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Resumo

A presença de smartphones no dia-a-dia mudou a experiência e as expectativas dos utilizadores.

As aplicações móveis são capazes de determinar a localização continuamente e apresentá-la aos

utilizadores, mas essa informação é vulnerável a ataques de falsificação localização. Uma das

abordagens para prevenir a falsificação de localização é recolher leituras únicas de sensores num

determinado local e num intervalo de tempo espećıfico e, mais tarde, responder aos desafios de

verificação e comparar com as leituras feitas por um grande número de testemunhas ad-hoc.

Este trabalho propõe uma proteção à privacidade das testemunhas no sistema de verificação de

localização SureThing. SureThing usa uma combinação de Wi-Fi, Bluetooth e outras fontes de

sinais e testemunhas ad-hoc num certo intervalo de tempo e num local espećıfico para produzir

uma prova de localização verificável. O trabalho foi avaliado com simulações detalhadas para

um caso de uso de transportes públicos sem uso de bilhetes f́ısicos, usando um conjunto de dados

recolhidos em transportes públicos reais numa cidade. Os resultados da simulação mostram que

o sistema é viável e permite que as provas sejam emitidas com sucesso e validadas com proteção

de privacidade adequada em 70% dos pedidos feitos num autocarro com lotação elevada.

Palavras-chave: Serviços baseados em localização, Privacidade, Privacidade diferen-

cial, Indistinguibilidade geográfica, Internet das coisas
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Abstract

The widespread presence of smartphones in daily life has changed the experience and expecta-

tions of end-users. Mobile apps are routinely able to determine their location and present it

to the users, but this information is vulnerable to location spoofing attacks. One of the ap-

proaches to thwart location spoofing is to collect unique sensor readings at the location in a

specific time slot and then, later, respond to verification challenges and compare with readings

made by crowd-sourced, ad-hoc witnesses. This work proposes witness privacy protection for

the SureThing location certification system. SureThing uses a combination of Wi-Fi, Bluetooth

and other sources of signal, and ad-hoc witnesses at the same time and location, to produce

verifiable proof of location. The work was evaluated with detailed simulations for a use case,

ticketless public transport, using a data set collected on actual public transports in a city. The

simulation results show that the system is feasible and allows proofs to be successfully issued

and verified with adequate privacy protection on 70% of requests made on a full bus.

Keywords: Location-based Services, Privacy, Differential Privacy, Geographic Indistin-

guishability, Internet of Things

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Privacy-preserving mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Location Privacy mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Zero Knowledge proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.5 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.6 Geo-Indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Location proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 APPLAUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 CREPUSCOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 SureThing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Privacy-preserving location proof systems . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 ICELUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Olteanu’s co-location privacy framework . . . . . . . . . . . . . . . . . . . 16

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

xi



3 Design & Implementation 19

3.1 Attacker model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Identity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Location Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Witness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.3 Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Use Case 29

4.1 Public Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Ticketless Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Evaluation 35

5.1 Baseline scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Geo-indistinguishability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Response throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Attack resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion 43

6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

A Simulator Architecture and Design 49

A.1 Simulator Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xii



List of Tables

2.1 Comparison of location privacy preservation mechanisms by attack models. . . . 18

5.1 The noise parameters and the corresponding average distances between the wit-

ness and the bus stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 The limit of proof responses and the corresponding average distances between the

witnesses and the bus stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xiii



xiv



List of Figures

2.1 Illustrative example of Interactive ZKP. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Surething system architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Icelus system architecture without privacy. . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Icelus system architecture with privacy. . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Redesigned Surething system architecture. . . . . . . . . . . . . . . . . . . . . . . 22

3.2 SureThing Project structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Class diagram with the main classes used by both Prover and Witness. . . . . . . 26

3.4 Privacy options screen design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Ticketless transport mobile application screen design. . . . . . . . . . . . . . . . 32

4.2 The simulation route of the bus in the Anylogic simulator. . . . . . . . . . . . . . 33

5.1 Absolute number of proofs performed for the baseline experiments. . . . . . . . . 36

5.2 Acceptance rate of proofs with different noise parameters. . . . . . . . . . . . . . 37

5.3 Acceptance rate of proofs with different proof response limits. . . . . . . . . . . . 39

5.4 Trace collected with high number of available proof responses from the target. . 40

5.5 Trace collected with medium number of available proof responses from the target. 40

5.6 Trace collected with low number of available proof responses from the target. . . 40

A.1 Main simulator architecture of the ticketless public transportation. . . . . . . . . 50

A.2 Bus simulator architecture of the ticketless public transportation. . . . . . . . . . 50

xv



xvi



Chapter 1

Introduction

The widespread presence of smartphones in daily life has changed the experience and expecta-

tions of end-users. Mobile apps are routinely able to determine their location and present it to

the users, for applications such as ride-hailing, food delivery, parking meters, city trekking, and

many forms of social networking. More and more applications rely on these location-based ser-

vices [1] but the location information is vulnerable to spoofing attacks, as it is usually collected

in a best-effort approach, using unauthenticated GPS, Wi-Fi, or Bluetooth signals. In typical

location spoofing attacks [2], the spoofer transmits a signal to the receivers to deceive them.

This deception can occur when the legitimate transmitter stops transmitting the signal. The

spoofer can also transmit the deceiving signal with a higher power to the receiver, so that the

receiver would accept the spoofing signal instead of the legitimate signal from the transmitter.

In a specific example [3], GPS signals sent by the satellites for aircraft and Unmanned Aerial

Vehicles (UAVs) are not secure. A malicious transmitter can spoof the GPS signal by emitting

similar signals with a higher power. The aircraft would accept the spoofed signal instead of

the authentic signals and could be misdirected to an unwanted location. Another example of

location spoofing occurs in one of the fastest-growing industries: autonomous vehicles [4]. Self-

driving cars are expected to be cost-efficient and provide more safety compared to cars operated

by humans, one of the most critical devices of an autonomous vehicle is GPS. The location

spoofing attacks have a high risk in these systems, as the attacker can mislead a vehicle using

incorrect GPS signals. These attacks are very hard to prevent by the owner of the vehicle.

As the examples above illustrated, location spoofing attacks can have a severe impact on

location-based services. One of the approaches to thwart location spoofing is to collect unique

sensor readings at the location in a specific time slot and then, later, respond to verification

challenges and compare with readings made by ad-hoc witnesses. This is the approach followed

by the SureThing system [5]. Witnesses are other users that happen to be at the same location
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at the same time. These witnesses act as crowd-sourcing for a location certification system.

They have the incentive to act as witnesses because they later need their own location proofs.

However, for the system to be trusted and used by the witnesses, it needs to be transparent about

data use and include privacy protections. In other words, there must be a witness protection

program in place. This is exactly what we propose in this work.

1.1 Contributions

This paper presents an extension of SureThing to make it a privacy-preserving location proof

system for mobile devices that addresses attacks against the privacy of users and witnesses,

and the reliability of the system. The privacy of the witnesses is protected by using a geo-

indistinguishability mechanism adapted from the differential privacy mechanism for geo-location

systems. It injects noise/error in the reported locations and the number of proof responses is

limited to a threshold.

For the evaluation of the privacy mechanism for SureThing, we used a Ticketless public trans-

portation scenario. The system was simulated with a discrete event simulator tool1 with source

data collected from actual experiments in a bus network on a city with 500 000 inhabitants.

1.2 Dissertation Outline

The remainder of the document is structured as follows: Chapter 2 presents the background and

related work; Chapter 3 describes the design and the implementation of the system, including

the architecture; Chapter 4 presents the use case scenario; Chapter 5 presents the evaluation per-

formed to verify the design and system architecture; Finally, Chapter 6 presents our conclusion

and future work.

1AnyLogic simulation software. Available: https://www.anylogic.com/downloads/
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Chapter 2

Background

In this chapter, we present relevant definitions and related work. We start with privacy pro-

tection techniques and then discuss location proof systems, exemplified by SureThing [5]. We

conclude with a detailed analysis of existing privacy-preserving location proof systems.

2.1 Privacy-preserving mechanisms

Privacy is informally the protection of information about you that you do not want others to

know about. A privacy-preserving mechanism preserves the privacy of shared data, e.g. location

proofs that include the identity and location of users and witnesses in a location proof system.

Next, we describe definitions and metrics and then the following privacy-preserving mechanisms:

Dummy Location method, Cloaking, Mix zones, Zero-Knowledge Proofs, Differential Privacy,

and Geo-Indistinguishability.

2.1.1 Definitions

The term anonymization represents the fact that an individual is not uniquely described

inside of a group of individuals [6]. The concept of an individual refers to an active entity, such as

a person or a computer. A group of individuals can be a group of persons or a computer network.

A transaction or registration is considered anonymous when the data, individually or combined

with other data, cannot be associated with a particular individual. Data anonymization is

designed to make it more difficult to identify a particular individual from a set of related data,

the purpose of it is to protect the privacy of the individual.

Generalization is one of the techniques to make data anonymous. This technique replaces
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the values of quasi-identifier attributes for less specific values, but with consistent semantics,

that represent them. Quasi-identifiers are non-explicit identifiers, i.e. zip code, birth date,

gender, and attributes are explicit identifiers like address, name. This technique categorizes the

attributes, creating a taxonomy of values with levels of abstraction from the particular to the

generic level. An example of generalization is replacing quasi-identifiers attributes, like birthdate

and gender, with a less specific value, the first name of the person. All those quasi-identifiers

are represented by the first name of the person.

The term De-identification refers to the process used to prevent someone’s identity from

being revealed. Identity disclosure occurs when an individual is linked to a particular record in

the released database. Attribute disclosure occurs when new information about some individuals

is revealed, i.e., the released data makes it possible to infer the characteristics of an individual

more accurately than it was possible before the data release.

2.1.2 Metrics

The concept of k-anonymity privacy is the most known metric in anonymization [7]. K-

anonymity ensures that for each combination of quasi-identifier values, exist at least k records in

a set of records, forming an equivalence class. An equivalence class is a set of records that match

on the quasi-identifiers. K-anonymity acts with the indistinguishability principle, each record in

a set of k-anonym records is indistinguishable from each other considering the combination of

quasi-identifier values. This way, k-anonymity can guarantee that each record cannot be linked

to an individual by one attacker with a probability higher than 1/k. K-anonymity can protect

against identity disclosure, but cannot prevent attribute disclosure. Due to the limitation of

k-anonymity, l-diversity was introduced as an alternative metric.

L-diversity requires that each equivalence class has at least l “well-represented” values for

each sensitive attribute. This guarantees that the attacker, even with prior knowledge that

allows him to discover an equivalence class of an individual, the attacker cannot infer the sensitive

attribute of that individual with a higher probability than 1/l. The idea of l-diversity is to protect

against linkability attacks, in the cases where the attacker can infer sensitive information about

the records without identifying them. The “well-represented” values mean that are at least l

distinct values for the sensitive attribute in each equivalence class, and makes sure that the

less frequent values do not appear too rarely, and the most frequent value does not appear too

frequently. L-diversity is insufficient to prevent attribute disclosure and may be difficult and

unnecessary to achieve because the l-diversity requirement ensures a diversity of sensitive values
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in each set, but it does not take into account the semantical closeness of these values.

L-diversity is vulnerable to a Similarity attack, this attack happens when one of the sensitive

attributes gives a piece of sensitive information to the attacker, even that all sensitive attributes

are distinct from each other. Another attack is the Skewness attack, it occurs when the distri-

bution of values of the sensitive attribute within a given equivalence class is different from the

distribution of the values of the same sensitive attribute over the whole database.

The t-closeness metric is a proposal to solve some limitations of l-diversity, such as protec-

tion against skewness attacks. For this purpose, t-closeness requires that the distribution of

sensitive attributes in each equivalence class is close to the global distribution of the attribute.

The maximum distance between the equivalence classes and global distribution is defined by

the parameter t. There are some distance measurements to measure the difference between

the equivalence class distribution and global distribution, such as variational distance and the

Kullback-Leibler distance [8], but these distance measures do not reflect the semantic distance

among values. Then, the Earth Mover Distance (EMD) is used to measure the distance that

reflects the semantic, which results contain real values in the range [0,1], the higher the distance

value, the weaker is the protection. EMD gives us a method for determining the distance be-

tween two distributions but does not tell us how to determine the distance between two elements

in the distributions. This limits the amount of specific individual information that an attacker

can learn.

T-closeness has some limitations like no flexibility to the specification of different levels of

privacy for each sensitive attribute, and the EMD function is not adequate for linkability attacks

when these are numeric, also to ensure t-closeness could compromise the utility to guarantee the

same distribution in all equivalence classes.

Concluding this section, while k-anonymity protects against identifying disclosure, it does

not protect against attribute disclosure. L-diversity solves this problem by requiring that each

equivalence class has at least l “well-represented” values for each sensitive attribute. The t-

closeness solves the protection against skewness attacks limitation of l-diversity by requiring

that the distribution of a sensitive attribute in each equivalence class is close to the global

distribution of the attribute. The goal of privacy preservation metrics is to measure the level of

privacy and the amount of protection offered by privacy-preserving mechanisms.

2.1.3 Location Privacy mechanisms

Several privacy-preserving mechanisms are specific for location data, which include Dummy
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Location method, Cloaking, and Mix zones.

The Dummy Location method preserves the privacy of the user by using a different location

from the real location of the user, called the dummy location [9]. The higher the distance be-

tween the dummy location and the real location of the user, the higher is the privacy-preserving

level, but the lower is the accuracy of the user’s location. This technique is useful if the gran-

ularity of the location can be very coarse, e.g. knowing in which city the user is but not the

actual street location.

Spatial and temporal cloaking uses the concept of k-anonymity. The idea of a cloaking

approach is to compute a cloaked area that covers the user and at least k-1 other users. The

real location of the user is not used, only a spatial range (cloaked area) in which the true

location information is included. The benefit of using the spatio-temporal cloaking method is

that can achieve a good balance between privacy and accuracy, however, it is insufficient to

achieve optimal anonymity.

The idea of Mix zones consists in the definition of areas as a connected spatial region, where

the precise position of a user is not known, is only known that the user is inside of that area

[10]. The user identities are mixed using pseudonyms, it is not possible to distinguish between

different users. All the pseudonyms of users from a certain mix zone are changed when a user

enters that zone. With this method, an observer cannot link users which are going to the mixed

zone with the users that are leaving it, however, if the movement profiles between zones are not

equal, an attacker with statistical background knowledge can link user identities.

2.1.4 Zero Knowledge proofs

A Zero-Knowledge Proof (ZKP) is a mechanism that allows the sharing of validated data

with a third-party without actually sharing the data itself [11]. A prover P can prove his identity

to a verifier V without sharing any personally sensitive information, only cryptographic proof

that does not leak any data is shared. Considering that the process of generating proof is trusted,

ZKP provides privacy in sharing data.

There are three important properties of ZKP: Completeness, Soundness, and Zero-Knowledge [12].

Completeness means that everything true has proof. If the prover is telling the truth, he will

eventually convince the Verifier. Soundness means that everything that is provable is true. A

Prover can only convince a Verifier if they are telling the truth. And Zero-Knowledge means

that only the statement being proven is revealed. The Verifier does not learn anything else

about the information of the Prover.
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There are two types of ZKP. The non-interactive ZKP does not require an interactive process

but requires additional computation to determine the sequence of iterations to validate the proof.

The interactive ZKP consists of an interactive process between the prover P and the verifier V

with the purpose of V constantly asking questions about the knowledge of P.

Figure 2.1: Illustrative example of Interactive ZKP with Peggy and Victor.

The ZKP concept of sharing sensitive information without really sharing sensitive informa-

tion is not intuitive. To explain how the ZKP works we will illustrate with an example of an

Interactive ZKP [13] with Peggy (the prover) and Victor (the verifier) using Figure 2.1 to present

the scenario. Suppose that Peggy needs to prove to Victor that she can get through a magic

door in the middle of a ring tunnel without revealing the secret code that opens the door. Victor

and Peggy initially are in position A as shown in Figure 2.1. Then Peggy randomly chooses

one path, B or C. Once Peggy is in the tunnel, Victor randomly declares a path, B or C, where

Peggy has to go out of the tunnel. If Peggy enters from the same side Victor asks her to go

out, then, she does not have to know the secret code. By repeating this test many times, the

probability for Peggy to cheat is almost zero, thus Victor can verify that she knows the secret

code without her revealing it.

This example of Zero-Knowledge authentication has the Completeness property, if Peggy

exits the tunnel from the correct side several times, then Victor will be convinced that she

knows the right secret code. Has the Soundness property, because the probability for Peggy to

convince Victor that she knows the secret code without knowing it is 0.5n where n is the number

of test repetitions. And Zero-Knowledgeness property, where Victor must not learn the secret

code of the magic door.

There are many ways to use Zero-Knowledge Proofs to protect the data. This is useful for

any system where requires public verification of potentially private information.
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2.1.5 Differential Privacy

Differential Privacy mechanisms quantify the maximum possible information gain by the

attacker, which can reduce the risk of the privacy being compromised [14]. The private infor-

mation is limited and quantified by a privacy loss parameter, usually designated epsilon ε. The

privacy loss parameter consists of quantifying the maximum possible information gain by the

attacker and determines how much noise needs to be introduced during the differential private

computation. Using a smaller value of ε results in stronger privacy protection but less accu-

racy due to the deviation between the real analysis and each approximation output computed

scenario.

Differential Privacy consists of analyzing and sharing information with individual privacy

protection according to the existing policy or legal requirements for disclosure limitation or de-

identification. This mechanism guarantees that anyone observing a set of differential private

analyses will make the same inference about any private information of the individual, whether

or not that private information of the individual is included in the input to the analysis.

Differential Privacy protects against a wide range of potential privacy attacks, including

unknown attacks at the time of deployment. In a given set of individuals, their data will be

differentially private even when multiple analyses are performed on that data, as long as each of

the analyses satisfies differential privacy. But releasing too many accurate statistics, will have a

considerable privacy loss. To avoid this, the number of analysis performed on a specific dataset

must be limited to provide an acceptable guarantee of privacy.

A specific example is the following: suppose that you gave differentially private data to Alice

and Bob. You use the privacy loss parameter of 1ε every time. If they decide to collude, the

resulting data is still protected, only the privacy will be weaker, i.e., the privacy loss parameter

will become 2ε. They will gain some data, but you still quantify how much information they

can get, this is a property of the composition. The composition is a method to stay in control

of the level of risk as new use cases appear and processes evolve. The more the information is

intended to be queried, the more noise has to be introduced to minimize privacy leakage. Once

the data has been leaked, the user information will no longer be private.

2.1.6 Geo-Indistinguishability

The Geo-Indistinguishability mechanism, based on the concept of Differential Privacy, con-

sists of a user-centric Location Privacy-Preserving mechanism (LPPM) that limits and quantifies
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the information gain by the attacker observing the reports with location data between users.

Geo-Indistinguishability is an interesting privacy-preserving mechanism to protect the location

of the users when reporting their location, guarantees that any two locations within a given

radius around the user are statistically indistinguishable.

Cunha et al. [15] propose a new mechanism that can be used both in the sporadic scenario and

in the continuous scenario, called Clustering Geo-Indistinguishability. This mechanism considers

two important factors, the frequency of updates and the distance between the reported locations.

It generates obfuscation clusters for closer locations, and the same obfuscated point is reported

to nearby locations.

Clustering Geo-Indistinguishability is based on Planar Laplace (PL) Geo-Indistinguishability

mechanism for sporadic scenarios and Adaptive Geo Indistinguishability mechanism for contin-

uous scenarios. PL geo-indistinguishability consists of adding 2-dimensional Laplacian noise

centered at the exact user location x and reporting it as an obfuscated location.

Adaptive geo-indistinguishability is a combination of PL and a computed variable ε cor-

related between the past locations and the new location. With this variable ε, the adaptive

mechanism can adjust the amount of noise necessary to obfuscate the exact user location. The

correlation ε is the error between the exact location and an estimation obtained with a simple

linear regression. If the correlation between reports is high, the mechanism increases the privacy

level. And if the correlation between the reports is low, the mechanism decreases the privacy

level.

Algorithm 1: Geo Indistinguishability Algorithm

Input: location

1 begin

2 angle← generateRandomAngle();

3 radius← getSampleRadius(epsilon);

4 noisyLat← addSampleNoisyDistance(location.getLatitude());

5 noisyLon← addSampleNoisyDistance(location.getLongitude());

6 location.setLatitude(radianToDegrees(noisyLat);

7 location.setLongitude(radianToDegrees(noisyLon);

8 return location

Algorithm 1 describes the geo-indistinguishability mechanism. It receives a GPS location

and injects the noise quantified by the epsilon parameter. Initially, it generates a random

angle between 0 and 2*PI, to decide in which direction the location will change. Then, it will

calculate the sample radius from the inverse cumulative polar Laplace distribution, using the
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epsilon parameter. With the random angle and with the calculated sample radius, it adds the

sampled noise distance to the original location. To conclude the algorithm, the latitude and

longitude need to be normalized to degrees from -180 to 180.

2.2 Location proof systems

There are several systems that provide location proofs. We highlight two early ones, APPLAUS,

CREPUSCOLO, and a more recent one, SureThing.

2.2.1 APPLAUS

Privacy-Preserving LocAtion proof Updating System (APPLAUS) allows a device to prove

its location by requesting location proofs from nearby mobile devices using Bluetooth. Then

these location proofs are updated to an untrusted Location Proof Server that verifies the trust-

worthiness level of each location proof [16].

One of the benefits of APPLAUS is that it is easy to deploy in Bluetooth enabled mobile

devices. It is not necessary to do any changes in the network infrastructure and mobile devices

to implement it. In APPLAUS, mobile nodes communicate with an untrusted server through a

cellular interface and communicate with other nodes nearby through a Bluetooth interface.

APPLAUS preserves the privacy of the source location information of mobile devices from

each other and the untrusted location proof server by using pseudonyms for the Prover and

Witnesses. Every mobile device is registered with the CA that generates a public/private key

pair. The public key is used as the pseudonym of the mobile device, and the private key is used

to digitally sign messages, and the digital certificate validates the signature authenticity.

The privacy knowledge is separated, the Location Proof Server only knows the pseudonyms

and locations, the Verifier only knows the real identity and its authorized locations. The Cer-

tificate Authority (CA) only knows the mapping between the real entity and its pseudonyms

(public keys) and makes a connection between the Verifier and Location Proof Server. For

the attackers to learn the location information of a user has to integrate all the information.

This allows the system to have the properties of statistically source location unobservability and

pseudonym unlinkability. Source location unobservability is a privacy property that can be sat-

isfied if an attacker cannot determine the real identity of mobile nodes through full observation

of the location proof records. And pseudonym unlinkability can be satisfied if any pseudonym

of an identity presented in the location proofs records cannot be inferred from one to another.
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2.2.2 CREPUSCOLO

CREPUSCOLO (Collusion resistant and privacy-preserving location verification system col-

lects location proofs from co-located mobile devices) is a system that uses a token from a trusted

Token Provider [17]. Token Providers (TPs) are trusted entities, which issue tokens to mobile

devices. Having these tokens combined with location proofs will prove that a determined mobile

device is at a determined location at that time. All entities in the system have to register with

the CA, similar to the one available in APPLAUS, which provides authentication and autho-

rization services. Every entity registered in the system has assigned a pseudonym, and only the

CA can link a pseudonym to identity.

The operation of CREPUSCOLO consists of two phases: the acquisition phase and the veri-

fication phase. In the location-proof acquisition phase, the mobile devices collect location-proofs

and store them in the Location Server (LS). LS is a non-trusted device that provides services

to mobile entities, storage their location-proofs, and tokens. In the location-proof verification

phase, the Verifier (V) uses the information stored in the LS to check if the Prover (P) is at a

certain location or a certain historical trace of locations. CREPUSCOLO protects the source

location privacy by using pseudonyms and changing them periodically. The mechanism of chang-

ing pseudonyms has the pseudonym unlinkability characteristic, which prevents the attackers to

identify a set of pseudonyms as belonging to the same identity. For the attackers to learn how

to link pseudonyms to their associated identity, they have to compromise the CA, however, the

CA is assumed to be trusted.

2.2.3 SureThing

SureThing is a location proof system for mobile devices which can provide evidence of the

presence of a user at a given location relying on witnesses using location estimation techniques,

including GPS coordinates, Wi-Fi fingerprinting, and Bluetooth beacons [5].

The SureThing system follows the design of APPLAUS and CREPUSCOLO as shown in

Figure 2.2, and has four entities: the Prover that needs to prove its location and asks location

proofs from witnesses; The Witness is the entity that agrees to give a location proof to the

Prover. There are three types of witnesses, the master, mobile, and the self witness. The master

is a certified witness that can be trusted by the Verifier. The mobile witness is an untrusted

random witness. If there are no witnesses available, the prover can act as a self witness and

generates a weak location proof. The Verifier validates the proof of the Prover and informs it.
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Figure 2.2: Surething architecture (adapted from [5]).

It is up to the Verifier to define the acceptance criteria of proof, depending on the application

needs and required trust level for location data.

The CA in SureThing is assumed to be trustful and is responsible for generating a public key

certificate for each user. We assume that each user of the system has to have a unique identifier

and it has its own public and private keys.

When a location proof is requested, SureThing operates in the following way: the Prover asks

the Verifier how it should obtain a location proof; the Verifier replies with a Proof Demand that

specifies how the Prover and the Witness should obtain their location evidence; afterward, the

Prover sends a Proof Request to the witnesses nearby, this request contains the identification

of the Prover and the demand previously received; the Witness generates the location proof

and returns to the Prover; this location proof is signed with the private key of the Witness;

then, the Prover forwards the location proof to the Verifier to be verified; the location proof

contains a prover identifier and location, witness identifier and location, a signature from CA

for the authenticity of the proof, and a token (i.e., random number and/or timestamp) to ensure

freshness; the Verifier needs to check the signature in the location proof, so it requests to the CA

the public key of the Witness; after verifying the location proof, the Verifier decides to accept

or reject it.

SureThing uses witness redundancy and decay mechanisms to avoid collusion attacks. For the

system to ensure redundancy protection, the location proofs have to be collected from multiple

witnesses instead of one. Also, the same witnesses cannot be used too many times. This is
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achieved by decreasing the value of the proofs from the same witnesses. If an attacker wants

to deceive the system, he will have to collude with many false witnesses. Given this reliance on

many and fresh witnesses, SureThing is most effective for crowded locations, where a user can

obtain location proofs with a diversity of witnesses.

CROSS (loCation pROof techniqueS for consumer mobile applicationS) is a system derived

from SureThing that uses a set of predefined infrastructures to perform location verification

with mobile devices [18]. An infrastructure can be a Wi-Fi network to detect whether the

user is present or not in the locations and to verify that the user is not spoofing his location.

In the Smart Tourism use case, the users can interact with representative city locations, using

their mobile devices, using Wi-Fi as an infrastructure for location detection. The information

gathered from the user is to check if the user completed any predefined tourism route. The

privacy of users is preserved from Wi-Fi access points because the end-user device only collects

information passively, as it moves around the itinerary locations. However, the privacy from

the server is not preserved from the server, as it is assumed to be trusted and has access to the

complete data.

STOP(Secure Transport lOcation Proofs) is another system derived from SureThing that

uses mobile devices to improve road transportation inspection [19]. STOP relies on master

witnesses for inspection of transportation of materials. STOP uses pseudonyms in the proximity

BT protocol. The system uses GPS tracking combined with the location proofing mechanism. To

prove the vehicle has been inspected, the location proofs are generated at each inspection. The

STOP inspector role is based on the Token Provider entity presented by CREPUSCOLO [17].

2.3 Privacy-preserving location proof systems

In this section we present systems that use location and protect the user privacy: Icelus, MA-

TRIX and Olteanu’s framework.

2.3.1 ICELUS

The Icelus system allows estimating the user location and modeling the user movement by

combining multiple observations from multiple devices. The location estimation of the user will

be more robust than using only a smartphone, because of the scale and diversity of the Internet

of Things (IoT) devices. The user can spoof its location by using only its smartphone to prove

its location, Icelus takes leverage of the increasing number of IoT devices used by users and

those smart environments to locate them [20].
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The attacks that Icelus is designed to prevent are the attempts to bypass user authentication

with physical devices and terminals to gain unauthorized access to locations, properties of the

user, or from third-parties. These types of attacks can compromise passwords, biometrics, or

security tokens, such as smart cards and swipe cards. Icelus does not assume that devices of

the users have not been compromised, but that they can be physically stolen, tampered with,

or even remotely compromised.

Hub

Site

Beacon

Trinket Fragment

Token 

Connection
Observation

Figure 2.3: Icelus system architecture without privacy (adapted from [20]).

The Icelus system organizes the IoT devices in a hierarchy, as shown in the Figure 2.3. On

top of the hierarchy is the hub, which hosts the Icelus service. The Hub receives information

from different sources, considering that only the user controls the Hub, to avoid the data be

seen by third-parties. Those different sources that send information to the Hub are Trinkets,

i.e. smartphones and smartwatches, and Beacons, i.e. third-party devices that observe devices

of the users. These devices collect data from smaller devices called Fragments and Tokens, i.e.

smart wearables and smartcards. They have to rely on the Trinket to send their data to the

Hub.

An ICELUS Avatar is a digital estimate of a user’s location or a set of devices in the same

area of a given radius. The probability that the user is physically near to that set of devices is

called the Confidence Score. The higher the number of devices in a given area, the higher will

be the Confidence Score.

When a Trinket reports geolocation information, it generates an Avatar at its location with

all Fragments devices that Trinket collected data. Also, when a Token is observed through

another device, it is linked to the Avatar at that location. If the token is observed far from the

existing Avatars, it creates a new Avatar at the location where it was observed.
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Sites are entities that query the Hub about the possibility of the user being physically present

at a location. In the registration, it is defined as the places that the Sites can only send queries.

The Hub is listening for queries from Sites. When the Hub receives a query, it asks Trinkets to

send fresh data, even the devices are reporting fresh information periodically. After receiving the

information, the Hub checks if exists an Avatar with confidence score higher in other location,

than the rejection threshold configured for the Site.

Hub Sub-protocol Site

Figure 2.4: Icelus system architecture with privacy (adapted from [20]).

Using the ICELUS Hub to get all geolocation information can bring privacy concerns for the

users or third-parties. To mitigate this issue, the Hub and the Site can only learn the distances

between the reported locations, and not the precise coordinates. The idea is to check if there is

no high probability of a user being in a different location. And to get the set of locations where

the user can be, the Sites have to be pre-authorized to do queries about the location of the user.

This avoids the leakage of the user’s location unnecessarily. To prevent falsely rejecting users,

in the case of the user forgets the device at home, and to prevent the stolen devices from being

misused, Icelus relies on proofs indicating that the user is not at a determined location. Instead

of operating with the precise location of devices, it operates on their distances.

Icelus uses Homomorphic encryption for a key-pair, and the public key is K and the private

key is k. Homomorphic encryption is a method of encryption that allows any data to remain

encrypted while it is being processed and manipulated. This type of encryption is suitable

for arithmetic computations, more specific, for Euclidean distances. All the location reports

arrive at the Hub are encrypted using K. When the Site performs a query, the Hub will start a

sub-protocol with the Site, as shown in the Figure 2.4. Then the Hub computes the distances

between any location. To calculate their relative positions, the Hub needs to have a pairwise

distance between three points.

2.3.2 MATRIX

Narai and Noubir [21] proposed MATRIX, a system to allow end-users to control the visibility

of the location and sensor accesses by mobile applications. The MATRIX is designed to protect

against tracing attacks. To guarantee that the adversary does not detect that the trajectories
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are synthetic, they must emulate real movements by using routines of the users, their schedules,

traffic information, and driving behavior. These synthetic trajectories are important because

they permit to reduce the privacy leaks and to understand of how the user’s location information

is exploited by mobile applications. This system implements a service with a user interface that

verifies all locations and sensor accesses by mobile applications and gives timely notifications,

helping the users to make privacy-aware decisions for the installed apps. And it uses a Synthetic

Location service for users to provide obfuscated or synthetic location trajectories or sensor traces

to mobile applications. Also, MATRIX implements a Location Provider that generates realistic

privacy-preserving synthetic identities and trajectories for users by using traffic information from

historical data of Google Maps Directions API1, and accelerations from user driving experiments.

Synthetic identity is a unique virtual identity for each mobile device user, and each one has a

unique movement pattern. A synthetic identity does not have any specific attributes of the

user location. These trajectories ensure location privacy because they are independent of the

real locations of the users, although, if the adversary detects that the trajectories are fake, the

service is denied. The adversary is a mobile application that uses the location information of

the user.

2.3.3 Olteanu’s co-location privacy framework

Most of the online social networks, such as Facebook, give users the functionality of sharing their

location jointly with posts and photos. They also provide the ability to mention other users,

i.e., to tag them on photos or in posts. In such cases, that information indicates that the users

mentioned in a post or photo are co-located. Sharing this information brings social benefits but

also location privacy concerns, for both the user who shared the information and for the tagged

user. This co-location also happens when a location proof witness testifies to the presence of

another user.

Olteanu et al.[22] propose a framework to allow two users to make decisions about posting co-

location information. Co-location information is location information that involves information

from other users, i.e., there is a dependence between the users. This framework models the

direct and indirect benefits, and the privacy concerns of location and co-location sharing, and

permits the analysis of the behavior of users of sharing the location and co-location. At any

moment, an adversary, such as the service provider or the friends of these two users, has access

to reported locations and co-locations. This framework is based on game theory and conjoint

analysis. Game theory allows us to model and formalize the sharing behavior of the preferences

1Google Maps Directions API. Available: https://developers.google.com/maps/documentation/directions/overview
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of the users. The conjoint analysis allows us to determine the benefits of sharing location and

co-location information and the associated location privacy concerns.

The authors conclude that because of conflicting preferences, one of the users can be forced

into a situation that it does not desire, and also sharing co-location information can additionally

encourage users to over-share their locations.

2.4 Summary

We presented location proof systems, privacy mechanisms, and their use. The discussed works

are relevant for the privacy protection. Icelus illustrates how the use of distance instead of

coordinates can still provide a relative location. MATRIX shows the value of synthesized location

and trajectory data to protect user’s privacy. Olteanu’s work shows that co-location, such as

the one that happens when a witness testifies for a location proof, must be a core concern.

Table 2.1 summarizes the privacy-preserving mechanisms and the attacks they are designed

to resist. All of these mechanisms have the objective of preserving identity, location, and time

privacy. When an attacker aims to obtain information and to use it for its benefit, the attack

can be defined by how it obtained the information, which method was used, what knowledge is

obtained, and which its target is. The main targets are the identity, position, and timestamp at

that position of the users.

The information can be collected from published or shared location information, history of

locations, or distributions. Afterwards, the attacker collects some location information, and

the power of this knowledge depends on whether the information has been processed or not.

Observed location information is information that has been processed by the user, server, or

service provider before being published or shared. Context knowledge is any information that

can be linked to other information that the attacker has to reveal the location information of

a user, e.g., the location restrictions of an area, relationships between different users, or the

relationships between the identity of the users and their location.

As shown in table 2.1, context linking is one of the most important attacks for location

privacy-preserving mechanisms. The context linking attack occurs in a system that protects

the unlinkability of certain data (e.g. identifiers, pseudonyms, locations) that does not leak

information that would enable an adversary to link these items, however, the attacker can take

advantage of hints from the context in which the system operates. The contextual knowledge

is easy to combine with other relevant information like with the observed location informa-

tion for a localization attack or with precise location information for an identity attack. The

probability method is based on collecting statistics about environment contexts, this is similar
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Location Privacy
Preservation Mechanism

Adversary and attack
Knowledge Attack method Target

Anonymization
Mix-zone

Observed;
Context

Context
linking

Identity

Zero-Knowledge
Proof

Observed Probability Identity

Obfuscation

Dummy locations Observed Not specified Position

Spatial obfuscation Observed
Context
linking

Position

Time obfuscation Observed
Context
linking

Time

Spatiotemporal
obfuscation

Observed;
Context

Context
linking

Position;
Time

Geo-Indistinguishability Observed Probability Position

Table 2.1: Comparison of location privacy preservation mechanisms (based on [23]).

to the contextual information, however, this method exploits probability theory to predict the

locations.

Geo-Indistinguishability is a generic mechanism, independent of the specific user or the area

where it is used, that allows a user to disclose enough location information while simultaneously

preserving some privacy. The only parameter that matters is the level of privacy, i.e., the level

of accuracy of the location data. In the next chapter we propose privacy protections, and one

of them is based on geo-indistinguishability mechanism.

18



Chapter 3

Design & Implementation

There are many mechanisms to preserve identity and location privacy. In this chapter, we

propose mechanisms for witness protection for the Surething location proof system. The main

goal is to provide privacy protections to the witnesses that are volunteering to testify the presence

of another user at a given place, using mobile devices. Section 3.1 presents the attacker model.

Section 3.2 presents the high-level approach. Section 3.3 presents the architecture of the system,

including the components and how they interact, and the privacy mechanisms. Finally, in Section

3.4, we present the software architecture and the implementation of the privacy module.

3.1 Attacker model

The attacker model considers the following attackers:

1. An external attacker that is not registered to SureThing, but can eavesdrop communica-

tions between the prover and witnesses and try to determine their identities and location,

in personal area network (Bluetooth), local area network (Wi-Fi) and in the wide area

network (Internet).

2. A malicious user registered on the system that performs proof stealing, i.e., steals and

uses location proofs from other users.

3. A malicious user registered on the system and interested in attacking the location pri-

vacy of other users, requests location proofs from witnesses to collect accurate location

information of them.

4. A malicious user with access to the proof history that can query and ask for sets of proofs.

Considering the attacker model presented, the system can mitigate and prevent some attacks.

Regarding the attacker (1), the external eavesdropper, if the attacker tries to intercept the
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communications between the prover and witnesses, it is protected by a secure HTTPS channel.

We assume that the communications between users are encrypted and the external attackers

cannot break the encryption. Also, we assume that every user has a certificate and there is a

validation of the certificate using the CA.

The attacker (2) tries to steal proofs from other users. This is a special case of a replay

attack. It can be detected by verifying the identity of the signature, the freshness, and the

unique identifier.

Attacker (3) is a user that is requesting location proofs with the purpose, not of getting proof

of locations, but to try and track the location of other users that are acting as witnesses. This

attacker is the main concern in this work.

Finally, the attacker (4) that can query the ledger and ask for sets of past proofs, to track

the location of users that requested proofs or that acted as witnesses. To mitigate this attack is

necessary to use pseudonyms for the users in the system, as proposed in the next section.

3.2 Approach

In this work, we focus only on location privacy protection, but the protection of the identity of

the users is planned for future work. Our system extends a previous version of SureThing with

mechanisms to address the location privacy protection of the users.

3.2.1 Identity Protection

The idea consists of the users having pseudonyms to protect the identity of the witnesses. Based

on the paper [24], the witnesses would use an ephemeral identifier (EphID), instead of using

their real identity. This ephemeral identifier is generated pseudo-randomly by the smartphone,

derived from the secret key (SK) of the smartphone, and it is rotated periodically. The CA is

the only entity that can identify the real identity of the witness. So, when the prover requests

location proofs to the witnesses, the witnesses will generate a new ephemeral identifier and it will

send the location proof to the prover. When the witness generates the new ephemeral identifier,

it will advertize it to the CA. For the prover, the witness identifier is a random ID that is changed

frequently, so the prover cannot map it to the identity of the witnesses or to track them. After

collecting all the location proofs from the witnesses, it will send to the Verifier to validate the

claimed location of the prover. The Verifier will verify the authenticity and freshness of the

location proofs of the witnesses, so it requests to the CA the public keys of the witnesses. The

CA will linked the ephemeral identifier to the real identity of the witnesses and it will return

the public keys of the witnesses.
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3.2.2 Location Protection

It allows the users to protect their privacy when they are helping other users, acting as witnesses

at a location. The system has three mechanisms to ensure the privacy of the location of the

users: geo-indistinguishability, response throttling and static position.

The geo-indistinguishability mechanism injects noise in the location data of the user when it

is shared with other users to obfuscate its real location. The static position mechanism allows

the witness to reply to location proofs requested by other users with a static position, to avoid

sending other locations of the same area. The response throttling mechanism limits the number

of replies to location proof requests to other users when the user is acting as a witness following

the Differential Privacy principle: the more information is shared, the more noise needs to be

injected. These mechanisms are expected to reduce the leakage of location information of the

witnesses.

The system has a fundamental trade-off between the levels of privacy protection and usability

and accuracy of this system. The system must be capable of protecting the privacy of the users

and at the same time, keep the system accurate and usable. There is also a trade-off between

a few witnesses without privacy protection and more witnesses but less accurate due to privacy

protection. This is meaningful for different use cases, where there can be a variable number of

witnesses.

3.3 Architecture

This section presents the redesigned SureThing architecture and its main components and im-

portant algorithms, as well as the interactions between the components. The main components

of the system are still the Verifier, the Prover, and the Witness. The Figure 3.1 presents the

redesigned Surething architecture with the main components, as well, the witness privacy pro-

tection.

3.3.1 Prover

At the beginning of the process of proving the user location, the prover will send a Proof De-

mand request to the Verifier to know what type of proof that the Verifier wants to be generated.

Then, it will receive the Proof Demand with the following information: the witness model that

is going to be used when gathering proofs; the proof technique that is going to be used by the

Prover and Witness when collecting proofs, in our system, it will be Geo proofs; a nonce to avoid

replay attacks; and the number of witnesses for the collusion avoidance mechanism. With this
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Figure 3.1: Redesigned Surething architecture.

information, the Prover starts the witness discovery process [25]. After a witness is detected, the

Prover will send it to it a Proof Request, that contains the proof technique and the nonce from

the Proof Demand, and the identifier, and the location data of the Prover. Then, the Prover

will receive the location proofs necessary and it will send all at the same time to the Verifier.

3.3.2 Witness

When a Witness receives a location proof request from the Prover, the Witness can accept or

reject the request according to the limit number of location proof responses sent to other users.

If accepts it, the Witness will determine its location data, by using the proof technique in the

proof request received from the Prover, in our system will be only the Geo technique. This

technique collects geographic location information from the GPS receiver. Then, the Witness

to protect its location privacy, it can define how much noise wants to inject in the location

data. Then, the Witness signs the location proof with his private key to guarantee integrity and

non-repudiation in the exchange of the proof. The location proof is replied by the Witness to

the Prover with the following attributes:

� Prover ID - identifier of the user who wants to prove its location;

� Witness ID - identifier of the user who testifies the presence of the prover at a certain

place;
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� Location data of the Prover - latitude, longitude;

� Location data of the Witness - latitude, longitude;

� Nonce - a random number and/or timestamp used once to ensure freshness;

� Signature of the proof - a signature from the Witness to guarantee authenticity.

These location proofs generated, by the witnesses, are going to be validated by the Verifier,

to prove the presence of the Prover at a certain place.

We created a new module called Privacy in the mobile application that implements the

geo-indistinguishability mechanism to increase the privacy of the location of the witnesses when

reporting location proofs to other users. The geo-indistinguishability class is highlighted in

Figure 3.3. The epsilon is the noise parameter that controls the quantity of noise is introduced

in the location data. The epsilon value can be defined between 0 and 1, where the smallest

number of epsilon results in more noise injection than a higher epsilon. Section 5.2 shows

results with variation of epsilon. The function that introduces noise, it uses the Planar Laplace

mechanism on the mobile application to report to the Prover the obfuscated location of the

Witness rather than its real location.

3.3.3 Verifier

The Verifier has the role of validating the claimed location of the Prover by checking the proofs

of the witnesses. The following algorithm 2 describes the process of validation of the Witnesses

proofs collected using the GPS technique.

To validate the proof of the Prover, the Verifier has to perform the validation of the digital

signature of the proof made by the Witness and must check if the nonce in the proof is the

same that was sent to the Prover. After this, the Verifier will check the type of proof technique

used to create the location proof. The location proofs were obtained by the Geo technique,

the Verifier will make a comparison between the prover and witnesses locations to determine

if their distance is smaller than the threshold defined by the developer, this threshold is the

maximum valid distance between the prover and the witness. Then, the Verifier has to calculate

the midpoint of all the location proofs of the witnesses, since the coordinates are close to each

other, we can treat the Earth as being locally flat and simply find midpoint as thought they

were planar coordinates. So, the Verifier calculates the average of the latitudes and the average

of the longitudes to find the latitude and longitude of the midpoint. After the calculation of the

midpoint, the Verifier will check if the midpoint is in the area previously defined, it will accept

the proof, otherwise, will reject it. The threshold of that area should be adapted for the specific
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use. For wide areas, a high threshold would be acceptable, because the user is probably still

inside that area. For small areas, the threshold should be lower.

Algorithm 2: Verifier Tasks Algorithm

Input: A collection of Witness Proofs

1 begin

2 foreach witnessProof in the witnessesProofs do

3 proof ← witnessProof.proof ;

4 witnessID ← witnessProof.witnessID;

5 proofTechnique← witnessProof.proofTechnique;

6 if proofIsCorrectlySigned(proof, witnessID) then

7 if ValidNonce(proof) then

8 if proofTechnique = GEO then

9 AppendToWitnessesLocation(proof.getWitnessGeoLocation());

10 if proofTechnique = WIFI then

11 /* Not relevant for this work */

12 if proofTechnique = BEACON then

13 /* Not relevant for this work */

14 if proofTechnique = GEO then

15 clientGeoLocation← proof.getClientGeoLocation();

16 witnessGeoLocation← CalculateAvgWitnessLocation(witnessesLocation);

17 if locationsCloseToEachOther(clientGeoLocation, witnessGeoLocation) then

18 clientP lace← GetSymbolicP lace(clientGeoLocation);

19 witnessP lace← GetSymbolicP lace(witnessGeoLocation);

20 if clientPlace = witnessPlace then

21 return ACCEPT

22 else

23 return REJECT

24 if proofTechnique = WIFI then

25 /* Not relevant for this work */

26 if proofTechnique = BEACON then

27 /* Not relevant for this work */
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Figure 3.2: SureThing Project structure

3.4 Implementation

We developed our solution in the Surething location proof system. The solution contains one

shared library for the mobile application (Prover and Witness) and the Verifier, and one library

for mobile application, as shown in Figure 3.2. The SureThing Shared Library contains classes

and methods that are used by all entities such as Location Proof objects. The SureThing App

Library contains code to take advantage of SureThing’s functionalities such as location retrieval

or Bluetooth communication.

This system was developed using Java programming language with the IDE Android Studio1

and was build using the Gradle2 tool, because it is integrated with the Android Studio. For the

prototype, we implemented the mobile application on mobile devices with the Android Operating

System (OS). The communication between mobile devices uses Bluetooth without pairing.

The CA is used to register the users in the system and generates a public key certificate

for the user. In our prototype, we deactivated the verification of the signatures of the location

proofs, however, we assumed that are all signed and verified, and the CA is a trusted authority.

To implement the module of privacy, we had to change and to adapt the algorithm of the

Verifier from the previous prototype to ensure that the location proofs are validated, properly.

In the SureThing App Library, we add the privacy module with the Geo-Indistinguishability

class. This module is used only by the witness, and this class is used in the ReceiverGPSLocation

class, which receives the GPS location and then verifies how much noise the witness wants to

put in its location.

The Geo-Indistinguishability implementation was based on Location Guard3. It is a browser

1Android Studio (IDE). Available: https://developer.android.com/studio/index.html
2Gradle Build Tool. Available: https://gradle.org/
3Location Guard browser extension. Available: https://github.com/chatziko/location-guard
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Figure 3.3: Class diagram with the main classes used by both Prover and Witness.

extension that allows protecting your location while using location-aware websites, by adding

controlled noise to it. It implements a location obfuscation technique based on adding noise

from a 2-dimensional Laplace distribution (Geo-indistinguishability). Their code was in the

JavaScript programming language, we tested and it worked as it should, so we decided to apply

it in our system in Java.

Figure 3.3 presents the main classes that are used by both the Prover and the Witness.

Starting from the top, the Proof class is abstract to represent the Location Proof. A Geo Proof

contains two Geo Location objects. One is for the location of the Witness and the other is

for the Prover. Each Geo Location is defined by geographical coordinates, such as latitude

and longitude, and accuracy. With this information, the area is divided into circles and the

Verifier can check if the Prover and the Witness are inside of the same area. The Manager

class is responsible for collecting geolocation data. And it is divided into two because Prover

and Witness will collect location data for different goals. The Prover Manager is to inform the

Witness about the location of the Prover. so the Witness can add it to the proof. The Witness

Manager obtains the location data and it will create a proof to send to the Prover. They share

the same Manager because the process to obtain the location is the same.

In this system, the mechanism for the users to use pseudonyms was designed, but was not

implemented. To simplify the implementation and testing of this work, we do not use the
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certificates and we do not validate them.

The noise and the limit of replies are presented to the users as the configuration of the level

of privacy. Different users have different willingness to share resources and risk appetite. The

privacy options allow users to quantify how much noise they want to put in their location proofs

and how many locations proofs they want to report to other users. The user does not have

detailed control in the parameters but can choose one of the available levels of privacy.

Figure 3.4: Privacy options screen design.

Figure 3.4 illustrates the privacy options to be presented to users, with all the functionalities

mentioned before. The user as a witness can configure the privacy mechanisms. It can activate

or not the static position. And it can decide the number of location proof responses and the

privacy range average distance. This prototype is for testing purposes, not for end users.

3.5 Summary

In this chapter we presented the approach followed to add privacy preserving mechanisms to

SureThing. We described the three mechanisms - geo-indistinguishability, response throttling

and static position - and also detailed the choices made for the software implementation. In the

next chapter we present the use case used for evaluation of the implemented system.
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Chapter 4

Use Case

In this chapter, we present the use case that we chose to test and evaluate our system. We also

present the data set and the tool used to simulate the scenario in operation.

4.1 Public Transport

In the last years, the population in urban areas has been increasing and it has a tendency

to increase more sharply. Consequently, the number of users of public transports has been

increasing too. According to an International Association of Public Transport - UITP, currently,

64% of the trips done in the world happened in urban areas. It is expected that until 2050,

the number of people moving per kilometer in the urban environment will triple 1. A system of

transport plays an important role in large metropolitan areas, therefore is necessary to guarantee

the best conditions of this service to offer a better experience to the users. The population can

choose its type of transport, the car is the most common one, although choosing public transports

instead of a private car will have an impact on the emissions of the CO2 emissions [26]. The

quality of public transports can help in the reduction of private cars in the cities, and the cities

become more eco-friendly.

Over the last years, there has been a huge step in such services with the help of technology

that is evolving even more (e.g. smartphones). Sharing and pooling services are the new ways to

travel in the city, electrical car sharing, electrical bike sharing, and the implementation of multi-

mode transportation services with buses and trains, where the customer is able to use multiple

types of transportation when it is traveling. So, convenience for the users is very important,

these transportation services should have easy access, attractive offers, good integration in the

routine of the users. This multimodal service allows the users to share different vehicles for

1The global public transport awards, 2015. https://www.uitp.org/awards/
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different purposes, like for short trips they can rent an electric scooter or bike, and for different

destinations, the user can choose which transports wants to use according to the time, the

cost, and ecological. The big challenge with multi-modal transport is the tracking of users for

ticketing, i.e known when to charge fees and to whom the fees should be given.

Initially, the tickets were made of paper, but through the years, evolved to systems with

electronic smartcard support and, more lately, for the use of the smartphone. Nowadays, there

are proximity cards for electronic tickets, which allows saving the tickets and offers guarantees

of security to the operator as well to the users, and the users can acquire more than one ticket

and save them on the same card. However, to acquire the tickets is necessary to go to a ticket

office or to an automatic ticket machine and can cause waiting lines for the users.

Paradela [27] proposed a public transport system using a smartphone with NFC in smart-

phones to replace the proximity cards, in order to simplify the process of selling tickets. In

this scenario, the smartphones are used to buy tickets through a mobile application, to save the

ticket, and to access the public transport service. In the validation, the smartphone works sim-

ilar to the proximity cards, to validate the ticket it is necessary to approximate the smartphone

to the validator. This is one example of the trend to use personal devices, like the smartphone,

as the ticket for public transport.

4.2 Ticketless Transport

Considering these systems and the different ticket services, we consider a new system for public

transports, a Ticketless transport system for public transportation using a provable location to

enable efficient boarding and accurate billing. Most of the works are focused on the operator

perspective to have a better system with reduced costs. In this work, we are focused on the user

community perspective and its use of location proofs. The user community is very important in

a crowdsensing system, according to the survey results [28]. Crowdsensing is a data collection

and sharing performed by a large number of regular users [29]. Calado[28] defines the user

as a person that uses its Internet-connected smartphone to capture and share information and

defines community as a group of people that have a shared goal and that join together to share

information related to the goal.

The idea of this system is to allow public transport users to do small trips, without being

necessary to pay a monthly pass or a bus ticket. The operator with this system encourages

spontaneous use of transportation without being necessary proximity to a validator and can

dematerialize the tickets, instead of its used virtual tickets. The ticket services, using this

system allows to speed up the process of acquiring and validating tickets, reducing the waiting
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lines and saving time to the passengers.

When the system detects the entry of the user on the bus, it starts to determine the route of

the user. When the user leaves the bus, the system stops detecting the user and charges the price

of the trip. In case, the bus is empty, the user can collect location proofs from a witness master

that is the driver of the bus. From the perspective of the user, it has an interest in this system,

it gives a flexible tariff in the public transports, there is no need for buying tickets in physical

places, eliminating the waiting lines. However, the user has to place full trust on the transport

operator, and on the accurate detection of entries and exits from transports. To counter-balance

the operator’s detection system, we propose a user community-driven audit system. In it, the

users periodically collect proofs of location as they walk around the city. These proofs are

collected with the collaboration of other users that act as witnesses. The proofs of location are

stored in a ledger that assures that they cannot be tampered. This is another component of the

SureThing project, but outside the scope of this work. So, at the end of a operation period,

let us say 1 day, for example, there are two records of the user activity. The record collected

by the transports operator and the location proofs. Now, an audit can be performed for the

two logs. Is the location proof log of the user consistent with the claimed trips made on the

transport? Or can the user prove that he is being billed for trips he did not do? Hopefully,

such a crowd-based system can keep the operators in check and let them continue to be honest

as the trip interactions become more and more spontaneous. The ticket validation system by

using location proofs is a complement, managed by users themselves, to allow them to have

validation of the official ticket validation system. This is a cross-checking system, to make the

overall system more transparent and involve the community to share location information with

the user that pretends to prove its location. Using a mobile application, the user can configure

the controls of privacy protection and getting context about the current trip, as shown in the

Figure 4.1.

4.3 Simulator

Now, that we presented the concept of the ticketless transport system, we have to consider how

to evaluate the system to know if it is feasible and practical, regarding the privacy concerns

of the users, what is the proof acceptance rate considering that the users are using privacy

protection on their location and what type of attacks or adversaries this system can protect

against the users.

We have a dataset of real GPS coordinates of smartphones during a set of bus trips between

the Marquês de Pombal stop and the Campo Grande stop in Lisbon, Portugal; collected in
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Figure 4.1: Ticketless transport mobile application screen design.

previous work by Santos [19]. We evaluate our system by simulating and analyzing the users

using the Ticketless transport system in different experimental scenarios. We can interact with

users on the bus but also on nearby streets or vehicles next to the bus.

The simulation was developed using AnyLogic software with the creation of a model to

represent the real system. This model considers only the important details, therefore the model

will be less complex than the original system. Anylogic is a multi-method simulation modeling,

it develops simulation models using discrete events, agent-based, and system dynamics. We

chose Anylogic because it has GIS maps integration, i.e., it provides GIS maps in the simulation

models. The elements of the simulation model can be placed on the map and can move from

one point to another through existing roads and routes based on real spatial data. Anylogic has

a built-in search, similar to Google Maps, that allows us to easily locate streets, roads, shops,

and bus stops. This helps us to simulate a real route with GPS coordinates.

In our simulation, we create a model that represents the route of a public bus in the center of

the city of Lisbon in Portugal. The route of the bus has four bus stops, it starts at the bus stop

of Marquês de Pombal, and then goes to the bus stop of Av. Fontes Pereira de Melo, Picoas and

it ends at the bus stop of Saldanha. Figure 4.2 presents the route map of the bus, we decide on

this route because of the dataset available from Santos[19]. At the beginning of the simulation,

the bus starts to do the route and the users will start appearing in the bus stops waiting for

the bus to pick them up. When the user enters the bus, the mobile application validates the

beginning of the trip by proving it through location proofs. Then, when the user leaves the bus,

the mobile application validates the end of the trip through location proofs.
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Figure 4.2: The simulation route of the bus in the Anylogic simulator.

In this simulator, the users to prove their location and to reply to location proof requests, they

execute the adapted code from the SureThing project to simulate the system. For the privacy

mechanism, we imported the Privacy module of the SureThing code, the Geo-indistinguishability

class that permits to inject noise in the GPS coordinates of the witness. The location proof in

the simulator is adapted from the SureThing code and only has the necessary information, it

has witness location, prover location, and the timestamp.

4.4 Simulation setup

For all the simulations to run, we have to define parameters to set up the simulator. Each

experiment has a duration of one hour due to the personal learning edition of Anylogic that

allows only one hour of simulation. We define the capacity of the bus as the same number of a

regular public bus, which is approximately 80 users. Every user has a unique name and surname

to easily identify, and a Boolean parameter to know if the user has the mobile application or

not to participate in the system. When the user goes to one of the stops of the route to wait

for the bus, the user has a parameter for the destination stop determined by the probability of

one of the stops. To verify which bus stop the user is, we defined the threshold of the bus stops
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to 100 (one hundred) meters. It is high enough to be accurate to prove that is at that bus stop

and not in other bus stops since the distances between the bus stops are higher than 250 (two

hundred and fifty) meters. The speed parameter of the bus is 30 (thirty) kilometers per hour,

and the time that the bus waits at each stop is between 1 (one) minute to 3 (three) minutes.

4.5 Summary

In this chapter we presented the Ticketless public transport use case, and the dataset and

simulation tools, that will allow us to evaluate the proposed system. In the next chapter we will

present experiments made to find the ideal privacy parameters for this use case.
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Chapter 5

Evaluation

Following the implementation and design of the SureThing witness protection mechanisms, we

evaluate them with a set of experiments. We explain each experiment and present and discuss

the evaluation results. We focused the evaluation on three important questions:

� How feasible and pratical is the system for the users?

� What are the ideal privacy parameters for the public transport use case?

� Are the privacy mechanisms suitable to protect the witnesses against adversaries?

We provide answers to these questions in the Discussion section, at the end of this chapter.

First we present the experiments on the Baseline, with Geo-indistinguishability, with Response

throttling, and with Attack resistance.

5.1 Baseline scenario

First, we evaluate the best-case scenario, where all the users have this mobile application and

none of them is using privacy protection. None of the users is using any privacy mechanism

in this scenario, all the witnesses are sending their real location. This scenario evaluates if the

system is feasible and practical for the users in the best conditions possible. These measures

were obtained after 30 experiments. The average of users using the bus during one hour in

each experiment is 290 users. Figure 5.1 represents the acceptance rate of proofs of the users

during the entry and exit of the bus. We can observe that most of the claimed locations were

approved during the experiments at the entry and the exit of the bus. This is the best scenario

possible, however, there were claimed locations denied, especially at the entry of the bus. Also,

a significant number of claimed locations were not able to prove their location. A possible

reason for these numbers is because of the simulator, when the users enter the bus to prove their
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Figure 5.1: Absolute number of proofs performed for the baseline experiments.

location, they do it one at a time, the simulator cannot do multi-threading in this process. For

example, when there are too many users to enter in the bus, and they are proving their start of

the trip, the simulator can verify one at a time, and once all the users are inside of the bus, it

will continue its route, and the users will not be able to prove it.

5.2 Geo-indistinguishability

For the second experiment, we studied the effect of geo-indistinguishability error in the location

of the witnesses to evaluate the proof acceptance rate. The witnesses will use different values

of the error to protect their location privacy. We tested the following noise parameters: 1, 0.5,

0.1, 0.05, 0.01, 0.005, and 0.001. For each noise parameter we ran 10 experiments and all the

users have the same noise parameter. We wanted to compare if, by using more noise, we could

have better location privacy for the witnesses while the system still is usable. Our results are

presented in the Figure 5.2.

The noise parameter can vary between 0 and 1, and we can observe that when the noise

parameter tends to 0, the location is more private. Setting the noise parameter to 1, it means

there is no noise in the location data, that is why there is a high percentage of approved proofs.

It is expected that by decreasing the noise parameter, the percentage of approved proofs will

decrease too. All the noise parameters that are equal and higher than 0.01 have a high percentage

of approved proofs because the average distance between the bus stop and the witness location
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Figure 5.2: Acceptance rate of proofs with different noise parameters.

noise parameter average distance (meters)

1 3.80
0.5 4.89
0.1 5.12

0.05 9.99
0.01 35.44

0.005 66.89
0.001 253.90

Table 5.1: The noise parameters and the corresponding average distances between the witness
and the bus stop.

is smaller than the threshold of the bus stop. Table 5.1 presents the average distance between

the bus stop location and the witness position with the respective noise parameter. We can

observe that the number of denied proofs start to increase when the average distance between

the bus stop and the witness location gets closer to the threshold of the bus stop. Using the

noise parameter 0.005, the percentage of denied proofs is 19% because the average distance is

66.89 meters that is very closer to the 100 meters of the threshold of the bus. Reducing the noise

parameter to 0.001, the percentage of denied proofs is higher than the percentage of approved

proofs because the average distance between the witness and the bus stop is higher than the

threshold of the bus stop. Using this noise parameter will protect more the privacy of the witness

but becomes useless for the system to verify the claimed location of the prover. So, if a witness

wants to protect its privacy as maximum as possible, it should use lower values for the noise

parameter. But if a witness wants to help other users and at the same time wants to protect its
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privacy, it should use values close to 0.005. The witness has full control of their privacy.

5.3 Response throttling

After studying the effect of geo-indistinguishability error, we studied the effect of response count,

i.e., the number of replies to ad-hoc witness requests. We will use the noise parameter 0.005

tested in the previous simulation because it gives some relevant level of privacy and it has a good

percentage of accepted proofs. Every user in this simulation will use the same noise parameter

and the same limit of proof responses. During the previous simulations, we recorded the number

of proof responses of all witnesses, and the average number of proof responses is 76 per each

witness. The limit of proof responses will change in each experiment, first, we will test the

average number of proof responses and then, we will increase and decrease 50% of the average

number to see the results of that effect. For each limit value of proof responses, we will run 10

experiments for added statistical confidence in the results.

Figure 5.3 presents the results of testing different limits of proof responses from the witnesses

and the effect on the acceptance rate of claimed proofs. We can observe that between the different

limits of proof responses, there is a small variation of the acceptance rate of the claimed locations.

The result shows that limiting the number of proof responses from the witnesses, it will decrease

the percentage of approved proofs, but it will reduce the leakage of location data of the witness.

Reducing 50% of the average number of proof responses, the difference of the results was 5%

less of approved claimed locations, which has no big impact on the acceptance rate but has a

good impact on protecting the privacy of the witnesses. Increasing 50% of the average number

of proof responses, the percentage of approved claimed locations increased 7%, but the witnesses

have more exposure to their location data. Also, we can observe from Table 5.2 that using the

same noise parameter, and reducing the maximum of proof responses from the witnesses, it will

result in a bigger distance between the witnesses and the bus stop, with fewer witnesses available

it is less accurate to prove the claimed location.

limit of proof responses average distance (meters)

38 76.85
76 76.40

114 68.52

Table 5.2: The limit of proof responses and the corresponding average distances between the
witnesses and the bus stop.
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Figure 5.3: Acceptance rate of proofs with different proof response limits.

5.4 Attack resistance

We evaluate the defenses of the system against a malicious prover that intends to obtain the real

location of a witness. The witnesses have privacy protection using the noise parameter 0.005

and a limit of 76 location proof responses, these values ensure good privacy protection and, at

the same time, the usability of the system. We create an attacker, i.e., a malicious prover, a user

that is on the bus trying to figure out where the witness was by collecting the maximum possible

information about the real location of the witness. The attacker will not leave the bus during

the simulation, and it will try to gather location proofs from the witnesses. In this simulation,

we assume that the attacker has prior knowledge about the location of the user. Because of

the publicly available transportation information and road networks, the attacker knows there

is a high probability that the target user is on the bus and it will try to know the path of the

target user through the location proofs. We define the target users of the attacker, the users

that entry on the bus in the first station and leave the bus in the last station. We decided the

longest distance to evaluate how much information knows about the path of the target user.

Our results are presented in Figures 5.4, 5.5 and 5.6. We can observe that the attacker could

collect location information about the target users. In figure 5.4, the attacker collected a high

number of location proofs from the target user, which allows it to trace a significant path of

the user. In this situation, the bus was almost empty and the target user had high availability

to respond to location proofs. In the figure 5.5, the attacker collected less number of location
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Figure 5.4: Trace collected
with high number of available
proof responses from the tar-
get.

Figure 5.5: Trace collected
with medium number of avail-
able proof responses from the
target.

Figure 5.6: Trace collected
with low number of available
proof responses from the tar-
get.

proofs compared to the previous one, because the bus had more users traveling and requesting

location proofs, which reduce the availability of the target user to respond location proofs to

the attacker. With the bus almost full, the target user had a very low availability to respond

location proofs to the attacker, for this reason, the number of location proofs collected by the

attacker is very low, the result is presented in the figure 5.6.

5.5 Discussion

We evaluated our system in a public transport use case, in the baseline scenario to use location

proofs to cross-validate the entry and exit of the bus. As expected, the acceptance rate of

location proofs at the entry and exit was high, but in a scenario where not all users have the

application and the GPS signal error is more significant, which means that the total of the

position error is the sum of the signal error and privacy error, therefore the acceptance rate of

location proofs would be less than the scenario seen in experiment 5.1. The number of location

proofs not proved could be the result of only one user who can prove its location one at a time.

This limitation is in the simulator, using multi-threading would reduce the number of location

proofs not proved.

Using the best scenario as a baseline, we evaluated the effect of injecting error in the location

data using geo-indistinguishability. According to the algorithm in Section 3.3.2, we know that

the closer the noise parameter gets to zero, the more private the location is. As seen in the

experiment 5.2, the lowest noise parameter (0.001) in the experiment results in an average

distance of 253.90 meters, which is higher than the threshold of the bus stops of the simulator
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(100 meters), therefore the percentage of denied proofs is superior to the percentage of approved

proofs. We conclude that from the different values of the noise parameter, the ideal noise

parameter for the use case is 0.005. This value allows the system to be usable and gives protection

to the witnesses. For each different situation or application, there is a specific ideal noise

parameter.

With the ideal noise parameter, we evaluated the limit of location proof responses of the

witnesses. And as expected in the experiment 5.3, the lower the number of location proofs, the

higher is the average distance of the location proofs from the bus stop. This mechanism reduces

the leakage of the witness location information and we conclude that the ideal parameter to limit

the location proof responses of the witnesses is 76 proofs, because it still has a good acceptance

rate of location proofs and it can reduce the leakage of information from the witness.

To define the ideal parameters, we need to understand what is the impact of compromising

the accuracy of the system by using the privacy mechanisms for each situation. For some

applications that are not critical to the need of having an accurate location, we can increase

the privacy levels of the system to protect the witnesses. For the more critical applications,

that are necessary to have a high accuracy of the location, we need to use weaker privacy levels.

We can define the different privacy levels for the users to choose for each different application.

In our situation, is very important to make sure that the users can collect location proofs to

cross-validate the trips and at the same time protect the privacy of the witnesses. Also, to define

the privacy parameters, we need to ensure that the distance range of the claimed location of the

Prover is not higher than the distance range necessary to validate the proof.

Given the ideal parameters of the privacy mechanisms, we evaluated the behavior of the

system against a possible attacker. A malicious prover attempted to obtain information about

the real location of other users, knowing a priori that there is a high probability of the users

being on the bus. As seen in the experiment 5.4, we conclude that the limitation of location

proof responses of the witnesses had a big impact on protecting the location of the witnesses.

The noise parameter did not have a significant impact on protecting the witness because, in the

simulation, the malicious user can infer that the user is using the bus and so are the witnesses. If

the user is not on the bus, then the location proofs are collected from other users, not on the bus,

so the attacker would not have discovered information about the location of the witness. And

the information that the attacker collected does not describe the complete path of the witness, it

depends on the privacy levels of the witness to reduce the leakage of location information. The

attacker can gain an advantage in retrieving witness locations when he knows for sure that the

user is on the bus. The noise parameter can protect the witnesses in many different scenarios

41



but it can be compromised, the attacker can exploit additional context and perform probability

attack to predict the locations of the witness.
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Chapter 6

Conclusion

In this dissertation, we presented a privacy-preserving extension of SureThing for witness pro-

tection by using privacy mechanisms to protect the location data of the witnesses.

The Geo-Indistinguishability mechanism protects the location privacy of the witness by in-

jecting noise in the location data quantified by the noise parameter. We also proposed response

throttling to limit the number of location proof responses by the witnesses. And in some sit-

uations, the user can also opt for reporting a fixed location. The witnesses have a willingness

to share resources and some risk appetite, so they can select a personal privacy setting in their

mobile application that will quantify how much noise they want to put in their location proofs

and how many locations proofs they want to report to other users.

First, we researched the different privacy mechanisms, how they work, and which attacks

they can defend against or not. Also, we researched the location proof systems that already

have implemented privacy mechanisms. This information gave us an overview of what problems

exist in privacy and what solutions exist to solve it.

6.1 Achievements

We implemented an improved prototype of Surething, by developing an Android mobile ap-

plication, and a verifier server application. This system is focused on using the GPS location

technique, and communicating between users with Bluetooth connections with no pairing. The

Geo-Indistinguishability mechanism was implemented in the mobile application to allow the

witness to inject noise in its location data to protect its real location. With this prototype, we

chose public transportation as our use case to test and evaluate our system.

We developed a simulator to evaluate our system in terms of feasibility and accuracy, in

a scenario of public transports. First, we evaluated the system in the best scenario where all
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users on the bus had the mobile application that could participate in the system and none of

the witnesses was using privacy protection. Then, we compared the different values of noise

injected in the location data of the witnesses and showed that the noise parameter the more

close is to 0, the more noise is injected in the location data. Also, we compared the different

number of replies to ad-hoc witness requests with the same noise parameter, and we concluded

that limiting the number of proof responses from the witnesses, it will decrease the percentage

of approved proofs. Our system has shown, through simulations, that it is practical for ticketless

transport in a city, with a 70% proof acceptance rate, as long the noise parameter of each user

is 0.005 and the limit of the number of location proof responses is 76.

Finally, we evaluated the behavior of the system when a malicious prover attempted to

obtain information about the real locations of the witness, and we conclude that the attacker

can collect some location information of the witness, but only when the attacker knows for sure

that the witness is on the bus. And the leaked location information depends on the privacy

levels of the witness.

6.2 Future Work

Regarding future work, this prototype is very flexible and can be adapted for many different

applications, beyond the public transportation use case. The parameters of privacy can be

defined depending on the system and the level of privacy that wants to implement. Location-

based services are applied in many applications but due to privacy concerns, the users do not

feel safe to use it.

This system can be improved in different ways. In the evaluation, we could add experiments

on actual deployment, to confirm the simulation results. Also, add other use cases, with different

datasets, where the location of users and witnesses has more variability, and, as such, other values

can be selected for the privacy protection parameters. The implemented privacy mechanisms

help to decrease the leakage of private information, although it is not enough, it is possible to

implement more privacy mechanisms to protect the witnesses. Also, it is important to protect

the privacy of the identity of the users, by using pseudonyms and changing them after each

interaction with other users. This system to work properly must have a balance between security

and accuracy, and that is adapted for each situation. Co-location protection is a problem that

this system does not solve and it has a big impact in the privacy of the users.

Another idea for the future is to implement a privacy mechanism in the Prover that can

prove its claimed location without revealing it to the Verifier, this can be done by using a

zero-knowledge proof mechanism and/or multi-party computation mechanism.
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Appendix A

Simulator Architecture and Design

A.1 Simulator Architecture
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Figure A.1: Main simulator architecture of the ticketless public transportation.

Figure A.2: Bus simulator architecture of the ticketless public transportation.
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