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Abstract—The paper presents a network intrusion detection
approach that flags malicious activity without previous knowl-
edge about attacks or training data. The Cluster Change-Based
Intrusion Detection approach (C2BID) detects intrusions by
monitoring host behavior changes. For that purpose, C2BID
defines and extracts features from network data, aggregates hosts
with similar behavior using clustering, then analyses how hosts
move between clusters along a period of time. This contrasts
with previous work in the area that stops at the clustering step.
We evaluated C2BID experimentally with an evaluation dataset
and a real-world dataset, obtaining better F-Score than previous
solutions.

Index Terms—network intrusion detection, clustering, behavior
change, security analytics

I. INTRODUCTION

Since the last century, telecommunications, computing hard-
ware, and software have been the cornerstone of our society,
translating into a massive dependence on the Internet and the
need to protect it. Intrusion detection has become an important
research topic due to advances in networking technologies and
the increasing number of network attacks [1]. Today, Intrusion
Detection Systems (IDS) are widely deployed to identify
threats and possible incidents [2]. Although these and other
security measures allow detecting and blocking some attacks
in real-time, other attacks are more elusive and may cause
more serious damage. Specifically, Interestingly companies
take many days to detect some attacks, e.g., roughly 58 days
[3]. Therefore, traditional security mechanisms do not provide
enough protection and organizations should dig into traffic and
logs to search for anomalous patterns in larger windows of
time.

There are two classical intrusion detection approaches:
signature-based detection and anomaly-based detection.
Signature-based (or misuse) detection identifies known attacks
by matching patterns of attacks with observed behavior. It
allows detecting known attacks without generating an over-
whelming number of false alarms. Networks protected by
misused detection systems may suffer from long periods of
vulnerability between the appearance of a new vulnerability
and the deployment of a signature to detect attacks that exploit
it. Misuse detection is the most used approach [4]. Anomaly
detection attempts to find patterns that do not conform to
expected normal behavior [1]. This approach is appealing
because of its ability to detect new attacks, but often leads
to high false alarm rates because previously unseen (yet
legitimate) behaviors may be flagged as anomalies [5]. Both
approaches require prior knowledge, respectively of signatures

and of normal behavior, something that is inconvenient and
that we circumvent in this work.

Machine learning techniques are classically divided in two
categories: supervised and unsupervised [5]. In supervised
methods, there is a training dataset with labelled data, with
the normal and anomalous (or malicious) classes in the case
of IDSs. The typical approach in such cases is to build a
predictive model. In the end, any unseen data is compared
against the model to determinate which class it belongs to
[1]. Creating an IDS based on this approach is challenging
for two reasons: in training data, samples of the anomalous
class are rarer than normal samples; obtaining accurate and
representative labels, especially for the anomalous class, tends
to be difficult [1].

Unsupervised learning – the set of techniques we use – is
interesting for intrusion detection because by definition it does
not require prior knowledge, unlike classical signature-based
and anomaly-based detectors. In fact, unsupervised learning
is concerned with finding patterns, structures, or knowledge
in unlabelled data [5]. Unsupervised learning and specifically
clustering have been receiving some attention in the context
of intrusion detection. A clustering algorithm is applied to
feature vectors, each vector representing an entity (e.g., a
machine or a user), to group entities (machines, users) with
similar behavior, i.e., with similar feature values. The resulting
groups or clusters can be analysed and flagged as malicious
or not using manual analysis, outlier detection, thresholds,
or some heuristic like considering small clusters suspicious.
This approach has been investigated by several authors [1],
[5]–[14].

These works have several limitations. Many assume that
only a small part of the traffic is malicious, e.g., [10], [11],
[14]. This leads to attacks with several machines, e.g., a botnet,
not being easily detected. Also, attackers can often circumvent
machine learning-based attack detection by executing attacks
at low pace or in multiple time windows, e.g., by doing a slow
port scan [11]. Some models [12], [13] rely on clustering and
threshold definition, which depends on a training period and
can be avoided by attackers. Others are dependent on manual
classification, at least in an initial phase [10], [15].

We propose a novel approach for network intrusion detec-
tion based on unsupervised learning: Cluster Change-Based
Intrusion Detection (C2BID). Our approach still uses clus-
tering, like the works above, but clustering is just a first
step towards understanding if a host is malicious or not. The
main idea of the C2BID approach is to detect intrusions by
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monitoring host behavior changes. For that purpose, C2BID
defines and extracts features from network data – specifically
network flow data [16]–[18] –, aggregates hosts with similar
behavior using clustering, then analyses how hosts move
between clusters along a period of time and detects outliers.
It can detect attacks after a given time period, e.g., one day.
This contrasts with previous work in the area that essentially
stops at the clustering step.
C2BID analyses host movement between clusters, including

the appearance of new clusters, through sequential series
clustering in sequences of time windows. By studying the
temporal behavior of clusters it is possible to identify anoma-
lous behaviors and suspicious cluster formation, doing outlier
detection that is another form of unsupervised learning. This
results in higher precision than marking only one host cluster
and faster analysis than using manual analysis. C2BID uses the
idea of dynamic features – features defined in runtime based
on observed TCP/UDP port activity – inspired in DynIDS [14].
This allows analysing the traffic in many ports while avoiding
the curse of dimensionality [19], i.e., loosing the ability of
detecting attacks due to an excessive number of features (e.g.,
more than 1000 features, when there are 2×216 ports). C2BID
improves previous works by correlating multiple time windows
to detect attacks at different rates and dealing with fixed
window limitations.

We implemented and compared C2BID with three very
recent intrusion detection approaches based on clustering:
FlowHacker [10], OutGene [11], and DynIDS [14]. We tested
C2BID with an artificial dataset [20] and a real-world dataset
from a military administrative network. Our evaluation shows
that C2BID was able to detect not only the labeled attacks
but also found unlabeled (unreported) attacks in both datasets,
highlighting the advantages of its unsupervised approach.
Moreover, C2BID obtained higher values for F-score and
reduced the false positive rate.

The results of this work were partially published as: Tiago
Fernandes, Luis Dias and Miguel Correia C2BID: Cluster
Change-Based Intrusion Detection 19th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, Guangzhou, China, December 29, 2020 -
January 1, 2021 (Core A).

II. BACKGROUND

This section provides some background on the use of
clustering for intrusion detection and explains how we have
chosen the outlier detection algorithms to apply.

A. Clustering

Clustering [5] is a set of techniques for finding patterns
in high-dimensional unlabeled data. The general idea is that
entities from the same cluster are more similar to each other
than entities from different clusters [7]. In many works, the
key idea is that big clusters represent normal behavior and
the outliers (e.g., small clusters of entities or noise) can
correspond to anomalous behavior. This is useful for creating
a system to detect unknown attacks or anomalous behavior.

However, different clustering algorithms have different forms
of initialisation and produce different data partitions [21]
according to the shape and structure of the data, so they
may lead to different results. One option to overcome the
limitations of using a single clustering technique is to use an
ensemble of several algorithms [14], [22], [23].

K-Means [24] is a clustering algorithm that produces groups
of data points where each point is more similar to its cluster
centroid than to the other clusters’ centroids. The algorithm
works iteratively by assigning data points to clusters until
convergence is achieved. It is known to produce good results
in the context of intrusion detection [6], [10], [11], [14], as
in many other areas [21], [25], and this is also our experience
in previous works, so we use it for clustering. The algorithm
used was provided by the Scikit-learn Python library [26].
K-Means supports different distance metrics but we use the
classical Euclidean distance.

B. Outlier detection

Outliers are points in a dataset that are unlikely to occur
in given a model of the data. When data is processed by a
clustering algorithm like K-Means, outliers may be consider
to be those entities in clusters with a single entity [1] or those
that are farther from all the other data points than a given a
threshold [12], [13]. In this work we use an outlier detection
algorithm to find outliers, not clustering.

To decide which outlier detection algorithm to use, we tested
several algorithms available in the literature and libraries:
DBSCAN [7], Isolation Forest [27], Support Vector Machine
[28], OPTICS [29], Local Outlier Factor [30], Elliptic Envolve
[26], and Robust Random Cut Forest (RRCF) [31]. The criteria
used to select the most appropriate algorithms were: the ability
to identify an attacker in a (labelled) dataset as an outlier;
minimum number of hyper-parameters and their simplicity of
configuration (as complexity leads to errors); low number of
false positives. The labelled dataset contains network traffic
flows of 9 days [20]. Most of the algorithms considered were
available in the Scikit-learn; the exception were the RRCF
implementation [32]. The setting of the hyper-parameters was
made using Scikit-learn functions or empirically. Dynamic
parameter setting algorithms [33] were used for DBSCAN and
OPTICS.

From the algorithms evaluated, we selected RRCF as it
performed much better than the rest. RRCF considers a point
as an anomaly if the complexity of the model increases
substantially with the inclusion of the point [31]. The core
data structure used to implement RRCF is the robust random
cut tree [32]. A robust random cut tree is a binary search tree
that can be used to detect outliers in a point set. Points located
nearer to the root of the tree are more likely to be outliers.
Given a point set, a robust random cut tree is constructed by
recursively partitioning the points in the set until each point is
isolated in its own bounding box. For each iteration of the tree
construction routine, a random dimension is selected, with the
probability of selecting a dimension being proportional to the
difference between its minimum and maximum values. Next,
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a partition is selected between the minimum and maximum
value of that dimension. If the partition isolates a point from
the rest of the point set, a new leaf node for it is created, and
the point is removed from the point set. The algorithm is then
recursively applied to each subset of remaining points on either
side of the partition. Given a new point, the algorithm follows
the cuts and compute the average depth of the point across
a collection of trees. The point is labelled an anomaly if the
score fit in a predefined decision rule, e.g., the 5 higher values.
Others authors argued that RRCF is an excellent algorithm to
avoid false alarms [8] and used it in multiple scenarios [34],
[35].

III. THE C2BID APPROACH

The C2BID approach aims to automatically detect suspi-
cious hosts by analysing how they change from cluster to clus-
ter in a selected time period. Hosts that are outliers in terms
of these changes, are flagged as anomalous. Host behavior is
characterized using features extracted from network flow data,
e.g., obtained in routers with the Netflow feature [16]–[18], so
this is a network-based intrusion detection approach.

Figure 1 represents the approach that has four steps: feature
extraction, clustering, history path creation, and outlier detec-
tion, each of them presented in-depth in the next sections.

Fig. 1. Sequence of steps of the C2BID approach

A. Feature extraction

C2BID considers two time frames. First, detection is per-
formed in a period of analysis Ta, e.g., 1 day. Second, features
are extracted from network flows in smaller time windows of
several durations W = {w1, w2, ..., wn}. The size of the time
windows wn has to be at least four times smaller than Ta, e.g.,
some minutes. The approach does clustering for every window
of duration wi ∈ W during Ta and analyses how each host
changes of cluster.

For every time window of duration wi ∈ W , features are
extracted from all flows that appear in that window. Flows
are aggregated by host, identified by IP address, so that
features are associated to a host and characterize that host.
For simplicity we consider a bijective association between
hosts and IP addresses. This is a simplification because hosts
can have a few different IP addresses and IP addresses may
change due to the use of DHCP. However, we conjecture that
misbehavior can be observed by inspecting communications
in one of the IP addresses of the host and assume that IP
addresses change slowly enough in comparison to our time of
analysis, so results are unaffected.

We consider two sets of features: fixed features and dy-
namic features. The fixed features are always the same. We
considered 16 fixed features, which are commonly used in the
literature. The first half of the 16 fixed features, with source IP

as the aggregation key, are: number of different IPs contacted
by the host, number of flows where the host is the source,
number of different source ports used by the host, number of
different destination ports contacted by the host, sum of total
packet length received by the host, sum of total packet length
sent by the host, average sent packet size and the ratio of the
number of packets sent and their duration. These fixed features
describe general network activity of a host. The other 8 are
similar but for the destination IPs.

We also consider a set of dynamic features, or port-based
features, following an idea recently proposed by Dias et al.
[14]. The rationale is the following. Some attacks are targeted
at specific TCP/UDP ports, e.g., SSH brute forcing at port 22,
so it is important to have features for those ports. However,
there are 216 ports times 2 (TCP and UDP), whereas 0-1023
are System Ports and 1024-49151 are User Ports [36], so the
number of features would be excessive. Therefore, for each
period Ta the approach picks Np ports according to some
criteria and uses 4 features for each of these ports: number
of packets sent from the port, number of packets sent to the
port, number of packets received on the port and number of
packets received from the port.

The result of the feature extraction step is one vector of
features for each hosts. In the evaluation we consider only
hosts that are internal to the organization we consider in each
case, as the number of external hosts tends to be much larger
and less interesting (only a small fraction of the traffic of those
hosts is present in the flows).

B. Clustering

After features are extracted, the vectors of features are
provided as input to the clustering algorithm. The idea is
to group machines with similar behavior based on the fixed
features and the Np × 4 port-based features.

As mentioned above, the clustering algorithm selected was
K-means. This algorithm has an hyperparameter: the number
of clusters, k. To define the value of k for each time window
of duration wi ∈ W in Ta, we use the elbow method [37].
The idea is to test various numbers of k to achieve the optimal
number of clusters. The goal is to achieve the value of k where
the middle distance from observation to the cluster centre
has an accentuated decay. This value of k gives a balanced
distribution of the entities without falling into overfitting. The
Euclidean metric is used to determine the distance between
two points.

Normalization is performed by scaling each feature to a
range between zero (min) and one (max), using Equations
(1) and (2). By normalizing all features extracted, we avoid
discriminating features in relation to others.

Xstandard =
X −Xmin

Xmax −Xmin
(1)

Xnormalized = Xstandard × (max−min) +min (2)

The result of the clustering step is a set of clusters of hosts
for each time window of duration wi ∈ W . Each host appears
in cluster of each time window.
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C. History path creation

Given an analysis period of duration Ta and windows of
duration wi ∈ W within the analysis period, we define the
history path H of a host h as the sequence of clusters in
which h appears. From the previous section it is clear that H
has one cluster per period of duration wi, but a clarification is
needed: if h has no flows in a period, it is assigned to a special
cluster that contains inactive hosts. For each host h and each
Ta period, there is one history path Hi for each time window
duration wi ∈ W . A history path represents the behavior of
a host seen from the network during a period Ta looking at
windows of size wi; different attacks are easier to detect at
windows of different durations, as shown in the experiments.

To construct the history path it is necessary to do cluster
classification, i.e., to identify which clusters survive, disappear
or emerge between two time windows. This is not trivial
because clusters change, so the approach has to assess which
clusters are similar in consecutive time intervals.

Cluster classification is done following the framework pro-
posed by Landauer et al. [38]. Two clusters are considered
similar if more than a certain overlap threshold ot (e.g., 50%)
of the elements contained in cluster C ′ would have been
allocated to cluster C and if they had been used for the gener-
ation of cluster map C. The overlap is used to mathematically
express cluster relations (Equation (3)). Dividing the union of
these two intersected sets by the union of all sets means that
the resulting value is in the interval [0, 1], with 1 indicating a
perfect match and 0 indicating a total mismatch. Two clusters
are considered similar if the overlap is between ]0.5, 1]. In
Equation (3), Rcurr are the hosts in C, R′prev are the hosts in
C that would also be in C ′, R′curr are the hosts of C ′, and
Rnext the hosts of C ′ that would also be in C. Each cluster
receives a unique ID that is used to represent it in all time
windows where it appears.

overlap(C,C′) =
|
(
Rcurr

⋂
R′

prev

)⋃
(Rnext

⋂
R′

curr) |
|R′

curr

⋃
R′

prev

⋃
Rnext

⋃
Rcurr|

(3)

To better illustrate the notion of history path, we present an
example in Table I. The example considers a small dataset
of 10 hosts, Ta = 1 day and time windows of 120min,
i.e., W = {w120min}. As the traffic starts after 8am and
finishes before 8pm, each history path contains only 6 cluster
identifiers (for 8am, 10am, etc.). There are 10 history paths,
one per host. Needless to say, in a real case there would be
a larger variety of clusters, i.e., more different identifiers, as
well as many more hosts. The first column of the table shows
network IPs; the first row shows the start time of each time
window; each cell contains a number which is the cluster-ID
where an IP was assigned in that time window. nan means
that the IP is not active in that time window. For example,
172.31.69.8 has a suspicious behavior as it changes of cluster
2 times in ways that the others do not: 12pm → 2pm and
2pm→ 4pm. Although both clusters 3.0 and 2.0 contain more
than one IP, the host 172.31.69.8 would be a candidate to be
marked as an outlier by C2BID.

The result of the history path creation steps is a set of history
paths. Next section explains the outlier detection.

TABLE I
EXAMPLES OF 10 HISTORY PATH FOR w120min

Hosts 08:00 10:00 12:00 14:00 16:00 18:00
172.31.69.23 2.0 2.0 2.0 2.0 2.0 2.0
172.31.69.17 2.0 2.0 2.0 2.0 2.0 2.0
172.31.69.14 3.0 140.0 3.0 3.0 3.0 3.0
172.31.69.12 3.0 nan 3.0 3.0 3.0 3.0
172.31.69.10 3.0 140.0 3.0 3.0 3.0 3.0
172.31.69.8 nan 140.0 3.0 2.0 3.0 3.0
172.31.69.6 nan nan nan 3.0 3.0 nan

172.31.69.26 3.0 140.0 3.0 3.0 3.0 3.0
172.31.69.29 3.0 140.0 3.0 3.0 3.0 3.0
172.31.69.30 3.0 140.0 3.0 3.0 3.0 3.0

D. Outlier detection
Outlier detection is performed based on the kind of cluster

changes that a host made between time windows in the
analysed period. The relevant cluster changes are: from one
cluster to another, to the same cluster, or from one cluster to
inactivity.

Outlier detection is done in three steps (Figure 2):
• Calculating the likelihood of each host doing a certain

set of changes, taking into account all the changes made
in the analysed Ta. This calculation is done in parallel
for all different time windows W = {w1, w2, ..., wn};

• Application of the RRCF algorithm, to detect probability
values and outliers;

• Filtering of the results produced by RRCF according to
certain criteria.

Each period of duration Ta is analysed individually. These
periods can be subdivided into periods of time Ts, in a way
where the max Wn has at least one transaction in period
Ts, i.e., 2 × Wn < Ts < Ta. These divisions are analysed
in parallel. Entities identified in at least one period as an
outlier are considered a potential threat. These divisions aims
to reduce the possibility of a host being completely excluded
from the analysis because, as detailed later, a host inactive for
more than 60% of the period Ts is not considered.

Fig. 2. Outlier detection Framework

1) Likelihood: Each host’s likelihood is calculated in
parallel by division Ts and by the time window (W =
{w1, w2, ..., wn}). The final product consists of a numerical
value that expresses the probability of an IP change between
clusters in the period studied, taking into account all the tran-
sitions in that period Ts. Hosts that do not have a considerable
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expression over a period Ts have to be removed. We consider
a threshold of 60%, i.e., all entities hosts inactive for at least
60% of the time are removed. This exclusion can give rise to
two cases:
• A host may not have enough activity in a shorter time

window, e.g., w10min, but the same may not happen
with longer time windows, e.g., w120min. If a host is
not excluded from all studied time windows, the host
probability in time windows in which it was excluded
will be estimated based on the percentile of the windows
in which it was not excluded;

• A host excluded from all time windows is analysed based
on the method used by DynIDS [14]. In the active period,
this means analysing if the host is in a unitary cluster; if
it is, the host is considered an outlier.

From the transitions of all entities, a transition matrix is
created, this matrix expresses the absolute frequency of each
transition between two clusters. All transitions from a cluster
to inactivity are excluded since these transitions do not provide
useful information regarding intrusions in the network. After
the removal, the sum of all rows and columns is calculated, and
the matrix is normalised with the obtained value, the matrix
became a relative frequencies matrix. For computing purposes,
the transformation f(x) = − log(x) is applied to all matrix
values. When applying this transformation, it becomes easier
to calculate the product between two probabilities, since it is
the sum. There is also an inversion of the relative order, i.e.,
the highest values became the lowest, and the lowest became
the highest in order to avoid negative values.

The values in the transition matrix are analysed and
weighted according to their relative value. The weights are
assigned using a linear function (Equation (4)), where x′

is the new likelihood value, x is the old likelihood value,
Q ∈ [0, 100] is x relative position in the matrix, and {m, b}
are linear function parameters. Ideally, when Q = 50 the
value should remain the same, i.e., mQ + b = 0 and for
Q > 50→ mQ+ b > 0, but it can be adjusted.

x′ = x× (1 +mQ+ b) (4)

In this process, only the different values are considered, that
is, each different value is counted once, the values are all
ascending sorted and its relative position, Q, is obtained by
the position of x in the sorted vector.

To obtain the numerical value for the set of transitions made
by a host, the likelihood corresponding to a host transition is
added together. Any missing value, which does not exist in the
transition matrix, is obtained through the equivalent percentile.
For example, a host that has three transitions values: [5, 10, x],
can obtain the value of x through the median of the known
values. That is, the value 5 belongs to the 20th percentile, and
the value 10 belongs to the 20th percentile, so the value x will
be the value of the 20th percentile (median(20, 20)) that cor-
responds to 7 (central value). Thus, the host has a probability
associated with its path of 5+10+7 = 22. Finally, the values
of each probability of the different time windows are combined
per host in a vector form, e.g., Pentity = (P entity

w1
, ..., P entity

wn
).

2) Robust Random Cut Forest: RRCF [31] is an unsuper-
vised algorithm that detects outliers. This algorithm produces
a metric for each entity, being able to handle: streaming
data, irrelevant dimensions and duplicate values that can mask
outliers. Recall that the distance used is the Euclidean distance,
normalised using Equations (1) and (2).

Outliers are the entities with the highest metric value.
For outlier detection, a decision rule is defined based on
the lowest percentile from which a host is considered an
outlier. RRCF uses randomly generated parameters, so two
consecutive executions may not generate precisely the same
result. This may mean that not all outliers are detected with a
single run, but by running RRCF multiple times it is possible
to mitigate this limitation.

3) Filtering: The RRCF algorithm does not distinguish
between high and low likelihood values. Having in mind that
the objective is to find hosts that take an unusual path (high
likelihood), it is necessary to remove those that the RRFC has
identified and do not have an unusual path (low likelihood).
This process uses two mechanisms: a filter for lower values
and a whitelist. The whitelist is defined based on network
architecture. It may include DNS or web servers, that have
traffic patterns that differ from other hosts. The lower values
filter is defined based on a decision rule, k. The value of k
is used in Equation (5) to calculate the percentile c for each
division Ts, n represents the number of different entities under
analysis. Any value marked by the RRCF but with all proba-
bilities below the filter (P1 < C1 ∧ P2 < C2... ∧ Pn < Cn) is
no longer considered an outlier.

C =
n− k

n
(5)

The result of this last step of the C2BID approach are
outliers.

IV. EXPERIMENTAL EVALUATION

To develop and implement C2BID for evaluation, we used
Python (v3) [39]. Additionally, we used popular libraries
such as Pandas [40] for data manipulation, and Scikit-learn
[26] for data processing and the clustering algorithms. All
the experiments were done in commodity hardware (6-Core
Intel Core i9 2.9GHz with 32GB RAM). The focus of the
experiments is the comparison against different approaches
and performance evaluation.

A. Metrics

We consider an outlier to be a host, identified by an IP
address, flagged by the C2BID. In the following expressions,
we consider True Positives (TP) to be hosts correctly classified
as outliers, True Negatives (TN) hosts correctly classified as
inliers, False Positives (FP) hosts wrongly classified as outliers
and False Negatives (FN) hosts wrongly classified as inliers.
The metrics used in the evaluation are:
• Precision (PREC) – the fraction of outliers that are real

(i.e., true positives):

PREC =
TP

TP + FP
(6)
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• Recall (REC) – the fraction of outliers that are correctly
classified as such by the detector:

REC =
TP

TP + FN
(7)

• F-Score – a global detection score:

FScore = 2× PREC × REC

PREC + REC
(8)

Another metric, accuracy, is frequently used in this context, but
it is misleading with unbalanced datasets, which are essentially
all realistic cases of intrusion detection. Therefore, we avoid
using accuracy, and we privilege F-Score, which summarizes
the overall performance.

B. Dataset characterization

We used two datasets. The first, CIC-IDS2018 [20], that we
designate artificial dataset, was created to test and evaluate
network IDSs. Its authors developed a systematic approach
to produce a diverse and comprehensive benchmark dataset.
In their approach, they created user profiles with abstract
representations of activity seen on the network. Benign be-
haviors were generated using B-profiles. Such a profile is
designed to extract the abstract behavior of a group of human
users, encapsulating the host behaviors of users using various
machine learning and statistical analysis techniques. Malicious
behavior is generated using M-Profiles. These profiles aim to
describe an attack scenario unambiguously, in such a way
that humans might interpret these profiles and subsequently
carry their attacks. The network topology represents a typical
medium company, with 6 subnets, deployed on the AWS cloud
computing platform.

We consider 6 attacks scenarios: brute force attack, DoS
attack, web attacks, infiltration attacks, DDoS and port scan
(Table II). In all days except day 4, the attacks occurred
in two distinct periods, one attack at a time. The rightmost
column indicates the relation between the number of attackers
and victims. The attacks were performed from one or more
machines, using Kali Linux, in a specific network (within
public IPs range) created only to attacker machines.

TABLE II
SUMMARY OF THE ATTACKS FOR THE CIC-IDS-2018 DATASET

Day Attacks and Duration Pattern
1 Brute Force to FTP and SSH (90min each) 1-to-1
2 DoS GoldenEye and Slowloris (40min each) 1-to-1
3 Brute Force to FTP and DoS Hulk (60min + 35min) 1-to-1
4 DoS LOIC-HTTP (60min) n-to-1
5 DoS LOIC-UDP and HOIC (30min+60min) n-to-1
6 Brute force Web/XSS and SQL inj. (60min+40min) 1-to-1
7 Brute force Web/XSS and SQL inj. (60min+70min) 1-to-1
8 Infiltration and port scan (70min+60min) 1-to-1
9 Infiltration and port scan (60min+90min) 1-to-1

The second dataset, military network dataset or real-world
dataset, was obtained from the Security Information and Event
Management (SIEM) system in production in that network,
which collects Netflow events from internal routers [41].

Collecting these flows can give us insights of misbehavior
of internal hosts, undetected by deployed security systems.
The dataset corresponds to a full month, with approximately
5,500 computers and 160 GB of data. The attacks were
stealth dictionary attacks (against SSH and RDP) preceded
by a port scan at a slow pace (5-second interval). The main
reasons for choosing these attacks were: (1) to have attacks
that go unnoticed by traditional protection systems; (2) to
capture internal reconnaissance activities (e.g., port scans)
and slow dictionary attacks used by attackers with privileged
information.

C. Results with the artificial dataset
The counting of positives was done considering all IPs

flagged by C2BID in each Ta. This counting method is
susceptible to FPs since each attack counts only as one TP. We
use the parameters in Table III. Parameters definition depends
on network architecture and use, as well as the sensitivity
desired by operators. For example, for Np definition, it was
considered the one with the best results in DynIDS [14].
Only the internal IPs were analysed since C2BID needs a
continuous source of information which is hard to get with
external IPs. In the particular case of this dataset, all attackers
have an external IP, and all victims have an internal IP. For
each day, there is one victim. The whitelist is all internal IPs
contacted by more than 90 of the internal IPs, taking into
account every day in the dataset.

TABLE III
SUMMARY OF PARAMETERS USED WITH ARTIFICIAL DATASET

Parameter Value Description
Np × 4 400 Number of port-based features

W={w1, ...wn} 10,30,120min Time window durations
Ta 1 day Analysis period of time
Ts 12 hours Ta sub-divisions
ot 50% Overlap threshold
m 0.004 Slope of Equation (4)
b -0.2 Constant of Equation (4)
k 2 Filter parameter
- 99.6 RRCF sensibility

C2BID flagged some IPs that were not listed as malicious
by the dataset authors.1. Initially we considered them FPs, but
further inspection has shown that they were TPs. The manual
analysis was performed by inspecting the flows involving FPs.
For each FP (potential victim), the most contacted IPs were
identified (potential attackers). Then, we observed that indeed
their behavior was suspicious and we searched for the latter
in public databases of malicious IPs and found them. This
confirmed that these were TPs, not FPs, so we started counting
them as such.

We were able to identify all victims all days. Table IV
shows a summary of the results for the 9 days. If we (wrongly)
considered as TPs just the IPs marked by the authors of the
datasets and the others as FPs, we would get a PREC of 0.473,
REC of 1, and F-score of 0.643.

1day 1: 172.31.66.82 and 172.31.67.109; day 2: 172.31.66.112; day 4:
172.31.65.56; day 5: 172.31.69.19; day 9: 172.31.66.100
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TABLE IV
SUMMARY OF THE RESULTS IN ARTIFICIAL DATASET

W PREC REC F-score
10, 30, 120min 0.789 1 0.882

D. Results with the real-world dataset

In this dataset, we applied the values in Table III to all
parameters presented in Section III, except for Ts which was
set to 4 hours. Ts was reduced from 12 hours to 4 hours
because the real-world dataset has almost a continuous flow of
data all day (24 hours), whereas the artificial dataset data only
between 8am and 8pm. The dataset has four servers included
in the whitelist. Only the internal IPs were analysed.

The identified attacks were: (1) slow port scan with 5s
pace (attacker and victim); (2) stealth dictionary attack RDP
(attacker and victim); and (3) stealth dictionary attack SSH
(attacker). We also identified some hosts not involved in emu-
lated attacks but marked as outliers due to a misconfiguration
confirmed by the Security Operations Center.

In summary, the alerts raised by C2BID corresponded to
real threats or anomaly. We were able to identify attackers
and victims in a universe of 5000 hosts. All in all, C2BID
proved to be useful in a practical setting without significant
effort to deploy since it just needs to be fed with NetFlow
events.

E. Comparison with previous approaches

This section compares C2BID with three previous works
in the area: OutGene [11], DynIDS [14], and FlowHacker
[10]. We selected these three because they are recent. We do
not compare with more solutions as they would be older, no
implementations are available, and/or do not follow the same
assumptions regarding no need of training data.

All of the three approaches have two phases: feature extrac-
tion and clustering. They differ from each other in terms of
features and clustering algorithms used. An IP is considered
an outlier if it is in a cluster with just one element. They
only consider as outlier IPs that are isolated in a specific time
window, not analysing cluster changes along time. The fea-
tures were extracted by time windows which, for comparison
purposes, are the same as those shown in Table III and the Ta
value (1 day).

For positive counting we used the same method as before:
number of different IPs marked as outliers in each Ta (1 day).
This method of counting differs from those used by the authors
of the three papers, which leads to different results from those
provided in the original works. This change is due to C2BID
not being adequate for detection in small windows of time,
e.g., of minutes, as these works do; C2BID monitors cluster
changes along several of these time windows. We used both
datasets.

In all cases, it was possible to obtain better values of PREC
and F-score with C2BID, with both datasets. For the real-
world dataset, REC was the same in almost all algorithms.

The main difference between these approaches and C2BID is
that they produced much more FPs.

Figures 3, 4 and 5 show the results regarding OutGene,
FlowHacker and DynIDS for the artificial dataset. The dotted
black line in each graph represents the values obtained for
C2BID (cf. Table IV).

1) Outgene: Outgene uses only fixed features: number of
different IPs contacted by an entity, number of flows were
the host is the source, number of different source ports used
by an entity, number of different destination ports contacted
by an entity, sum of total packets length received by an
entity, sum of total packets length sent by an entity. The
other 8 are similar but for the destination IPs. It also counts
packages send/received by a few well-known ports such as
80, 194, 25 and 22. For clustering, it used K-means. We
used the elbow method to get the optimal number of clusters.
The original work defines the number of clusters based on
empirical experiences. In Figure 3 we can observe small values
for PREC and, consequently, small values for F-score for
Outgene.

2) FlowHacker: FlowHacker builds two feature vectors
(statistic and count-based) using IP addresses as a source
or destination aggregation key and processes both keys in-
dependently. It also counts packages send/received by well-
known port such as 80, 194, 25, 22 and 6667. This approach
has different features comparing with Outgene, DynIDS and
C2BID, such as the ratio of ICMP packets and ratio of packets
with SYN flag. We only present results with destination as
aggregation key because they were better than the others.
In the real-world dataset, due to a lack of information, the
feature about the SYN flag rate was not considered. For
clustering, it used K-means with the elbow method to get the
optimal number of clusters. FlowHacker initially depends on
manual classification for outlier detection, and we shortcut it
by considering as outliers one-host clusters. Figures 3, 4, and
5 show the results with the artificial dataset. It it is possible
to observe worse results when comparing to C2BID.

3) DynIDS: DynIDS introduces the idea of dynamic fea-
tures. The paper presents a few variants of the scheme, but we
consider the one the authors consider to be DynIDS, which is
the one with better results: DYN3 100 [14]. The extraction
of features in DynIDS is very similar to ours. The features
are the same except for average sent/received packet size
and the ratio of the number of packets sent/received and its
duration. DynIDS uses three clustering algorithms, K-Means,
Agglomerative and DBSCAN, and an outlier is flagged only
when returned simultaneously by the three. In Figures 3, 4
and 5 we can see that DynIDS performed worse than C2BID
for all metrics, due to a higher number of FPs. Despite similar
results for PREC, DynIDS was not able to detect all victims
on 120min and 1day time windows.

V. RELATED WORK

There are several surveys and books on intrusion detection
based on machine learning [1], [5], [7]–[9], [41]. An earlier
study using clustering for network intrusion detection is due
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Fig. 3. PREC comparison in OutGene, FlowHacker and DynIDS
for the artificial dataset. The dotted black line represents the value
obtained for C2BID.

Fig. 4. REC comparison in OutGene, FlowHacker and DynIDS for the
artificial dataset. The dotted black line represents the value obtained
for C2BID.

Fig. 5. F-score comparison in OutGene, FlowHacker and DynIDS for the
artificial dataset. The dotted black line represents the value obtained for
C2BID.

to Leung and Leckie [42]. They present their own clustering
algorithm (fpMAFIA) and test it with an old dataset (KDD
99). Several other approaches appeared afterwards [43]–[46],
always focusing on attack identification without prior knowl-
edge. UNIDS outperforms traditional approaches by applying
an unsupervised outlier detection based on sub-space cluster-
ing and multiple evidence accumulation [4]. By using PCA and
clustering in a substantial volume of logs, Beehive was able
to detect malware infections and policy violations that went
otherwise unnoticed [6]. Gonçalves et al. used logs analysis to
detect misbehavior [15]. They combined supervised and unsu-
pervised (clustering with expectation–maximisation) machine
learning. The output of the process was not accurate enough to
take automatic actions. It extracted relevant information from
logs that otherwise were not directly observable. Malicious
traffic and malicious hosts are identified by flows inspection
in FlowHacker, without requiring either previous knowledge
about attacks or traffic without attacks [10]. Outliers were
identified using K-means. The system was able to detect and
classify attacks through traffic analysis. It generated some
false positives and missed some malicious flows. OutGene
also applied K-Means to network flows [11]. It used a genetic
algorithm to identify the features that were more relevant to

characterise a cluster. DynIDS is a framework with dynamic
port selection based on most used ports, less used and more
uncommon ports [14]. They also applied three clustering
algorithms (K-Means, DBSCAN and Agglomerative) and got
a reduction of FP rate.

Some recent works do do not use clustering and rely on
knowledge of what good behavior is. Cinque et al. used
entropy to infer deviations from a baseline [47]. DeepLog
was inspired in natural language processing and interprets
logs as elements of a sequence that follows grammar rules
[48]. Kitsune uses an ensemble of neural networks called
autoencoders to differentiate between normal and abnormal
traffic patterns collectively [49]. AI2 was a log-based system
where density-based, matrix decomposition, and replicator
ANN were used to modelling the joining behavior of different
hosts within a big raw dataset [50]. This system was able
to learn and defend against unseen attacks. Marchetti et al.
developed an automatic and early detection APT system [51].
It extracted and analysed flow records to build a comparative
analysis of past behavior of each host by the computation of
suspiciousness scores. The framework could identify burst and
low-and-slow exfiltration.

Data change can be seen as a time series if we refer to an
ordered list of numbers, or as a sequential pattern if it is a list
of nominal values, e.g., symbols. There are several approaches
to detect data changes in time [52]–[55]. Bornemann et al.
applied the concept of time series clustering to detect abnormal
changes [56], [57]. Although this kind of analysis is useful
when the subject is a list of numbers, it can not be used on
nominal values. Han et al. proposed that collective outliers
in temporal sequences can be detected by learning a Markov
model from the sequences [58]. A subsequence can then be
declared as a collective outlier if it significantly deviates from
the model.

Cluster monitoring allows us to correlate changes in clusters
of two consecutive time windows. Over time clusters may suf-
fer some changes. These changes are detectable by associating
clusters over multiple time windows. MClusT is a framework
that uses bipartite graphs and conditional probabilities to moni-
tor transitions defined in the defined taxonomy [59]. Landauer
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et al. based their approach on cluster evolution techniques
where the same elements are observed and clustered over time
[38]. They use cluster evolution in order to process log data in
a streaming manner rather than being limited to fixed-size data
sets. To detect anomalies, the authors checked whether a future
value lies within the prediction interval, using the last recorded
time step and thus create a forecast for upcoming values.
Authors identify a high amount of FPs in the evaluation results
of their framework. C2BID apply a classification system
similar to the one presented in [38] to construct the history
path. We use the binomial cluster and entity instead of log
and entity. C2BID decrease the FPs because it uses a different
outliers detection method and study NetFlows instead of logs.
On the contrary of MClusT, their proposal does not rely on
clustering association on conditional probability but on direct
association between elements in different time windows.

Clustering methods in cybersecurity have only been applied
to specific time windows, not to correlate results from se-
quences of time windows. Time series works do not apply
directly to cybersecurity and are sometimes dependent on
supervised learning methods. The existing cluster classification
methods produce a high amount of FPs. We advance previous
work by considering multiple time windows and understanding
host movement between clusters through sequential series
clustering techniques in sequences of time windows.

VI. CONCLUSION

We present C2BID, an approach for network intrusion
detection, based on unsupervised learning, that detects unde-
fined attacks without signatures and clean training data. Our
approach is not focused on real-time intrusion detection as
we need a considerable period of flows to get results. The
approach is based on clustering, i.e., on aggregating hosts with
similar traffic patterns; on time analysis, i.e., on the behavior
of a host in a time period; and on cluster monitoring, i.e., an-
alyzing cluster changes to detect outliers. In the experiments,
almost all flagged outliers were either attacks or misconfigured
hosts. By correlating more than one time window it was
possible to detect attacks occurring in different rates. C2BID
was able to reduce the number o FPs even in big datasets
comparing with other approaches as OutGene, FlowHacker,
and DynIDS. When compared with previous works, C2BID
achieved better results both with an artificial dataset and in a
real-world scenario.
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