
Model Predictive Control with a Neural Network Model of a

Formula Student Prototype

Henrique Manuel Caldeira Pimentel Furtado
henrique.furtado@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

November 2020

Abstract

Autonomous vehicles are becoming increasingly popular amongst the general public and Formula
Student competitions are encouraging the development of this technology. The interest in this area
has increased over the last years, motivated by the added safety and convenience, as well as cost
reduction. The objective of this work is to design a controller with the Model Predictive Control
(MPC) methodology for a Formula Student prototype that works on the respective competition tracks.
The proposed solution consists in implementing a nonlinear MPC with an Artificial Neural Network
(ANN) prediction model.A nonlinear prototype dynamical model was presented and developed, on
which control algorithms were implemented and simulated. This dynamical model was validated
by introducing in its inputs recorded data from the steering angle and velocity and comparing the
simulated outputs with real data from the prototype. The dynamical model was then identified, using
an ANN based on adequate signals that capture the entire operation envelope of the system. Reference
trajectories were parameterized with respect to the arc length of a series of third order polynomials
and the contour error relative to the trajectory was defined. A cost function optimizes the evolution of
the states predicted by the ANN model, such that the contour error is minimized while the progression
along the track is maximized, during the prediction horizon. The developed MPC controller tracked
well the reference trajectories. A different ANN is explored, receiving as inputs the reference trajectory
and the states of the system and returning as outputs the respective control actions, thus replacing the
MPC and the need of optimizing in real-time.

Keywords: Model Predictive Control, Artificial Neural Networks, Formula Student, Autonomous
Driving

1. Introduction

1.1. Motivation

In Formula Student competitions, students are
challenged to design, build and test a race car ac-
cording to a specific set of rules stated by Formula
Student Germany (FSG) and Formula Society of
Automotive Engineers (FSAE). The Formula Stu-
dent Team of Técnico Lisboa (FST Lisboa) has been
developing cars for these competitions since 2001.
In 2019, the team began pursuing two projects si-
multaneously in its 10th generation of cars. It is
building a new electric prototype - FST10e - and
at the same time empowering FST09e, the car that
competed in the summer of 2019, with autonomous
features, which will become FST10d.

The performance of the prototypes participating
in the competition is evaluated in a series of four
separate dynamic events: Acceleration; Skidpad;
Autocross and Endurance/Trackdrive & Efficiency.

Following the growing investment from the au-

tomotive industry in autonomous driving [1], the
organization of FSG has decided that from 2021
onwards all participating vehicles will have to com-
plete the acceleration event in driverless mode and
from 2022 onwards, driverless is also mandatory for
the skidpad. reinforcing the incentive for FS teams
to develop this technology.

1.2. State of the Art

Some FS teams have successfully implemented
Model Predictive Control (MPC) in their cars, like
AMZ from Zurich [2] and Oxford Brookes Racing
[3]. MPC dates back to the 1970s and it started to
emerge industrially in the 1980s [4]. In recent years,
with the increasing computing power of micropro-
cessors, its use has spread to many other fields in-
cluding automotive and aerospace, being used for
example in power system balancing models [5] and
in power electronics [6].

MPC has the advantage of computing the op-

1

timal solution by using a prediction model which
allows the controller to deal with a replica of the
system dynamics, improving the control quality [7].
It also has the advantage of allowing constraints on
the inputs, outputs, and states of the system. The
prediction model typically involves modelling the
physics of the system through mathematical expres-
sions. Most MPC algorithms are based on a linear
model of the system. When the goal is to main-
tain the system at a desired steady state (which
happens often in industrial processes), rather than
moving rapidly between different operating points,
a precisely identified linear model is sufficiently ac-
curate around a certain operating point [8]. If the
system is highly nonlinear and large frequent distur-
bances are present, a nonlinear model is necessary
to describe the dynamics [9].

In situations where a nonlinear model is required,
the task of obtaining an accurate dynamical model
is more difficult. Artificial neural networks (ANN)
provide an easier way to model complex systems
due to their ability to learn and approximate non-
linear functions. These models can then be used as
a prediction model for the MPC.

2. Vehicle Dynamics Model

A car is a complex system which can be divided
in several subsystems. Figure 1 shows schemati-
cally these subsystems and how they interact with
each other. The dynamical model developed in this
work is built upon existing models of previous FST
Lisboa prototypes [10, 11].

Figure 1: General Structure of the Vehicle Model

There are three subsystems that have a major im-
pact in the forces applied on a car: the powertrain,
the aerodynamics and the tyres. The planar model
receives these forces and determines the horizontal
movement of the vehicle, as well as the accelera-
tions (v̇x and v̇y). These accelerations generate load
transfers, on top of which the aerodynamic loads
are added and the vertical load on each tyre (Fz)
is then calculated in the vertical model, by simulat-
ing the response of the suspension. The tyre model
takes the vertical loads on the tyres together with
the velocity components and the steering angle (δ)

to determine the tyre lateral forces (Fyi) given to
the planar model. The driver controls the steering
angle and the reference velocity, which is then con-
verted to a certain percentage of throttle or brake
pedal.

2.1. Planar Model

In Figure 2 the forces applied on the car in the
planar model are illustrated.

Figure 2: Forces Applied on the Vehicle - Planar
Model

Only the front wheels are steerable and each
wheel has a different steering angle, due to the Ack-
ermann geometry. The track width is the same at
the front and at the rear. Combining the forces in
Figure 2 with force and moment equilibrium, the
following equations can be obtained:

v̇x = vy·ψ̇−
1

m
[

2∑
i=1

Fy
F
i sin(δi)−

2∑
i=1

Fx
F
i cos(δi)−FRx]

(1a)

v̇y = −vx·ψ̇−
1

m
[

2∑
i=1

Fy
F
i cos(δi)+F

R
y +

2∑
i=1

Fx
F
i sin(δi)]

(1b)

ψ̈ =
1

Iψ
a[

2∑
i=1

Fy
F
i cos(δi) + Fx

F
i sin(δi)]−

1

Iψ
bFRy

(1c)
where the superscripts F and R denote the total

forces in the respective component at the front and
at the rear and Iψ is the inertia around the z-axis.

2.2. Validation

The vehicle model receives as inputs the steering
angle and the reference velocity and it outputs the
trajectory, lateral acceleration and yaw rate. Data
from a skidpad event is used to validate the model,
with the steering encoder recording the steering an-
gle and the GPS recording the velocity of the vehi-
cle, which is given as the reference velocity to the
model. The skidpad consists of 2 circles to the right
followed by to circles to the left, all with the same
radius. Negative values of steering angle, lateral ac-
celeration and yaw rate represent the car cornering

2

to the right while positive values represent the car
cornering to the left.

The next step is to give these inputs to the model
and compare the simulation outputs with the real
data. Figure 3 shows the lateral acceleration sim-
ulated and experimental. Figure 4 shows that the
simulated model follows closely the yaw rate of the
real car.

0 5 10 15 20 25 30

Time [s]

-15

-10

-5

0

5

10

15

L
a

te
ra

l
a

c
c
e

le
ra

ti
o

n
 a

y
 [

m
/s

2
]

Comparison between measured and simulated lateral acceleration

Real data from GPS

Data from simulation

Figure 3: Comparison between measured and sim-
ulated lateral acceleration

0 5 10 15 20 25 30

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

Y
a

w
 r

a
te

 [
ra

d
/s

]

Comparison between measured and simulated yaw rate

Real data from gyroscope

Data from simulation

Figure 4: Comparison between measured and sim-
ulated yaw rate

Table 1 displays the average error between mea-
sured vehicle data and simulated data and it shows
that the dynamics of the simulation are realistic
enough to test different control techniques.

Average relative error

vx ay ψ̇
1.4% 3.4% 1.7%

Table 1: Average error between vehicle data and
simulation

3. Artificial Neural Networks Model

The goal in this section is to identify the vehicle
model with an artificial neural network, using an
adequate network architecture and a set of parame-
ters which best model the vehicle system, described
by an appropriate set of input-output data.

3.1. Data

The inputs of the neural network are the steer-
ing angle (δ) and the reference longitudinal velocity
(vref). The outputs are the velocities of the vehicle

(vx, vy and ψ̇). Feedback exists for both inputs and
outputs. This can be formulated as the following
NARX model, also illustrated in Figure 5:

y(k) = F [u(k− 1),u(k− 2),y(k− 1),y(k− 2)] (2)

where k denotes the current sampling instant, the
input vector is represented by u and the output
vector is represented by y.

This ANN is to be used as a prediction model
for MPC. As such, for each time step, past sim-
ulated values from vx, vy and ψ̇ are available for
the the feedback delays in the network, but during
the prediction horizon Hp these values are obtained
through feedback from the ANN outputs.

Figure 5 shows the inputs and outputs of the neu-
ral network with the respective delays.

Figure 5: Closed loop neural network structure

The data used to construct the neural network
model has to be divided in three different categories:
training, validation and testing. The training data
subset is used to directly estimate the weights and
biases of the ANN, which means that performance
estimates relative to the training dataset are biased.
The validation dataset is used to rank multiple de-
signs and to determine when overtraining and over-
fitting begin to occur. Overtraining occurs when
the performance on the training data is increased
at the expense of deteriorating the performance on
the nontraining data. Overfitting occurs when more
weights and biases then necessary are used. Vali-
dation data is thus used to measure network gen-
eralization and to halt training when generaliza-
tion stops improving. Finally, the testing dataset is
used to obtain unbiased estimates of performance
on nontraining data [12].

For the selection of the training, validation and
testing groups, several data from different tracks
was available. All the data was recorded between

3

July and August of 2019 with FST09e, from the fol-
lowing events: FS East endurance event; FS East
skidpad event; FSG endurance event and Stuttgart
practice track. As such, the available data was com-
pared between each other in order to provide more
insight to which tracks covered the situations the
dynamical model can experience. Training is done
with approximately two laps of FS East endurance,
validation is done with approximately 1 lap of FSG
endurance and the test is done with a skidpad run
(2 circles to the right and 2 circles to the left).

3.2. Data Preprocessing

Since the steering encoder and the used GPS have
different sampling times (0.02s and 0.055s respec-
tively), the data from these sensors was resampled
with a sampling time of 0.055s.

Neural networks models learn a mapping between
input and output variables. As such, the scale
and distribution of the data may be different for
each variable. To ensure all variables are learned,
the data was rescaled using standardization, which
rescales the distribution of values so that the mean
of observed values is 0 and the standard deviation
is 1. A value u(k) is standardized to u(k)stdd by the
following equation:

u(k)stdd =
u(k)− u
σu

(3)

where u represents the sample mean and σu repre-
sents the standard deviation of the sample.

3.3. Application and Results

Supervised batch learning was used since all the
data of the inputs and target outputs is avail-
able a priori. The learning algorithm used was
the Levenberg-Marquardt. The performance of
the ANN is measured by the mean squared error
(MSE), which is the sum of the difference between
the real target outputs (y(k)) and the ones calcu-
lated by the ANN (ŷ(k)), divided by the total num-
ber of samples N, according to Equation 4:

MSE =
1

N

i=N∑
k=0

(y(k)− ŷ(k))2 (4)

Training is performed in two stages. In the first
stage the network is created and trained in open
loop form, as shown in Figure 6. This allows the
network to be supplied with the correct past out-
puts during training to produce the correct current
outputs. Afterwards, the network is converted to
closed loop, as in Figure 7, which is the way it is
intended to be used, and it is retrained in closed
loop, to further improve its performance, using the
network trained in open loop as a starting point. In
both figures it can be seen that the hidden layer ac-

tivation function is a sigmoid while the output layer
activation function is linear.

Figure 6: Neural network structure in open loop
during training

Figure 7: Neural network structure in closed loop

Several parameters were varied and the best re-
sults were obtained with one hidden layer with 10
neurons, with 2 delays for both input and output
feedback.

In Figures 8, 9 and 10 the results in closed loop
are presented, i.e. the neural network used its
own outputs as feedback, and not the target out-
puts. It can be seen that good approximations were
achieved on all datasets. This indicates that the
obtained neural network may be used as a reliable
dynamical model for the vehicle. Training, valida-
tion and testing are shown continuously but during
training, each dataset had its separate initialization
values on the output feedback.

0 50 100 150 200 250

Time [s]

0

5

10

15

20

25

Output

Target

Training starting point

Validation starting point

Testing starting point

Figure 8: Comparison between the target vx and
the output of the ANN

0 50 100 150 200 250

Time [s]

-1.5

-1

-0.5

0

0.5

1

1.5
Output

Target

Training starting point

Validation starting point

Testing starting point

Figure 9: Comparison between the target vy and
the output of the ANN

4

20 40 60 80 100 120 140 160 180 200

Time [s]

-3

-2

-1

0

1

2

3
Output Target Training starting point Validation starting point Testing starting point

Figure 10: Comparison between the target ψ̇ and
the output of the ANN

In Figure 11 the MSE is shown with respect to
the number of iterations. The test curve shows that
the neural network performed well in the skidpad,
a track with a different layout.

0 2 4 6 8 10 12

13 Epochs

10
-3

10
-2

10
-1

10
0

10
1

10
2

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
 (

m
s
e
)

Best Validation Performance is 0.013908 at epoch 7

Train

Validation

Test

Best

Figure 11: Performance of the ANN

4. Nonlinear Model Predictive Control
4.1. Contouring Formulation

The objective of the contouring formulation is to
follow a reference path as fast as possible. The con-
touring formulation from [13] is adapted and im-
plemented in the present case. The reference paths
are the trajectories obtained in the vehicle model
shown in Section 2, using as inputs real data from
steering angle and reference velocity. The reference
path is then parameterized by arc length (t). For
this, a third order spline is used, since it offers a
fast way to evaluate any point along the contour
(Xref (t), Yref (t)). In order to follow the path, the
position of the car (X,Y) has to be connected to
the position on the path, i.e. the arc length. This
arc length is represented by t and it can be com-
puted by projecting the position of the car (X,Y)
onto the reference path.

The arc length parameter is represented by t ∈
[0, L], where L is the total length. The splines used
for this parameterization are obtained by an offline
fitting of the trajectory. Using this parameteriza-
tion, any point Xref (t), Yref (t) on the path can be
obtained by evaluating a third order polynomial for
its argument t. The angle of the tangent to the
path at the reference point, Φ(t), with respect to
the x-axis can be calculated by:

Φ(t)
∆
= arctan

(∂Yref (t)

∂Xref (t)

)
(5)

Error measures define the deviation of the current
position of the car X,Y from the desired reference
point Xref (t), Yref (t) and this measure is needed to
formulate the MPC problem. This deviation is the
contouring error, which can be visualized in Figure
12:

Figure 12: Contouring error of the vehicle (X,Y)
relative to the reference trajectory (Xref , Yref)

Let tmin : IR2 −→ [0, L] be a projection operator
on the reference trajectory defined by:

tmin
∆
= argmin

t
(X −Xref t))

2 + (Y −Yref (t))2 (6)

where tmin is the arc length that corresponds to
the closest point in the reference path in relation to
the current car position. The orthogonal distance
from the car to the reference path is given by the
contouring error ec, which can be approximated by
its normal component en:

en(X,Y, tmin)
∆
= sin(Φ(tmin))∗(X−Xref (tmin))−

− cos(Φ(tmin)) ∗ (Y − Yref (tmin)) (7)

Note that this is not the same as calculating the
Euclidean distance because of the tracking error,
represented in Figure 12 by et, which inevitably ex-
ists because the values of t are discretized. The pre-
sented formulation remains accurate even if track-
ing error is present.

4.2. MPC Problem Formulation
Figure 13 shows the overview of the proposed con-

trol architecture. Since all simulations are to be
made in Simulink, the nonlinear MPC block is used,

5

customizing it to use the cost function in Equation
8a with the respective constraints and the ANN
state prediction model described in Section 3.3. The
function fmincon is used to minimize the cost func-
tion while respecting the constraints. The MPC
outputs the two control actions: steering angle (δ)
and reference velocity (vref), which are the inputs
given to the car dynamical model detailed in Sec-
tion 2. This model then outputs the velocities vx,
vy and ψ̇. which are converted to global coordinates
and feedback to the MPC. The time step (Ts) of the
MPC is the same as the ANN: 0.055s.

Figure 13: Proposed Nonlinear MPC Control Ar-
chitecture

4.3. Cost Function
After defining the error measures, the MPC prob-

lem can now be formulated. The formulation shown
is based on the one used in [13] with some adapta-
tions. The goal is to minimize the contouring error
while maximizing the progress along the track over
a finite horizon of Hp sampling times, while respect-
ing model dynamics and input constraints:

J = min

Hp∑
k=1

||en(k)(X(k), Y (k), tmin(k))||2wn−

− wt ∗ tmin,N + ||∆δ(k)||2w∆δ+

+ ||∆vref (k)||2w∆vref + ||δ||wδ (8a)

s.t. y(k) = F [y(k−1),y(k−2),u(k−1),u(k−2)]
(8b)

u ≤ u(k) ≤ u (8c)

∆u ≤ ∆u(k) ≤ ∆u (8d)

where X(k), Y (k) is the position of the car at
time step k, determined by the nonlinear predic-
tion model F [.] in Equation (8b), which is based
on the ANN obtained in Section 3.3, where u(k)
represents the input vector and y(k) represents the
output vector. The term en is the approximation
to the contour error defined in Equation (7). By
subtracting the term tmin,N to the cost function,
the arc length parameter t is maximized, thus the
car progress over the track is also maximized. The
variable δ is the steering angle control action, and

vref is the reference velocity control action. This
cost function minimizes the variations of the con-
trol actions, and it also minimizes the module of
the steering wheel angle. Tuning weights (wi) exist
for each parameter.

Constraints (8c) and (8d) limit the inputs u
to physically admissible values. These constraints
limit the rotation of the steering wheel and its max-
imum rotation speed. The maximum rotation de-
pends on the steering geometry and the maximum
rotation speed depends on the actuators used for
the steering wheel in the autonomous vehicle. A
minimum vehicle velocity of 5 km/h was defined to
avoid trivial solutions and a maximum velocity of
30 km/h was defined. This value can be increased
once the algorithm is successfully tested in the real
prototype. The variable ∆vref represents the longi-
tudinal acceleration of the car and the upper limit
for the constraint is the maximum longitudinal ac-
celeration of the car obtained during simulations,
while the lower limit was set considerably lower
than the maximum negative acceleration simulated,
which was 19.4 m/s2. This is to prevent solutions
with the car braking on the limit of tyre grip while
also turning the steering wheel, which leads to un-
stable behaviour. A human driver has the ability
to brake and turn at the same time while balancing
the limits of grip, but this is harder to reproduce
with a controller.

4.4. Simulation Results
In order to test the developed controller, a refer-

ence trajectory is given. For this, data from FS East
endurance is used. The steering angle and reference
velocity are given to the dynamical model and the
obtained output trajectory is saved and used as ref-
erence for the MPC. In Figure 14 the trajectory
obtained with this simulation is shown. The blue
markers show the track limits. In Formula Student
competitions the track width varies along the track
but the minimum width is 3m, according to compe-
tition rules [14]. To take in consideration the fact
that the trajectories shown are for the CoG of the
car, the track limits represented correspond to the
minimum track width subtracting the width of the
car (1.2m): 3 − 1.2 = 1.8m. Hence if the output
trajectory is within the limits of the blue markers,
this means that the whole car should stay inside the
track.

The sampling time of the controller is Ts = 0.055s
and the prediction horizon length is Hp = 15 time
steps, which gives an ahead prediction of 0.825s.
The control horizon is Hc = 3 time steps. Sev-
eral combinations of these parameters were used but
the closest tracking of the reference trajectory was
achieved with this set of parameters.

It can be verified that the maximum velocity of

6

Figure 14: Simulated trajectory with MPC with the
velocity profile for FS East track

the car was constrained to 30 km/h, which is ap-
proximately 8.3 m/s. The color of the trajectory
indicates the velocity of the car, which is constant
throughout most of track, as indicated by the yel-
low line in Figures 14 and 15. The car stays inside
the track limits throughout the entire run.

Figure 15 shows the MPC controller following the
reference trajectory of the centreline of the skidpad.
From this Figure, the car also stays within track
limits during the entire simulation. The parame-
ters used for the skidpad are the same as for FS
East, except for one change that was done due to
the fact that the track intersects itself, which only
happens in the skidpad event. Previously, when
calculating the contouring error, the argument tmin
was used, which is the arc length that corresponds
to the reference point closest to the current trajec-
tory point. This is valid when the track does not
intersect itself, but if that is not the case, then the
closest position point may not be the right one to
use as a reference. To solve this issue for the case
of the skidpad, the references for the calculation of
the contouring error are calculated with the estima-
tion tmin(k + 1) = tmin(k) + vx × Ts. This means
the reference trajectory over the prediction hori-
zon, instead of corresponding to the points closest
to the current trajectory, corresponds to the points
X(t), Y (t) with the parameter t closest to tmin.

4.5. Runtime
Due to the complexity involved in the nonlinear

optimization and in the nonlinear model used, the
computation time is longer than the sampling time

Figure 15: Simulated trajectory with MPC with the
velocity profile for skidpad track - the car starts on
the left, performs two circles to the right followed
by two circles to the left and finishes in the middle

of 0.055s by a very significant amount, thus it is not
possible to implement this controller in the real pro-
totype with the current technology. Even reducing
the prediction and control horizons and increasing
the sampling time proved to not be enough. The
computer used to run this simulation has an Intel®
Core™ i7 5700HQ processor, which has similar ca-
pabilities to the hardware currently used in the car
for its control algorithms.

5. Learning the MPC with an ANN
5.1. ANN Structure and Training

Due to the long computation times of the con-
troller, a different implementation approach is
tested. In Section 3.3 it was seen how a neural net-
work could learn the dynamics of the vehicle (vx, vy
and ψ̇) that result from inputs of steering angle (δ)
and reference velocity (vref). If instead, the neu-
ral network learns what the steering angle and the
reference velocity should be for a certain progres-
sion of reference trajectory coordinates over time
(Xref (k), Yref (k)), then it may be possible to con-
trol the vehicle using such network without the need
for online computation of the control actions. Two
ANN model structures are going to be analysed in
this chapter: NARX and NFIR models. Unlike a
NARX model, which requires output feedback, a
NFIR model does not. In the neural network con-
troller proposed in this chapter, there is no way

7

to guarantee that the outputs of the ANN to be
trained will be sufficiently accurate. If the neural
network receives wrong outputs through feedback,
the errors will propagate. This is a more exigent
situation than when the ANN is used as a predic-
tion model in the MPC, since in that case the model
predictions are feedback only for a limited Hp hori-
zon.

Since the trajectory is previously known but the
velocity is not, there is no information about the
sampling time of each input for training the ANN.
Instead of spacing the data with equal sample times,
the data was spaced with equal sample distances,
which means that between each sample, the car cov-
ers 2 cm.

Using third order polynomials just like in Section
4.1, it is possible to parameterize the track by its
arc length, which is equivalent to the distance trav-
eled along the track. The track was parameterized
with small equal arc length distances, and for each
data sample, the steering angle and the reference ve-
locity were interpolated from simulation data from
the car dynamical model (Section 2). The data used
for learning was also standardized according to the
method described in Section 3.2.

To try to improve the learning results, additional
data preprocessing is done. The coordinates of the
reference trajectory Xref , Yref are inputs of the
ANN. These coordinates can be converted to co-
ordinate variations (∆Xcar,∆Ycar) on the vehicle
reference axis, which should prevent the ANN from
learning only specific track coordinates. For this, a
similar formulation to the trajectory error defined
in Section 4.1 is used, as shown in Figure 16 with
two consecutive points of a given trajectory. The
variable ∆Ycar can be seen as the normal reference
trajectory variation, relative to a line tangent to the
reference point at instant k while ∆Xcar can be seen
as the parallel reference trajectory variation along
the tangent to the reference point at instant k, as
demonstrated by Equations 10 and 11, being Φ the
angle of the tangent relative to the x-axis:

Φ(k)
∆
= arctan

(∂Yref (k)(t)

∂Xref (k)(t)

)
(9)

∆Xcar
∆
= −cos(Φ(k))∗

(
Xref (k)−Xref (k+1)

)
−

− sin(Φ(k)) ∗
(
Yref (k)− Yref (k + 1)

)
(10)

∆Ycar
∆
= sin(Φ(k)) ∗

(
Xref (k)−Xref (k + 1)

)
−

− cos(Φ(k)) ∗
(
Yref (k)− Yref (k + 1)

)
(11)

Since the MPC has information about future
states when computing the control actions, the

Figure 16: Coordinate variations ∆Xcar and ∆Ycar
relative to vehicle reference frame at instant k

same type of information may be useful for the ANN
to better learn the control actions. Therefore, addi-
tional inputs are given to the ANN when training,
as will be shown in Figures 17 and 18. These inputs
correspond to future reference position variations,
so that at instant k the ANN receives information
about the current and future position variations,
which is more similar to how an MPC controller
works. Different values for the number of future ref-
erence input signals, n, were experimented but the
best results were achieved with n = 11. This value
is similar to the prediction horizon of the MPC,
Hp = 15.

Two main types of neural network architecture
are tested: ANN controller 1 - receives as inputs
only the coordinates variations of the reference tra-
jectory (∆Xcar,∆Ycar), and ANN controller 2 -
which also receives as inputs the current states of
the vehicle (X,Y and ψ). A scheme of these ANN
is displayed in Figures 17 and 18, where the NFIR
model with one input delay is represented for sim-
plicity. Adding the states as inputs makes the ANN
controller similar to an MPC controller, which also
receives the current states at each time step. For
the ANN controller 1, without the vehicle states,
the training was done with data from the real pro-
totype on FS East endurance and FSG endurance,
while for the ANN controller 2, with the vehicle
states, the data used was from simulation with the
MPC controller on FS East endurance and FSG en-
durance as well.

To determine the best architecture for each of the
two ANN controllers, different ANN are trained and
compared by varying the number of delays, input
delays in the case of NFIR models and both input
and feedback delays in the case of NARX models,
and the number of future reference input signals.

The lowest MSE for ANN controller 1 is achieved

8

with a NFIR model with 2 input delays and 11 fu-
ture reference input signals, shown in Figure 17,
while the lowest MSE for ANN controller 2 is
achieved with a NFIR model with 1 input delay
and 11 future reference input signals, as shown in
Figure 18.

Several numbers of hidden layers and neurons
were experimented and best results were achieved
with 2 hidden layers, with 25 neurons each. For
ANN controller 1 the MSE on the training data is
1.02, while for ANN controller 2, the MSE achieved
is better: 0.25.

Figure 17: ANN controller 1 with future reference
input signals

Figure 18: ANN controller 2 with future reference
input signals

5.2. Results
Both ANN were simulated, replacing the MPC

controller in the closed-loop configuration. The tra-
jectory obtained for FS East endurance track with
ANN controller 1 is shown in Figure 19. During this
simulation, the reference trajectory is compared to
the simulated one, and the control action corre-
sponding to the closest reference point is given.
This controller tracks the reference trajectory, rep-
resented with a black line, for some corners until

a certain time instant. Even though the MSE be-
tween the outputs and the targets of the ANN is
relatively small, the accumulation of errors ends up
being significant. This brings out the major issue
with this type of controller, which is its inability
to feedback errors, unlike MPC or even PID con-
trollers.

Figure 19: Simulated trajectory with ANN con-
troller on FS East track

The trajectory obtained with the ANN controller
2 is shown in Figure 20. This controller starts the
corner well, but quickly goes offtrack. This may be
due to the fact that the data given for the ANN
to learn contained states (X, Y and ψ) of a ve-
hicle that followed the reference trajectory closely,
as shown in Figure 14. When the vehicle follows
the trajectory almost perfectly, there is not enough
dynamical information for the ANN to learn well.

Figure 20: Simulated trajectory with ANN con-
troller 2 on FS East track

9

6. Conclusions

Using the principles of vehicle dynamics, a car
model was obtained and validated by comparing its
results to real data. Data from testing and from
competitions was selected and preprocessed in or-
der to train a neural network that is a good approx-
imation to the vehicle model. In order to design an
MPC, the reference trajectory was parameterized
with respect to its arc length and the contour er-
ror was defined. The cost function is such that the
contouring error is minimized while progress along
the track is maximized.

It was proven that it is possible to use a prediction
model based on an artificial neural network to con-
trol the vehicle in a defined trajectory. Despite the
advantages ANN provide of not requiring knowl-
edge about the system due to black box modelling,
the nonlinear optimization still takes a significant
amount of computation time, which is a barrier for
real-time implementation of this control technique.

To attempt to solve the long computation times,
several different neural network models were tested
to learn the model predictive controller dynamics.
In spite of the ANN models providing a good ap-
proximation of the simulated output controller sig-
nals in the learning phase, they were not able to
sustain the same performance in a real-time imple-
mentation due to the feedback error accumulation.

After good results and reasonable computation
times are obtained in simulation, one of the follow-
ing steps is to implement the control algorithm in
a real Formula Student prototype. Other control
strategies may be explored such as Adaptive MPC
[15] and Explicit MPC [16].

References

[1] C.F. Kerry and J. Karsten. Gauging invest-
ment in self-driving cars, 2017. [Online; ac-
cessed on August 2020].

[2] J. Kabzan, M.I. Valls, V.J.F. Reijgwart,
H.F.C. Hendrikx, C. Ehmke, M. Prajapat,
A. Bühler, N. Gosala, M. Gupta, R. Sivane-
san, A. Dhall, E. Chisari, N. Karnchanachari,
S. Brits, M. Dangel, I. Sa, R. Dubé, A. Gawel,
M. Pfeiffer, A. Liniger, J. Lygeros, and R. Sieg-
wart. AMZ Driverless: The Full Autonomous
Racing System. May 2019.

[3] R Shreyas, A. Bradley, and G. Collier. MPC
Controller for Autonomous Formula Student
Vehicle. In SAE Technical Paper. SAE Inter-
national, March 2020.

[4] J. Richalet, A. Rault, J. Testud, and J. Pa-
pon. Model predictive heuristic control: Ap-
plications to industrial processes. Automatica,
14:413–428, September 1978.

[5] M. Arnold and G. Andersson. Model Pre-
dictive Control of energy storage including
uncertain forecasts. In Proceedings of the
17th Power Systems Computation Conference
(PSCC 2011), Stockholm, Sweden, August
2011.

[6] T. Geyer. Model predictive control of high
power converters and industrial drives. Wiley,
2016. ISBN:978-1-119-01090-6.

[7] E.F. Camacho and C. Bordons. Model Predic-
tive Control. Springer, 1999.

[8] M. Lazar and O. Pastravanu. A neural predic-
tive controller for non-linear systems. Mathe-
matics and Computers in Simulation, 60:315–
324, 09 2002.

[9] J. Qin and T. Badgwell. A Survey of Industrial
Model Predictive Control Technology. Control
engineering practice, 11:733–764, 07 2003.

[10] Lúıs Miguel Marcos Abrunhosa Vieira Abreu.
Mechanical design of the wheel assembly of an
electric Formula Student prototype. Mechanical
engineering master’s thesis, Instituto Superior
Técnico, 2019.

[11] André Manuel Pinheiro Antunes. Sideslip Es-
timation of Formula Student Prototype. Me-
chanical engineering master’s thesis, Instituto
Superior Técnico, 2017.

[12] H. Demuth, M. Beale, and M. Hagan. Neural
Network ToolboxTM User’s Guide. The Math-
Works, Inc., 2017.

[13] A. Liniger, A. Domahidi, and M. Morari.
Optimization-based autonomous racing of 1:43
scale RC cars. Optimal Control Applications
and Methods, April 2014.

[14] Formula Student Germany. Formula Student
Rules 2020, 2020.

[15] M. Bujarbaruah, X. Zhang, E. Tseng, and
F. Borrelli. Adaptive MPC for Autonomous
Lane Keeping. In 14th International Sympo-
sium on Advanced Vehicle Control (AVEC),
July 2018.

[16] C.F. Lee, C. Manzie, and C. Line. Explicit
Nonlinear MPC of an Automotive Electrome-
chanical Brake. In Proceedings of the 17th
World Congress. The International Federation
of Automatic Control, July 2008.

10

