as correct or incorrect. In sum, not only are

OPTIONS and Y/N’s interactions fewer, they are also easier for the user to answer.1

1UNCHARTIT’s interaction models can be tried out at http://sat.inesc-id.pt/unchartit/dist/

24

http://sat.inesc-id.pt/unchartit/dist/

The OPTIONS model shows the user a distinguishing input, as well as several options that correspond

to the outputs of candidate programs for that input. Then, the user selects the correct output among the

provided options. Ideally, there is a single input example that produces a different output for each can-

didate program. In this best-case scenario, a single interaction is sufficient to disambiguate all candidate

programs with the OPTIONS model: only one is consistent with the user’s selection.

To produce the distinguishing input, ~x, we start by defining a Boolean variable bij for each pair

i, j ∈ {1, ..., n}, i < j. bij is True if and only if Pi and Pj have the same output for ~x:

∧
i,j∈{1,...,n},i<j

(Pi(~x) = Pj(~x))↔ bij . (3.7)

To ensure that at least two of the candidate programs produce a different output for the distinguishing

input ~x, we include the constraint: ∨
i,j∈{1,...,n},i<j

¬bij . (3.8)

Finally, since it is our goal to find an input such that all programs have different outputs, we want as few

bij set to True as possible. Thus, we add the following soft constraints:

∧
i,j∈{1,...,n},i<j

¬bij . (3.9)

We use a MaxSMT solver to try and find a model that satisfies the formula. If it is unsatisfiable, then

there is no input ~x to which any of the programs have a different output, i.e., P1, ..., Pn are all equivalent.

If it is satisfiable, then we show ~x to the user along with all possible outputs Pi(~x). The user selects the

correct output, and the synthesizer discards all programs whose output for ~x differs.

3.4.3 Y/N Model

On the Y/N interaction model, the goal is to identify a distinguishing input ~x that splits the set of programs

into two sets A and B, such that all programs in A produce the same output o given input ~x, and all

programs in B produce outputs different than o given input ~x. The goal is then to find ~x such that half the

programs are placed in each set.

To encode this problem into MaxSMT, we have the same Boolean variables bij for all pairs i, j ∈

{1, ..., n}, i < j, which are True if and only if Pi and Pj have the same output for input ~x:

∧
i,j∈{1,...,n},i<j

(Pi(~x) = Pj(~x))↔ bij . (3.10)

Then, we define a set of Boolean variables pAi (resp. pBi) for all i ∈ {1, ..., n} which are assigned True

if and only if program Pi is placed in set A (resp. B). If two candidate programs Pi and Pj produce the

same output for ~x (i.e. bij is True), then Pi and Pj must be placed in the same set. On the other hand, if

two programs produce different outputs (i.e. bij is False), then only one of them can be placed in set A.

25

Finally, each program must be placed in one and only one set. To enforce this, we add the constraints:

∧
i,j∈{1,...,n},i<j

bij →
(
(pAi ∧ pAj) ∨ (pBi ∧ pBj)

)
, (3.11)

∧
i,j∈{1,...,n},i<j

¬bij → (¬pAi ∨ ¬pAj), and (3.12)

∧
i∈{1,...,n}

pAi 6= pBi . (3.13)

To ensure we have at least one program in set A, we add the constraint:

∨
i∈{1,...,n}

pAi . (3.14)

Ideally, we would like A and B to have the same number of elements, so that when the user classifies ~x

as either correct or incorrect we can eliminate half the programs from the search space. To achieve this,

we add the optimisation objective:

min.

∣∣∣∣∣
n∑

i=1

pAi −
n∑

i=1

pBi

∣∣∣∣∣ . (3.15)

As before, we use a MaxSMT solver to solve the formula. If the formula is unsatisfiable, then all

programs are equivalent and there is no distinguishing input. In this case we can keep only one program

and discard the rest. If the formula is satisfiable, then the model assignment for ~x is the distinguishing

input. In this situation, the synthesizer shows ~x to the user, along with the output of any program in A

run with input ~x (they all have the same output). Finally, we ask the user if this is the desired output for

input ~x. If the output is correct, we can eliminate from the search space all programs in B. Otherwise, we

remove all programs in A.

3.5 Regex Synthesizers

In this section, we discuss prior work on the synthesis of regular expressions that is most closely related

to our approach. Previous approaches that perform general string processing [22, 72] restrict the form

of the regular expressions that can be synthesised. In contrast, we support a wide range of regular

expressions operators, including the Kleene closure, positive closure, option, and range. More recent

work that targets the synthesis of regexes is done by ALPHAREGEX [32] and REGEL [8].

ALPHAREGEX performs an enumerative search and uses under- and over-approximations of regexes

to prune the search space. However, ALPHAREGEX is limited to the binary alphabet and does not support

the kind of regexes that we need to synthesise for form validations. ALPHAREGEX is analysed in depth

in Section 3.5.1.

REGEL is a state-of-the-art synthesizer of regular expressions based on a multi-modal approach that

combines input-output examples with a natural language description of user intent. They use natural

language to build sketches that capture the high-level structure of the regex to be synthesised and

26

subsequently use the input-output examples to fill those sketches. REGEL prunes the search space by

using ALPHAREGEX-like under- and over-approximations and symbolic regexes combined with SMT-

based reasoning.

There are other approaches that synthesise regexes solely from natural language [31, 34, 74]. We

see these approaches as orthogonal to ours and expect that FOREST can be improved by hints provided

by a natural language component such as was done in REGEL. To the best of our knowledge, no previous

work focused on the synthesis of conditions over capturing groups.

3.5.1 ALPHAREGEX

In 2016, Lee et al. [32] presented ALPHAREGEX, a PBE synthesizer of regular expressions in the binary

alphabet, Σ = {0, 1}. Like with FOREST, with ALPHAREGEX the user describes the desired accepted

language by providing a set of positive and negative examples. The synthesised regular expression must

define a language that includes all the positive examples and none of the negative ones. ALPHAREGEX

uses an enumerative search technique, with a ranking method that prioritises simpler expressions.

The algorithm starts by examining the simplest regular expressions, 0 and 1. If these are not consist-

ent with the examples, it checks more complex productions such as 0|0, 0|1, 1|0, 1|1 (i.e. expressions in

the form of �|�), 00, 01, 10, 11 (i.e. expressions in the form of ��), and 0∗, 1∗, (i.e. expressions in the

form of �∗).

Here, we introduce the hole (�), a placeholder for any regular expression. Regular expressions with

or without holes are the states of the search. The algorithm generates regular expressions by iteratively

replacing holes with other states and checking if the resulting regular expressions are correct.

To speed up the search, ALPHAREGEX makes use of three different kinds of search space pruning

techniques: over-approximation, under-approximation and elimination of redundant states.

Over-approximation is achieved by replacing holes in the current state with (0|1)∗. This regular ex-

pression describes the language that accepts all the strings that can be written using the binary alphabet.

Therefore, over-approximation makes the state as general as it can be. If the over-approximation rejects

at least one of the positive examples we conclude that this state can never be used to build a solution.

Example 3.5.1. Consider the state 1�, i.e., the concatenation of 1 with a hole, which can be filled

with any regular expression. The over-approximation of this state, 1(0|1)∗, accepts all strings that a

regular expression of the form 1� could possibly accept. Thus, if 1(0|1)∗ does not accept all the positive

examples, this state is not worth considering, and can be pruned.

Under-approximation consists in replacing holes in the current state with ∅, the regular expression

that corresponds to the empty language. The concatenation of any regular expression r with ∅, r∅,

results in ∅. The union of any regular expression r with ∅, r|∅, is the regular expression r itself. If the

under-approximation does not reject any of the negative examples, we conclude that this state can never

be used to build a correct solution.

27

REGEL

Specification

Regular
Expression

Natural language
description I/O examples

Semantic
parser PBE engineSketch

Figure 3.5: REGEL’s synthesis pipeline

Example 3.5.2. Consider now the state 1|�, i.e., the union of 1 with a hole. The under-approximation of

this state, 1|∅ = 1, restricts 1|� to the language that accepts as few strings as possible, in this case, the

one containing only the string with a single ‘1’. If 1 does not reject any of the negative examples, then

this state can be pruned.

Elimination of redundant states is done using the equivalences of regular expressions resulting from

the algebraic rules of regular expressions. For example, the algorithm needs not evaluate the expression

s|r if it has already considered r|s, where r and s are regular expressions, as these expressions are

equivalent.

The authors tested ALPHAREGEX in 25 benchmark problems collected from textbooks on automata the-

ory which are provided along with the code for their tool. ALPHAREGEX proved capable of synthesising

relatively complex expressions, with more than a dozen operations, in under one minute.

3.5.2 REGEL

In 2020, Chen et al. [8] proposed REGEL, a multi-modal sketch-based regex synthesizer. REGEL accepts

two different kinds of description of desired behaviour: (i) a natural language description of the desired

pattern (which is used to generate a sketch), and (ii) a set of positive and negative examples (which is

used to complete the sketch). REGEL’s synthesis pipeline is shown in Figure 3.5

REGEL’s DSL is a lot more expressive than that of ALPHAREGEX. They synthesise common regex op-

erators: concatenation, union, Kleene closure, positive closure, option and range. Besides the standard

regex operators, they accept operations and (intersect) and not (complement), which are implemented

at the automaton level.

Sketch generation. The first step of REGEL’s synthesis is to produce a ranked list of sketches from the

natural language description of the desired pattern using a semantic parser. Intuitively, REGEL’s sketches

represent a family of regexes that conform to a high-level structure. A sketch is then a program of an

extended version of the DSL that includes a “constrained hole” construct, denoted �{S1, ..., Sn}, where

S1, ..., Sn are sub-regexes. Specifically, regex r belongs to the space of regexes defined by �{S1, ..., Sn}

if one of the leaf nodes of r is one of the Si sub-regexes. In addition to constrained holes, REGEL’s

28

sketches can contain operators in their regex DSL. For example, a sketch can be of the form f(S1, ..., Sn)

where f denotes a DSL operator.

Example 3.5.3. Consider the following REGEL sketch: S1 = �{[0-9]{7}, -}. The regular expression

r1=(([A-Za-z]|-){2}|[0-9]{7}){1,4} can result from S1 because one of its leaf nodes, -, is in the

constrained hole. Consider now S2 = �{[0-9]{3},[0-9]{2},-,[0-9]{4}} and r2 = ([0-9]|-){11}. Sim-

ilarly, r2 can result from S2.

Sketch completion. Then, given a sketch S, REGEL’s PBE engine tries to find a concrete regex that

is both a valid completion of S and consistent with the input-output examples using sketch-guided enu-

merative search. Their sketch completion procedure leverages two main ideas.

First, like ALPHAREGEX, they use lightweight deductive reasoning to prune infeasible partial regexes

by constructing over- and under- approximations. However, unlike ALPHAREGEX, they are able to build

these approximations using the hints obtained from the natural language and therefore perform more

precise reasoning.

Second, they use symbolic regexes to prune large parts of the search space. When synthesising

constructs that take integer constants as arguments (like the range operator), they use a symbolic integer

κ that represents any possible integer rather than explicitly enumerating possible integer values. Then,

they generate a SMT formula that over-approximates the concrete regex. In the end, the concrete values

of κ are extracted from the resulting SMT model.

Chen et al. evaluate their approach on 322 regexes and showed that their multi-modal approach

can successfully synthesise the intended regex in 80% of the cases. In comparison, using only natural

language can solve 43% of these benchmarks and an example-only baseline can solve only 26%. They

show also that their PBE engine is an order of magnitude faster than ALPHAREGEX.

29

30

Chapter 4

Regular Expression Synthesis

In this chapter, we describe the first stage of FOREST’s synthesis procedure, which produces the first

component of the regex validation: a regular expression that matches all valid examples and none of

the invalid examples. This regular expression serves as basis for the synthesis of the second and third

components of the regex validation.

Before the synthesis procedure starts, we define the set of operators that can be used to build the

desired regex, as well as the values each operator can take as argument, i.e., FOREST’s DSL. FOREST

builds its DSL based on the user-provided examples. Each DSL is dynamically constructed to fit the

problem at hand: it is as restricted as possible, without losing any expressiveness necessary to ensure

it includes the correct regex. The DSL construction procedure is detailed in Section 4.1.

Following the example of several state-of-the-art synthesizers [15, 17, 32, 45, 47, 58], our synthesis

algorithm employs enumerative search, as introduced in Section 2.3.3. The enumeration cycle finds

regexes that are consistent with the user-provided examples. In order to choose an expression among

those generated by the enumeration, FOREST interacts with the user. The result of each interaction is

a new input-output example that strengthens the original specification. Both the enumeration and the

interaction cycles are depicted in Figure 4.1.

As mentioned before, input-output examples are an ambiguous specification. Thus, FOREST does

not return the first regex consistent with the examples that it finds, as it may not correspond to the user’s

intended behaviour. Instead, FOREST provides an interaction model. The interactive model is further

described in Section 4.3.

4.1 Domain Specific Language

Before the synthesis procedure starts, the DSL of the enumerated regexes must be defined. This in-

cludes the definition of the operators that can be used to build the desired regex, as well as the values

each operator can take as argument.

FOREST aims at producing a regular expression that fully matches the strings provided as valid

examples. We consider a successful match only when the regular expression matches the entire string.

31

Synthesizer

Enumerator

Verifier Distinguisher

candidate
program

reason of
failure

DSL

Desired
program2 correct

programs

I/O
examples

new I/O
example

new
input

Figure 4.1: Interactive enumeration-based synthesis

To construct the regex, the DSL always includes the union and concatenation operators. As introduced

in Section 2.1.2, the union of two arbitrary regexes r and s creates a new regex, denoted r|s. A string

matches r|s if it matches r or s. Similarly, the concatenation of any two regexes r and s, creates a new

regex, rs. If a string p is matched by r and a string q is matched by s, then pq is matched by rs.

In addition, we consider several regular expression quantifiers. A quantifier can be applied to any

regex r and is equivalent to concatenating r with itself a certain number of times. The DSL includes the

following quantifiers:

• Kleene closure (*), which matches 0 or more times,

• positive closure (+), which matches 1 or more times,

• option (?), which matches 1 or 0 times,

• range ({m}), which matches exactly m times, and

• range ({m,n}), which matches at least m times and at most n times.

The possible values for the range operators are limited depending on the valid examples provided by

the user. For the single-valued range operator, {m}, we consider only the integer values such that

2 ≤ m ≤ l, where l is the length of the longest valid example string. Note that m = 1 is not considered

since it is the identity function (r{1} = r). In the two-valued range operator, {m,n}, the values of m and

n are limited to integers such that 0 ≤ m < n ≤ l, where l is again the length of the longest valid

example string. The tuple (0,1) is not considered, since its semantics are equivalent to that of the option

quantifier: r{0, 1} = r?.

All operators can be applied to regex literals or composed with each other to form more complex

expressions. The regex literals considered in the synthesis procedure also depend on the valid input

examples. These include the individual letters, digits or symbols present in the examples and all char-

acter classes that include them. The character class [r1-rn] is shorthand for the regular expression

r1|r2|...|rn, when r1r2...rn form a logical sequence. The character classes contemplated in the DSL

are [0-9], [A-Z], [a-z] and all combinations of those, such as [A-Za-z] or [0-9A-Za-z]. Additionally,

[0-9A-F] and [0-9a-f] are used to represent hexadecimal numbers.

32

Re → concat(Re,Re) | union(Re,Re) | kleene(Re) | posit(Re)

| option(Re) | range(Re,RangeLit) | [0-9] | /

RangeLit → 2 | 3 | ... | 10 | (0, 2) | (1, 2) | (0, 3) | ... | (8, 10) | (9, 10)

Figure 4.2: CFG that represents the DSL of regular expressions for the motivating example in Sec-
tion 1.1. Re is the start symbol and the representation of the regex type, RangeLit represents the
possible values for the argument of the range operator.

As mentioned in Section 2.3.2, the DSL can be represented as a CFG. The CFG’s terminal symbols

Σ include the names of all regex operators, as well as the regex literals and the range operator values.

N , the non-terminal symbols, are the data types in the DSL.

Example 4.1.1. The literal values on the DSL depend on the input examples. Recall the motivating

example in Section 1.1, where the valid input values were:

19/08/1996

26/10/1998

22/09/2000

01/12/2001

29/09/2003

31/08/2015

In this scenario, the length of the longest valid example is l = 10, so the range value literals are m ∈

{2, ..., 10}, for the single valued range, and (n,m) : 0 ≤ n < m ≤ 10 for the two-valued range. The

characters in the examples are ‘/’, which becomes itself a regex literal, and digits, which introduce the

character class [0-9]. The CFG is then defined as shown in Figure 4.2.

4.2 Enumeration

To enumerate regexes, FOREST requires a structure capable of representing every feasible expression.

Orvalho et. al. [45] describe two different representations: tree-based and line-based. The tree-based

representation follows a typical hierarchical composition of operations, as usually seen in functional lan-

guages, while the line-based representation emulates the structure of a program written in an imperative

language, where each operation is seen as a line of code.

We opt to use a tree-based representation of the search space, using k-trees. A k-tree of depth d is

a tree in which every internal node has exactly k children and every leaf node is at depth d. If k is the

greatest arity among all DSL constructs, then a k-tree of depth d can represent all programs of depth up

to d in that DSL. For that, a symbol of the DSL is assigned to each node and the tree can be interpreted

as a program. In any regex DSL built by FOREST, the maximum arity is always 2, so all regexes in the

search space can be represented using 2-trees. In Figure 4.3, the regex from the motivating example in

Section 1.1, [0-9]{2}/[0-9]{2}/[0-9]{4}, is represented as a 2-tree of depth 5.

To explore the search space in order of increasing complexity, the k-tree enumerator starts by ana-

lysing trees of lower depths and progressively increases the depth of the tree as trees of previous depths

are exhausted. This way we ensure the first regex found is of the smallest depth possible.

33

concat

concat

concat

range

[0-9] 2

/

ε ε

concat

range

[0-9] 2

/

ε ε

range

[0-9]

ε

ε ε

ε

ε ε

4

ε

ε ε

ε

ε ε

Figure 4.3: [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a k-tree.

To explore the space of trees, the enumerator encodes the k-tree as an SMT formula. The constraints

in the SMT formula ensure that the program is well-typed. A model that satisfies the formula represents

an assignment of a DSL symbol to each tree node. This assignment is then used to build a valid regex.

4.2.1 K -tree Encoding

In this section we offer a formal description of the k-tree encoding, as proposed by Chen et. al. [9, 45]. A

k-tree is a tree where all leaves are at the same depth and with constant branching factor k. Consider a

k-tree of depth d. Assume each node in the k-tree is assigned a unique positive integer index consistent

with level-order traversal. Let N be the set all nodes’ indices, N = {1, 2, ..., kd − 1}. Let L be the set

of indices that correspond to leaf nodes and I the set of indices of internal nodes. Thus N = I ∪ L.

Furthermore, let C(i) represent the indices of all children of node i.

Let id : Σ → N be a one-to-one mapping of each terminal symbol (i.e., operators and literals) in the

DSL to a positive integer. Because the arity of some DSL operations is smaller than k, there are some

children nodes that cannot be assigned any symbol. We introduce the empty symbol, ε, with id(ε) = 0,

which is assigned to nodes without symbols.

Encoding variables. We define an integer variable ni for all i ∈ N . Assigning ni = id(k) means that

we assign the symbol k to node i.

Next, we add constraints over these variables that ensure the generated regular expression is well-

typed. All examples in the remainder of this section refer to the DSL presented in Example 4.1.1 built for

the the motivating example described in Section 1.1.

Leaf constraints. Because they have no children, the leaf nodes must be empty or assigned to a

literal of the DSL. Let T be the union of ε with the set of terminal symbols in the DSL that correspond to

literals.

∧
i∈L

∨
p∈T

ni = id(p) (4.1)

34

Example 4.2.1. For each leaf node i we add the constraint:

ni = id([0-9]) ∨ ni = id(/) ∨ ni = id(2) ∨ ... ∨ ni = id(10) ∨ ni = id((0, 2)) ∨

∨ ni = id((1, 2)) ∨ ni = id((0, 3)) ∨ ... ∨ ni = id((8, 10)) ∨ ni = id((9, 10))

Children constraints. If a DSL symbol p is assigned to a node i, the children of i, C(i), must have

types consistent with the parameters of p. For each p ∈ Σ and j ∈ {1, ..., k}, where k is the largest arity

among all DSL constructs, we define T (p, j). If p corresponds to an operator, T (p, j) denotes the type

of parameter j of p. If j > arity(p), then T (p, j) = ε. If p represents a literal, then T (p, j) = ε for every j.

Finally, let Σ(T (p, j)) ⊂ Σ be the set of terminal symbols in the DSL that have type T (p, j).

∧
p∈Σ,i∈I

ni = id(p)⇒
∧

j∈C(i)

∨
t∈Σ(T (p,j))

nj = id(t)

 (4.2)

Example 4.2.2. If node 1 is assigned range, then its children, nodes 2 and 3, must be assigned symbols

of types consistent with its parameters. T (range, 1) = Re, so n2 must be assigned one of the symbols in

Σ(Re) = {union, concat, kleene, posit, option, range, [0-9], /}. T (range, 2) = RangeLit, so n3 must

be assigned one of the symbols in Σ(RangeLit) = {2, ..., 10, (0, 2), (1, 2), ..., (9, 10)}. To enforce this, we

add the following constraint:

n1 = id(range)⇒ (n2 = id(union) ∨ n2 = id(concat) ∨ n2 = id(kleene)∨

∨ n2 = id(posit) ∨ n2 = id(option) ∨ n2 = id(range)∨

∨ n2 = id([0-9]) ∨ n2 = id(/))

∧ (n3 = id(2) ∨ ... ∨ n3 = id(10) ∨ n3 = id((0, 2))∨

∨ n3 = id((1, 2)) ∨ ... ∨ n3 = id((9, 10)))

Output constraints. The root node must be assigned a DSL symbol consistent with the output type.

Re is the desired output type in our DSL. Then Σ(Re) is the set of symbols in the DSL that have type Re.

∨
p∈Σ(Re)

n1 = id(p) (4.3)

Example 4.2.3. We want or regular expression to have the DSL type Re, so the output constraint for our

domain is

n1 = id(union) ∨ n1 = id(concat) ∨ n1 = id(kleene) ∨ n1 = id(posit) ∨

∨ n1 = id(option) ∨ n1 = id(range) ∨ n1 = id([0-9]) ∨ n1 = id(/)

35

concat

range

[0-9] 2

/

ε ε

range

[0-9] 2

/

ε ε

range

[0-9] 4

Figure 4.4: [0-9]{2}/[0-9]{2}/[0-9]{4} represented as a multi-tree, resulting from the concatenation
of 5 simpler regexes.

4.2.2 Multi-tree Representation

We considered several validators for digital forms and observed that many regexes in this domain are

the concatenation of relatively simple regexes. However, the successive concatenation of simple regexes

quickly becomes complex in its k-tree representation. Recall the regex for date validation presented in

the motivating example in Section 1.1: [0-9]{2}/[0-9]{2}/[0-9]{4}. Even though this regular expres-

sion is the concatenation of 5 simple sub-expressions, each of which can be represented using a tree of

depth at most 2, its representation as a k-tree requires a tree of depth 5, as shown in Figure 4.3.

The idea behind the multi-tree constructs is to allow the number of concatenated sub-expressions

to grow without it reflecting exponentially on the encoding. The multi-tree structure is constituted by n

k-trees, whose roots are connected by an artificial top-level root node. The root-node is “assigned” an n-

ary concatenation operator, whose semantics is analogous to that of the binary concatenation of regexes

described in Section 4.1. Since the return type of concat is the same as that of its parameters, Re, all

the root nodes have the same type as they did in the original k-tree encoding. Because the root-node

has a fixed assignment, it is not included in the SMT encoding, and it is artificially added to the model

that satisfies it.

Having a top-level concatenation node that connects n k-trees of depth d, we are able to repres-

ent regexes using fewer nodes. Figure 4.4 shows the multi-tree representation of the same regex as

Figure 4.3, and shows that the multi-tree construct can represent this expression using half the nodes.

In the k-tree encoding, an increase in the depth d of the tree corresponds to an increase in the

expression’s complexity. Thus, the enumerator successively explores k-trees of increasing depth. How-

ever, multi-tree has 2 measures of complexity: the depth of the trees, d, and the number of trees, n.

Note that, since it is not encoded into SMT, the root-node level is not taken into account for the depth of

the multi-tree. FOREST employs two different methods for increasing these values: static multi-tree and

dynamic multi-tree.

Static multi-tree

In the static multi-tree method, FOREST fixes n and progressively increases d. To find the value of n,

there is a preprocessing step, in which FOREST identifies patterns in the valid examples. This is done

by first identifying substrings common to all examples. A substring is considered a dividing substring if

36

it occurs exactly the same number of times in all examples. Dividing substrings must also occur in the

same order in all examples. Then, we split each example before and after the dividing substrings. Each

example becomes an array of n strings.

Example 4.2.4. Consider the valid examples from the motivating example in Section 1.1. In these ex-

amples, ‘/’ is a dividing substring because it occurs in every example, and exactly twice in each one. ‘0’

is a common substring but not a dividing substring because it does not occur the same number or times

in all examples. After splitting on ‘/’, each example becomes a tuple of 5 strings:

(‘19’, ‘/’, ‘08’, ‘/’, ‘1996’)

(‘26’, ‘/’, ‘10’, ‘/’, ‘1998’)

(‘22’, ‘/’, ‘09’, ‘/’, ‘2000’)

(‘01’, ‘/’, ‘12’, ‘/’, ‘2001’)

(‘29’, ‘/’, ‘09’, ‘/’, ‘2003’)

(‘31’, ‘/’, ‘08’, ‘/’, ‘2015’)

Then, we apply the multi-tree method with n trees. If, for every i ∈ {1, ..., n}, the ith sub-tree represents

a regex that matches all strings in the ith position of the example arrays, then the concatenation of the

n regexes matches the original example strings. Since each tree is only synthesizing for a part of the

original input strings, a reduced DSL can be recomputed for each tree.

Example 4.2.5. Recall the split examples from Example 4.2.4, and the DSL built before the split shown

in Figure 4.2. This DSL has two regex literals, / and [0-9]. However, we can see that only [0-9] is

needed in the 1st, 3rd and 5th splits. Moreover, since the length of the splits is smaller than 10, fewer

values for RangeLit need to be considered. We can build 5 reduced DSLs, {D1, D2, D3, D4, D5}, where

each Di includes only the required symbols to build the regex that matches the ith split. D1 = D3 are

represented as:

Re → concat(Re,Re) | union(Re,Re) | kleene(Re) | posit(Re)

| option(Re) | range(Re,RangeLit) | [0-9]

RangeLit → 2 | (0, 2) | (1, 2)

Analogously, [0-9] is never needed in the 2nd and 4th splits. D2 = D4 are represented as:

Re → concat(Re,Re) | union(Re,Re) | kleene(Re)

| posit(Re) | option(Re) | /

In the 2nd and 4th splits, the maximum length is 1, which means there are no possible values for the

range operator. Thus, range is not part of D2 and D4. D5 is similar to D1 and D3 but it has more possible

values for range, since the maximum length is 4. Now, each of the 5 k-trees can use the corresponding

Di instead of the whole original DSL.

Dynamic multi-tree

FOREST employs the dynamic multi-tree method when the examples cannot be split because there are

no dividing substrings. In this scenario, the enumerator still uses a multi-tree construct to represent the

37

regex. However, the number of trees is not fixed and all trees use the original, complete DSL. FOREST

varies the complexity of the enumerated expressions by increasing either the number of trees n or their

depth d. A multi-tree structure with n k-trees of depth d has n × (kd − 1) nodes. Different combinations

of (n, d) are tested in increasing order of number of nodes, starting with n = 1 and d = 2, which is

equivalent to a simple k-tree of depth 2.

4.2.3 Pruning

The tree-based representation is especially advantageous when pruning the search space, as it facil-

itates the propagation of constraints from any node in the tree to the leaves. FOREST applies several

pruning techniques that leverage properties of regular expressions. FOREST’s pruning can be divided

into two kinds. The first kind refer to properties of the DSL that remain unchanged during the synthesis

procedure and are added at the beginning, along with the encoding constraints.

Like in most other languages, there can be multiple regexes that, although different, have the same

semantics. Here are some examples of such equivalences:

(r∗)∗ ≡ r∗ (r?)? ≡ r? (r+)+ ≡ r+

(r+)∗ ≡ (r∗)+ ≡ r∗ (r?)∗ ≡ (r∗)? ≡ r∗ (r?)+ ≡ (r+)? ≡ r∗

(r∗){m} ≡ (r{m})∗ (r+){m} ≡ (r{m})+ (r?){m} ≡ (r{m})?

r{n}{m} ≡ r{m}{n} ≡ r{m× n}

During the synthesis procedure, we want to avoid enumerating several equivalent expressions. To

achieve this, we add SMT constraints that block all but one possible representation of each regex. Take,

for example, (r?)+ ≡ r∗. We only want one way to represent this regex, so we block the construction

(r?)+ for any regex r. Let I be the set of indices of all internal nodes of the trees and ChL(i) denote the

index of the left child of node i. We add the constraint:

∧
i∈I

nChL(i) = id(option)⇒ ni 6= id(posit) (4.4)

The remaining equivalences shown above are implemented analogously.

Another relevant rule in the DSL of regular expressions is the idempotence of union: r|r = r. To

prevent the enumeration of expressions of the type r|r, every time the union operator is assigned to a

node i, we force the sub-tree underneath i’s left child to be different from the sub-tree underneath i’s

right child by at least one node. For each internal node i ∈ I, let Li (resp. Ri) be an ordered list of the

indices of all nodes in i’s left (resp. right) child sub-tree, i.e., the sub-tree whose root is i’s left (resp.

right) child. We add the following constraint to ensure the parameters of union are different:

∧
i∈I

ni = id(union)⇒
∨

1≤j≤|Li|

nLi[j] 6= nRi[j]

 (4.5)

38

The second kind of pruning constraints are added during enumeration. These do not refer directly

to properties of regexes, but rather to characteristics of the current instance. When a regex that is not

consistent with the examples is enumerated, it is eliminated from the search space. Let m : N → N be a

model to the formula resulting from the encoding of the trees, i.e., an assignment of each SMT variable,

ni, to a DSL symbol’s identifier. For each encoding variable ni, m(ni) = id(p) means that p was the DSL

symbol assigned to node i in the previous solver call. Thus, we block the current regex by adding the

constraint: ∨
i∈N

ni 6= m(ni). (4.6)

Along with the incorrect regex, we want to eliminate regexes that are equivalent to it. The union operator

in the regular expressions DSL is commutative: r|s = s|r, for any regexes r and s. Thus, whenever an

expression containing r|s is discarded, we eliminate the expression that contains s|r in its place as well.

Let U contain all the indices of the nodes that were assigned the union operator in the previous solver

call: U = {i ∈ N : m(ni) = id(union)}. First, we block the assignment of all the nodes in the tree that

are not descendant from the union node. Then, we prevent the variables on i’s left child sub-tree from

being assigned the equivalent model value on the right sub-tree, and vice-versa:

∧
i∈U

(∨
i∈N\(Li∪Ri)

ni 6= m(ni) ∨
∨

1≤j≤|Li|

nLi[j] 6= m(nRi[j]) ∨
∨

1≤k≤|Ri|

nRi[k] 6= m(nLi[k])

)
(4.7)

Besides expressions that are equivalent to the incorrect enumerated expression, we also remove from

the search space other expressions that fail in the same way. The goal of quantifiers kleene, posit and

range is to allow a regex to be matched more than once. If kleene is assigned to the root of one of the

k-trees, this tree represents r∗, where r is an arbitrary regex. We test all valid examples for the presence

of r{2}. If r{2} is not present in any of the examples, we block the expression r∗. The same procedure

is followed for posit and range.

4.2.4 Sketch-based

As introduced in Section 3.1, some state-of-the are synthesizers use sketches to speed up their enumer-

ative search. Different methods are used to generate and complete sketches. In this section we describe

a few of them, which we implemented in FOREST, though they are disabled by default.

Sketch generation

When enumerating sketches, the procedure is very similar to the one used to enumerate programs: we

have a multi-tree construct and successively enumerate sketches using the k-tree encoding for each

sub-tree. The main difference between sketch enumeration and the usual regex enumeration procedure

lies in the DSL: we adapt the DSL to produce incomplete programs (with holes) instead of complete

regexes. We remove literal values and constants from the DSL. We introduce two types of “hole” to

replace them: the regex-hole �re and the range-hole �range. Then, each sketch can be completed with

39

Re → concat(Re,Re) | union(Re,Re) | kleene(Re) | posit(Re)

| option(Re) | range(Re,�range) | �re

Figure 4.5: CFG that represents the sketch DSL of regular expressions for the motivating example in
Section 1.1.

concat

range

Re Range

Re

ε ε

range

Re Range

Re

ε ε

range

Re Range

Figure 4.6: Sketch multi-tree whose completion results in [0-9]{2}/[0-9]{2}/[0-9]{4}.

concrete regex and range literals to get a complete regular expression.

Example 4.2.6. Recall the DSL built for the motivating example in Section 1.1 shown in Figure 4.2. If

we were synthesising this instance with sketch-based enumeration, we would have the DSL shown in

Figure 4.5, where the regex literals have been replaced with regex-holes, �re, and the range values with

range-holes, �range.

Note that we enumerate fewer sketches than we enumerate programs during the standard enumer-

ation procedure, because each sketch corresponds to many concrete programs. In Figure 4.6, we

can see the sketch that has to be enumerated during sketch-enumeration in order to synthesise

[0-9]{2}/[0-9]{2}/[0-9]{4} during sketch-completion.

Sketch completion

To perform sketch-completion, we need to bring back into consideration the information we removed

from the DSL during sketch-enumeration, i.e., the possible literal values that can be used to fill each

hole in our sketch.

Example 4.2.7. Consider, once again, the motivating example described in Section 1.1. If we are syn-

thesising this instance using sketch-based enumeration, the following domains are considered for each

hole in the sketches:

• D(�re) = {[0-9], /}

• D(�range) = {2, 3, ..., 10, (0,2), (1,2), (0,3) , ..., (8,10), (9,10)}

Several methods can be used to find the correct values to fill the holes in a sketch within the re-

spective domain. In FOREST, we tried two different approaches: graph-based and SMT-based sketch

completion.

40

Graph-based completion is implemented as described by Ramos in his MSc. Thesis [53]. We start by

identifying all possible complete programs resulting from a sketch. To do this, we first consider the root

node and recursively visit all its descendants, traversing the sketch tree in Depth-First Search (DFS)

order. For each tree node we visit, if it is an internal node, we visit its descendants. If it is a hole,

we return a list of all possible completions for it, i.e., the values in its corresponding domain. These

values are stored in the parent node. In the end of the traversal, each internal node has a list of all

possible completions for all holes in its descendant sub-tree. The root node contains information about

all completion values for all holes in the tree. Then, the complete programs resulting from the sketch

are simply the Cartesian product of all domains stored in the root node. Each concrete program is built

and tested against the specification by the verifier, and the synthesizer stores those that satisfy the

specification.

SMT-based completion tries to use logic-based reasoning during the completion. We do not seek

all possible completions for a sketch, but rather a set of completions that satisfy our specification. In a

way, we are pulling the verifier ’s role into the sketch completion procedure. The implementation of this

method requires an SMT solver with a regex theory, such as Z3 [6, 12]. The first step is the same as

Graph-based completion: traverse the sketch tree and get the possible domains for each hole.

Ideally, we want to assign to each hole in the sketch an SMT variable of type regex, whose domain

is limited according to that hole’s domain. Then, we would write the sketch regex in SMT using these

variables. Finally, we add constraints that state the desired regex must match all valid examples and

none of the invalid. If the formula is unsatisfiable, then the sketch cannot be completed in a way that

satisfies the specification, and can be discarded. If the formula is satisfiable, the resulting model results

in a completion of the sketch that is consistent with the specification. However, Z3’s regex theory is not

sufficiently expressive to allow this method’s implementation: there cannot be variables inside an SMT

regular expression. Therefore, our SMT-based completion is done as follows:

For each sketch S, let S∗ be the set of all regexes that result from the completion of S. This set is

obtained from the Cartesian product of all holes’ domains, as before. For each regex ri ∈ S∗ we define

an SMT predicate, ρi, such that, for any input string s, ρi(s) is True if and only if regex ri matches s.

Let V be the set of all valid examples and I the set of all invalid examples. For each i ∈ {1, ..., |S∗|},

we define a Boolean variable mi that is assigned True if and only if the respective ri matches all valid

examples, V, and none of the invalid examples, I:

∧
i∈{1,...,|S∗|}

mi ↔

(∧
x∈V

ρi(x) ∧
∧
x∈I
¬ρi(x)

)
. (4.8)

We want to find a regex ri whose mi is True. Thus, we add the constraint:

∨
i∈{1,...,|S∗|}

mi (4.9)

If this formula is unsatisfiable, there is no possible completion of sketch S that matches the specific-

41

ation. If it is satisfiable, then we store the regexes ri whose mi are assigned True in the resulting model.

All these are correct regexes.

4.3 User Interaction

To solve possible ambiguities in the user-provided input-output examples, we implemented in FOREST

two different interaction models: conversational clarification, as described in Section 3.4.1 and a vari-

ation of Ramos’s interaction models, as described in Sections 3.4.2 and 3.4.3. By default, FOREST

disambiguates the specification using conversational clarification.

4.3.1 Conversational Clarification

To increase confidence in FOREST’s solution, FOREST disambiguates the specification by interacting with

the user. We employ the interaction method described by Mayer et. al. [40], which has been success-

fully used in several synthesizers [33, 70, 71]. Upon finding two regexes that satisfy the user-provided

examples, r1 and r2, FOREST computes a new input that is matched by one of the regexes but not by

the other: a distinguishing input. To produce a distinguishing input, we use an SMT solver with a regex

theory, such as Z3 [6, 12], to create two SMT predicates ρ1 and ρ2 such that, for any input string s, ρ1(s)

(resp. ρ2(s)) evaluates to True if and only if r1 (resp r2) matches s. Then, we use the SMT solver to solve

the formula:

∃s : ρ1(s) 6= ρ2(s). (4.10)

If (4.10) is satisfiable, the string s that satisfies it is a distinguishing input. Once found, FOREST asks the

user to classify this input as valid or invalid. The distinguishing input along with its correct output form a

new input-output pair which is added to the specification, effectively eliminating either r1 or r2 from the

search space. If, on the other hand, (4.10) is unsatisfiable then r1 and r2 are equivalent; FOREST keeps

the shortest regex and discards the other.

After the first interaction with the user, the synthesis procedure continues only until the end of the

current depth and number of trees. Therefore, if the desired expression requires a larger depth than

that of the first enumerated expression that satisfied the examples, then FOREST never enumerates the

desired expression and the returned expression will not satisfy the user’s needs in corner cases not

covered by the initial examples.

Example 4.3.1. Consider, for example, that FOREST enumerated two regexes consistent with the

examples in the motivating example in Section 1.1: r1 = [0-9]{2}/[0-9]{2}/[0-9]{3,4} and r2 =

[0-9]{2}/[0-9]{2}/[0-9]{4}. A possible distinguishing input between r1 and r2 returned by FOREST

is s = “00/24/404”. This input would be shown to the user. Since it does not represent a valid date, the

user would classify s as invalid. Thus, “00/24/404” would be added to the set of invalid examples, and

r1, which matches s, would be eliminated from the search space.

42

4.3.2 Multi-distinguish

Besides the basic conversational clarification model, we extended FOREST with a new interaction model,

based on the interaction models first introduced in 2020 by Ramos et al. [54]. As mentioned in Sec-

tion 4.3, Ramos et al. present two interaction models: Y/N and OPTIONS. In the domain of regular

expressions, the output is a Boolean value: either the string is matched by the regular expression or it

is not. In practice, this entails a simplification of the Y/N and OPTIONS models, and they converge into a

single model, which we call multi-distinguish interaction model.

The goal is to distinguish more than two regular expressions at once. Instead of triggering an interac-

tion cycle right after finding two correct regular expressions, we continue the enumeration process past

the second expression, until we have n correct expressions. Then, we disambiguate those n expres-

sions at once, in order to generate fewer, more comprehensive distinguishing inputs, thus reducing the

number of necessary queries to the user.

To disambiguate n regular expressions, r1, ..., rn, we start, as before, by defining n SMT predicates,

ρ1, ..., ρn such that, for any input string s, ρi(s) evaluates to True if and only if ri matches s. We want

to find a distinguishing string s that separates the regexes in two disjoint sets, A and B, such that all

regexes inAmatch s and none of the regexes in B matches s. Ideally, we wantA and B to have the same

number of regexes, so we can eliminate at least half the candidate expressions with each interaction.

To ensure at least two regexes in r1, ..., rn produce a different result when matched against s, we add

the hard constraint: ∨
i,j∈{1,...,n},i<j

ρi(s) 6= ρj(s). (4.11)

Then, we want to split the regexes into two sets A and B of approximately the same size. This problem

can be modelled as a bipartite graph. Let the regexes be the vertices in the graph, and let there be

an edge between ri and rj if and only if ri and rj have a different matching result to string s. Then the

graph’s sets correspond to sets A and B. The resulting structure is a complete bipartite graph, a bipartite

graph where each vertex of the first set is connected to every vertex of the second set.

Now, we want to build a bipartite graph such that both sets of vertices have the same size. Since the

number of edges in the bipartite graph is |A| · |B|, this is equivalent to maximising the number of edges

in the graph, i.e., the number of pairs (ri, rj) which have different matching results to s.

Thus, to encode the goal of A and B having the same size, we add the soft constraints:

∧
i,j∈{1,...,n},i<j

ρi(s) 6= ρj(s). (4.12)

We use a MaxSMT solver to find a model to this formula. If (4.11) is unsatisfiable, then all regexes in

r1, ..., rn are equivalent and we can keep only one of them. Otherwise, if the formula is satisfiable, s is a

distinguishing string. Once found, FOREST follows a similar procedure to that described in Section 4.3.1:

we ask the user to classify s as valid or invalid. Then, FOREST adds the example to the respective set,

eliminating from the search space all regexes which are not in accordance to the user’s answer.

Example 4.3.2. Suppose FOREST enumerates the following four regular expressions:

43

r1 = [0-9]{2}/[0-9]{0,2}/[0-9]{3,4},

r2 = [0-9]{2}/[0-9]{0,2}/[0-9]{4},

r3 = [0-9]{2}/[0-9]{2}/[0-9]{4}, and

r4 = [0-9]{2}/[0-9]{2}/[0-9]{3,4}.

A possible distinguishing input obtained using multi-distinguish is s = ‘01//2000’. s is accepted by

r1 and r2 (A = {r1, r2}) but not by r3 or r4 (B = {r3, r4}). If we show s to the user, the user classifies

it as invalid because it does not correspond to a valid date. We add this example to the set of invalid

examples, thus eliminating r1 and r2 from the search space.

44

Chapter 5

Capturing Groups Synthesis

Aside from being a very expressive way to describe patterns in text, regular expressions can be extended

with capturing groups. Capturing groups are used to extract information from text, which can be used

independently from the originally matched text.

FOREST, after synthesising a regular expression to describe the desired format for a certain input

field, completes it with capturing groups that, either capture some information desired by the user, or

further restrict the accepted values by enforcing integer conditions over the integer values captured in

the input string. In this chapter we describe the synthesis procedure that generates the second and third

components of the regex validation: capturing groups that reflect the captures provided with the valid

examples and capture conditions which express integer conditions for the values in the example that are

satisfied by all valid examples but not by any of the conditional invalid examples.

In Section 5.1, we look at the base enumeration cycle that produces capturing groups over a given

regular expression. This enumeration method is used both in the synthesis of capturing groups and

capture conditions. Then, in Section 5.2, we look at how FOREST synthesises the second component in

the regex validations. After, we move on to the synthesis of the third component in the regex validations:

capture conditions. In Section 5.3, we explain the SMT encoding used to produce a minimum set of

integer conditions over some capturing groups. Finally, in Section 5.4, we show how we can produce a

distinguishing input to resolve the ambiguity of the input examples when there are several minimum sets

of conditions that satisfy them.

5.1 Enumeration

The synthesis of both the capturing groups and the capture conditions is done using enumerative search.

Thus, the first step in both synthesis procedures is to enumerate capturing groups over the previously

computed regular expression.

To enumerate capturing groups, FOREST starts by identifying atomic sub-regexes in the regular ex-

pression. Atomic regexes correspond to the smallest sub-regexes whose concatenation results in the

original complete regex. It does not make sense to place a capturing group inside atomic sub-regexes.

45

For example, the regex [0-9]{2} is an atomic sub-regex: there are no smaller sub-regexes whose con-

catenation results in it. It does not make sense to place a capturing group on just a part of it: ([0-9]){2}

does not have a clear meaning. Once identified, the atomic sub-regexes are placed in an ordered list.

The concatenation of all elements in this list results in the original regular expression.

Enumerating capturing groups over the regular expression is done by enumerating non-empty disjoint

sub-lists of this list. The elements inside each sub-list form a capturing group.

Example 5.1.1. Recall the previously shown date regex: [0-9]{2}/[0-9]{2}/[0-9]{4}. The ordered

list of atomic sub-regexes for this regex is [[0-9]{2}, /, [0-9]{2}, /, [0-9]{4}].

Suppose we want to get a single capturing group within the date regex. A single capturing group is

a single sub-list of the list of atomic sub-regexes. The following are some examples of sub-lists of the

atomic sub-regexes list and their resulting capturing groups:

[[[0-9]{2}], /, [0-9]{2}, /, [0-9]{4}] → ([0-9]{2})/[0-9]{2}/[0-9]{4}

[[[0-9]{2}, /], [0-9]{2}, /, [0-9]{4}] → ([0-9]{2}/)[0-9]{2}/[0-9]{4}

[[0-9]{2}, /, [[0-9]{2}, /, [0-9]{4}]] → [0-9]{2}/([0-9]{2}/[0-9]{4})

Analogously, to enumerate two or more capturing groups, we consider two or more non-empty disjoint

sub-lists. For the date regex, we can have at most 5 capturing groups because the atomic sub-regexes

list has 5 elements. The following are some examples of multiple sub-lists of the atomic sub-regexes list

and their resulting capturing groups:

[[[0-9]{2}], /, [[0-9]{2}], /, [0-9]{4}] → ([0-9]{2})/([0-9]{2})/[0-9]{4}

[[[0-9]{2}], /, [[0-9]{2}, /, [0-9]{4}]] → ([0-9]{2})/([0-9]{2}/[0-9]{4})

[[[0-9]{2}], /, [[0-9]{2}], /, [[0-9]{4}]] → ([0-9]{2})/([0-9]{2})/([0-9]{4})

5.2 Groups Synthesis

The second component of the regex validation are capturing groups that reflect the captures provided

with the valid examples. To synthesise these capturing groups, FOREST enumerates capturing groups

over the produced regular expression as explained in Section 5.1. Since the captured values are

provided along with all valid examples, it is known how many capturing groups are required.

For each enumerated set of capturing groups, FOREST matches the regular expression with the

capturing groups to each of the valid example strings. The enumeration process continues until a set

of capturing groups that produces the user-provided captures is found. Once the correct captures are

found, they are stored as part of the solution.

46

Example 5.2.1. Recall the motivating example in Section 1.1: the user wished not only to validate the

input string but also to extract some information from it. The goal was to extract the year from each date,

so it could be used afterwards. In this situation, the examples provided by the user are:

19/08/1996, 1996

26/10/1998, 1998

22/09/2000, 2000

01/12/2001, 2001

29/09/2003, 2003

31/08/2015, 2015

As we saw back then, FOREST can provide capturing groups within the regular expression that allow

the user to achieve this. In this case, each example is followed only by one capture, so we want to

enumerate only one sub-list from the list of atomic regexes. The desired sub-list and corresponding

capturing group are:

[[0-9]{2}, /, [0-9]{2}, /, [[0-9]{4}]] → [0-9]{2}/[0-9]{2}/([0-9]{4})

5.3 Conditions Synthesis

The third component of the regex validation is a set of integer conditions over captured values in the

example. The conditions are satisfied by all valid examples but not by any of the conditional invalid

examples.

At this point, FOREST has a regular expression that matches all valid examples. In order to compute

the captures using the regular expression, we need all conditional invalid examples to be matched by

this regular expression as well. To ensure this, we remove from the set of conditional invalid examples

all those that are not matched by the regular expression. This is equivalent to moving them from the

conditional invalid set to the invalid set. To the user, it matters only that all invalid and conditional invalid

examples are rejected by the final regex validation; whether they are rejected because they do not match

the regular expression or because they do not satisfy the capture conditions is not relevant. Therefore,

this behaviour is inconsequential to the user.

To synthesise the capture conditions, FOREST starts by enumerating capturing groups using the

enumeration process described in Section 5.1. When synthesising capture conditions, the number of

necessary capturing groups is not known beforehand. Thus, we enumerate capturing groups in pro-

gressively increasing number. We start by attempting to generate conditions with just one capturing

group; if no solutions are found, we enumerate two capturing groups, and so on.

Since it is our goal to synthesise integer conditions, we require that the captures resulting from any

given set of capturing groups all correspond to integers. This is done by, for each enumerated captur-

ing groups, matching the regex to all valid and conditional invalid examples and casting the resulting

captures to integers. If this is not successful for all captures and all examples, these capturing groups

cannot be used for capture conditions. The current capturing groups are discarded and the enumeration

process continues.

For each enumerated set of integer capturing groups, FOREST tries to find a set of capture conditions

over those capturing groups that are satisfied by all valid examples but not by any of the conditional

47

invalid examples. A capture condition is a 3-tuple: it contains the captured text, an integer comparison

operator and an integer argument. In this document, we use the notation $i, i ∈ 0, 1, ..., to reference the

text captured by the (i + 1)th group. In FOREST, we consider only two integer comparison operators, ≤

and≥. However, the algorithm can be easily extended to include more integer comparison operators. We

do not allow two capture conditions referring to the same capturing group that use the same operator,

changing only the integer argument. Therefore, a capture condition can be identified by the capturing

group’s index and the integer comparison operator.

Let C be a set of capturing groups and C(x) the integer captures that result from applying C to example

string x. Let O be the set of integer operators being considered; in FOREST O = {≤,≥}. Then, let DC
be the set of all possible capture conditions over capturing groups C. DC results from combining each

capturing group with each integer operator: DC = C × O. Finally, let V be the set of all valid examples,

I the set of all conditional invalid examples and X = V ∪ I the set of all examples. Given a set of

capturing groups C, FOREST uses MaxSMT to select from DC the minimum set of capture conditions

that are satisfied by all valid examples and by none of the conditional invalid. To encode the problem, we

use the following sets of Boolean variables:

• ax for every example x ∈ X . ax = True means that example x satisfies all capture conditions in the

solution.

• scap,x for every capture cap ∈ C(x) and examples x ∈ X . scap,x = True means that capture cap in

example x satisfies all used conditions that refer to it.

• ucond for all conditions cond ∈ DC . ucond = True means condition cond is used in the solution.

Additionally, we define a set of integer variables bcond, for all conditions cond ∈ DC that represent the

integer argument in each condition.

Then, we define a set of constraints that ensure the set of selected captures correctly classifies the

examples. Let SMT(cond, x) be the SMT representation of the condition cond for example x. In this

representation, the capture is an integer value, the integer operator is has the usual semantics, and the

integer argument is the corresponding bcond integer variable.

Let Dcap ⊆ DC be the set of capture conditions that refer to capture cap. Constraint 5.1 states that a

capture cap in example x satisfies all conditions if and only if for every condition that refers to cap, either

it is not used or it is satisfied by the value of that capture in that example.

scap,x ↔
∧

cond∈Dcap

ucond → SMT(cond, x) (5.1)

Example 5.3.1. Recall the first valid example from the motivating example in Section 1.1: x0 =

“19/08/1996”. Suppose FOREST has already synthesised the desired regular expression and enumer-

ated the capturing group that corresponds to the day: ([0-9]{2})/[0-9]{2}/[0-9]{4}. Let cond0 and

cond1 be the conditions that refers to the first (and only) capturing group, $0, and operators ≤ and ≥

48

respectively. The SMT representation for cond0 and x0 is

SMT(cond0, x0) = 19 ≤ bcond0

.

Constraint 5.1 for this example is then:

s0,x0 ↔ (ucond0
→ (19 ≤ bcond0

)) ∧ (ucond1
→ (19 ≥ bcond1

)).

Constraint 5.2 states that an example x satisfies all capture conditions that refer to it if and only if all

the individual captures satisfy their respective conditions.

ax ↔
∧

cap∈C(x)

scap,x (5.2)

Finally, constraint 5.3 ensures that used conditions are satisfied by all valid examples and none of

the conditional invalid examples.

∧
x∈V

ax ∧
∧
x∈I
¬ax (5.3)

Since we are looking for the minimum set of capture conditions, we add soft clauses to penalise the

usage of each capture condition in the solution:

∧
cond∈DC

¬ucond. (5.4)

Running a SMT solver with these constraints results in a solution. We consider part of the solution

only the capture conditions whose ucond is True in the resulting model. We also extract the values of the

integer arguments in each condition from the model values of the bcond variables.

5.4 Conditions Disambiguation

The same problem we encountered while synthesising a regular expression emerges for capture condi-

tions: the ambiguity of the examples as a specification. There can be many sets of capture conditions

that validate all valid examples and invalidate all condition invalid. To ensure the solution meets the user’s

needs, FOREST disambiguates the specification using a procedure based on distinguishing inputs similar

to that used during the synthesis of the regular expression.

First, FOREST uses the SMT solver to produce another valid solution. This is done, like before, by

adding a clause that blocks the current model and then asking the solver to solve the new formula. To

block the current model, let D+ be the set of conditions that were part of the solution in the current

model, i.e., the set of conditions cond for which ucond was assigned True. Let m(x) represent the value

of variable x in the current model. To get a different solution, we add constraint 5.5 to ensure that the

49

integer value is different in at least one of the selected captures.

∨
cond∈D+

bcond 6= m(bcond) (5.5)

Another call to the SMT solver supplies another, different solution. We have then S1 and S2, two

different solutions, i.e., two different sets of capture conditions that satisfy the specification. Our goal is

to find a distinguishing input: a string c which is satisfies all capture conditions in S1, but not those in

S2, or vice-versa. First, to simplify the problem, FOREST eliminates from S1 and S2 conditions which are

present in both: these are not relevant to compute a distinguishing input. Let S∗1 (resp. S∗2) be the subset

of S1 (resp. S2) containing only the distinguishing conditions, i.e., the conditions that differ from those in

S2 (resp. S1).

Example 5.4.1. Recall the valid and conditional invalid examples from the motivating example in Sec-

tion 1.1:

Valid examples:

19/08/1996

26/10/1998

22/09/2000

01/12/2001

29/09/2003

31/08/2015

Conditional invalid examples:

33/08/1996

26/00/1998

22/13/2000

00/12/2001

12/31/2003

52/03/2015

Because there is no conditional invalid example that shows that there cannot be a date with the

day 32, FOREST can produce two correct sets of capture conditions for the examples provided in over

([0-9]{2})/([0-9]{2})/[0-9]{4}:

• S1 = $0 ≤ 31 ∧ $0 ≥ 1 ∧ $1 ≤ 12 ∧ $1 ≥ 1

• S2 = $0 ≤ 32 ∧ $0 ≥ 1 ∧ $1 ≤ 12 ∧ $1 ≥ 1

To find the correct solution, FOREST first keeps only the captures that differ from one solution to the

other: S∗1 = $0 ≤ 31, and S∗2 = $0 ≤ 32.

Recall that S1 and S2 are capture conditions with respect to the same set of capturing groups C. The

capture conditions do not refer to the whole matched string, but only to parts of it (the captured portions).

Thus, we do not compute the distinguishing string c directly. Instead, we compute the integer value of

the distinguishing captures in c: the captures that result from applying the regular expression and its

capturing groups to the distinguishing input string. We define |C| integer variables, ci, which correspond

to the values of the distinguishing captures:

c0, c1, ..., c|C| = C(c).

50

Example 5.4.2. In Example 5.4.1 we had two solutions: S∗1 = $0 ≤ 31 and S∗2 = $0 ≤ 32. Even though

the regular expression had two capturing groups, since only one is present in the distinguishing condi-

tions, we can define only one integer variable, c0, representing the integer value of the first capturing

group in the distinguishing string.

We define SMT(cond, c), the SMT representation of each condition cond, for the distinguishing string

using the ci. Each capture in C(c) is represented by its respective ci variable, the operator maintains it

usual semantics and the integer argument is its value in the solution to which the condition belongs.

Finally, we add constraint (5.6), which states that c satisfies the conditions in one solution but not the

other.

∧
cond∈S∗1

SMT(cond, c) 6=
∧

cond∈S∗2

SMT(cond, c). (5.6)

Example 5.4.3. Recall two solutions from Example 5.4.1, S∗1 = $0 ≤ 31 and S∗2 = $0 ≤ 32. To find c0,

the value of the distinguishing capture for these solutions, we solve the constraint

∃c0 : c0 ≤ 31 6= c0 ≤ 32

and get the value c0 = 32 which satisfies S∗2 (and S2), but not S∗1 (or S1).

If we pick the first valid example, “19/08/1996” as basis for c, the respective distinguishing input is

c = “32/08/1996”. Once the user classifies c as invalid, c is added as a conditional invalid example and

S2 is removed from consideration.

Note that string c is not a string variable: it is not part of the encoding and it is invisible to the solver.

We include it here as an auxiliary structure. Therefore, the model that results from a call to the SMT

solver does not give us a distinguishing string c. Instead, it outputs only values for the distinguishing

captures ci. To produce the distinguishing string c, FOREST picks an example from the valid set, ap-

plies to it the regular expression with the capturing groups, and replaces its captures with the model

values for ci. An additional step is required here to pad with zeros ci’s integer values so that their string

representation has the same length as the captures they are replacing in the valid string.

51

52

Chapter 6

Experimental Results

Implementation. FOREST is implemented in Python 3.8 on top of TRINITY, a general-purpose syn-

thesis framework [39]. All SMT formulas are solved using the Z3 SMT solver, version 4.8.9 [12]. To find

distinguishing inputs in regular expression synthesis, FOREST uses Z3’s theory of regular expressions

(part of the theory of strings [6]). To check the enumerated regexes against the examples, we use Py-

thon’s regex library [52]. The results presented herein were obtained using an Intel(R) Xeon(R) Silver

4110 CPU @ 2.10GHz, with 64GB of RAM, running Debian GNU/Linux 10. All processes were run with

a time limit of one hour.

Benchmarks. To evaluate FOREST, we used 69 benchmarks based on real-world form-validation reg-

ular expressions. These were collected from regular expression validators in validation frameworks and

from regexlib [57], a website where users can upload their own regexes. Among these 69 benchmarks

there are different formats: national IDs, identifiers of products, date and time, vehicle registration num-

bers, postal codes, email and phone numbers. For each benchmark, we randomly generated sets of

strings to be used as input examples for FOREST. All 69 benchmarks require a regular expression to

validate the examples. 10 require capturing groups to extract the captures provided alongside the valid

examples, and 8 require additional capture conditions to validate conditional invalid examples. On aver-

age, each instance is composed of 13.4 valid examples (ranging from 4 to 33) and 9.0 invalid (ranging

from 2 to 38). The 7 instances that target capture conditions have on average 6 conditional invalid ex-

amples (ranging from 4 to 8). The median number of total examples per instance is 22, while the median

number of valid examples is 11, 7 for invalid, and 6 for conditional invalid.

The goal of this experimental evaluation is to answer the following questions:

Q1. How does FOREST compare against REGEL? (Section 6.1)

Q2. How does pruning affect multi-tree’s time performance? (Section 6.2)

Q3. How does static multi-tree improve on dynamic multi-tree? (Section 6.2)

Q4. How does multi-tree compare against other enumeration-based encodings? (Section 6.3)

53

Table 6.1: Comparison of time performance using different synthesis methods.

Timeout (s) 10 60 3600

FOREST (w/ interaction) 33 42 52

FOREST’s 1st regex (no interaction) 44 51 55

FOREST w/ multi-distinguish interaction 28 36 46

Multi-tree w/o pruning 21 36 42

Dynamic-only multi-tree 6 11 19

k-tree 4 10 15

Line-based (w/o pruning) 4 4 12

REGEL 32 43 53

REGEL PBE 7 9 29

Q5. How many examples are required to return an accurate solution? (Section 6.4)

Q6. How does sketching and a multi-distinguish interaction affect FOREST’s time performance? (Sec-

tion 6.5)

Table 6.1 shows the number of instances synthesised in under 10, 60 and 3600 seconds using

FOREST, as well as using the different variations of the synthesizer which will be described in the fol-

lowing sections. The first row shows the synthesis time using FOREST’s default configuration. FOREST,

by default, uses static multi-tree when it is possible to split the examples with dividing substrings, and

dynamic multi-tree when it is not. In practice, static multi-tree is used in 57 of the 69 benchmarks (83%).

The default setting has all pruning techniques enabled, does not use sketch-based enumeration, and

disambiguates the examples using conversational clarification. The second row in the table refers to

FOREST’s synthesis times with no interaction, in which case the returned solution is simply the first one

found. In the third row, we show the synthesis time using the multi-distinguish interaction model. The

following two rows show FOREST’s time performance with variations to the enumeration procedure: with

pruning disabled and applying dynamic multi-tree enumeration in all benchmarks. Rows 6 and 7 show

synthesis times using different encodings for regex enumeration, k-tree and line-based. Finally, we also

compare FOREST’s synthesis times with REGEL [8]. REGEL takes as input a natural description of user

intent, used to generate a sketch, as well as examples, which are used to complete the sketch. We show

the sketch-completion time of the complete REGEL synthesizer, and synthesis time of the PBE engine

of REGEL by itself, which we denote by REGEL PBE. When using the complete REGEL, the synthesis

time includes not only sketch-completion times (indicated in the table), but also sketch-generation, which

takes on average 60 seconds per benchmark.

The cactus plots in Figure 6.1 show the cumulative synthesis time on the y-axis plotted against

the number of benchmarks synthesised by each variation of FOREST (on the x-axis). In both plots in

Figure 6.1, each line corresponds to a row in Table 6.1. The synthesis methods that correspond to lines

more to the right of the plot are able to find a solution to more benchmarks in less time. Figure 6.1a shows

54

10 20 30 40 50 60
0

600

1,200

1,800

2,400

3,000

3,600

69

Instances solved

Ti
m

e
(s

)

Line-based

k-tree

Dynamic multi-tree

REGEL PBE

Multi-tree w/o pruning

FOREST

REGEL

FOREST’s 1st regex

(a) Instances solved in 3600 seconds.

10 20 30 40 50 60
0

10

20

30

40

50

60

69

Instances solved

Ti
m

e
(s

)

Line-based

k-tree

Dynamic multi-tree

REGEL PBE

Multi-tree w/o pruning

FOREST

REGEL

FOREST’s 1st regex

(b) Instances solved in 60 seconds.

Figure 6.1: Comparison of number of instances solved using different methods.

the benchmarks synthesised before the 3600 seconds timeout and Figure 6.1b the number solved in the

first 60 seconds.

FOREST correctly finds a solution 33 benchmarks (48%) in under 10 seconds. In one hour, FOREST

synthesises 52 benchmarks (75%), with 98% accuracy: only one solution did not correspond to the

desired regex validation. This happens because FOREST disambiguates only among programs at the

same depth. In this instance, the first solution is at a lower depth as the correct one, thus the correct

solution is never found. After 1 hour of running time, FOREST is interrupted, but it prints its current

best validation before terminating. After the timeout, FOREST returned 2 more regexes, both the correct

solution for the benchmark. FOREST never uses more than 500MB of RAM in each benchmark. In all

benchmarks to which FOREST returns a solution, the first matching regular expression is found in under

10 minutes. In 44 benchmarks, the first regex is found in under 10 seconds. The remaining time is spent

looking for better answers and disambiguating the input examples. FOREST interacts with the user to

55

disambiguate the examples in 29 benchmarks. Overall, it asks 1.7 questions and spends 37.2 seconds

computing distinguishing inputs, on average. Without interaction, FOREST finds a solution a lot faster.

44 regexes are synthesised in the first ten seconds, 55 after one hour. However, the accuracy is much

lower: instead of 51 correct validations, we have only 34 correct validations. This is a severe decrease

in accuracy, from 98% to 62%.

FOREST is able to synthesise the capturing groups that match the captures provided with each valid

example in 9 out of 10 instances. In the 9 instances in which capturing groups are computed suc-

cessfully, the capturing groups are computed in less than half a second. In the remaining instance,

the first regex FOREST finds that satisfies all examples is not compatible with the required captures. In

this particular situation, the regex should identify HTML-format colours, which consist in a ‘#’ followed

by 6 hexadecimal digits, 3 groups of 2 digits, each referring to a colour component, e.g. ‘#0A1B3C’.

Furthermore, the capturing groups should extract the values corresponding to each colour component.

For the same example, the desired captures are (‘0A’,‘1B’,‘3C’). To validate the format, FOREST syn-

thesises the regex #[0-9A-F]{6} in under 1 second. However, there are no capturing groups over this

regex that produce the desired captures. To produce the captures, we must first synthesise the regex

#([0-9A-F]{2})([0-9A-F]{2})([0-9A-F]{2}), and FOREST does not enumerate that regex within the

time limit (1 hour). Therefore, this instance times out.

No instances time out during the synthesis of capture conditions. In 6 of the benchmarks, we need

only 2 capturing groups and at most 4 conditions. In these 6 instances, the conditions’ synthesis takes

under 2 seconds. The remaining 2 benchmarks need 4 capturing groups and take longer. It takes

99 seconds to synthesise 4 capturing groups with 4 conditions. The instance that takes the longest

to compute capture conditions is quite complex. The synthesised regular expression has 23 nodes,

and it requires 6 capture conditions over 4 capturing groups. The result validates a datetime format:

[0-9]{4}/([0-9]{2})/([0-9]{2}) ([0-9]{2}):([0-9]{2}) AM|PM, $0 ≤ 1 ∧ $0 ≤ 12 ∧ $1 ≤ 1 ∧

$1 ≤ 31 ∧ $2 ≤ 12 ∧ $3 ≤ 59. This benchmark takes 1229 seconds (about 20 minutes) to synthes-

ise, 97% of which is spent synthesising the capture conditions. During capture conditions synthesis,

FOREST interacts 6.75 times and takes 0.1 seconds to compute distinguishing inputs, on average.

6.1 Comparison with REGEL

As mentioned in Section 3.5, REGEL’s synthesis procedure is split into two steps: sketch generation

(using a natural language description of desired behaviour) and sketch completion (using input-output

examples). To compare REGEL and FOREST, we extended our 69 form validation benchmarks with a

natural language description. To assess the importance of the natural language description, we also ran

REGEL using only its PBE engine. In Figure 6.2a we can compare FOREST’s total synthesis time with

REGEL’s sketch completion time. Each mark in the plot represents an instance. The value on the y-axis

shows REGEL’s sketch completion time and the corresponding value on the x-axis is FOREST’s synthesis

time for the same instance. The marks above the y = x line (also represented in the plot) represent

problems that took longer to synthesise with REGEL than with FOREST. Figure 6.2b shows FOREST’s

56

0.01 0.1 1 10 100 1,000

0.01

0.1

1

10

100

1,000
3600 second timeout

3600
second

tim
eout

FOREST (s)

R
E

G
E

L
(s

)

(a) FOREST vs. REGEL

0.1 1 10 100 1,000

0.1

1

10

100

1,000
3600 second timeout

3600
second

tim
eout

FOREST (s)

R
E

G
E

L-
P

B
E

(s
)

(b) FOREST vs. REGEL-PBE

Figure 6.2: Comparison of synthesis time of REGEL and FOREST

total synthesis time against REGEL-PBE’s synthesis time. Sketch generation took on average 60 seconds

per instance, and successfully generated a sketch for 68 instances. The remaining instance was run

without a sketch. We considered only the highest ranked sketch for each instance. In Table 6.1 we

show how many instances can be solved with different time limits for sketch completion; note that these

values do not include the sketch generation time. REGEL returned a regular expression for 53 instances

and timed out after one hour in the remaining 16. Since REGEL does not implement a disambiguation

procedure, the returned regular expression does not always exhibit the desired behaviour, even though

it correctly classifies all examples. Of the 53 synthesised expressions, 35 exhibit the desired intent (only

one more than FOREST’s first solution). This is a 66% accuracy, which is much lower than FOREST’s

at 98%. We conclude that, in terms of synthesis time, REGEL is comparable to FOREST, which solves

only one fewer instance. However, REGEL’s accuracy for the desired validation is much lower than that

of FOREST, as they don’t implement an interaction model. In terms of accuracy, REGEL is comparable to

FOREST’s 1st solution, which has lower synthesis times in general.

55 out of the 68 generated sketches are of the form �{S1, ..., Sn}, where each Si is a concrete sub-

regex, i.e., has no holes. This construct indicates the desired regex must contain at least one of S1, ..., Sn,

and contains no information about the top-level operators that are used to connect them. 24 of the 53

synthesised regexes are based on sketches of that form, and they result from the direct concatenation

of all components in the sketch. No new components are generated during sketch completion. Thus,

most of REGEL’s sketches could be integrated into FOREST, whose multi-tree structure holds precisely

those top-level operators that were missing from REGEL’s sketches. As can be seen in Figure 6.2b

and Table 6.1, REGEL’s performance is severely impaired when using only its PBE engine. We predict

integrating REGEL’s sketches with FOREST would have a positive outcome, since FOREST shows better

performance working only from examples.

57

0.1 1 10 100 1,000

0.1

1

10

100

1,000

3600 second timeout

3600
second

tim
eout

Multi-tree w/ pruning (s)

M
ul

ti-
tre

e
w

/o
pr

un
in

g
(s

)

(a) Impact of pruning

0.1 1 10 100 1,000

0.1

1

10

100

1,000

3600 second timeout
3600

second
tim

eout

Multi-tree (s)

D
yn

am
ic

-o
nl

y
m

ul
ti-

tre
e

(s
)

(b) Impact of example-splitting

Figure 6.3: Comparison of synthesis time using different variations of FOREST’s multi-trees.

6.2 Pruning the Search Space and Splitting Examples

To evaluate the impact of pruning the search space as described in Section 4.2.3, we ran FOREST with

all pruning techniques disabled. In the scatter plot in Figure 6.3a, we can compare the synthesis time on

each benchmark with and without pruning. On average, with pruning, FOREST can synthesise regexes

in half the time and enumerates less than half of the regexes before returning. There is no significant

change in the number of interactions before returning the desired solution.

FOREST is able to split the examples and use static multi-tree as described in Section 4.2.2 in 57

benchmarks (83%). The remaining 12 are solved using dynamic multi-tree. To assess the impact of using

static multi-tree we ran FOREST with a version of the multi-tree enumerator that does not attempt to split

the examples, and jumps directly to dynamic multi-tree enumeration. In the scatter plot in Figure 6.3b,

we compare the synthesis times of each benchmark. Using static multi-tree when possible, FOREST

requires, on average, about two thirds of the time (68%) to return the desired regex for the benchmarks

solved by both methods. Furthermore, static multi-tree allows FOREST to synthesise more complex

expressions: the maximum number of nodes in a solution returned by dynamic multi-tree is 12 (average

6.7), while complete multi-tree synthesises expressions of up to 24 nodes (average 10.2).

6.3 Multi-tree versus k -tree and Line-based Encodings

To evaluate the performance of the multi-tree encoding, we ran FOREST with two other enumeration en-

codings: k-tree and line-based. The latter is a state of the art encoding for the synthesis of SQL queries

[45, 47]. k-tree is implemented as the default enumerator in TRINITY [39], while the line-based enumer-

ator is used as available in SQUARES [46]. The k-tree encoding (introduced in Section 4.2.1) has a very

similar structure to that of multi-tree, so our pruning techniques were easily applied to this encoding.

On the other hand, line-based encoding is intrinsically different, making the pruning techniques harder

58

0.1 1 10 100 1,000

0.1

1

10

100

1,000

3600 second timeout

3600
second

tim
eout

Multi-tree (s)

k
-tr

ee
(s

)

(a) Multi-tree vs. k-tree

0.1 1 10 100 1,000

0.1

1

10

100

1,000

3600 second timeout
3600

second
tim

eout

Multi-tree w/o pruning (s)

Li
ne

-b
as

ed
(s

)

(b) Multi-tree vs. line-based

Figure 6.4: Comparison of synthesis time using different encodings.

to implement. Because of this, we compare line-based encoding to multi-tree without pruning. In every

other aspect, the three encodings were run in the same conditions, using FOREST’s regex DSL. The

synthesis time comparison of multi-tree with k-tree and line-based encodings are shown in the scatter

plots in Figure 6.4a and Figure 6.4b, respectively. k-tree is able to synthesise programs with up to 10

nodes, while the line-based encoding synthesises programs of up to 9 nodes. Neither encoding outper-

forms multi-tree.

As can be seen in Table 6.1 and Figure 6.1, line-based encoding does not outperform the tree-

based encodings in our experiments. This contradicts the results obtained by Orvalho et al. [45] for the

synthesis of SQL queries. We conjecture the reason behind this disparity arises from different nature

of the DSLs. Most SQL queries, when represented as a tree, leave many branches of the tree unused,

which results in the need of a larger depth for the tree. Regular expressions, on the other hand, take

more advantage of the tree structure.

6.4 Fewer Examples

To assess the impact of providing fewer examples on the accuracy of the solution, we ran FOREST with

modified versions of each benchmark. First, each benchmark was run with at most 10 valid and 10

invalid examples, chosen randomly among all examples. Conditional invalid examples are already very

few per instance, so these were not altered. The accuracy of the returned regexes is slightly lower.

With only 10 valid and 10 invalid examples, FOREST returns the correct regex in 96% of the bench-

marks, which represents a very slight decrease compared with results with all examples, where the

accuracy was 98%. We also saw an increase in the number of interactions before returning, since fewer

examples are likely to be more ambiguous. With only 10 examples, FOREST interacts on average 2.1

times per instance during regex synthesis, which represents an increase of about a fourth compared to

FOREST run with all examples, which interacted on average 1.7 times per instance.

59

After, we reduced the number of examples even further: only 5 valid and 5 invalid. The accuracy of

FOREST in this setting was reduced to 71%. On average, it interacted 4.0 times per benchmark, which

is over two times more than before.

We conclude that FOREST maintains a very high accuracy with 10 examples of each kind, but not with

5 examples of each kind. Therefore, to ensure the solution is correct, the user should provide FOREST

at least 10 examples of each kind.

6.5 Sketching and Multi-distinguish Interaction

We implemented sketch-based enumeration in FOREST with both sketch-completion methods described

in Section 4.2.4: graph-based and SMT-based. Graph-based sketch completion solved only 4 instances,

all in under 1 second. All 4 successfully synthesised instances are among the simplest in the benchmark

set, the synthesised regex has only 4 nodes, and the correct sketch was enumerated within the first 6

sketches. This means FOREST had to exhaust very few sketches (at most 5) before finding the correct

one. In sum, the only instances that are solved with graph-based sketching are those where the regex

is simplest and whose correct sketches happens to be enumerated first. In the remaining instances,

FOREST enumerates and tests at most 500 sketches before timeout, while sketch-less FOREST enu-

merates at most 30 thousand regexes before the timeout. Graph-based sketch completion is inefficient

because the possible values for each leaf are not pruned, and all combinations are tested.

SMT-based sketching performed only slightly better: 8 instances were solved in total. Synthesis

times vary in accordance with each solution’s complexity. Four 4-node regexes synthesised in under

2 seconds, one 5- and one 6-node regex synthesised in under one minute, and the remaining two 8-

node solutions in under one hour. Of the unsolved instances, only one timed out. The remaining 47

were forcefully terminated due to insufficient memory within the imposed 4GB limit. We observed out-of-

memory errors even with the limit set as high as 32GB. This happens because the SMT formula grows

exponentially with the number of holes in the sketch, so larger sketches quickly become intractable.

We also compared the behaviour of the two interaction models described for regex synthesis in Sec-

tion 4.3. The multi-distinguish model was run every 4 regexes found, because our experiments showed

that Z3’s regex theory could not efficiently distinguish more than 4 regexes at a time. Regardless of the

interaction model, FOREST interacts with the user in 29 benchmarks. With multi-distinguish, of these 29,

only 23 successfully terminate synthesis and compute a regex. One of the failed instances times out

before enumerating the correct regex. The remaining 5 timeout after finding 4 regexes in the first minute

of synthesis and spending the remaining 59 minutes unsuccessfully trying to find a distinguishing input

for them. While 4 instances we distinguishing relatively complex regexes (10-16 nodes), the remaining

one times out trying to distinguish simple 4-node regular expressions.

Regarding the number of interactions, 13 instances required 3 or more interactions using the multi-

distinguish model, which is 3 fewer than with conversational clarification. With multi-distinguish, FOREST

required at most 9 regex interactions before converging to a solution. With conversational clarification,

FOREST interacts up to 21 times to synthesise the correct regular expression. Overall, considering only

60

benchmarks synthesised in both runs, with conversational clarification FOREST spends about half the

time (3.2 seconds on average) computing distinguishing input than with multi-distinguish (6.2 seconds

on average).

As expected, when maximising the number of programs eliminated by each interactions, FOREST

had on average fewer interactions with the user. Although it successfully minimises the number of re-

quired interactions to completely disambiguate the specification, we conclude that multi-distinguish is

not a viable alternative to conversational clarification for two motives: (i) it takes a lot longer to compute

a distinguishing input, even with as few as 4 programs to distinguish, and (ii) Z3’s regex theory is unpre-

dictable: it efficiently distinguishes some complex regexes but also fails with simple ones. Thus, FOREST

uses conversational clarification to interact with the user by default.

61

62

Chapter 7

Conclusions and Future Work

As computer applications become increasingly dependent on the collection and subsequent analysis

of large amounts of data, the need arises to make these data collection and analysis tasks available

to users who do not possess a programming background. Digital forms are often used for structured

data collection. Part of what makes them desirable is the ability to enforce a certain format on the

inputs, by adding real-time validations to the input fields. Validations help prevent ‘typos’ and format

inconsistencies, which leads to clean and standardised data. Regular expressions are a very expressive

and commonly used method to enforce patterns and validate the input fields of digital forms. However,

writing regex validations requires specialised knowledge that not all users possess. Furthermore, when

done for a large number of input fields, the task of hand-writing regexes becomes monotonous and

error prone. To help users write regular expressions, previous work has focused on the synthesis of

regexes from examples and from natural language. However, to the best of our knowledge, none of

these methods for regex synthesis has form validations as the main focus.

In this dissertation, we have presented a new algorithm for synthesis of regex validations from a set

example values for the input field. Our approach leverages the common structure shared between valid

examples to split the original problem into smaller sub-problems, using a divide-and-conquer approach.

We use SMT solving to explore and prune the search space. Furthermore, we proposed a method to

synthesise capturing groups and integer conditions over the respective captures. The capture conditions

further restrict the accepted values: we validate not only the input’s format, but also its values. We also

described an interaction model that removes ambiguity underlying the input examples. This procedure

selects the correct regex among several candidates, thus increasing confidence in the returned solution.

We implemented our approach in a tool, FOREST, and tested it in real-world regex validation bench-

marks. Our experimental evaluation shows that our multi-tree representation synthesises over three

times more regexes than previous representations in the same amount of time and, together with the

user interaction model, FOREST solves 74% of the benchmarks with the correct user intent. When

FOREST returns a solution, it is the intended regular expression in 98% of the instances. We saw that

pruning the search space by removing equivalent regular expressions from consideration cuts our syn-

thesis time in half and that our divide-and-conquer approach allows us to solve programs in two-thirds of

the time, on average. We verified that FOREST maintains a very high accuracy (96%) with as few as 10

63

examples of each kind. Finally, We compared our approach with REGEL, a state-of-the-art synthesizer,

and observed that FOREST outperforms REGEL in the domain of form validations.

In the future, FOREST can be improved in several ways. First, FOREST could ask for only two sets of

examples, valid and invalid. In practice, this would make the distinction between invalid and conditional

invalid examples invisible to the user. Then, either as a preprocessing step, or done dynamically during

synthesis, FOREST would automatically classify the invalid examples, differentiating between examples

that are invalidated by the regular expression and by the capture conditions.

Another way to make FOREST more user-friendly is by allowing some noise in the specification,

both by allowing some wrongly classified examples at the beginning of synthesis, and by permitting the

user to provide some wrong answers during disambiguation. Previous work has proposed to synthesise

programs from noisy examples [3, 50, 53], where instead of finding a program that satisfies all examples,

the goal is to maximise the number of examples satisfied.

Regarding the regular expressions’ DSL, it could be extended in many ways. The DSL could include

a broader set of character classes, such as [,./] to represent separators, for instance. Moreover, in-

cluding UTF-8 characters in the character classes would allow for more flexibility in the synthesised

expression, and more adaptability to non-English applications. Provided UTF-8 character classes are

supported by the regex theory, this improvement should not bring any extra complexity to the synthesis

algorithm. The synthesis of capture conditions can also include more operators, besides the inequality

operators, ≤ and ≥. It would be interesting to explore the synthesis of more complex capture conditions,

such as conditions depending on more than one capture. This would allow more restrictive validations;

for example, referring one last time to the motivating example in Section 1.1, we could limit the possible

values for the day in the date to reflect the month to which they refer, and even leap years.

More interaction models can be tried out with FOREST, especially during the synthesis of capture

conditions. One could either adapt Ramos et al.’s interaction models to this domain, like we have done

for regular expressions, or find some other way to maximise the number of conditions eliminated from the

search space with each interaction. It might be advantageous to explore different sketching techniques

for FOREST. The two techniques we tried were flawed, but they can be improved: Graph-based sketch

completion can be improved by finding a way to prune the space of possible completions during the

search. SMT-based completion can be improved by experimenting with variations in the encoding: either

using a regex theory that allows variables inside the regular expression, like was our original intention,

or simply build a less memory-consuming SMT formula. Aside from our sketching models, a completely

new approach could be explored. As we saw in Section 6.1, we could have a multi-modal approach,

similar to that of REGEL [8]. Particularly, REGEL’s sketch generation method could be integrated into

FOREST’s synthesis procedure.

Finally, FOREST could be integrated in OutSystems Service Studio. OutSystems already generates

forms from tables containing possible values for each input field. Right now, the users need to add hand-

written validations that they would like checked before the form is submitted. FOREST can be added to

this process to synthesise validations for the input fields. The values from the tables would play the role

of valid examples, so FOREST would just require the user to provide additional invalid examples.

64

Bibliography

[1] D. Ahmed, A. Peruffo, and A. Abate. Automated and sound synthesis of lyapunov functions with

SMT solvers. In TACAS (1), volume 12078 of Lecture Notes in Computer Science, pages 97–114.

Springer, 2020.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools

(2nd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006. ISBN

0321486811.

[3] S. Almagor and O. Kupferman. Good-enough synthesis. In CAV (2), volume 12225 of Lecture

Notes in Computer Science, pages 541–563. Springer, 2020.

[4] R. Alur, R. Bodı́k, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-

Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In FMCAD, pages 1–8. IEEE, 2013.

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to write

programs. In ICLR (Poster). OpenReview.net, 2017.

[6] M. Berzish, V. Ganesh, and Y. Zheng. Z3str3: A string solver with theory-aware heuristics. In

FMCAD, pages 55–59. IEEE, 2017.

[7] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185

of Frontiers in Artificial Intelligence and Applications, 2009. IOS Press. ISBN 978-1-58603-929-5.

[8] Q. Chen, X. Wang, X. Ye, G. Durrett, and I. Dillig. Multi-modal synthesis of regular expressions. In

PLDI, pages 487–502. ACM, 2020.

[9] Y. Chen, R. Martins, and Y. Feng. Maximal multi-layer specification synthesis. In ESEC/SIGSOFT

FSE, pages 602–612. ACM, 2019.

[10] Y. Chen, C. Wang, O. Bastani, I. Dillig, and Y. Feng. Program synthesis using deduction-guided

reinforcement learning. In CAV (2), volume 12225 of Lecture Notes in Computer Science, pages

587–610. Springer, 2020.

[11] S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151–158. ACM, 1971.

[12] L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS, volume 4963 of Lecture

Notes in Computer Science, pages 337–340. Springer, 2008.

65

[13] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. R, and S. Roy. Program

synthesis using natural language. In ICSE, pages 345–356. ACM, 2016.

[14] K. Ellis and S. Gulwani. Learning to learn programs from examples: Going beyond program struc-

ture. In IJCAI, pages 1638–1645. ijcai.org, 2017.

[15] Y. Feng, R. Martins, J. V. Geffen, I. Dillig, and S. Chaudhuri. Component-based synthesis of table

consolidation and transformation tasks from examples. In PLDI, pages 422–436. ACM, 2017.

[16] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps. Component-based synthesis for complex

apis. In POPL, pages 599–612. ACM, 2017.

[17] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program synthesis using conflict-driven learning. In

PLDI, pages 420–435. ACM, 2018.

[18] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure transformations from input-

output examples. In PLDI, pages 229–239. ACM, 2015.

[19] P. Godefroid and A. Taly. Automated synthesis of symbolic instruction encodings from I/O samples.

In PLDI, pages 441–452. ACM, 2012.

[20] C. C. Green. Application of theorem proving to problem solving. In IJCAI, pages 219–240. William

Kaufmann, 1969.

[21] S. Gulwani. Dimensions in program synthesis. In PPDP, pages 13–24. ACM, 2010.

[22] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In POPL,

pages 317–330. ACM, 2011.

[23] S. Gulwani and M. Marron. Nlyze: interactive programming by natural language for spreadsheet

data analysis and manipulation. In SIGMOD Conference, pages 803–814. ACM, 2014.

[24] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs. In PLDI, pages

62–73. ACM, 2011.

[25] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Found. Trends Program. Lang., 4(1-2):

1–119, 2017.

[26] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using types and weights. In

PLDI, pages 27–38. ACM, 2013.

[27] P. Huang, C. Wang, R. Singh, W. Yih, and X. He. Natural language to structured query generation

via meta-learning. In NAACL-HLT (2), pages 732–738. Association for Computational Linguistics,

2018.

[28] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based program syn-

thesis. In ICSE (1), pages 215–224. ACM, 2010.

66

[29] D. Jurafsky and J. H. Martin. Speech and Language Processing (2Nd Edition). Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 2009. ISBN 0131873210.

[30] S. Kolb, S. Teso, A. Passerini, and L. D. Raedt. Learning SMT(LRA) constraints using SMT solvers.

In IJCAI, pages 2333–2340. ijcai.org, 2018.

[31] N. Kushman and R. Barzilay. Using semantic unification to generate regular expressions from

natural language. In HLT-NAACL, pages 826–836. The Association for Computational Linguistics,

2013.

[32] M. Lee, S. So, and H. Oh. Synthesizing regular expressions from examples for introductory auto-

mata assignments. In GPCE, pages 70–80. ACM, 2016.

[33] H. Li, C. Chan, and D. Maier. Query from examples: An iterative, data-driven approach to query

construction. Proc. VLDB Endow., 8(13):2158–2169, 2015.

[34] N. Locascio, K. Narasimhan, E. DeLeon, N. Kushman, and R. Barzilay. Neural generation of regular

expressions from natural language with minimal domain knowledge. In EMNLP, pages 1918–1923.

The Association for Computational Linguistics, 2016.

[35] Z. Manna and R. Waldinger. A deductive approach to program synthesis. In IJCAI, pages 542–551.

William Kaufmann, 1979.

[36] Z. Manna and R. J. Waldinger. Toward automatic program synthesis. Commun. ACM, 14(3):151–

165, 1971.

[37] Z. Manna and R. J. Waldinger. A deductive approach to program synthesis. ACM Trans. Program.

Lang. Syst., 2(1):90–121, 1980.

[38] M. H. Manshadi, D. Gildea, and J. F. Allen. Integrating programming by example and natural lan-

guage programming. In AAAI. AAAI Press, 2013.

[39] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig. Trinity: An extensible synthesis framework for

data science. Proc. VLDB Endow., 12(12):1914–1917, 2019.

[40] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh, B. G. Zorn, and S. Gul-

wani. User interaction models for disambiguation in programming by example. In UIST, pages

291–301. ACM, 2015.

[41] A. K. Menon, O. Tamuz, S. Gulwani, B. W. Lampson, and A. Kalai. A machine learning framework for

programming by example. In ICML (1), volume 28 of JMLR Workshop and Conference Proceedings,

pages 187–195. JMLR.org, 2013.

[42] K. Morton, W. T. Hallahan, E. Shum, R. Piskac, and M. Santolucito. Grammar filtering for syntax-

guided synthesis. In AAAI, pages 1611–1618. AAAI Press, 2020.

[43] J. L. Newcomb and R. Bodı́k. Using human-in-the-loop synthesis to author functional reactive

programs. CoRR, abs/1909.11206, 2019.

67

[44] P. Orvalho. Squares: A sql synthesizer using query reverse engineering. Master’s thesis, Instituto

Superior Técnico, Universidade de Lisboa, 11 2019.

[45] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. Encodings for

enumeration-based program synthesis. In CP, volume 11802 of Lecture Notes in Computer Sci-

ence, pages 583–599. Springer, 2019.

[46] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. Squares. https://

squares-sql.github.io, 2019. Accessed on 27th May, 2020.

[47] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Manquinho. SQUARES : A SQL

synthesizer using query reverse engineering. Proc. VLDB Endow., 13(12):2853–2856, 2020.

[48] OutSystems. Outsystems. https://www.outsystems.com, 2020. Accessed on 24th October, 2020.

[49] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. Neuro-symbolic program synthesis.

In ICLR (Poster). OpenReview.net, 2017.

[50] H. Peleg and N. Polikarpova. Perfect is the enemy of good: Best-effort program synthesis. In

ECOOP. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[51] O. Polozov and S. Gulwani. Flashmeta: a framework for inductive program synthesis. In OOPSLA,

pages 107–126. ACM, 2015.

[52] Python Software Foundation. Python3’s regular expression module re. https://docs.python.

org/3/library/re.html, 2001-2020. Accessed on 11th October, 2020.

[53] D. Ramos. Program synthesis from noisy tabular data. Master’s thesis, Instituto Superior Técnico,

Universidade de Lisboa, 10 2019.

[54] D. Ramos, J. Pereira, I. Lynce, V. Manquinho, and R. Martins. Unchartit: An interactive framework

for program recovery from charts. In ASE. IEEE, 2020.

[55] D. Ramos, J. Pereira, I. Lynce, V. Manquinho, and R. Martins. Unchartit. http://sat.inesc-id.

pt/unchartit/home/, 2020. Accessed on 24th October, 2020.

[56] M. Raza, S. Gulwani, and N. Milic-Frayling. Compositional program synthesis from natural language

and examples. In IJCAI, pages 792–800. AAAI Press, 2015.

[57] Regular Expression Library. www.regexlib.com, 2001-2020. Accessed on 27th May, 2020.

[58] A. Reynolds, H. Barbosa, A. Nötzli, C. W. Barrett, and C. Tinelli. cvc4sy: Smart and fast term

enumeration for syntax-guided synthesis. In CAV (2), volume 11562 of Lecture Notes in Computer

Science, pages 74–83. Springer, 2019.

[59] G. Rozenberg and A. Salomaa, editors. Handbook of Formal Languages, Volume 1: Word, Lan-

guage, Grammar. Springer, 1997. ISBN 978-3-642-63863-3. doi: 10.1007/978-3-642-59136-5.

68

https://squares-sql.github.io
https://squares-sql.github.io
https://www.outsystems.com
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
http://sat.inesc-id.pt/unchartit/home/
http://sat.inesc-id.pt/unchartit/home/
www.regexlib.com

[60] D. E. Shaw, W. R. Swartout, and C. C. Green. Inferring LISP programs from examples. In IJCAI,

pages 260–267, 1975.

[61] R. Singh and S. Gulwani. Predicting a correct program in programming by example. In CAV (1),

volume 9206 of Lecture Notes in Computer Science, pages 398–414. Springer, 2015.

[62] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, University of California at Berkeley,

Berkeley, CA, USA, 2008. AAI3353225.

[63] A. Solar-Lezama. Program sketching. Int. J. Softw. Tools Technol. Transf., 15(5-6):475–495, 2013.

[64] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Programming by sketching for bit-

streaming programs. In PLDI, pages 281–294. ACM, 2005.

[65] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat. Combinatorial sketching

for finite programs. In ASPLOS, pages 404–415. ACM, 2006.

[66] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program synthesis. In

POPL, pages 313–326. ACM, 2010.

[67] P. D. Summers. A methodology for LISP program construction from examples. J. ACM, 24(1):

161–175, 1977.

[68] M. Terra-Neves. Distributed solver for maximum satisfiability. Master’s thesis, Instituto Superior

Técnico, Universidade de Lisboa, 10 2014.

[69] R. J. Waldinger and R. C. T. Lee. PROW: A step toward automatic program writing. In IJCAI, pages

241–252. William Kaufmann, 1969.

[70] C. Wang, A. Cheung, and R. Bodı́k. Synthesizing highly expressive SQL queries from input-output

examples. In PLDI, pages 452–466. ACM, 2017.

[71] C. Wang, A. Cheung, and R. Bodı́k. Interactive query synthesis from input-output examples. In

SIGMOD Conference, pages 1631–1634. ACM, 2017.

[72] X. Wang, S. Gulwani, and R. Singh. FIDEX: filtering spreadsheet data using examples. In OOPSLA,

pages 195–213. ACM, 2016.

[73] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig. Sqlizer: query synthesis from natural language.

PACMPL, 1(OOPSLA):63:1–63:26, 2017.

[74] Z. Zhong, J. Guo, W. Yang, J. Peng, T. Xie, J. Lou, T. Liu, and D. Zhang. Semregex: A semantics-

based approach for generating regular expressions from natural language specifications. In

EMNLP, pages 1608–1618. Association for Computational Linguistics, 2018.

69

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivating Example
	1.2 Contributions
	1.3 Document Structure

	2 Background
	2.1 Regular Languages
	2.1.1 Regular Operations
	2.1.2 Regular Expressions
	2.1.3 Capturing Groups

	2.2 Constraint Solving
	2.2.1 Propositional Satisfiability
	2.2.2 Maximum Satisfiability
	2.2.3 Satisfiability Modulo Theories
	2.2.4 Maximum Satisfiability Modulo Theories

	2.3 Program Synthesis
	2.3.1 Desired Behaviour Specification
	2.3.2 Program Space
	2.3.3 Search Technique

	3 Program Synthesis
	3.1 Sketch-based Enumeration
	3.2 Counterexample Guided Inductive Synthesis
	3.3 Oracle Guided Inductive Synthesis
	3.4 User Interaction
	3.4.1 Conversational Clarification Model
	3.4.2 Options Model
	3.4.3 Y/N Model

	3.5 Regex Synthesizers
	3.5.1 AlphaRegex
	3.5.2 Regel

	4 Regular Expression Synthesis
	4.1 Domain Specific Language
	4.2 Enumeration
	4.2.1 K-tree Encoding
	4.2.2 Multi-tree Representation
	4.2.3 Pruning
	4.2.4 Sketch-based

	4.3 User Interaction
	4.3.1 Conversational Clarification
	4.3.2 Multi-distinguish

	5 Capturing Groups Synthesis
	5.1 Enumeration
	5.2 Groups Synthesis
	5.3 Conditions Synthesis
	5.4 Conditions Disambiguation

	6 Experimental Results
	6.1 Comparison with Regel
	6.2 Pruning the Search Space and Splitting Examples
	6.3 Multi-tree versus k-tree and Line-based Encodings
	6.4 Fewer Examples
	6.5 Sketching and Multi-distinguish Interaction

	7 Conclusions and Future Work
	Bibliography

